1
|
Chen X, Shibu G, Sokolsky BA, Soussana TN, Fisher L, Deochand DK, Dacic M, Mantel I, Ramirez DC, Bell RD, Zhang T, Donlin LT, Goodman SM, Gray NS, Chinenov Y, Fisher RP, Rogatsky I. Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis. Sci Transl Med 2024; 16:eadq5091. [PMID: 39565872 PMCID: PMC11756345 DOI: 10.1126/scitranslmed.adq5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis. To pharmacologically disrupt the Pol II transcription cycle, we used two covalent inhibitors of the transcription factor II H-associated cyclin-dependent kinase 7 (CDK7), THZ1 and YKL-5-124. Both reduced Pol II pausing in murine and human macrophages, broadly suppressed induction of pro- but not anti-inflammatory genes, and rapidly reversed preestablished inflammatory macrophage polarization. In mice, CDK7 inhibition ameliorated both acute and chronic progressive inflammatory arthritis. Lastly, CDK7 inhibition down-regulated a pathogenic gene expression signature in synovial explants from patients with rheumatoid arthritis. We propose that interfering with Pol II early elongation by targeting CDK7 represents a therapeutic opportunity for rheumatoid arthritis and other inflammatory diseases.
Collapse
Affiliation(s)
- Xi Chen
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gayathri Shibu
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Baila A. Sokolsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Logan Fisher
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dinesh K. Deochand
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marija Dacic
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ian Mantel
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel C. Ramirez
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | - Richard D. Bell
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura T. Donlin
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Susan M. Goodman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yurii Chinenov
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| | - Inez Rogatsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
2
|
Guler A, Hamurcu Z, Ulutabanca H, Cınar V, Nurdinov N, Erdem S, Ozpolat B. Flavopiridol Suppresses Cell Proliferation and Migration and Induces Apoptotic Cell Death by Inhibiting Oncogenic FOXM1 Signaling in IDH Wild-Type and IDH-Mutant GBM Cells. Mol Neurobiol 2024; 61:1061-1079. [PMID: 37676393 DOI: 10.1007/s12035-023-03609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Glioblastoma multiforme (GBM) remains one of the most challenging solid cancers to treat due to its highly aggressive and drug-resistant nature. Flavopiridol is synthetic flavone that was recently approved by the FDA for the treatment of acute myeloid leukemia. Flavopiridol exhibits antiproliferative activity in several solid cancer cells and currently evaluated in clinical trials in several solid and hematological cancers. In this study, we investigated the molecular mechanisms underlying antiproliferative effects of flavopiridol in GBM cell lines with wild-type and mutant encoding isocitrate dehydrogenase 1 (IDH1). We found that flavopiridol inhibits proliferation, colony formation, and migration and induces apoptosis in IDH1 wild-type and IDH-mutant cells through inhibition of FOXM1 oncogenic signaling. Furthermore, flavopiridol treatment also inhibits of NF-KB, mediators unfolded protein response (UPR), including, GRP78, PERK and IRE1α, and DNA repair enzyme PARP, which have been shown to be potential therapeutic targets by downregulating FOXM1 in GBM cells. Our findings suggest for the first time that flavopiridol suppresses proliferation, survival, and migration and induces apoptosis in IDH1 wild-type and IDH1-mutant GBM cells by targeting FOXM1 oncogenic signaling which also regulates NF-KB, PARP, and UPR response in GBM cells. Flavopiridol may be a potential novel therapeutic strategy in the treatment of patients IDH1 wild-type and IDH1-mutant GBM.
Collapse
Affiliation(s)
- Ahsen Guler
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.
| | - Halil Ulutabanca
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Neurosurgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Venhar Cınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Nursultan Nurdinov
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Faculties of Medicine and Dentistry, Ahmet Yesevi University, Turkestan, Kazakhstan
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Methodist Neil Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Abd El-Hameed RH, Mohamed MS, Awad SM, Hassan BB, Khodair MAEF, Mansour YE. Novel benzo chromene derivatives: design, synthesis, molecular docking, cell cycle arrest, and apoptosis induction in human acute myeloid leukemia HL-60 cells. J Enzyme Inhib Med Chem 2023; 38:405-422. [DOI: 10.1080/14756366.2022.2151592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Rania H. Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Bardes B. Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Yara E. Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Mounika P, Gurupadayya B, Kumar HY, Namitha B. An Overview of CDK Enzyme Inhibitors in Cancer Therapy. Curr Cancer Drug Targets 2023; 23:603-619. [PMID: 36959160 DOI: 10.2174/1568009623666230320144713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 03/25/2023]
Abstract
The ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
Collapse
Affiliation(s)
- Peddaguravagari Mounika
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Namitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
5
|
Tao Y, Remillard D, Vinogradova EV, Yokoyama M, Banchenko S, Schwefel D, Melillo B, Schreiber SL, Zhang X, Cravatt BF. Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site-Specifically Engage DCAF1. J Am Chem Soc 2022; 144:18688-18699. [PMID: 36170674 PMCID: PMC10347610 DOI: 10.1021/jacs.2c08964] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted protein degradation induced by heterobifunctional compounds and molecular glues presents an exciting avenue for chemical probe and drug discovery. To date, small-molecule ligands have been discovered for only a limited number of E3 ligases, which is an important limiting factor for realizing the full potential of targeted protein degradation. We report herein the discovery by chemical proteomics of azetidine acrylamides that stereoselectively and site-specifically react with a cysteine (C1113) in the E3 ligase substrate receptor DCAF1. We demonstrate that the azetidine acrylamide ligands for DCAF1 can be developed into electrophilic proteolysis-targeting chimeras (PROTACs) that mediated targeted protein degradation in human cells. We show that this process is stereoselective and does not occur in cells expressing a C1113A mutant of DCAF1. Mechanistic studies indicate that only low fractional engagement of DCAF1 is required to support protein degradation by electrophilic PROTACs. These findings, taken together, demonstrate how the chemical proteomic analysis of stereochemically defined electrophilic compound sets can uncover ligandable sites on E3 ligases that support targeted protein degradation.
Collapse
Affiliation(s)
- Yongfeng Tao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307
| | - David Remillard
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307
| | - Ekaterina V. Vinogradova
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307
- Current address: Laboratory of Chemical Immunology and Proteomics, Rockefeller University, 1230 York Ave, New York, New York 10065
| | - Minoru Yokoyama
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307
| | - Sofia Banchenko
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - David Schwefel
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Bruno Melillo
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, 02142, Massachusetts, USA
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, 02142, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, 02138, Massachusetts, USA
| | - Xiaoyu Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307
- Current address: Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
| | - Benjamin F. Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307
| |
Collapse
|
6
|
Owen MJ, Celik U, Chaudhary SK, Yik JHN, Patton JS, Kuo MC, Haudenschild DR, Liu GY. Production of Inhalable Ultra-Small Particles for Delivery of Anti-Inflammation Medicine via a Table-Top Microdevice. MICROMACHINES 2022; 13:1382. [PMID: 36144005 PMCID: PMC9501338 DOI: 10.3390/mi13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
A table-top microdevice was introduced in this work to produce ultrasmall particles for drug delivery via inhalation. The design and operation are similar to that of spray-drying equipment used in industry, but the device itself is much smaller and more portable in size, simpler to operate and more economical. More importantly, the device enables more accurate control over particle size. Using Flavopiridol, an anti-inflammation medication, formulations have been developed to produce inhalable particles for pulmonary delivery. A solution containing the desired components forms droplets by passing through an array of micro-apertures that vibrate via a piezo-electrical driver. High-purity nitrogen gas was introduced and flew through the designed path, which included the funnel collection and cyclone chamber, and finally was pumped away. The gas carried and dried the micronized liquid droplets along the pathway, leading to the precipitation of dry solid microparticles. The formation of the cyclone was essential to assure the sufficient travel path length of the liquid droplets to allow drying. Synthesis parameters were optimized to produce microparticles, whose morphology, size, physio-chemical properties, and release profiles met the criteria for inhalation. Bioactivity assays have revealed a high degree of anti-inflammation. The above-mentioned approach enabled the production of inhalable particles in research laboratories in general, using the simple table-top microdevice. The microparticles enable the inhalable delivery of anti-inflammation medicine to the lungs, thus providing treatment for diseases such as pulmonary fibrosis and COVID-19.
Collapse
Affiliation(s)
- Matthew J. Owen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Umit Celik
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | - Jasper H. N. Yik
- Tesio Pharmaceuticals, Inc., Davis, CA 95616, USA
- Department of Orthopedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | | | | | - Dominik R. Haudenschild
- Department of Orthopedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
8
|
Abstract
Cyclin-dependent kinase (CDK) 9 associates mainly with cyclin T1 and forms the positive transcription elongation factor b (p-TEFb) complex responsible for transcriptional regulation. It has been shown that CDK9 modulates the expression and activity of oncogenes, such as MYC and murine double minute 4 (MDM4), and it also plays an important role in development and/or maintenance of the malignant cell phenotype. Malfunction of CDK9 is frequently observed in numerous cancers. Recent studies have highlighted the function of CDK9 through a variety of mechanisms in cancers, including the formation of new complexes and epigenetic alterations. Due to the importance of CDK9 activation in cancer cells, CDK9 inhibitors have emerged as promising candidates for cancer therapy. Natural product-derived and chemically synthesized CDK9 inhibitors are being examined in preclinical and clinical research. In this review, we summarize the current knowledge on the role of CDK9 in transcriptional regulation, epigenetic regulation, and different cellular factor interactions, focusing on new advances. We show the importance of CDK9 in mediating tumorigenesis and tumor progression. Then, we provide an overview of some CDK9 inhibitors supported by multiple oncologic preclinical and clinical investigations. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
|
9
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
10
|
BET Proteins as Attractive Targets for Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222011102. [PMID: 34681760 PMCID: PMC8538173 DOI: 10.3390/ijms222011102] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be an essential driver of cancer initiation and progression. Loss of transcriptional control can cause cancer cells to become dependent on certain regulators of gene expression. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate the expression of multiple genes involved in carcinogenesis. BET inhibitors (BETis) disrupt BET protein binding to acetylated lysine residues of chromatin and suppress the transcription of various genes, including oncogenic transcription factors. Phase I and II clinical trials demonstrated BETis’ potential as anticancer drugs against solid tumours and haematological malignancies; however, their clinical success was limited as monotherapies. Emerging treatment-associated toxicities, drug resistance and a lack of predictive biomarkers limited BETis’ clinical progress. The preclinical evaluation demonstrated that BETis synergised with different classes of compounds, including DNA repair inhibitors, thus supporting further clinical development of BETis. The combination of BET and PARP inhibitors triggered synthetic lethality in cells with proficient homologous recombination. Mechanistic studies revealed that BETis targeted multiple essential homologous recombination pathway proteins, including RAD51, BRCA1 and CtIP. The exact mechanism of BETis’ anticancer action remains poorly understood; nevertheless, these agents provide a novel approach to epigenome and transcriptome anticancer therapy.
Collapse
|
11
|
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q, Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res 2021; 11:1913-1935. [PMID: 34094661 PMCID: PMC8167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023] Open
Abstract
Dysregulated cell division, which leads to aberrant cell proliferation, is one of the key hallmarks of cancer. Therefore, therapeutic targets that block cell division would be effective for cancer treatment. Cell division is mainly controlled by a complex composed of cyclin and cyclin dependent kinases (CDKs). To date, the CDK inhibitors (CDKIs), specifically the ones that block the enzyme activity of CDK4 and CDK6 (CDK4/6), have been approved by FDA for the treatment of metastatic hormone receptor positive breast cancer. However, due to the non-selectivity and significant toxicity, most of the first generation CDK inhibitors (so called pan-CDK inhibitors that target several CDKs), have not been approved for clinical application. Despite this, great efforts and progress have been made to enable pan-CDK inhibitors application in the clinical setting. Notably, the development of combination therapy strategies in recent years has made it possible to reduce the toxicity and side effects of pan-CDK inhibitors. Thus, as a combination therapy approach, pan-CDK inhibitors regain great potential in clinical application. In this review, we introduced the CDK family members and discussed their major functions in cell cycle controlling. Then, we summarized the research progress regarding CDK inhibitors, especially those other than CDK4/6 inhibitors. We reviewed first-generation pan-CDKIs Flavopiridol and Roscovitine, and second-generation CDKIs Dinaciclib, P276-00, AT7519, TG02, Roniciclib, RGB-286638 by focusing on their developing stages, clinical trials and targeting cancers. The specific CDKIs, which targets to increase specificity and decrease the side effects, were also discussed. These CDKIs include CDK4/6, CDK7, CDK9, and CDK12/13 inhibitors. Finally, the efficacy and discrepancy of combination therapy with CDK inhibitors and PD1/PDL1 antibodies were analyzed, which might give insights into the development of promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mengna Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Lingxian Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Ruoxuan Hei
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Xiao Li
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | | | - Xuan Wu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-pharm Co., Ltd.Shenzhen 518118, China
| | - Cheguo Cai
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| |
Collapse
|
12
|
Chen R, Tsai J, Thompson PA, Chen Y, Xiong P, Liu C, Burrows F, Sivina M, Burger JA, Keating MJ, Wierda WG, Plunkett W. The multi-kinase inhibitor TG02 induces apoptosis and blocks B-cell receptor signaling in chronic lymphocytic leukemia through dual mechanisms of action. Blood Cancer J 2021; 11:57. [PMID: 33714981 PMCID: PMC7956145 DOI: 10.1038/s41408-021-00436-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The constitutive activation of B-cell receptor (BCR) signaling, together with the overexpression of the Bcl-2 family anti-apoptotic proteins, represents two hallmarks of chronic lymphocytic leukemia (CLL) that drive leukemia cell proliferation and sustain their survival. TG02 is a small molecule multi-kinase inhibitor that simultaneously targets both of these facets of CLL pathogenesis. First, its inhibition of cyclin-dependent kinase 9 blocked the activation of RNA polymerase II and transcription. This led to the depletion of Mcl-1 and rapid induction of apoptosis in the primary CLL cells. This mechanism of apoptosis was independent of CLL prognostic factors or prior treatment history, but dependent on the expression of BAX and BAK. Second, TG02, which inhibits the members of the BCR signaling pathway such as Lck and Fyn, blocked BCR-crosslinking-induced activation of NF-κB and Akt, indicating abrogation of BCR signaling. Finally, the combination of TG02 and ibrutinib demonstrated moderate synergy, suggesting a future combination of TG02 with ibrutinib, or use in patients that are refractory to the BCR antagonists. Thus, the dual inhibitory activity on both the CLL survival pathway and BCR signaling identifies TG02 as a unique compound for clinical development in CLL and possibly other B cell malignancies.
Collapse
Affiliation(s)
- Rong Chen
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Jennifer Tsai
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Philip A Thompson
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yuling Chen
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ping Xiong
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chaomei Liu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francis Burrows
- Tragara Pharmaceuticals, Carlsbad, CA, USA.,Kura Oncology, Inc., San Diego, CA, USA
| | - Mariela Sivina
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jan A Burger
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Innis SM, Cabot B. GBAF, a small BAF sub-complex with big implications: a systematic review. Epigenetics Chromatin 2020; 13:48. [PMID: 33143733 PMCID: PMC7607862 DOI: 10.1186/s13072-020-00370-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
ATP-dependent chromatin remodeling by histone-modifying enzymes and chromatin remodeling complexes is crucial for maintaining chromatin organization and facilitating gene transcription. In the SWI/SNF family of ATP-dependent chromatin remodelers, distinct complexes such as BAF, PBAF, GBAF, esBAF and npBAF/nBAF are of particular interest regarding their implications in cellular differentiation and development, as well as in various diseases. The recently identified BAF subcomplex GBAF is no exception to this, and information is emerging linking this complex and its components to crucial events in mammalian development. Furthermore, given the essential nature of many of its subunits in maintaining effective chromatin remodeling function, it comes as no surprise that aberrant expression of GBAF complex components is associated with disease development, including neurodevelopmental disorders and numerous malignancies. It becomes clear that building upon our knowledge of GBAF and BAF complex function will be essential for advancements in both mammalian reproductive applications and the development of more effective therapeutic interventions and strategies. Here, we review the roles of the SWI/SNF chromatin remodeling subcomplex GBAF and its subunits in mammalian development and disease.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Birgit Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Zhang X, Yang L, Chen W, Kong M. Identification of Potential Hub Genes and Therapeutic Drugs in Malignant Pleural Mesothelioma by Integrated Bioinformatics Analysis. Oncol Res Treat 2020; 43:656-671. [PMID: 33032291 DOI: 10.1159/000510534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is closely linked to asbestos exposure and is an extremely aggressive tumor with poor prognosis. OBJECTIVE Our study aimed to elucidate hub genes and potential drugs in MPM by integrated bioinformatics analysis. METHODS GSE42977 was download from the Gene Expression Omnibus (GEO) database; the differentially expressed genes (DEGs) with adj.p value <0.05 and |logFC| ≥2 were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by DAVID database. The STRING database was used to construct a protein-protein interaction network, and modules analysis and hub genes acquisition were performed by Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was used to assess the impact of hub genes on the prognosis of MPM patients. The Drug-Gene Interaction database (DGIdb) was used to select the related drugs. RESULTS A total of 169 upregulated and 70 downregulated DEGs were identified. These DEGs are enriched in the pathway of extracellular matrix-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and PPAR signaling pathway. Finally, 10 hub genes (CDC20, CDK1, UBE2C, TOP2A, CCNB2, NUSAP1, KIF20A, AURKA, CEP55, and ASPM) were identified, which are considered to be closely related to the poor prognosis of MPM. In addition, 119 related drugs that may have a therapeutic effect on MPM were filtered out. CONCLUSION These discovered genes and small-molecule drugs provide some new ideas for further research on MPM.
Collapse
Affiliation(s)
| | - Liu Yang
- School of Medicine, Shihezi University, Shihezi, China
| | - Wei Chen
- Department of Anaesthetic Operating Room, Provincial Otolaryngology Hospital Affiliated to Shandong University, Shandong Provincial Western Hospital, Jinan, China
| | - Ming Kong
- Department of Thoracic Surgery, Provincial Otolaryngology Hospital Affiliated to Shandong University, Shandong Provincial Western Hospital, Jinan, China,
| |
Collapse
|
15
|
Therapeutic Targeting of the General RNA Polymerase II Transcription Machinery. Int J Mol Sci 2020; 21:ijms21093354. [PMID: 32397434 PMCID: PMC7246882 DOI: 10.3390/ijms21093354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibitors targeting the general RNA polymerase II (RNAPII) transcription machinery are candidate therapeutics in cancer and other complex diseases. Here, we review the molecular targets and mechanisms of action of these compounds, framing them within the steps of RNAPII transcription. We discuss the effects of transcription inhibitors in vitro and in cellular models (with an emphasis on cancer), as well as their efficacy in preclinical and clinical studies. We also discuss the rationale for inhibiting broadly acting transcriptional regulators or RNAPII itself in complex diseases.
Collapse
|
16
|
Wang L, Hu C, Wang A, Chen C, Wu J, Jiang Z, Zou F, Yu K, Wu H, Liu J, Wang W, Wang Z, Wang B, Qi Z, Liu Q, Wang W, Li L, Ge J, Liu J, Liu Q. Discovery of a novel and highly selective CDK9 kinase inhibitor (JSH-009) with potent antitumor efficacy in preclinical acute myeloid leukemia models. Invest New Drugs 2019; 38:1272-1281. [PMID: 31872348 DOI: 10.1007/s10637-019-00868-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
Abstract
Acute myeloid leukemia (AML) is reported to be vulnerable to transcription disruption due to transcriptional addiction. Cyclin-dependent kinase 9 (CDK9), which regulates transcriptional elongation, has attracted extensive attention as a drug target. Although several inhibitors, such as alvocidib and dinaciclib, have shown potent therapeutic effects in clinical trials on AML, the lack of high selectivity for CDK9 and other CDKs has limited their optimal clinical efficacy. Therefore, developing highly selective CDK9 inhibitors is still imperative for the efficacy and safety profile in treating AML. Here, we report a novel highly selective CDK9 inhibitor, JSH-009, which exhibited high potency against CDK9 and displayed great selectivity over 468 kinases/mutants. It also demonstrates impressive in vitro and in vivo antileukemic efficacy in preclinical models of AML, which makes JSH-009 a useful pharmacological tool for elucidating CDK9-mediated transcription and a novel therapeutic candidate for AML.
Collapse
Affiliation(s)
- Li Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Chen Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Aoli Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China
| | - Cheng Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Jiaxin Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Zongru Jiang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Fengming Zou
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China
| | - Kailin Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China
| | - Hong Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China
| | - Juan Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Wenliang Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Zuowei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Beilei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China
| | - Ziping Qi
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China
| | - Qingwang Liu
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, People's Republic of China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, People's Republic of China
| | - Lili Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
| | - Jing Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China.
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China.
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, People's Republic of China.
| | - Qingsong Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui, 230031, People's Republic of China.
- University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China.
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, People's Republic of China.
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, People's Republic of China.
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| |
Collapse
|
17
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 662] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Giannone G, Tuninetti V, Ghisoni E, Genta S, Scotto G, Mittica G, Valabrega G. Role of Cyclin-Dependent Kinase Inhibitors in Endometrial Cancer. Int J Mol Sci 2019; 20:E2353. [PMID: 31083638 PMCID: PMC6539322 DOI: 10.3390/ijms20092353] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 05/10/2019] [Indexed: 12/27/2022] Open
Abstract
Endometrial Cancer (EC) is an important cause of death in women worldwide. Despite early diagnosis and optimal treatment of localized disease, relapsed patients have few therapeutic options because after first line therapy, currently no standard of care exists. On the basis of endocrine positivity of most endometrioid ECs, Endocrine Therapy (ET) is a reasonable and widely accepted option. Better knowledge of molecular mechanisms involved in cancer highlighted the deregulated activity of Cyclin-Dependent Kinases (CDKs) in the cell cycle as a hallmark of carcinogenesis supporting the development of a new class of drugs: CDK inhibitors (CDKis). The aim of this review is to give an overview on CDKis preclinical, early clinical activity and future development in EC. Use of CDKis has a strong preclinical rationale but we have poor clinical data. Similar to breast cancer, most ongoing trials are investigating synergistic associations between CDKis and ET. These trials will probably help in defining the best clinical setting of CDKis in ECs, which are the best partner drugs, and how to manage CDKis toxicities with a focus on potential biomarkers of response.
Collapse
Affiliation(s)
- Gaia Giannone
- Department of Oncology, University of Turin, Via Giuseppe Verdi, 8, 10124 Turin, Italy.
- Candiolo Cancer Institute-FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Turin, Italy.
| | - Valentina Tuninetti
- Department of Oncology, University of Turin, Via Giuseppe Verdi, 8, 10124 Turin, Italy.
- Candiolo Cancer Institute-FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Turin, Italy.
| | - Eleonora Ghisoni
- Department of Oncology, University of Turin, Via Giuseppe Verdi, 8, 10124 Turin, Italy.
- Candiolo Cancer Institute-FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Turin, Italy.
| | - Sofia Genta
- Department of Oncology, University of Turin, Via Giuseppe Verdi, 8, 10124 Turin, Italy.
- Candiolo Cancer Institute-FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Turin, Italy.
| | - Giulia Scotto
- Department of Oncology, University of Turin, Via Giuseppe Verdi, 8, 10124 Turin, Italy.
- Candiolo Cancer Institute-FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Turin, Italy.
| | - Gloria Mittica
- Units of Oncology, ASL Verbano Cusio Ossola (VCO), Via Fiume, 18, 28922 Verbania, Italy.
| | - Giorgio Valabrega
- Department of Oncology, University of Turin, Via Giuseppe Verdi, 8, 10124 Turin, Italy.
- Candiolo Cancer Institute-FPO-IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Turin, Italy.
| |
Collapse
|
19
|
Zhao L, Yuan X, Wang J, Feng Y, Ji F, Li Z, Bian J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg Med Chem 2019; 27:677-685. [DOI: 10.1016/j.bmc.2019.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
|
20
|
Wanchoo R, Bernabe Ramirez C, Barrientos J, Jhaveri KD. Renal involvement in chronic lymphocytic leukemia. Clin Kidney J 2018; 11:670-680. [PMID: 30288263 PMCID: PMC6165759 DOI: 10.1093/ckj/sfy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most commonly diagnosed adult leukemia in the USA and Western Europe. Kidney disease can present in patients with CLL as a manifestation of the disease process such as acute kidney injury with infiltration or with a paraneoplastic glomerular disease or as a manifestation of extra renal obstruction and tumor lysis syndrome. In the current era of novel targeted therapies, kidney disease can also present as a complication of treatment. Tumor lysis syndrome associated with novel agents such as the B-cell lymphoma 2 inhibitor venetoclax and the monoclonal antibody obinutuzumab are important nephrotoxicities associated with these agents. Here we review the various forms of kidney diseases associated with CLL and its therapies.
Collapse
Affiliation(s)
- Rimda Wanchoo
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Carolina Bernabe Ramirez
- Division of Hematology and Oncology, Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Jacqueline Barrientos
- Division of Hematology and Oncology, Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
- CLL Research and Treatment Program, Lake Success, NY, USA
| | - Kenar D Jhaveri
- Division of Kidney Diseases and Hypertension, Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| |
Collapse
|
21
|
Chohan TA, Qayyum A, Rehman K, Tariq M, Akash MSH. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed Pharmacother 2018; 107:1326-1341. [PMID: 30257348 DOI: 10.1016/j.biopha.2018.08.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 01/16/2023] Open
Abstract
Cancer denotes a pathological manifestation that is characterized by hyperproliferation of cells. It has anticipated that a better understanding of disease pathogenesis and the role of cell-cycle regulators may provide an opportunity to develop an effective cancer therapeutic agents. Specifically, the cyclin-dependent kinases (CDKs) which regulate the transition of cell-cycle through different phases; have been identified as fundamental targets for therapeutic advances. It is an evident from experimental studies that several events leading to tumor growth occur by exacerbation of CDK4/CDK6 in G1-phase of cell division cycle. Additionally, the characteristics of S- and G2/M-phase regulated by CDK1/CDK2 are pivotal events that may lead to abrupt the cell division. Although, previously reported CDK inhibitors have shown remarkable results in pre-clinical studies, but have not yielded appreciable clinical results yet. Therefore, the development of clinically potent CDK inhibitors has remained to be a challenging task. However, continuous efforts has led to the development of some novel CDKs inhibitors that have emerged as a potent strategy for the treatment of advanced cancers. In this article, we have summarized the role of CDKs in cell-cycle regulation and tumorigenesis and recent advances in the development of CDKs inhibitors as a promising therapy for the treatment of advanced cancer. In addition, we have also performed a comparison of crystallographic studies to get valuable insight into the interaction mode differences of inhibitors, binding to CDK isoforms with apparently similar binding sites. The knowledge of ligand-specific recognition towards a particular CDK isoform may be applied as a key tool in future for the designing of isoform-specific inhibitors.
Collapse
Affiliation(s)
- Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aisha Qayyum
- Department of Paediatrics Medicine, Sabzazar Hospital, Lahore, Pakistan
| | - Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tariq
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Pakistan
| | | |
Collapse
|
22
|
Liu X, Xu Y, Han L, Yi Y. Reassessing the Potential of Myb-targeted Anti-cancer Therapy. J Cancer 2018; 9:1259-1266. [PMID: 29675107 PMCID: PMC5907674 DOI: 10.7150/jca.23992] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 01/27/2023] Open
Abstract
Transcription factor MYB is essential for the tumorigenesis of multiple cancers, especially leukemia, breast cancer, colon cancer, adenoid cystic carcinoma and brain cancer. Thus, MYB has been regarded as an attractive target for tumor therapy. However, pioneer studies of antisense oligodeoxynucleotides against MYB, which were launched three decades ago in leukemia therapy, were discontinued because of their unsatisfactory clinical outcomes. In recent years, the roles of MYB in tumor transformation have become increasingly clear. Moreover, the regulatory mechanisms of MYB, such as the vital effects of MYB co-regulators on MYB activity and of transcriptional elongation on MYB expression, have been unveiled. These observations have underpinned novel approaches in inhibiting MYB. This review discusses the structure, function and regulation of MYB, focusing on recent insights into MYB-associated oncogenesis and how MYB-targeted therapeutics can be explored. Additionally, the main MYB-targeted therapies, including novel genetic therapy, RNA interference, microRNAs and low-molecular-weight compounds, which are especially promising inhibitors that target MYB co-regulators and transcriptional elongation, are described, and their prospects are assessed.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yunxiao Xu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Liping Han
- School of Life Science, Changchun Normal University, Changchun, Jilin Province, P.R. China
| | - Yan Yi
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
23
|
Bharate SB, Kumar V, Jain SK, Mintoo MJ, Guru SK, Nuthakki VK, Sharma M, Bharate SS, Gandhi SG, Mondhe DM, Bhushan S, Vishwakarma RA. Discovery and Preclinical Development of IIIM-290, an Orally Active Potent Cyclin-Dependent Kinase Inhibitor. J Med Chem 2018; 61:1664-1687. [PMID: 29370702 DOI: 10.1021/acs.jmedchem.7b01765] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rohitukine (1), a chromone alkaloid isolated from Indian medicinal plant Dysoxylum binectariferum, has inspired the discovery of flavopiridol and riviciclib, both of which are bioavailable only via intravenous route. With the objective to address the oral bioavailability issue of this scaffold, four series of rohitukine derivatives were prepared and screened for Cdk inhibition and cellular antiproliferative activity. The 2,6-dichloro-styryl derivative IIIM-290 (11d) showed strong inhibition of Cdk-9/T1 (IC50 1.9 nM) kinase and Molt-4/MIAPaCa-2 cell growth (GI50 < 1.0 μM) and was found to be highly selective for cancer cells over normal fibroblast cells. It inhibited the cell growth of MIAPaCa-2 cells via caspase-dependent apoptosis. It achieved 71% oral bioavailability with in vivo efficacy in pancreatic, colon, and leukemia xenografts at 50 mg/kg, po. It did not have CYP/efflux-pump liability, was not mutagenic/genotoxic or cardiotoxic, and was metabolically stable. The preclinical data presented herein indicates the potential of 11d for advancement in clinical studies.
Collapse
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India.,Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Vikas Kumar
- Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India.,Preformulation Laboratory, PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Shreyans K Jain
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Mubashir J Mintoo
- Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Santosh K Guru
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Mohit Sharma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Sonali S Bharate
- Preformulation Laboratory, PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Sumit G Gandhi
- Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India.,Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Dilip M Mondhe
- Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Shashi Bhushan
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India.,Indian Pharmacopeia Commission , Sec-23, Raj Nagar, Ghaziabad-201002, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India.,Academy of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| |
Collapse
|
24
|
Cheson BD, Heitner Enschede S, Cerri E, Desai M, Potluri J, Lamanna N, Tam C. Tumor Lysis Syndrome in Chronic Lymphocytic Leukemia with Novel Targeted Agents. Oncologist 2017; 22:1283-1291. [PMID: 28851760 PMCID: PMC5679833 DOI: 10.1634/theoncologist.2017-0055] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Tumor lysis syndrome (TLS) is an uncommon but potentially life-threatening complication associated with the treatment of some cancers. If left untreated, TLS may result in acute renal failure, cardiac dysrhythmia, neurologic complications, seizures, or death. Tumor lysis syndrome is most commonly observed in patients with hematologic malignancies with a high proliferation rate undergoing treatment with very effective therapies. In chronic lymphocytic leukemia (CLL), historically, TLS has been observed less often, owing to a low proliferation rate and slow response to chemotherapy. New targeted therapies have recently been approved in the treatment of CLL, including the oral kinase inhibitors, idelalisib and ibrutinib, and the B-cell lymphoma-2 protein inhibitor, venetoclax. Several others are also under development, and combination strategies of these agents are being explored. This review examines the diagnosis, prevention, and management of TLS and summarizes the TLS experience in CLL clinical trials with newer targeted agents. Overall, the risk of TLS is small, but the consequences may be fatal; therefore, patients should be monitored carefully. Therapies capable of eliciting rapid response and combination regimens are increasingly being evaluated for treatment of CLL, which may pose a higher risk of TLS. For optimal management, patients at risk for TLS require prophylaxis and close monitoring with appropriate tests and appropriate management to correct laboratory abnormalities, which allows for safe and effective disease control. IMPLICATIONS FOR PRACTICE Tumor lysis syndrome (TLS) is a potentially fatal condition observed with hematologic malignancies, caused by release of cellular components in the bloodstream from rapidly dying tumor cells. The frequency and severity of TLS is partly dependent upon the biology of the disease and type of therapy administered. Novel targeted agents highly effective at inducing rapid cell death in chronic lymphocytic leukemia (CLL) may pose a risk for TLS in patients with tumors characterized by rapid growth, high tumor burden, and/or high sensitivity to treatment. In this review, prevention strategies and management of patients with CLL who develop TLS are described.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Disease Management
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Purines/therapeutic use
- Quinazolinones/therapeutic use
- Risk Factors
- Sulfonamides/therapeutic use
- Tumor Burden
- Tumor Lysis Syndrome/complications
- Tumor Lysis Syndrome/diagnosis
- Tumor Lysis Syndrome/drug therapy
- Tumor Lysis Syndrome/prevention & control
Collapse
Affiliation(s)
- Bruce D Cheson
- Georgetown University Hospital, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | | | | | - Nicole Lamanna
- Columbia University Medical Center, New York, New York, USA
| | - Constantine Tam
- St Vincent's Hospital, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Mita MM, Mita AC, Moseley JL, Poon J, Small KA, Jou YM, Kirschmeier P, Zhang D, Zhu Y, Statkevich P, Sankhala KK, Sarantopoulos J, Cleary JM, Chirieac LR, Rodig SJ, Bannerji R, Shapiro GI. Phase 1 safety, pharmacokinetic and pharmacodynamic study of the cyclin-dependent kinase inhibitor dinaciclib administered every three weeks in patients with advanced malignancies. Br J Cancer 2017; 117:1258-1268. [PMID: 28859059 PMCID: PMC5672931 DOI: 10.1038/bjc.2017.288] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Dinaciclib is a potent inhibitor of cell cycle and transcriptional cyclin-dependent kinases. This Phase 1 study evaluated the safety, tolerability and pharmacokinetics of various dosing schedules of dinaciclib in advanced solid tumour patients and assessed pharmacodynamic and preliminary anti-tumour activity. Methods: In part 1, patients were enrolled in escalating cohorts of 2-h infusions administered once every 3 weeks, utilising an accelerated titration design until a recommended phase 2 dose (RP2D) was defined. In part 2, 8- and 24-h infusions were evaluated. Pharmacokinetic parameters were determined for all schedules. Pharmacodynamic effects were assessed with an ex vivo stimulated lymphocyte proliferation assay performed in whole blood. Effects of dinaciclib on retinoblastoma (Rb) phosphorylation and other CDK targets were evaluated in skin and tumour biopsies. In addition to tumour size, metabolic response was evaluated by 18F-fluorodeoxyglucose-positron emission tomography. Results: Sixty-one patients were enrolled to parts 1 and 2. The RP2Ds were 50, 7.4 and 10.4 mg m−2 as 2- 8- and 24-hour infusions, respectively. Dose-limiting toxicities included pancytopenia, neutropenic fever, elevated transaminases, hyperuricemia and hypotension. Pharmacokinetics demonstrated rapid distribution and a short plasma half-life. Dinaciclib suppressed proliferation of stimulated lymphocytes. In skin and tumour biopsies, dinaciclib reduced Rb phosphorylation at CDK2 phospho-sites and modulated expression of cyclin D1 and p53, suggestive of CDK9 inhibition. Although there were no RECIST responses, eight patients had prolonged stable disease and received between 6 and 30 cycles. Early metabolic responses occurred. Conclusions: Dinaciclib is tolerable at doses demonstrating target engagement in surrogate and tumour tissue.
Collapse
Affiliation(s)
- Monica M Mita
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Alain C Mita
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jennifer L Moseley
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | - Da Zhang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yali Zhu
- Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | - Kamelesh K Sankhala
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - John Sarantopoulos
- Institute for Drug Development, Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - James M Cleary
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | | | - Geoffrey I Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
26
|
LaCerte C, Ivaturi V, Gobburu J, Greer JM, Doyle LA, Wright JJ, Karp JE, Rudek MA. Exposure-Response Analysis of Alvocidib (Flavopiridol) Treatment by Bolus or Hybrid Administration in Newly Diagnosed or Relapsed/Refractory Acute Leukemia Patients. Clin Cancer Res 2017; 23:3592-3600. [PMID: 28174232 DOI: 10.1158/1078-0432.ccr-16-2629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 11/16/2022]
Abstract
Purpose: To elucidate any differences in the exposure-response of alvocidib (flavopiridol) given by 1-hour bolus or a hybrid schedule (30-minute bolus followed by a 4-hour infusion) using a flavopiridol/cytosine arabinoside/mitoxantrone sequential protocol (FLAM) in patients with acute leukemia. The hybrid schedule was devised to be pharmacologically superior in chronic leukemia based on unbound exposure.Experimental Design: Data from 129 patients in three FLAM studies were used for pharmacokinetic/pharmacodynamic modeling. Newly diagnosed (62%) or relapsed/refractory (38%) patients were treated by bolus (43%) or hybrid schedule (57%). Total and unbound flavopiridol concentrations were fit using nonlinear mixed-effect population pharmacokinetic methodologies. Exposure-response relationships using unbound flavopiridol AUC were explored using recursive partitioning.Results: Flavopiridol pharmacokinetic parameters were estimated using a two-compartment model. No pharmacokinetic covariates were identified. Flavopiridol fraction unbound was 10.9% and not different between schedules. Partitioning found no association between dosing schedule and clinical response. Clinical response was associated with AUC ≥ 780 h*ng/mL for newly diagnosed patients and AUC ≥ 1,690 h*ng/mL for relapsed/refractory patients. Higher exposures were not associated with increases in severe adverse events (≥ grade 3).Conclusions: Pharmacokinetic modeling showed no difference in flavopiridol plasma protein binding for bolus versus hybrid dosing. Further trials in newly diagnosed patients with acute leukemia should utilize the bolus FLAM regimen at the MTD of 50 mg/m2/day. Trials in relapsed/refractory patients should use the hybrid dosing schedule at the MTD (30/60 mg/m2/day) to achieve the higher exposures required for maximal efficacy in this population. Clin Cancer Res; 23(14); 3592-600. ©2017 AACR.
Collapse
Affiliation(s)
- Carl LaCerte
- Center for Translational Medicine, University of Maryland, Baltimore, Maryland
| | - Vijay Ivaturi
- Center for Translational Medicine, University of Maryland, Baltimore, Maryland.
| | - Joga Gobburu
- Center for Translational Medicine, University of Maryland, Baltimore, Maryland
| | - Jacqueline M Greer
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - L Austin Doyle
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - John J Wright
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Judith E Karp
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Michelle A Rudek
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University, Baltimore, Maryland.,Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
27
|
Efficacy and safety of dinaciclib vs ofatumumab in patients with relapsed/refractory chronic lymphocytic leukemia. Blood 2017; 129:1876-1878. [PMID: 28126927 DOI: 10.1182/blood-2016-10-748210] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Jain N, O'Brien S. Targeted therapies for CLL: Practical issues with the changing treatment paradigm. Blood Rev 2016; 30:233-44. [PMID: 26776345 DOI: 10.1016/j.blre.2015.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022]
Abstract
Chemoimmunotherapy (CIT) such as FCR (fludarabine, cyclophosphamide, rituximab) has been the standard first-line therapy for younger patients with CLL. In the last few years, several novel targeted therapies have been developed for patients with CLL. These include B-cell receptor (BCR) inhibitors such as Bruton tyrosine kinase (BTK) inhibitors, PI3 kinase inhibitors, and Syk inhibitors, novel anti-CD20 monoclonal antibodies such as ofatumumab and obinutuzumab, and Bcl-2 antagonists such as venetoclax (ABT-199). Strategies targeting the immune system such as lenalidomide, chimeric antigen receptor (CAR) T cells, and more recently, checkpoint inhibitors, are in clinical development. Ibrutinib and idelalisib are already approved for patients with relapsed and refractory CLL. Ibrutinib is also approved for first-line treatment of CLL patients with del(17p). Several ongoing phase III clinical trials with novel therapies will further define the role of targeted agents in CLL.
Collapse
MESH Headings
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor
- Combined Modality Therapy
- Disease Management
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy
- Treatment Outcome
Collapse
Affiliation(s)
- Nitin Jain
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Susan O'Brien
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Orange, CA, USA.
| |
Collapse
|
29
|
Wiernik PH. Alvocidib (flavopiridol) for the treatment of chronic lymphocytic leukemia. Expert Opin Investig Drugs 2016; 25:729-34. [PMID: 26998706 DOI: 10.1517/13543784.2016.1169273] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Alvocidib, which has orphan drug designation in chronic lymphocytic leukemia (CLL) from the FDA and the EMA, is a plant-derived semisynthetic flavone that acts as a cyclin-dependent kinase inhibitor. It induces apoptosis in CLL cells in vitro and was introduced into clinical trials in CLL as an intravenous infusion in 1997, which proved disappointing. Since the drug avidly binds to plasma proteins, higher serum concentrations were required for clinical antileukemia activity than those suggested by in vitro studies. Subsequent studies utilizing bolus plus infusional doses revealed significant activity against CLL, even in patients with unfavorable characteristics. However, significant toxicity including high rates of major tumor lysis syndrome, cytokine release syndrome and secretory diarrhea were also observed. AREAS COVERED The chemistry, pharmacodynamics, pharmacokinetics and metabolism of alvocidib are briefly discussed and phase I-II studies in CLL are discussed in detail. To date, no phase III studies in CLL have been reported. EXPERT OPINION A number of much less toxic drugs with similar efficacy against CLL both with and without unfavorable cytogenetics have come to market. Furthermore, enthusiasm for the development of alvocidib as a single agent for the treatment of CLL has waned, primarily due to its toxicity.
Collapse
|
30
|
Blachly JS, Byrd JC, Grever M. Cyclin-dependent kinase inhibitors for the treatment of chronic lymphocytic leukemia. Semin Oncol 2016; 43:265-73. [DOI: 10.1053/j.seminoncol.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Jane EP, Premkumar DR, Cavaleri JM, Sutera PA, Rajasekar T, Pollack IF. Dinaciclib, a Cyclin-Dependent Kinase Inhibitor Promotes Proteasomal Degradation of Mcl-1 and Enhances ABT-737-Mediated Cell Death in Malignant Human Glioma Cell Lines. J Pharmacol Exp Ther 2016; 356:354-65. [PMID: 26585571 PMCID: PMC6047232 DOI: 10.1124/jpet.115.230052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2014] [Indexed: 02/04/2023] Open
Abstract
The prognosis for malignant glioma, the most common brain tumor, is still poor, underscoring the need to develop novel treatment strategies. Because glioma cells commonly exhibit genomic alterations involving genes that regulate cell-cycle control, there is a strong rationale for examining the potential efficacy of strategies to counteract this process. In this study, we examined the antiproliferative effects of the cyclin-dependent kinase inhibitor dinaciclib in malignant human glioma cell lines, with intact, deleted, or mutated p53 or phosphatase and tensin homolog on chromosome 10; intact or deleted or p14ARF or wild-type or amplified epidermal growth factor receptor. Dinaciclib inhibited cell proliferation and induced cell-cycle arrest at the G2/M checkpoint, independent of p53 mutational status. In a standard 72-hour 3-[4,5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium (MTS) assay, at clinically relevant concentrations, dose-dependent antiproliferative effects were observed, but cell death was not induced. Moreover, the combination of conventional chemotherapeutic agents and various growth-signaling inhibitors with dinaciclib did not yield synergistic cytotoxicity. In contrast, combination of the Bcl-2/Bcl-xL inhibitors ABT-263 (4-[4-[[2-(4-chlorophenyl)-5,5-dimethylcyclohexen-1-yl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-morpholin-4-yl-1-phenylsulfanylbutan-2-yl]amino]-3-(trifluoromethylsulfonyl)phenyl]sulfonylbenzamide) or ABT-737 (4-[4-[[2-(4-chlorophenyl)phenyl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-(dimethylamino)-1-phenylsulfanylbutan-2-yl]amino]-3-nitrophenyl]sulfonylbenzamide) with dinaciclib potentiated the apoptotic response induced by each single drug. The synergistic killing by ABT-737 with dinaciclib led to cell death accompanied by the hallmarks of apoptosis, including an early loss of the mitochondrial transmembrane potential; the release of cytochrome c, smac/DIABLO, and apoptosis-inducing factor; phosphatidylserine exposure on the plasma membrane surface and activation of caspases and poly ADP-ribose polymerase. Mechanistic studies revealed that dinaciclib promoted proteasomal degradation of Mcl-1. These observations may have important clinical implications for the design of experimental treatment protocols for malignant human glioma.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Daniel R Premkumar
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Jonathon M Cavaleri
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Philip A Sutera
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Thatchana Rajasekar
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| | - Ian F Pollack
- Department of Neurologic Surgery, Children's Hospital of Pittsburgh (E.P.J., D.R.P., I.F.P.), University of Pittsburgh, School of Medicine (E.P.J., D.R.P., J.M.C., P.A.S., T.R., I.F.P), and University of Pittsburgh Brain Tumor Center (D.R.P., I.F.P.), Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Yeh YY, Chen R, Hessler J, Mahoney E, Lehman AM, Heerema NA, Grever MR, Plunkett W, Byrd JC, Johnson AJ. Up-regulation of CDK9 kinase activity and Mcl-1 stability contributes to the acquired resistance to cyclin-dependent kinase inhibitors in leukemia. Oncotarget 2015; 6:2667-79. [PMID: 25596730 PMCID: PMC4413609 DOI: 10.18632/oncotarget.2096] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022] Open
Abstract
Flavopiridol is a small molecule inhibitor of cyclin-dependent kinases (CDK) known to impair global transcription via inactivation of positive transcription elongation factor b. It has been demonstrated to have significant activity predominantly in chronic lymphocytic leukemia and acute myeloid leukemia in phase I/II clinical trials while other similar CDK inhibitors are vigorously being pursued in pre-clinical and clinical studies. Although flavopiridol is a potent therapeutic agent against blood diseases, some patients still have primary or acquired resistance throughout their clinical course. Considering the limited knowledge of resistance mechanisms of flavopiridol, we investigated the potential mechanisms of resistance to flavopiridol in a cell line system, which gradually acquired resistance to flavopiridol in vitro, and then confirmed the mechanism in patient samples. Herein, we present that this resistant cell line developed resistance through up-regulation of phosphorylation of RNA polymerase II C-terminal domain, activation of CDK9 kinase activity, and prolonged Mcl-1 stability to counter flavopiridol's drug actions. Further analyses suggest MAPK/ERK activation-mediated Mcl-1 stabilization contributes to the resistance and knockdown of Mcl-1 in part restores sensitivity to flavopiridol-induced cytotoxicity. Altogether, these findings demonstrate that CDK9 is the most relevant target of flavopiridol and provide avenues to improve the therapeutic strategies in blood malignancies.
Collapse
Affiliation(s)
- Yuh-Ying Yeh
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Rong Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joshua Hessler
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Emilia Mahoney
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Nyla A Heerema
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Michael R Grever
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
33
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
34
|
Zhang S, Bao Y, Ju X, Li K, Shang H, Ha L, Qian Y, Zou L, Sun X, Li J, Wang Q, Fan Q. BA-j as a novel CDK1 inhibitor selectively induces apoptosis in cancer cells by regulating ROS. Sci Rep 2015; 5:13626. [PMID: 26330167 PMCID: PMC4557050 DOI: 10.1038/srep13626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022] Open
Abstract
Cyclin-dependent kinase 1 (CDK1) is the only necessary CDK in cell proliferation and a novel target in the development of anticancer drugs. 8-Hydroxypiperidinemethyl-baicalein (BA-j) is a novel selective CDK1 inhibitor with broad spectrum anti-cancer activity (IC50 12.3 μM) and 2 tumor xenografts. Because of the differential mechanisms controlling redox-states in normal and cancer cells, BA-j can capture oxygen free radicals (·O2−) and selectively increase the level of H2O2 in cancer cells, thereby specifically oxidize and activate the intrinsic apoptosis pathway bypassing the extrinsic death receptor pathway, thus inducing apoptosis in cancer cells rather than in normal cells. BA-j is different from cytotoxic anticancer drugs which can activate both the intrinsic apoptosis pathway and the extrinsic death receptor pathway, and therefore harm normal cells while killing cancer cells. The molecular and biochemical mechanisms of reactive oxygen species (ROS) regulation suggest that BA-j may be developed into a novel anticancer agent.
Collapse
Affiliation(s)
- Shixuan Zhang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongming Bao
- School of Bioscience and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiulan Ju
- College of Vocational and Technical, Dalian University, Dalian, Liaoning, China
| | - Kangjian Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Haiyan Shang
- School of Bioscience and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Lisha Ha
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yuan Qian
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Liang Zou
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaodan Sun
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Jing Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Qianru Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Qingyu Fan
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
35
|
Sallam H, El-Serafi AT, Filipski E, Terelius Y, Lévi F, Hassan M. The effect of circadian rhythm on pharmacokinetics and metabolism of the Cdk inhibitor, roscovitine, in tumor mice model. Chronobiol Int 2015; 32:608-14. [PMID: 25938685 DOI: 10.3109/07420528.2015.1022782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Roscovitine is a selective Cdk-inhibitor that is under investigation in phase II clinical trials under several conditions, including chemotherapy. Tumor growth inhibition has been previously shown to be affected by the dosing time of roscovitine in a Glasgow osteosarcoma xenograft mouse model. In the current study, we examined the effect of dose timing on the pharmacokinetics, biodistribution and metabolism of this drug in different organs in B6D2F1 mice. The drug was orally administered at resting (ZT3) or activity time of the mice (ZT19) at a dose of 300 mg/kg. Plasma and organs were removed at serial time points (10, 20 and 30 min; 1, 2, 4, 6, 8, 12 and 24 h) after the administration. Roscovitine and its carboxylic metabolite concentrations were analyzed using HPLC-UV, and pharmacokinetic parameters were calculated in different organs. We found that systemic exposure to roscovitine was 38% higher when dosing at ZT3, and elimination half-life was double compared to when dosing at ZT19. Higher organ concentrations expressed as (organ/plasma) ratio were observed when dosing at ZT3 in the kidney (180%), adipose tissue (188%), testis (132%) and lungs (112%), while the liver exposure to roscovitine was 120% higher after dosing at ZT19. The metabolic ratio was approximately 23% higher at ZT19, while the intrinsic clearance (CLint) was approximately 67% higher at ZT19, indicating faster and more efficient metabolism. These differences may be caused by circadian differences in the absorption, distribution, metabolism and excretion processes governing roscovitine disposition in the mice. In this article, we describe for the first time the chronobiodistribution of roscovitine in the mouse and the contribution of the dosing time to the variability of its metabolism. Our results may help in designing better dosing schedules of roscovitine in clinical trials.
Collapse
Affiliation(s)
- Hatem Sallam
- Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institutet , Stockholm , Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Maddocks K, Wei L, Rozewski D, Jiang Y, Zhao Y, Adusumilli M, Pierceall WE, Doykin C, Cardone MH, Jones JA, Flynn J, Andritsos LA, Grever MR, Byrd JC, Johnson AJ, Phelps MA, Blum KA. Reduced occurrence of tumor flare with flavopiridol followed by combined flavopiridol and lenalidomide in patients with relapsed chronic lymphocytic leukemia (CLL). Am J Hematol 2015; 90:327-33. [PMID: 25639448 DOI: 10.1002/ajh.23946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Flavopiridol and lenalidomide have activity in refractory CLL without immunosuppression or opportunistic infections seen with other therapies. We hypothesized that flavopiridol treatment could adequately de-bulk disease prior to lenalidomide therapy, decreasing the incidence of tumor flare with higher doses of lenalidomide. In this Phase I study, the maximum tolerated dose was not reached with treatment consisting of flavopiridol 30 mg m(-2) intravenous bolus (IVB) + 30 mg m(-2) continuous intravenous infusion (CIVI) cycle (C) 1 day (D) 1 and 30 mg m(-2) IVB + 50 mg m(-2) CIVI C1 D8,15 and C2-8 D3,10,17 with lenalidomide 15 mg orally daily C2-8 D1-21. There was no unexpected toxicity seen, including no increased tumor lysis, tumor flare (even at higher doses of lenalidomide) or opportunistic infection. Significant clinical activity was demonstrated, with a 51% response rate in this group of heavily pretreated patients. Biomarker testing confirmed association of mitochondrial priming of the BH3 only peptide Puma with response.
Collapse
Affiliation(s)
- Kami Maddocks
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Lai Wei
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Darlene Rozewski
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Yao Jiang
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Yuan Zhao
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Mikhil Adusumilli
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - William E. Pierceall
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Camille Doykin
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Michael H. Cardone
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Jeffrey A. Jones
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Joseph Flynn
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Leslie A. Andritsos
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Michael R. Grever
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - John C. Byrd
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Amy J. Johnson
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Mitch A. Phelps
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| | - Kristie A Blum
- Division of Hematology; Department of Internal Medicine; The Ohio State University, Comprehensive Cancer Center, The Ohio State University, College of Pharmacy, The Ohio State University; Ohio
| |
Collapse
|
37
|
Dinaciclib is a novel cyclin-dependent kinase inhibitor with significant clinical activity in relapsed and refractory chronic lymphocytic leukemia. Leukemia 2015; 29:1524-9. [PMID: 25708835 PMCID: PMC4551390 DOI: 10.1038/leu.2015.31] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/08/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023]
Abstract
Dinaciclib (SCH727965) is a selective CDKi chosen for clinical development based upon a favorable therapeutic index in cancer xenograft models. We performed a phase I dose escalation study of dinaciclib in relapsed and refractory CLL patients with intact organ function and WBC < 200 × 109/L. Five separate dose levels (5 mg/m2, 7 mg/m2, 10 mg/m2, 14 mg/m2, and 17 mg/m2) were explored dosing on a weekly schedule × 3 with one week off (4 week cycles) using a standard 3+3 design with expansion cohorts to optimize safety. Fifty two patients were enrolled with relapsed and refractory CLL. Escalation through cohorts occurred with two DLTs at the 17 mg/m2 dose (TLS and pneumonia). The phase II expansion occurred at 14 mg/m2 with sixteen patients receiving this dose with one DLT (TLS). Additional stepped up dosing to the MTD was examined in 19 patients at this dose. Adverse events included cytopenias, transient laboratory abnormalities, and tumor lysis syndrome. Responses occurred in 28 (54%) of patients independent of del(17)(p13.1) with a median progression free survival of 481 days. Dinaciclib is clinically active in relapsed CLL including those patients with high risk del(17)(p13.1) disease and warrants future study.
Collapse
|
38
|
Final results of EFC6663: a multicenter, international, phase 2 study of alvocidib for patients with fludarabine-refractory chronic lymphocytic leukemia. Leuk Res 2015; 39:495-500. [PMID: 25804339 DOI: 10.1016/j.leukres.2015.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
Early phase studies of alvocidib showed activity in relapsed CLL including patients with high risk genomic features and those refractory to fludarabine. A multi-center, international, phase II study of alvocidib in fludarabine refractory CLL was undertaken to validate these early results. Patients with fludarabine refractory CLL or prolymphocytic leukemia arising from CLL were treated with single agent alvocidib. The primary outcome measure was overall response rate, with secondary outcomes including survival, toxicity, and response duration. One hundred and sixty five patients were enrolled and 159 patients were treated. The median age was 61 years, the median number of prior therapies was 4, and 96% of patients were fludarabine refractory. The investigator-assessed overall response rate was 25%; the majority of responses were partial. Response rates were lower among patients with del(17p) (14%), but equivalent in patients with del(11q) or bulky lymphadenopathy. Median progression free and overall survival were 7.6 and 14.6 months, respectively. Tumor lysis occurred in 39 patients (25%), and 13 received hemodialysis. Diarrhea, fatigue, and hematologic toxicities were common. Alvocidib has clinical activity in patients with advanced, fludarabine refractory CLL. Future studies should focus on discovery of biomarkers of clinical response and tumor lysis, and enhanced supportive care measures.
Collapse
|
39
|
Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, Valius M. Highlights of the Latest Advances in Research on CDK Inhibitors. Cancers (Basel) 2014; 6:2224-42. [PMID: 25349887 PMCID: PMC4276963 DOI: 10.3390/cancers6042224] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
Uncontrolled proliferation is the hallmark of cancer and other proliferative disorders and abnormal cell cycle regulation is, therefore, common in these diseases. Cyclin-dependent kinases (CDKs) play a crucial role in the control of the cell cycle and proliferation. These kinases are frequently deregulated in various cancers, viral infections, neurodegenerative diseases, ischemia and some proliferative disorders. This led to a rigorous pursuit for small-molecule CDK inhibitors for therapeutic uses. Early efforts to block CDKs with nonselective CDK inhibitors led to little specificity and efficacy but apparent toxicity, but the recent advance of selective CDK inhibitors allowed the first successful efforts to target these kinases for the therapies of several diseases. Major ongoing efforts are to develop CDK inhibitors as monotherapies and rational combinations with chemotherapy and other targeted drugs.
Collapse
Affiliation(s)
- Jonas Cicenas
- CALIPHO Group, Swiss Institute of Bioinformatics, CMU-1, rue Michel Servet' Geneva 4 CH-1211, Switzerland.
| | | | | | | | | | - Algirdas Kaupinis
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| | - Mindaugas Valius
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| |
Collapse
|
40
|
BRENNER STEFAN, RIHA JULIANE, GIESSRIGL BENEDIKT, THALHAMMER THERESIA, GRUSCH MICHAEL, KRUPITZA GEORG, STIEGER BRUNO, JÄGER WALTER. The effect of organic anion-transporting polypeptides 1B1, 1B3 and 2B1 on the antitumor activity of flavopiridol in breast cancer cells. Int J Oncol 2014; 46:324-32. [DOI: 10.3892/ijo.2014.2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/29/2014] [Indexed: 11/05/2022] Open
|
41
|
Criscitiello C, Viale G, Esposito A, Curigliano G. Dinaciclib for the treatment of breast cancer. Expert Opin Investig Drugs 2014; 23:1305-12. [PMID: 25107301 DOI: 10.1517/13543784.2014.948152] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cyclin-dependent kinases (CDK) represent attractive targets in oncology due to their key role in controlling gene transcription and cell cycle progression. Dinaciclib (MK-7965, formerly SCH727965) is a relatively novel CDK 1/2/5/9 inhibitor that has shown promising results in preclinical studies and an acceptable safety profile in Phase I clinical trials. It is currently under clinical evaluation for the treatment of hematological and solid malignancies, including breast cancer. AREAS COVERED This review summarizes the current understanding of CDK's role in physiology and cancer, and the therapeutic value of blocking their pathways in breast cancer. Particularly, the article reviews the preclinical and clinical data for dinaciclib in its use for the treatment of breast cancer. EXPERT OPINION A better understanding of the molecular mechanisms underlying cell cycle dysregulation in cancer is needed in order to develop novel CDK inhibitors. Additionally, further efforts are needed to identify potential biomarkers of dinaciclib efficacy, which could allow a better selection of patients enrolled in clinical trials. Moreover, combination therapies with dinaciclib or other CDK and chemotherapy, endocrine therapy or targeted therapies might be further evaluated in breast cancer patients.
Collapse
Affiliation(s)
- Carmen Criscitiello
- Istituto Europeo di Oncologia, Division of Early Drug Development for Innovative Therapies , Via Ripamonti 435, 20133 Milano , Italy +39 02 57489439 ; +39 02 94379224 ;
| | | | | | | |
Collapse
|
42
|
Shindiapina P, Brown JR, Danilov AV. A new hope: novel therapeutic approaches to treatment of chronic lymphocytic leukaemia with defects in TP53. Br J Haematol 2014; 167:149-61. [PMID: 25040077 DOI: 10.1111/bjh.13042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is an indolent B-cell malignancy with heterogeneous outcomes. Chromosomal abnormalities in CLL are predictive of the natural disease course; del(11q) and del(17p) are recognized as high risk genetic lesions. Del(17p) is associated with an impaired function of TP53, a key tumour suppressor, and is particularly problematic. Such patients respond poorly to chemo-immunotherapy and have significantly shorter survival compared to patients with standard and low-risk cytogenetics. While TP53 pathway defects are rare at initial diagnosis, their frequency increases in relapsed CLL. Until very recently, this group of patients represented an unmet clinical need with few therapeutic options. However, the advent of targeted therapies has expanded the drug armamentarium and introduced new hope for these highly refractory patients. Agents that target B-cell receptor signalling, BH3-mimetics and others induce apoptosis of the neoplastic B-cells in a TP53-independent manner. Their use in the clinic is associated with remarkable activity in patients with del(17p). In this review we discuss the frequency and clinical significance of del(17p) and genetic mutations leading to disrupted TP53, the putative role of other TP53 homologues, and the results of key clinical trials involving both conventional chemotherapy and novel agents.
Collapse
|
43
|
Pierceall WE, Warner SL, Lena RJ, Doykan C, Blake N, Elashoff M, Hoff DV, Bearss DJ, Cardone MH, Andritsos L, Byrd JC, Lanasa MC, Grever MR, Johnson AJ. Mitochondrial priming of chronic lymphocytic leukemia patients associates Bcl-xL dependence with alvocidib response. Leukemia 2014; 28:2251-4. [PMID: 24990615 PMCID: PMC4221486 DOI: 10.1038/leu.2014.206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - S L Warner
- Tolero Pharmaceuticals, Inc., Lehi, UT, USA
| | - R J Lena
- Eutropics Inc., Cambridge, MA, USA
| | - C Doykan
- Eutropics Inc., Cambridge, MA, USA
| | - N Blake
- Eutropics Inc., Cambridge, MA, USA
| | | | - D V Hoff
- 1] Tolero Pharmaceuticals, Inc., Lehi, UT, USA [2] Translational Genomics Research Institute, Scottsdale, AZ, USA
| | - D J Bearss
- Tolero Pharmaceuticals, Inc., Lehi, UT, USA
| | | | - L Andritsos
- Department of Internal Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - J C Byrd
- Department of Internal Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - M C Lanasa
- Department of Medicine, Duke Cancer Institute, Durham, NC, USA
| | - M R Grever
- Department of Internal Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - A J Johnson
- Department of Internal Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
44
|
Pallasch CP, Hallek M. Incorporating Targeted Agents Into Future Therapy of Chronic Lymphocytic Leukemia. Semin Hematol 2014; 51:235-48. [DOI: 10.1053/j.seminhematol.2014.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Xie G, Tang H, Wu S, Chen J, Liu J, Liao C. The cyclin-dependent kinase inhibitor SNS-032 induces apoptosis in breast cancer cells via depletion of Mcl-1 and X-linked inhibitor of apoptosis protein and displays antitumor activity in vivo. Int J Oncol 2014; 45:804-12. [PMID: 24865236 DOI: 10.3892/ijo.2014.2467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/08/2014] [Indexed: 11/06/2022] Open
Abstract
Inhibitors of cyclin-dependent kinases (Cdks) have been reported to have activities in many types of cancer cells by inhibiting Cdk7 and Cdk9, which control transcription. SNS-032 is a potent and selective inhibitor of Cdk2, Cdk7 and Cdk9 and has emerged in clinical trials. Here, we examined the viability of MCF-7 and MDA-MB-435 breast cancer cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 had a direct apoptosis-inducing effect through both the extrinsic and intrinsic apoptotic pathways in breast cancer cells as shown by a dose-dependent increase in Annexin V-positive cells and terminal deoxynucleotidyl transferase-mediated dUTP nick?end labeling (TUNEL)-positive cells, as well as activation of caspase-8, -9 and poly(ADP-ribose) polymerase (PARP). At the molecular level, SNS-032 induced a marked dephosphorylation of serine 2 and 5 of RNA polymerase (RNA Pol) II and blocked RNA synthesis. Consistent with the inherently rapid turnover rates of their transcripts and proteins, the anti-apoptotic proteins Mcl-1 and X-linked inhibitor of apoptosis protein (XIAP) were rapidly reduced on exposure to SNS-032. Our results also indicated that SNS-032 suppressed the growth of breast cancer xenografts in mice. These data demonstrate that the use of SNS-032 may be a rational and novel therapeutic strategy for human breast cancer and warrants further clinical investigation.
Collapse
Affiliation(s)
- Gui'e Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Hongping Tang
- Department of Pathology, Shenzhen Maternity and Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, P.R. China
| | - Shaoqing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Jingsong Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Jiangwen Liu
- College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, P.R. China
| | - Can Liao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| |
Collapse
|
46
|
Yin T, Lallena MJ, Kreklau EL, Fales KR, Carballares S, Torrres R, Wishart GN, Ajamie RT, Cronier DM, Iversen PW, Meier TI, Foreman RT, Zeckner D, Sissons SE, Halstead BW, Lin AB, Donoho GP, Qian Y, Li S, Wu S, Aggarwal A, Ye XS, Starling JJ, Gaynor RB, de Dios A, Du J. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther 2014; 13:1442-56. [PMID: 24688048 DOI: 10.1158/1535-7163.mct-13-0849] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA-dependent RNA polymerase II (RNAP II) largest subunit RPB1 C-terminal domain (CTD) kinases, including CDK9, are serine/threonine kinases known to regulate transcriptional initiation and elongation by phosphorylating Ser 2, 5, and 7 residues on CTD. Given the reported dysregulation of these kinases in some cancers, we asked whether inhibiting CDK9 may induce stress response and preferentially kill tumor cells. Herein, we describe a potent CDK9 inhibitor, LY2857785, that significantly reduces RNAP II CTD phosphorylation and dramatically decreases MCL1 protein levels to result in apoptosis in a variety of leukemia and solid tumor cell lines. This molecule inhibits the growth of a broad panel of cancer cell lines, and is particularly efficacious in leukemia cells, including orthotopic leukemia preclinical models as well as in ex vivo acute myeloid leukemia and chronic lymphocytic leukemia patient tumor samples. Thus, inhibition of CDK9 may represent an interesting approach as a cancer therapeutic target, especially in hematologic malignancies.
Collapse
Affiliation(s)
- Tinggui Yin
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Maria J Lallena
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Emiko L Kreklau
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Kevin R Fales
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Santiago Carballares
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Raquel Torrres
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Graham N Wishart
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Rose T Ajamie
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Damien M Cronier
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Phillip W Iversen
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Timothy I Meier
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Robert T Foreman
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Douglas Zeckner
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Sean E Sissons
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Bart W Halstead
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Aimee B Lin
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Gregory P Donoho
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Yuewei Qian
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Shuyu Li
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Song Wu
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Amit Aggarwal
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Xiang S Ye
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - James J Starling
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Richard B Gaynor
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Alfonso de Dios
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Jian Du
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| |
Collapse
|
47
|
Walsby E, Pratt G, Shao H, Abbas AY, Fischer PM, Bradshaw TD, Brennan P, Fegan C, Wang S, Pepper C. A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget 2014; 5:375-85. [PMID: 24495868 PMCID: PMC3964214 DOI: 10.18632/oncotarget.1568] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/18/2013] [Indexed: 01/22/2023] Open
Abstract
Cdk9 is a key elongation factor for RNA transcription and functions by phosphorylating the C-terminal domain of RNA polymerase II. Here we present direct evidence that cdk9 is important for cancer cell survival and describe the characterization of the potent cdk9 inhibitor CDKI-73 in primary human leukemia cells. CDKI-73 induced caspase-dependent apoptosis that was preceded by dephosphorylation of cdk9 and serine 2 of RNA polymerase II. CDKI-73 was more potent than the pan-cdk inhibitor flavopiridol and showed >200-fold selectivity against primary leukemia cells when compared with normal CD34+ cells. Furthermore, CDKI-73 was equipotent in poor prognostic sub-groups of leukemia patients and showed cytotoxic synergy with the nucleoside analog fludarabine. The Mechanism of synergy was associated with CDKI-73-mediated transcriptional inhibition of MCL1 and XIAP that was maintained when used in combination with fludarabine. Our data present a strong rationale for the development of cdk9 inhibitors such as CDKI-73 as anticancer therapeutics.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis
- Case-Control Studies
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Cyclin-Dependent Kinase 9/genetics
- Drug Synergism
- HEK293 Cells
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Phosphorylation
- Prognosis
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- Sulfonamides/administration & dosage
- Sulfonamides/pharmacology
- Transcription, Genetic/drug effects
- Vidarabine/administration & dosage
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
Collapse
Affiliation(s)
- Elisabeth Walsby
- Cardiff CLL Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Guy Pratt
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham, UK
| | - Hao Shao
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Abdullah Y. Abbas
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Peter M. Fischer
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Tracey D. Bradshaw
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Paul Brennan
- Cardiff CLL Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Chris Fegan
- Cardiff CLL Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Shudong Wang
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Chris Pepper
- Cardiff CLL Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| |
Collapse
|
48
|
Jones JA, Rupert AS, Poi M, Phelps MA, Andritsos L, Baiocchi R, Benson DM, Blum KA, Christian B, Flynn J, Penza S, Porcu P, Grever MR, Byrd JC. Flavopiridol can be safely administered using a pharmacologically derived schedule and demonstrates activity in relapsed and refractory non-Hodgkin's lymphoma. Am J Hematol 2014; 89:19-24. [PMID: 23959599 PMCID: PMC4150545 DOI: 10.1002/ajh.23568] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/07/2013] [Accepted: 08/06/2013] [Indexed: 01/14/2023]
Abstract
Flavopiridol is a broad cyclin-dependent kinase inhibitor (CDKI) that induces apoptosis of malignant lymphocytes in vitro and in murine lymphoma models. We conducted a Phase I dose-escalation study to determine the maximum tolerated dose (MTD) for single-agent flavopiridol administered on a pharmacokinetically derived hybrid dosing schedule to patients with relapsed and refractory non-Hodgkin's lymphoma. Dose was escalated independently in one of four cohorts: indolent B-cell (Cohort 1), mantle cell (Cohort 2), intermediate-grade B-cell including transformed lymphoma (Cohort 3), and T-/NK-cell excluding primary cutaneous disease (Cohort 4). Forty-six patients were accrued. Grade 3 or 4 leukopenia was observed in the majority of patients (60%), but infection was infrequent. Common nonhematologic toxicities included diarrhea and fatigue. Biochemical tumor lysis was observed in only two patients, and no patients required hemodialysis for its management. Dose escalation was completed in two cohorts (indolent and aggressive B-cell). Dose-limiting toxicities were not observed, and the MTD was not reached in either cohort at the highest dose tested (50 mg/m(2) bolus + 50 mg/m(2) continuous infusion weekly for 4 consecutive weeks of a 6-week cycle). Clinical benefit was observed in 26% of 43 patients evaluable for response, including 14% with partial responses (two mantle cells, three indolent B-cells, and one diffuse large B-cell). The single-agent activity of this first-generation CDKI suggests that other agents in this class merit further study in lymphoid malignancies, both alone and in combination.
Collapse
Affiliation(s)
- Jeffrey A. Jones
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Amy S. Rupert
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Ming Poi
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Mitch A. Phelps
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Leslie Andritsos
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Robert Baiocchi
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Don M. Benson
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Kristie A. Blum
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Beth Christian
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Joseph Flynn
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Sam Penza
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Pierluigi Porcu
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Michael R. Grever
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - John C. Byrd
- Division of Hematology, The Ohio State University, Columbus, OH 43210
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
49
|
Alexander A, Keyomarsi K. Exploiting Cell Cycle Pathways in Cancer Therapy: New (and Old) Targets and Potential Strategies. NUCLEAR SIGNALING PATHWAYS AND TARGETING TRANSCRIPTION IN CANCER 2014. [DOI: 10.1007/978-1-4614-8039-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Abstract
AbstractThe management of chronic lymphocytic leukemia (CLL) is undergoing profound changes. Several new drugs have been approved for CLL treatment (fludarabine, bendamustine, and the monoclonal antibodies alemtuzumab, rituximab, and ofatumumab) and many more drugs are in advanced clinical development to be approved for this disease. In addition, the extreme heterogeneity of the clinical course and our improved ability to foresee the prognosis of this leukemia by the use of clinical, biological, and genetic parameters now allow us to characterize patients with a very mild onset and course, an intermediate prognosis, or a very aggressive course with high-risk leukemia. Therefore, it becomes increasingly challenging to select the right treatment strategy for each condition. This article summarizes the currently available diagnostic and therapeutic tools and gives an integrated recommendation of how to manage CLL in 2013. Moreover, I propose a strategy how we might integrate the novel agents for CLL therapy into sequential treatment approaches in the near future.
Collapse
|