1
|
Holland AC, Smith J, Wang L, Muller B, Inaba H. Reduced-Intensity Chemotherapy With Immunotherapy for Children With Down Syndrome and B-Cell Acute Lymphoblastic Leukemia. Pediatr Blood Cancer 2025; 72:e31634. [PMID: 40038910 DOI: 10.1002/pbc.31634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Affiliation(s)
- Ashley C Holland
- Center of Advanced Practice, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jasmine Smith
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bradley Muller
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Kozlov G, Franceschi C, Vedunova M. Intricacies of aging and Down syndrome. Neurosci Biobehav Rev 2024; 164:105794. [PMID: 38971514 DOI: 10.1016/j.neubiorev.2024.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Down syndrome is the most frequently occurring genetic condition, with a substantial escalation in risk associated with advanced maternal age. The syndrome is characterized by a diverse range of phenotypes, affecting to some extent all levels of organization, and its progeroid nature - early manifestation of aspects of the senile phenotype. Despite extensive investigations, many aspects and mechanisms of the disease remain unexplored. The current review aims to provide an overview of the main causes and manifestations of Down syndrome, while also examining the phenomenon of accelerated aging and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- G Kozlov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia
| | - C Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia
| | - M Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| |
Collapse
|
3
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
4
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
5
|
Germline Variants Associated with Nasopharyngeal Carcinoma Predisposition Identified through Whole-Exome Sequencing. Cancers (Basel) 2022; 14:cancers14153680. [PMID: 35954343 PMCID: PMC9367457 DOI: 10.3390/cancers14153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
The current understanding of genetic susceptibility factors for nasopharyngeal carcinoma (NPC) is still incomplete. To identify novel germline variants associated with NPC predisposition, we analysed whole-exome sequencing data from 119 NPC patients from Singapore with a family history of NPC and/or with early-onset NPC, together with 1337 Singaporean participants without NPC. Variants were prioritised and filtered by selecting variants with minor allele frequencies of <1% in both local control (n = 1337) and gnomAD non-cancer (EAS) (n = 9626) cohorts and a high pathogenicity prediction (CADD score > 20). Using single-variant testing, we identified 17 rare pathogenic variants in 17 genes that were associated with NPC. Consistent evidence of enrichment in NPC patients was observed for five of these variants (in JAK2, PRDM16, LRP1B, NIN, and NKX2-1) from an independent case-control comparison of 156 NPC patients and 9770 unaffected individuals. In a family with five siblings, a FANCE variant (p. P445S) was detected in two affected members, but not in three unaffected members. Gene-based burden testing recapitulated variants in NKX2-1 and FANCE as being associated with NPC risk. Using pathway analysis, endocytosis and immune-modulating pathways were found to be enriched for mutation burden. This study has identified NPC-predisposing variants and genes which could shed new insights into the genetic predisposition of NPC.
Collapse
|
6
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
7
|
Behluli E, Nuhii N, Liehr T, Temaj G. Suspicions regarding the genetic inheritance of acute lymphoblastic leukemia in patients with down syndrome. JOURNAL OF MOTHER AND CHILD 2022; 26:104-110. [PMID: 35853737 PMCID: PMC10032328 DOI: 10.34763/jmotherandchild.20222601.d-22-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 02/23/2023]
Abstract
Children with Down syndrome (DS) are at markedly increased risk for acute lymphoblastic leukaemia (ALL). DS is caused by trisomy of chromosome 21 affecting approximately 1 in 732 newborns in the USA. ALL is the most common cancer in children and constitutes approximately 25% of cancer diagnoses among children under the age of 15. Different protocols for treatment and management of paediatric ALL are available; however, DS children with ALL (DS-ALL) have increased risk of therapy-related toxicity compared to those without DS. Herein, we summarize the available literature on inherited predisposition for ALL, and possibilities for molecular therapy and treatment for DS-ALL patients.
Collapse
Affiliation(s)
- Emir Behluli
- Department of Pediatrics, University of Prishtina, Prishtina, Kosovo
| | - Nexhibe Nuhii
- State University of Tetovo, Faculty of Medical Sciences, Department of Pharmacy, Tetovo, North Macedonia
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich Schiller Universität, Jena, Germany
| | - Gazmend Temaj
- Human Genetics, College UBT, Faculty of Pharmacy Prishtina, Kosovo
| |
Collapse
|
8
|
Antić Ž, Yu J, Bornhauser BC, Lelieveld SH, van der Ham CG, van Reijmersdal SV, Morgado L, Elitzur S, Bourquin JP, Cazzaniga G, Eckert C, Camós M, Sutton R, Cavé H, Moorman AV, Sonneveld E, Geurts van Kessel A, van Leeuwen FN, Hoogerbrugge PM, Waanders E, Kuiper RP. Clonal dynamics in pediatric B-cell precursor acute lymphoblastic leukemia with very early relapse. Pediatr Blood Cancer 2022; 69:e29361. [PMID: 34597466 DOI: 10.1002/pbc.29361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION One-quarter of the relapses in children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occur very early (within 18 months, before completion of treatment), and prognosis in these patients is worse compared to cases that relapse after treatment has ended. METHODS In this study, we performed a genomic analysis of diagnosis-relapse pairs of 12 children who relapsed very early, followed by a deep-sequencing validation of all identified mutations. In addition, we included one case with a good initial treatment response and on-treatment relapse at the end of upfront therapy. RESULTS We observed a dynamic clonal evolution in all cases, with relapse almost exclusively originating from a subclone at diagnosis. We identified several driver mutations that may have influenced the outgrowth of a minor clone at diagnosis to become the major clone at relapse. For example, a minimal residual disease (MRD)-based standard-risk patient with ETV6-RUNX1-positive leukemia developed a relapse from a TP53-mutated subclone after loss of the wildtype allele. Furthermore, two patients with TCF3-PBX1-positive leukemia that developed a very early relapse carried E1099K WHSC1 mutations at diagnosis, a hotspot mutation that was recurrently encountered in other very early TCF3-PBX1-positive leukemia relapses as well. In addition to alterations in known relapse drivers, we found two cases with truncating mutations in the cohesin gene RAD21. CONCLUSION Comprehensive genomic characterization of diagnosis-relapse pairs shows that very early relapses in BCP-ALL frequently arise from minor subclones at diagnosis. A detailed understanding of the therapeutic pressure driving these events may aid the development of improved therapies.
Collapse
Affiliation(s)
- Željko Antić
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jiangyan Yu
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Simon V van Reijmersdal
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lionel Morgado
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Fondazione Tettamanti, University of Milan Bicocca, Monza, Italy
| | - Cornelia Eckert
- Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mireia Camós
- Leukemia and Other Pediatric Hemopathies, Developmental Tumor Biology Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Hematology Laboratory, Hospital Sant Joan de Deu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosemary Sutton
- Molecular Diagnostics, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Hélène Cavé
- Department of Genetics, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,INSERM U1131, Saint-Louis Research Institute, University of Paris, Paris, France
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Ad Geurts van Kessel
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter M Hoogerbrugge
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Esmé Waanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Liu Q, Adami HO, Reichenberg A, Kolevzon A, Fang F, Sandin S. Cancer risk in individuals with intellectual disability in Sweden: A population-based cohort study. PLoS Med 2021; 18:e1003840. [PMID: 34673770 PMCID: PMC8568154 DOI: 10.1371/journal.pmed.1003840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/04/2021] [Accepted: 10/08/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND A knowledge gap exists about the risk of cancer in individuals with intellectual disability (ID). The primary aim of this study was to estimate the cancer risk among individuals with ID compared to individuals without ID. METHODS AND FINDINGS We conducted a population-based cohort study of all children live-born in Sweden between 1974 and 2013 and whose mothers were born in a Nordic country. All individuals were followed from birth until cancer diagnosis, emigration, death, or 31 December 2016 (up to age 43 years), whichever came first. Incident cancers were identified from the Swedish Cancer Register. We fitted Cox regression models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) as measures of cancer risk in relation to ID after adjusting for several potential confounders. We analyzed ID by severity, as well as idiopathic ID and syndromic ID separately. We performed a sibling comparison to investigate familial confounding. The study cohort included a total of 3,531,305 individuals, including 27,956 (0.8%) individuals diagnosed with ID. Compared with the reference group (individuals without ID and without a full sibling with ID), individuals with ID were in general more likely to be male. The median follow-up time was 8.9 and 23.0 years for individuals with ID and individuals without ID, respectively. A total of 188 cancer cases were identified among individuals with ID (incidence rate [IR], 62 per 1,000 person-years), and 24,960 among individuals in the reference group (IR, 31 per 1,000 person-years). A statistically significantly increased risk was observed for any cancer (HR 1.57, 95% CI 1.35-1.82; P < 0.001), as well as for several cancer types, including cancers of the esophagus (HR 28.4, 95% CI 6.2-130.6; P < 0.001), stomach (HR 6.1, 95% CI 1.5-24.9; P = 0.013), small intestine (HR 12.0, 95% CI 2.9-50.1; P < 0.001), colon (HR 2.0, 95% CI 1.0-4.1; P = 0.045), pancreas (HR 6.0, 95% CI 1.5-24.8; P = 0.013), uterus (HR 11.7, 95% CI 1.5-90.7; P = 0.019), kidney (HR 4.4, 95% CI 2.0-9.8; P < 0.001), central nervous system (HR 2.7, 95% CI 2.0-3.7; P < 0.001), and other or unspecified sites (HR 4.8, 95% CI 1.8-12.9; P = 0.002), as well as acute lymphoid leukemia (HR 2.4, 95% CI 1.3-4.4; P = 0.003) and acute myeloid leukemia (HR 3.0, 95% CI 1.4-6.4; P = 0.004). Cancer risk was not modified by ID severity or sex but was higher for syndromic ID. The sibling comparison showed little support for familial confounding. The main study limitations were the limited statistical power for the analyses of specific cancer types, and the potential for underestimation of the studied associations (e.g., due to potential underdetection or delayed diagnosis of cancer among individuals with ID). CONCLUSIONS In this study, we found that individuals with ID showed an increased risk of any cancer, as well as of several specific cancer types. These findings suggest that extended surveillance and early intervention for cancer among individuals with ID are warranted.
Collapse
Affiliation(s)
- Qianwei Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Health and Society, University of Oslo, Oslo, Norway
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Abraham Reichenberg
- Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
- Seaver Autism Center for Research and Treatment, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alexander Kolevzon
- Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
- Seaver Autism Center for Research and Treatment, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
- Seaver Autism Center for Research and Treatment, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
10
|
Yeung C, Qu X, Sala-Torra O, Woolston D, Radich J, Fang M. Mutational profiling in acute lymphoblastic leukemia by RNA sequencing and chromosomal genomic array testing. Cancer Med 2021; 10:5629-5642. [PMID: 34288525 PMCID: PMC8366081 DOI: 10.1002/cam4.4101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022] Open
Abstract
Background Comprehensive molecular and cytogenetic profiling of acute lymphoblastic leukemia (ALL) is important and critical to the current standard of care for patients with B‐acute lymphoblastic leukemia (B‐ALL). Here we propose a rapid process for detecting gene fusions whereby FusionPlex RNA next‐generation sequencing (NGS) and DNA chromosome genomic array testing (CGAT) are combined for a more efficient approach in the management of patients with B‐ALL. Methods We performed RNA NGS and CGAT on 28 B‐ALL samples and, in four patients, compared fixed cell pellets to paired cryo‐preserved samples as a starting material to further assess the utility of cytogenetic fixed pellets for gene expression analysis. Results Among the fixed specimens, when using alternative techniques as references, including karyotype, fluorescence in situ hybridization, CGAT, and RT‐qPCR, fusions were detected by RNA NGS with 100% sensitivity and specificity. In the four paired fixed versus fresh cryopreserved samples, fusions were also 100% concordant. Four of the 28 patients showed mutations that were detected by RNA sequencing and three of four of these mutations had well‐known drug resistance implications. Conclusions We conclude that FusionPlex is a robust and reliable anchored multiplex RNA sequencing platform for use in the detection of fusions in both fresh cryopreserved and cytogenetic fixed pellets. Gene expression data could only be obtained from fresh samples and although limited variant data are available, critical hotspot variants can be determined in conjunction with the fusions.
Collapse
Affiliation(s)
- Cecilia Yeung
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA.,University of Washington, Seattle, WA, USA.,Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Xiaoyu Qu
- Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Olga Sala-Torra
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - David Woolston
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Jerry Radich
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA.,University of Washington, Seattle, WA, USA.,Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Min Fang
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA.,University of Washington, Seattle, WA, USA.,Seattle Cancer Care Alliance, Seattle, WA, USA
| |
Collapse
|
11
|
Lee J, Godfrey AL, Nangalia J. Genomic heterogeneity in myeloproliferative neoplasms and applications to clinical practice. Blood Rev 2020; 42:100708. [PMID: 32571583 DOI: 10.1016/j.blre.2020.100708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
The myeloproliferative neoplasms (MPN) polycythaemia vera, essential thrombocythaemia and primary myelofibrosis are chronic myeloid disorders associated most often with mutations in JAK2, MPL and CALR, and in some patients with additional acquired genomic lesions. Whilst the molecular mechanisms downstream of these mutations are now clearer, it is apparent that clinical phenotype in MPN is a product of complex interactions, acting between individual mutations, between disease subclones, and between the tumour and background host factors. In this review we first discuss MPN phenotypic driver mutations and the factors that interact with them to influence phenotype. We consider the importance of ongoing studies of clonal haematopoiesis, which may inform a better understanding of why MPN develop in specific individuals. We then consider how best to deploy genomic testing in a clinical environment and the challenges as well as opportunities that may arise from more routine, comprehensive genomic analysis of patients with MPN.
Collapse
Affiliation(s)
- Joe Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna L Godfrey
- Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK.
| |
Collapse
|
12
|
Rumi E, Baratè C, Benevolo G, Maffioli M, Ricco A, Sant'Antonio E. Myeloproliferative and lymphoproliferative disorders: State of the art. Hematol Oncol 2019; 38:121-128. [PMID: 31833567 DOI: 10.1002/hon.2701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
Abstract
Myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are clonal disorders complicated mainly by vascular events and transformation to myelofibrosis (for PV and ET) or leukemia. Although secondary malignancies, in particular, lymphoproliferative disorders (LPNs), are rare, they occur at a higher frequency than found in the general population, and there has been recent scientific discussion regarding a hypothetical relationship between treatment with JAK inhibitors in MPN and the risk of development of LPN. This has prompted increased interest regarding the coexistence of MPN and LPN. This review focuses on the role of JAK2 and the JAK/STAT pathway in MPN and LPN, whether there is a role for the genetic background in the occurrence of both MPN and LPN and whether there is a role for cytoreductive drugs in the occurrence of both MPN and LPN. Furthermore, whether an increased risk of lymphoma development is limited to patients who receive the JAK inhibitor ruxolitinib, is a more general phenomenon that occurs following JAK1/2 inhibition or is associated with preferential JAK1 or JAK2 targeting is discussed.
Collapse
Affiliation(s)
- Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Baratè
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Giulia Benevolo
- Hematology, Città della Salute e della Scienza, Turin, Italy
| | | | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O), Hematology Section, University of Bari, Bari, Italy
| | - Emanuela Sant'Antonio
- UOC Ematologia Aziendale, Azienda Usl Toscana Nord Ovest, Pisa, Italy.,Medical Genetics, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Liau NPD, Laktyushin A, Morris R, Sandow JJ, Nicola NA, Kershaw NJ, Babon JJ. Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1. Cancers (Basel) 2019; 11:E1701. [PMID: 31683831 PMCID: PMC6896158 DOI: 10.3390/cancers11111701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) are found constitutively associated with cytokine receptors and are present in an inactive state prior to cytokine exposure. Activating mutations of JAKs are causative for a number of leukemias, lymphomas, and myeloproliferative diseases. In particular, the JAK2V617F mutant is found in most human cases of polycythemia vera, a disease characterized by over-production of erythrocytes. The V617F mutation is found in the pseudokinase domain of JAK2 and it leads to cytokine-independent activation of the kinase, as does the orthologous mutation in other JAK-family members. The mechanism whereby this mutation hyperactivates these kinases is not well understood, primarily due to the fact that the full-length JAK proteins are difficult to produce for structural and kinetic studies. Here we have overcome this limitation to perform a series of enzymatic analyses on full-length JAK1 and its constitutively active mutant form (JAK1V658F). Consistent with previous studies, we show that the presence of the pseudokinase domain leads to a dramatic decrease in enzymatic activity with no further decrease from the presence of the FERM or SH2 domains. However, we find that the mutant kinase, in vitro, is indistinguishable from the wild-type enzyme in every measurable parameter tested: KM (ATP), KM (substrate), kcat, receptor binding, thermal stability, activation rate, dephosphorylation rate, and inhibitor affinity. These results show that the V658F mutation does not enhance the intrinsic enzymatic activity of JAK. Rather this data is more consistent with a model in which there are cellular processes and interactions that prevent JAK from being activated in the absence of cytokine and it is these constraints that are affected by disease-causing mutations.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Artem Laktyushin
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Rhiannon Morris
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| |
Collapse
|
14
|
Brown AL, de Smith AJ, Gant VU, Yang W, Scheurer ME, Walsh KM, Chernus JM, Kallsen NA, Peyton SA, Davies GE, Ehli EA, Winick N, Heerema NA, Carroll AJ, Borowitz MJ, Wood BL, Carroll WL, Raetz EA, Feingold E, Devidas M, Barcellos LF, Hansen HM, Morimoto L, Kang AY, Smirnov I, Healy J, Laverdière C, Sinnett D, Taub JW, Birch JM, Thompson P, Spector LG, Pombo-de-Oliveira MS, DeWan AT, Mullighan CG, Hunger SP, Pui CH, Loh ML, Zwick ME, Metayer C, Ma X, Mueller BA, Sherman SL, Wiemels JL, Relling MV, Yang JJ, Lupo PJ, Rabin KR. Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood 2019; 134:1227-1237. [PMID: 31350265 PMCID: PMC6788009 DOI: 10.1182/blood.2018890764] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/14/2019] [Indexed: 02/07/2023] Open
Abstract
Children with Down syndrome (DS) have a 20-fold increased risk of acute lymphoblastic leukemia (ALL) and distinct somatic features, including CRLF2 rearrangement in ∼50% of cases; however, the role of inherited genetic variation in DS-ALL susceptibility is unknown. We report the first genome-wide association study of DS-ALL, comprising a meta-analysis of 4 independent studies, with 542 DS-ALL cases and 1192 DS controls. We identified 4 susceptibility loci at genome-wide significance: rs58923657 near IKZF1 (odds ratio [OR], 2.02; Pmeta = 5.32 × 10-15), rs3731249 in CDKN2A (OR, 3.63; Pmeta = 3.91 × 10-10), rs7090445 in ARID5B (OR, 1.60; Pmeta = 8.44 × 10-9), and rs3781093 in GATA3 (OR, 1.73; Pmeta = 2.89 × 10-8). We performed DS-ALL vs non-DS ALL case-case analyses, comparing risk allele frequencies at these and other established susceptibility loci (BMI1, PIP4K2A, and CEBPE) and found significant association with DS status for CDKN2A (OR, 1.58; Pmeta = 4.1 × 10-4). This association was maintained in separate regression models, both adjusting for and stratifying on CRLF2 overexpression and other molecular subgroups, indicating an increased penetrance of CDKN2A risk alleles in children with DS. Finally, we investigated functional significance of the IKZF1 risk locus, and demonstrated mapping to a B-cell super-enhancer, and risk allele association with decreased enhancer activity and differential protein binding. IKZF1 knockdown resulted in significantly higher proliferation in DS than non-DS lymphoblastoid cell lines. Our findings demonstrate a higher penetrance of the CDKN2A risk locus in DS and serve as a basis for further biological insights into DS-ALL etiology.
Collapse
Affiliation(s)
- Austin L Brown
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Adam J de Smith
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Vincent U Gant
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Kyle M Walsh
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC
| | - Jonathan M Chernus
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD
| | - Naomi Winick
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nyla A Heerema
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Michael J Borowitz
- Department of Pathology and
- Department of Oncology, Johns Hopkins Hospital, Baltimore, MD;
| | - Brent L Wood
- Department of Pathology and
- Department of Medicine, University of Washington Medical Center, Seattle, WA
| | - William L Carroll
- Department of Pediatrics, Perlmutter Cancer Center, New York University, New York, NY
| | - Elizabeth A Raetz
- Department of Pediatrics, Perlmutter Cancer Center, New York University, New York, NY
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Meenakshi Devidas
- Department of Biostatistics, College of Medicine, Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Lisa F Barcellos
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Libby Morimoto
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Alice Y Kang
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Ivan Smirnov
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Jasmine Healy
- Division of Hematology-Oncology, Sainte-Justine University Health Center, Montreal, QC, Canada
| | - Caroline Laverdière
- Division of Hematology-Oncology, Sainte-Justine University Health Center, Montreal, QC, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, Sainte-Justine University Health Center, Montreal, QC, Canada
| | - Jeffrey W Taub
- Division of Hematology Oncology, Department of Oncology, Wayne State University, Detroit, MI
| | - Jillian M Birch
- Department of Paediatric and Adolescent Oncology, University of Manchester, Manchester, United Kingdom
| | - Pamela Thompson
- Department of Paediatric and Adolescent Oncology, University of Manchester, Manchester, United Kingdom
| | - Logan G Spector
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | | | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Michael E Zwick
- Department of Human Genetics, Emory University, Atlanta, GA; and
| | - Catherine Metayer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Beth A Mueller
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Joseph L Wiemels
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Karen R Rabin
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
15
|
Lokau J, Garbers C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:283-309. [PMID: 31036294 DOI: 10.1016/bs.apcsb.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family are involved in numerous physiological and pathophysiological processes. Dysregulated and increased activities of its members can be found in practically all human inflammatory diseases including cancer. All cytokines activate several intracellular signaling cascades, including the Jak/STAT, MAPK, PI3K, and Src/YAP signaling pathways. Additionally, several mutations in proteins involved in these signaling cascades have been identified in human patients, which render these proteins constitutively active and result in a hyperactivation of the signaling pathway. Interestingly, some of these mutations are associated with or even causative for distinct human diseases, making them interesting targets for therapy. This chapter describes the basic biology of the gp130/Jak/STAT pathway, summarizes what is known about the molecular mechanisms of the activating mutations, and gives an outlook how this knowledge can be exploited for targeted therapy in human diseases.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
16
|
Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, Godfrey AL, Papaemmanuil E, Gundem G, MacLean C, Cook J, O'Neil L, O'Meara S, Teague JW, Butler AP, Massie CE, Williams N, Nice FL, Andersen CL, Hasselbalch HC, Guglielmelli P, McMullin MF, Vannucchi AM, Harrison CN, Gerstung M, Green AR, Campbell PJ. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med 2018; 379:1416-1430. [PMID: 30304655 PMCID: PMC7030948 DOI: 10.1056/nejmoa1716614] [Citation(s) in RCA: 445] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and myelofibrosis, are chronic hematologic cancers with varied progression rates. The genomic characterization of patients with myeloproliferative neoplasms offers the potential for personalized diagnosis, risk stratification, and treatment. METHODS We sequenced coding exons from 69 myeloid cancer genes in patients with myeloproliferative neoplasms, comprehensively annotating driver mutations and copy-number changes. We developed a genomic classification for myeloproliferative neoplasms and multistage prognostic models for predicting outcomes in individual patients. Classification and prognostic models were validated in an external cohort. RESULTS A total of 2035 patients were included in the analysis. A total of 33 genes had driver mutations in at least 5 patients, with mutations in JAK2, CALR, or MPL being the sole abnormality in 45% of the patients. The numbers of driver mutations increased with age and advanced disease. Driver mutations, germline polymorphisms, and demographic variables independently predicted whether patients received a diagnosis of essential thrombocythemia as compared with polycythemia vera or a diagnosis of chronic-phase disease as compared with myelofibrosis. We defined eight genomic subgroups that showed distinct clinical phenotypes, including blood counts, risk of leukemic transformation, and event-free survival. Integrating 63 clinical and genomic variables, we created prognostic models capable of generating personally tailored predictions of clinical outcomes in patients with chronic-phase myeloproliferative neoplasms and myelofibrosis. The predicted and observed outcomes correlated well in internal cross-validation of a training cohort and in an independent external cohort. Even within individual categories of existing prognostic schemas, our models substantially improved predictive accuracy. CONCLUSIONS Comprehensive genomic characterization identified distinct genetic subgroups and provided a classification of myeloproliferative neoplasms on the basis of causal biologic mechanisms. Integration of genomic data with clinical variables enabled the personalized predictions of patients' outcomes and may support the treatment of patients with myeloproliferative neoplasms. (Funded by the Wellcome Trust and others.).
Collapse
Affiliation(s)
- Jacob Grinfeld
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Jyoti Nangalia
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - E Joanna Baxter
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - David C Wedge
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Nicos Angelopoulos
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Robert Cantrill
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Anna L Godfrey
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Elli Papaemmanuil
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Gunes Gundem
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Cathy MacLean
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Julia Cook
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Laura O'Neil
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Sarah O'Meara
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Jon W Teague
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Adam P Butler
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Charlie E Massie
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Nicholas Williams
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Francesca L Nice
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Christen L Andersen
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Hans C Hasselbalch
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Paola Guglielmelli
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Mary F McMullin
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Alessandro M Vannucchi
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Claire N Harrison
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Moritz Gerstung
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Anthony R Green
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| | - Peter J Campbell
- From the Wellcome-MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research (J.G., C.E.M., F.L.N., A.R.G., P.J.C.), the Department of Haematology, University of Cambridge (J.G., E.J.B., C.M., J.C., C.E.M., F.L.N., A.R.G.), and the Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (J.G., E.J.B., A.L.G., C.M., J.C., A.R.G.), Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus (J.N., D.C.W., N.A., E.P., G.G., L.O., S.O., J.W.T., A.P.B., N.W., P.J.C.), and the European Molecular Biology Laboratory, European Bioinformatics Institute (R.C., M.G.), Hinxton, Big Data Institute, University of Oxford, Oxford (D.C.W.), the Department of Haematology, Queen's University Belfast, Belfast (M.F.M.), and the Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London (C.N.H.) - all in the United Kingdom; the Center for Molecular Oncology and the Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York (E.P., G.G.); the Department of Hematology, Zealand University Hospital, Roskilde, and the University of Copenhagen, Copenhagen (C.L.A., H.C.H.); and the Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy (P.G., A.M.V.)
| |
Collapse
|
17
|
Whole-exome sequencing exploration of acquired uniparental disomies in B-cell precursor acute lymphoblastic leukemia. Leukemia 2018; 32:2058-2062. [PMID: 29967378 PMCID: PMC6127080 DOI: 10.1038/s41375-018-0191-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 11/08/2022]
|
18
|
Feng J, Gong XY, Jia YJ, Liu KQ, Li Y, Dong XB, Fang QY, Ru K, Li QH, Wang HJ, Zhao XL, Jia YN, Song Y, Tian Z, Wang M, Tang KJ, Wang JX, Mi YC. [Spectrum of somatic mutations and their prognostic significance in adult patients with B cell acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:98-104. [PMID: 29562441 PMCID: PMC7342576 DOI: 10.3760/cma.j.issn.0253-2727.2018.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/11/2023]
Abstract
Objective: To investigate the spectrum of gene mutations in adult patients with B-acute lymphoblastic leukemia (B-ALL), and to analyze the influences of different gene mutations on prognosis. Methods: DNA samples from 113 adult B-ALL patients who administered from June 2009 to September 2015 were collected. Target-specific next generation sequencing (NGS) approach was used to analyze the mutations of 112 genes (focused on the specific mutational hotspots) and all putative mutations were compared against multiple databases to calculate the frequency spectrum. The impact of gene mutation on the patients' overall survival (OS) and recurrence free survival (RFS) was analyzed by the putative mutations through Kaplan-Meier, and Cox regression methods. Results: Of the 113 patients, 103 (92.0%) harbored at least one mutation and 29 (25.6%) harbored more than 3 genes mutation. The five most frequently mutated genes in B-ALL are SF1, FAT1, MPL, PTPN11 and NRAS. Gene mutations are different between Ph+ B-ALL and Ph- B-ALL patients. Ph- B-ALL patients with JAK-STAT signal pathway related gene mutation, such as JAK1/JAK2 mutation showed a poor prognosis compared to the patients without mutation (OS: P=0.011, 0.001; RFS: P=0.014,<0.001). Patients with PTPN11 mutation showed better survival than those without mutation, but the difference was not statistically significant (P value > 0.05). Besides, in Ph+ B-ALL patients whose epigenetic modifications related signaling pathway genes were affected, they had a worse prognosis (OS: P=0.038; RFS: P=0.047). Conclusion: Gene mutations are common in adult ALL patients, a variety of signaling pathways are involved. The frequency and spectrum are varied in different types of B-ALL. JAK family gene mutation usually indicates poor prognosis. The co-occurrence of somatic mutations in adult B-ALL patients indicate the genetic complex and instability of adult B-ALL patients.
Collapse
Affiliation(s)
- J Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is central to signaling by receptors of diverse cytokines, growth factors, and other related molecules. Many of these receptors transmit anti-apoptosis, proliferation, and differentiation signals that are critical for normal hematopoiesis and immune response. However, the JAK/STAT signaling pathway is deregulated in many hematologic malignancies, and as such is co-opted by malignant cells to promote their survival and proliferation. It has recently come to light that an alternative mechanism, wherein nuclear JAKs epigenetically modify the chromatin to increase gene expression independent of STATs, also plays an important role in the pathogenesis of many hematologic malignancies. In this review, we will focus on common genetic alterations of the JAK family members in leukemia and lymphoma, and provide examples in which JAKs regulate gene expression by targeting the cancer epigenome.
Collapse
Affiliation(s)
- Amanda C Drennan
- a Department of Medicine and Carbone Cancer Center , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Lixin Rui
- a Department of Medicine and Carbone Cancer Center , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
20
|
Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 2017; 130:2064-2072. [PMID: 28972016 DOI: 10.1182/blood-2017-06-743252] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/23/2017] [Indexed: 02/07/2023] Open
Abstract
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL), also referred to as BCR-ABL1-like ALL, is a high-risk subset with a gene expression profile that shares significant overlap with that of Ph-positive (Ph+) ALL and is suggestive of activated kinase signaling. Although Ph+ ALL is defined by BCR-ABL1 fusion, Ph-like ALL cases contain a variety of genomic alterations that activate kinase and cytokine receptor signaling. These alterations can be grouped into major subclasses that include ABL-class fusions involving ABL1, ABL2, CSF1R, and PDGFRB that phenocopy BCR-ABL1 and alterations of CRLF2, JAK2, and EPOR that activate JAK/STAT signaling. Additional genomic alterations in Ph-like ALL activate other kinases, including BLNK, DGKH, FGFR1, IL2RB, LYN, NTRK3, PDGFRA, PTK2B, TYK2, and the RAS signaling pathway. Recent studies have helped to define the genomic landscape of Ph-like ALL and how it varies across the age spectrum, associated clinical features and outcomes, and genetic risk factors. Preclinical studies and anecdotal reports show that targeted inhibitors of relevant signaling pathways are active in specific Ph-like ALL subsets, and precision medicine trials have been initiated for this high-risk ALL subset.
Collapse
|
21
|
JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia. Oncotarget 2017; 8:89923-89938. [PMID: 29163799 PMCID: PMC5685720 DOI: 10.18632/oncotarget.21027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL.
Collapse
|
22
|
Russell LJ, Jones L, Enshaei A, Tonin S, Ryan SL, Eswaran J, Nakjang S, Papaemmanuil E, Tubio JMC, Fielding AK, Vora A, Campbell PJ, Moorman AV, Harrison CJ. Characterisation of the genomic landscape of CRLF2-rearranged acute lymphoblastic leukemia. Genes Chromosomes Cancer 2017; 56:363-372. [PMID: 28033648 PMCID: PMC5396319 DOI: 10.1002/gcc.22439] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/24/2016] [Accepted: 12/25/2016] [Indexed: 12/31/2022] Open
Abstract
Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5-15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We aimed to determine the clinical and genetic landscape of those with IGH-CRLF2 or P2RY8-CRLF2 (CRLF2-r) using multiple genomic approaches. Clinical and demographic features of CRLF2-r patients were characteristic of B-ALL. Patients with IGH-CRLF2 were older (14 y vs. 4 y, P < .001), while the incidence of CRLF2-r among Down syndrome patients was high (50/161, 31%). CRLF2-r co-occurred with primary chromosomal rearrangements but the majority (111/161, 69%) had B-other ALL. Copy number alteration (CNA) profiles were similar to B-other ALL, although CRLF2-r patients harbored higher frequencies of IKZF1 (60/138, 43% vs. 77/1351, 24%) and BTG1 deletions (20/138, 15% vs. 3/1351, 1%). There were significant differences in CNA profiles between IGH-CRLF2 and P2RY8-CRLF2 patients: IKZF1 (25/35, 71% vs. 36/108, 33%, P < .001), BTG1 (11/35, 31% vs. 10/108, 9%, P =.004), and ADD3 deletions (9/19, 47% vs. 5/38, 13%, P =.008). A novel gene fusion, USP9X-DDX3X, was discovered in 10/54 (19%) of patients. Pathway analysis of the mutational profile revealed novel involvement for focal adhesion. Although the functional relevance of many of these abnormalities are unknown, they likely activate additional pathways, which may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Lisa J. Russell
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Lisa Jones
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Stefano Tonin
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Sarra L. Ryan
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Jeyanthy Eswaran
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Elli Papaemmanuil
- Department of Epidemiology‐BiostatisticsMemorial Sloan Kettering Cancer CenterUSA
- Cancer Genome ProjectWellcome Trust Sanger InstituteHinxtonUK
| | | | | | - Ajay Vora
- Department of HaematologySheffield Children's HospitalSheffieldUK
| | | | - Anthony V. Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
23
|
Advances in B-lymphoblastic leukemia: cytogenetic and genomic lesions. Ann Diagn Pathol 2016; 23:43-50. [DOI: 10.1016/j.anndiagpath.2016.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
|
24
|
Lee P, Bhansali R, Izraeli S, Hijiya N, Crispino JD. The biology, pathogenesis and clinical aspects of acute lymphoblastic leukemia in children with Down syndrome. Leukemia 2016; 30:1816-23. [PMID: 27285583 DOI: 10.1038/leu.2016.164] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
Abstract
Children with Down syndrome (DS) are at a 20-fold increased risk for acute lymphoblastic leukemia (DS-ALL). Although the etiology of this higher risk of developing leukemia remains largely unclear, the recent identification of CRLF2 (cytokine receptor like factor 2) and JAK2 mutations and study of the effect of trisomy of Hmgn1 and Dyrk1a (dual-specificity tyrosine phosphorylation-regulated kinase 1A) on B-cell development have shed significant new light on the disease process. Here we focus on the clinical features, biology and genetics of ALL in children with DS. We review the unique characteristics of DS-ALL on both the clinical and molecular levels and discuss the differences in treatments and outcomes in ALL in children with DS compared with those without DS. The identification of new biological insights is expected to pave the way for novel targeted therapies.
Collapse
Affiliation(s)
- P Lee
- Division of Hematology/Oncology/Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - R Bhansali
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Izraeli
- Edmond and Lily Safra, Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - N Hijiya
- Division of Hematology/Oncology/Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J D Crispino
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain. Neural Plast 2016; 2016:7434191. [PMID: 26881131 PMCID: PMC4737457 DOI: 10.1155/2016/7434191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition.
Collapse
|
26
|
Izraeli S. The acute lymphoblastic leukemia of Down Syndrome - Genetics and pathogenesis. Eur J Med Genet 2015; 59:158-61. [PMID: 26631987 DOI: 10.1016/j.ejmg.2015.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023]
Abstract
Children with Down Syndrome (DS) are at markedly increased risk for acute lymphoblastic leukemia (ALL). The ALL is of B cell precursor (BCP) phenotype. T-ALL is only rarely diagnosed as well as infant leukemia. Gene expression profiling and cytogenetics suggest that DS-ALL is an heterogeneous disease. More than half of the leukemias are characterized by aberrant expression of the thymic stromal lymphopoietin (TSLP) receptor CRLF2 caused by genomic rearrangements. These rearrangements are often associated with somatic activating mutations in the receptors or in the downstream components of the JAK-STAT pathway. The activation of JAK-STAT pathway suggests that targeted therapy with JAK or downstream inhibitors may be effective for children with DS-ALL. The basis of the increased risk of BCP-ALL and in particular of the CRLF2 aberrations is presently unknown. Neither is it known which genes on the trisomic chromosome 21 are involved.
Collapse
Affiliation(s)
- Shai Izraeli
- Functional Genomics and Leukemia Research, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Tasian SK, Loh ML, Hunger SP. Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer 2015; 121:3577-90. [PMID: 26194091 PMCID: PMC4592406 DOI: 10.1002/cncr.29573] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 12/31/2022]
Abstract
Acute lymphoblastic leukemia (ALL), the most common malignancy of childhood, is a genetically complex entity that remains a major cause of childhood cancer-related mortality. Major advances in genomic and epigenomic profiling during the past decade have appreciably enhanced knowledge of the biology of de novo and relapsed ALL and have facilitated more precise risk stratification of patients. These achievements have also provided critical insights regarding potentially targetable lesions for the development of new therapeutic approaches in the era of precision medicine. In this review, the authors delineate the current genetic landscape of childhood ALL, emphasizing patient outcomes with contemporary treatment regimens as well as therapeutic implications of newly identified genomic alterations in specific subsets of ALL.
Collapse
Affiliation(s)
- Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Abramson Cancer Center; Philadelphia, PA
| | - Mignon L Loh
- University of California, San Francisco Benioff Children's Hospital; San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center; San Francisco, CA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA
| |
Collapse
|
28
|
Derouet A, Petit A, Baruchel A, Clavel J, Brethon B, Bertrand Y, Lutz P, Nacka F, Ducassou S. Impact of therapy in a cohort of unselected children with Down Syndrome-associated Acute Lymphoblastic Leukaemia. Br J Haematol 2015; 174:983-5. [DOI: 10.1111/bjh.13817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Audrey Derouet
- Unit of Paediatric Haematology and Oncology; Bordeaux University Hospital; Bordeaux-Cedex France
| | - Arnaud Petit
- Unit of Paediatric Haematology and Oncology; Armand Trousseau Hospital; Paris France
| | - André Baruchel
- Unit of Paediatric Haematology and Immunology; Robert Debré Hospital; Paris France
| | - Jacqueline Clavel
- Institut National de la Santé et de la recherche Médicale (INSERM); Unit754, Registry of Malignant Hemopathies in childhood; Villejuif France
| | - Benoît Brethon
- Unit of Paediatric Haematology and Immunology; Robert Debré Hospital; Paris France
| | - Yves Bertrand
- Institute of Paediatric Haematology and Oncology; 1, place du Professeur Joseph Renault; Lyon France
| | - Patrick Lutz
- Unit of Paediatric Haematology and Oncology; Hautepierre Hospital; Strasbourg France
| | - Fabienne Nacka
- Clinical Investigation Centre in Paediatrics CIC 1401; Bordeaux University Hospital; Bordeaux-Cedex France
| | - Stéphane Ducassou
- Unit of Paediatric Haematology and Oncology; Bordeaux University Hospital; Bordeaux-Cedex France
| |
Collapse
|
29
|
Springuel L, Renauld JC, Knoops L. JAK kinase targeting in hematologic malignancies: a sinuous pathway from identification of genetic alterations towards clinical indications. Haematologica 2015; 100:1240-53. [PMID: 26432382 PMCID: PMC4591756 DOI: 10.3324/haematol.2015.132142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/17/2015] [Indexed: 12/16/2022] Open
Abstract
Constitutive JAK-STAT pathway activation occurs in most myeloproliferative neoplasms as well as in a significant proportion of other hematologic malignancies, and is frequently a marker of poor prognosis. The underlying molecular alterations are heterogeneous as they include activating mutations in distinct components (cytokine receptor, JAK, STAT), overexpression (cytokine receptor, JAK) or rare JAK2 fusion proteins. In some cases, concomitant loss of negative regulators contributes to pathogenesis by further boosting the activation of the cascade. Exploiting the signaling bottleneck provided by the limited number of JAK kinases is an attractive therapeutic strategy for hematologic neoplasms driven by constitutive JAK-STAT pathway activation. However, given the conserved nature of the kinase domain among family members and the interrelated roles of JAK kinases in many physiological processes, including hematopoiesis and immunity, broad usage of JAK inhibitors in hematology is challenged by their narrow therapeutic window. Novel therapies are, therefore, needed. The development of more selective inhibitors is a questionable strategy as such inhibitors might abrogate the beneficial contribution of alleviating the cancer-related pro-inflammatory microenvironment and raise selective pressure to a threshold that allows the emergence of malignant subclones harboring drug-resistant mutations. In contrast, synergistic combinations of JAK inhibitors with drugs targeting cascades that work in concert with JAK-STAT pathway appear to be promising therapeutic alternatives to JAK inhibitors as monotherapies.
Collapse
Affiliation(s)
- Lorraine Springuel
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Jean-Christophe Renauld
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Laurent Knoops
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium Hematology Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
30
|
Ghazavi F, Lammens T, Van Roy N, Poppe B, Speleman F, Benoit Y, Van Vlierberghe P, De Moerloose B. Molecular basis and clinical significance of genetic aberrations in B-cell precursor acute lymphoblastic leukemia. Exp Hematol 2015; 43:640-53. [DOI: 10.1016/j.exphem.2015.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 12/25/2022]
|
31
|
Effects of the I682F mutation on JAK2's activity, structure and stability. Int J Biol Macromol 2015; 79:118-25. [DOI: 10.1016/j.ijbiomac.2015.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
|
32
|
Roncero AM, López-Nieva P, Cobos-Fernández MA, Villa-Morales M, González-Sánchez L, López-Lorenzo JL, Llamas P, Ayuso C, Rodríguez-Pinilla SM, Arriba MC, Piris MA, Fernández-Navarro P, Fernández AF, Fraga MF, Santos J, Fernández-Piqueras J. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development. Leukemia 2015. [PMID: 26216197 PMCID: PMC4705429 DOI: 10.1038/leu.2015.202] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments.
Collapse
Affiliation(s)
- A M Roncero
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - P López-Nieva
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - M A Cobos-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - M Villa-Morales
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - L González-Sánchez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | - P Llamas
- IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - C Ayuso
- IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | - M C Arriba
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - M A Piris
- Hospital Universitario Marqués de Valdecilla, Fundación IFIMAV, Santander, Spain
| | - P Fernández-Navarro
- Unidad de Epidemiología Ambiental y Cáncer, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain.,Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IIS Puerta de Hierro, Majadahonda, Spain
| | - A F Fernández
- Unidad de Epigenética del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-CSIC), Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - M F Fraga
- Unidad de Epigenética del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-CSIC), Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB), Madrid, Spain
| | - J Santos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - J Fernández-Piqueras
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
33
|
Abstract
Major progress has been recently made in understanding the molecular pathogenesis of myeloproliferative neoplasms (MPN). Mutations in one of four genes-JAK2, MPL, CALR, and CSF3R-can be found in the vast majority of patients with MPN and represent driver mutations that can induce the MPN phenotype. Hyperactive JAK/STAT signaling appears to be the common denominator of MPN, even in patients with CALR mutations and the so-called "triple-negative" MPN, where the driver gene mutation is still unknown. Mutations in epigenetic regulators, transcription factors, and signaling components modify the course of the disease and can contribute to disease initiation and/or progression. The central role of JAK2 in MPN allowed development of small molecular inhibitors that are in clinical use and are active in almost all patients with MPN. Advances in understanding the mechanism of JAK2 activation open new perspectives of developing the next generation of inhibitors that will be selective for the mutated forms of JAK2.
Collapse
|
34
|
Ghazavi F, Clappier E, Lammens T, Suciu S, Caye A, Zegrari S, Bakkus M, Grardel N, Benoit Y, Bertrand Y, Minckes O, Costa V, Ferster A, Mazingue F, Plat G, Plouvier E, Poirée M, Uyttebroeck A, van der Werff-Ten Bosch J, Yakouben K, Helsmoortel H, Meul M, Van Roy N, Philippé J, Speleman F, Cavé H, Van Vlierberghe P, De Moerloose B. CD200/BTLA deletions in pediatric precursor B-cell acute lymphoblastic leukemia treated according to the EORTC-CLG 58951 protocol. Haematologica 2015; 100:1311-9. [PMID: 26137961 DOI: 10.3324/haematol.2015.126953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022] Open
Abstract
DNA copy number analysis has been instrumental for the identification of genetic alterations in B-cell precursor acute lymphoblastic leukemia. Notably, some of these genetic defects have been associated with poor treatment outcome and might be relevant for future risk stratification. In this study, we characterized recurrent deletions of CD200 and BTLA genes, mediated by recombination-activating genes, and used breakpoint-specific polymerase chain reaction assay to screen a cohort of 1154 cases of B-cell precursor acute lymphoblastic leukemia uniformly treated according to the EORTC-CLG 58951 protocol. CD200/BTLA deletions were identified in 56 of the patients (4.8%) and were associated with an inferior 8-year event free survival in this treatment protocol [70.2% ± 1.2% for patients with deletions versus 83.5% ± 6.4% for non-deleted cases (hazard ratio 2.02; 95% confidence interval 1.23-3.32; P=0.005)]. Genetically, CD200/BTLA deletions were strongly associated with ETV6-RUNX1-positive leukemias (P<0.0001), but were also identified in patients who did not have any genetic abnormality that is currently used for risk stratification. Within the latter population of patients, the presence of CD200/BTLA deletions was associated with inferior event-free survival and overall survival. Moreover, the multivariate Cox model indicated that these deletions had independent prognostic impact on event-free survival when adjusting for conventional risk criteria. All together, these findings further underscore the rationale for copy number profiling as an important tool for risk stratification in human B-cell precursor acute lymphoblastic leukemia. This trial was registered at www.ClinicalTrials.gov as #NCT00003728.
Collapse
Affiliation(s)
- Farzaneh Ghazavi
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium Center for Medical Genetics, Ghent University Hospital, Belgium
| | - Emmanuelle Clappier
- Department of Genetics, Robert Debré Hospital, APHP, Paris, France Hematology University Institute, University Paris-Diderot, Paris, France
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
| | | | - Aurélie Caye
- Department of Genetics, Robert Debré Hospital, APHP, Paris, France Hematology University Institute, University Paris-Diderot, Paris, France
| | - Samira Zegrari
- Department of Genetics, Robert Debré Hospital, APHP, Paris, France
| | - Marleen Bakkus
- Department of Hematology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Belgium
| | - Nathalie Grardel
- Centre de Biologie Pathologie PM Degand, INSERM U837, Lille, France
| | - Yves Benoit
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
| | - Yves Bertrand
- Institute of Hematology and Oncology Paediatrics, Hospices Civils de Lyon, France
| | | | - Vitor Costa
- Department of Pediatrics, Portuguese Oncology Institute, Porto, Portugal
| | - Alina Ferster
- Department of Hemato-Oncology, HUDERF, Brussels, Belgium
| | | | - Geneviève Plat
- Department of Hematology, Children's Hospital, Toulouse, France
| | | | - Marilyne Poirée
- Department of Pediatric Onco-Hematology, Archet University Hospital, Nice, France
| | - Anne Uyttebroeck
- Department of Pediatric Hematology-Oncology, University Hospitals Leuven, Belgium
| | | | - Karima Yakouben
- Department of Pediatric Hematology, Robert Debré Hospital, APHP, Paris, France
| | - Hetty Helsmoortel
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium Center for Medical Genetics, Ghent University Hospital, Belgium
| | - Magali Meul
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, Belgium
| | - Jan Philippé
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, Belgium
| | - Hélène Cavé
- Department of Genetics, Robert Debré Hospital, APHP, Paris, France Hematology University Institute, University Paris-Diderot, Paris, France
| | | | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
| |
Collapse
|
35
|
Asim A, Kumar A, Muthuswamy S, Jain S, Agarwal S. "Down syndrome: an insight of the disease". J Biomed Sci 2015; 22:41. [PMID: 26062604 PMCID: PMC4464633 DOI: 10.1186/s12929-015-0138-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 04/22/2015] [Indexed: 01/19/2023] Open
Abstract
Down syndrome (DS) is one of the commonest disorders with huge medical and social cost. DS is associated with number of phenotypes including congenital heart defects, leukemia, Alzeihmer's disease, Hirschsprung disease etc. DS individuals are affected by these phenotypes to a variable extent thus understanding the cause of this variation is a key challenge. In the present review article, we emphasize an overview of DS, DS-associated phenotypes diagnosis and management of the disease. The genes or miRNA involved in Down syndrome associated Alzheimer's disease, congenital heart defects (AVSD), leukemia including AMKL and ALL, hypertension and Hirschprung disease are discussed in this article. Moreover, we have also reviewed various prenatal diagnostic method from karyotyping to rapid molecular methods - MLPA, FISH, QF-PCR, PSQ, NGS and noninvasive prenatal diagnosis in detail.
Collapse
Affiliation(s)
- Ambreen Asim
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Ashok Kumar
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Srinivasan Muthuswamy
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Shalu Jain
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
36
|
Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch M, Song G, Easton J, Harvey RC, Wheeler DA, Ma J, Doddapaneni H, Vadodaria B, Wu G, Nagahawatte P, Carroll WL, Chen IM, Gastier-Foster JM, Relling MV, Smith MA, Devidas M, Auvil JMG, Downing JR, Loh ML, Willman CL, Gerhard DS, Mullighan CG, Hunger SP, Zhang J. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun 2015; 6:6604. [PMID: 25790293 PMCID: PMC4377644 DOI: 10.1038/ncomms7604] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/11/2015] [Indexed: 12/30/2022] Open
Abstract
There is incomplete understanding of genetic heterogeneity and clonal evolution during cancer progression. Here we use deep whole-exome sequencing to describe the clonal architecture and evolution of 20 pediatric B-acute lymphoblastic leukaemias from diagnosis to relapse. We show that clonal diversity is comparable at diagnosis and relapse and clonal survival from diagnosis to relapse is not associated with mutation burden. Six pathways were frequently mutated, with NT5C2, CREBBP, WHSC1, TP53, USH2A, NRAS and IKZF1 mutations enriched at relapse. Half of the leukaemias had multiple subclonal mutations in a pathway or gene at diagnosis, but mostly with only one, usually minor clone, surviving therapy to acquire additional mutations and become the relapse founder clone. Relapse-specific mutations in NT5C2 were found in nine cases, with mutations in four cases being in descendants of the relapse founder clone. These results provide important insights into the genetic basis of treatment failure in ALL and have implications for the early detection of mutations driving relapse.
Collapse
Affiliation(s)
- Xiaotu Ma
- Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Michael Edmonson
- Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Donald Yergeau
- Pediatric Cancer Genome Project Validation Lab, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Donna M. Muzny
- Cancer Genomics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Oliver A. Hampton
- Cancer Genomics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael Rusch
- Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Guangchun Song
- Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - John Easton
- Pediatric Cancer Genome Project Validation Lab, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Richard C. Harvey
- University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, USA
| | - David A. Wheeler
- Cancer Genomics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jing Ma
- Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - HarshaVardhan Doddapaneni
- Cancer Genomics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bhavin Vadodaria
- Pediatric Cancer Genome Project Validation Lab, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Gang Wu
- Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Panduka Nagahawatte
- Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - William L. Carroll
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - I-Ming Chen
- University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, USA
| | - Julie M. Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Departments of Pathology and Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Meenakshi Devidas
- Department of Biostatistics, Colleges of Medicine, Public Health & Health Professions, University of Florida, Gainesville, Florida 32607, USA
| | | | - James R. Downing
- Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Cheryl L. Willman
- University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, USA
| | - Daniela S. Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | - Stephen P. Hunger
- Division of Oncology and The Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Jinghui Zhang
- Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
37
|
Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 2015; 12:344-57. [PMID: 25781572 DOI: 10.1038/nrclinonc.2015.38] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer and an important cause of morbidity from haematological malignancies in adults. In the past several years, we have witnessed major advances in the understanding of the genetic basis of ALL. Genome-wide profiling studies, including microarray analysis and genome sequencing, have helped identify multiple key cellular pathways that are frequently mutated in ALL such as lymphoid development, tumour suppression, cytokine receptors, kinase and Ras signalling, and chromatin remodeling. These studies have characterized new subtypes of ALL, notably Philadelphia chromosome-like ALL, which is a high-risk subtype characterized by a diverse range of alterations that activate cytokine receptors or tyrosine kinases amenable to inhibition with approved tyrosine kinase inhibitors. Genomic profiling has also enabled the identification of inherited genetic variants of ALL that influence the risk of leukaemia development, and characterization of the relationship between genetic variants, clonal heterogeneity and the risk of relapse. Many of these findings are of direct clinical relevance and ongoing studies implementing clinical sequencing in leukaemia diagnosis and management have great potential to improve the outcome of patients with high-risk ALL.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN 38105, USA
| |
Collapse
|
38
|
Buchner M, Swaminathan S, Chen Z, Müschen M. Mechanisms of pre-B-cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia. Immunol Rev 2015; 263:192-209. [PMID: 25510278 DOI: 10.1111/imr.12235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pre-B cells within the bone marrow represent the normal counterpart for most acute lymphoblastic leukemia (ALL). During normal early B-cell development, survival and proliferation signals are dominated by cytokines, particularly interleukin-7 (IL-7) for murine developing B cells. With expression of a functional pre-B-cell receptor (BCR), cytokine signaling is attenuated and the tonic/autonomous pre-BCR signaling pathway provides proliferation as well as differentiation signals. In this review, we first describe checkpoint mechanisms during normal B-cell development and then discuss how genetic lesions in these pathways function as oncogenic mimicries and allow transformed pre-B cells to bypass checkpoint control. We focus on cytokine receptor signaling that is mimicked by activating lesions in receptor subunits or downstream mediators as well as aberrant activation of non-B lymphoid cytokine receptors. Furthermore, we describe the molecular switch from cytokine receptor to pre-BCR signaling, how this pathway is of particular importance for certain ALL subtypes, and how pre-BCR signaling is engaged by genetic lesions, such as BCR-ABL1. We discuss the transcriptional control mechanisms downstream of both cytokine- and pre-BCR signaling and how normal checkpoint control mechanisms are circumvented in pre-B ALL. Finally, we highlight new therapeutic concepts for targeted inhibition of oncogenic cytokine or pre-BCR signaling pathways.
Collapse
Affiliation(s)
- Maike Buchner
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
39
|
The role of Pax5 in leukemia: diagnosis and prognosis significance. Med Oncol 2014; 32:360. [PMID: 25428382 DOI: 10.1007/s12032-014-0360-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022]
Abstract
Pax5 transcription factor, also known as B-cell specific activator protein (BSAP), plays a dual role in the hematopoietic system. Pax5 expression is essential in B-cell precursors for normal differentiation and maturation of B-cells. On the other hand, it inhibits the differentiation and progress toward other lineages. The expression of this factor is involved in several aspects of B-cell differentiation, including commitment, immunoglobulin gene rearrangement, BCR signal transduction and B-cell survival, so that the deletion or inactivating mutations of Pax5 cause cell arrest in Pro-B-cell stage. In recent years, point mutations, deletions and various rearrangements in Pax5 gene have been reported in several types of human cancers. However, no clear relationship has been found between these aberrations and disease prognosis. Specific expression of Pax5 in B-cells can raise it as a marker for the diagnosis and differentiation of B-cell leukemias and lymphomas as well as account for remission or relapse. Extensive studies on Pax5 along with other genes and immunomarkers are necessary for decisive results in this regard.
Collapse
|
40
|
Abstract
The acquisition of growth signal self-sufficiency is 1 of the hallmarks of cancer. We previously reported that the murine interleukin-9-dependent TS1 cell line gives rise to growth factor-independent clones with constitutive activation of the Janus kinase (JAK)- signal transducer and activator of transcription (STAT) pathway. Here, we show that this transforming event results from activating mutations either in JAK1, JAK3, or in both kinases. Transient and stable expression of JAK1 and/or JAK3 mutants showed that each mutant induces STAT activation and that their coexpression further increases this activation. The proliferation of growth factor-independent TS1 clones can be efficiently blocked by JAK inhibitors such as ruxolitinib or CMP6 in short-term assays. However, resistant clones occur upon long-term culture in the presence of inhibitors. Surprisingly, resistance to CMP6 was not caused by the acquisition of secondary mutations in the adenosine triphosphate-binding pocket of the JAK mutant. Indeed, cells that originally showed a JAK1-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK3, whereas cells that originally showed a JAK3-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK1. These observations underline the cooperation between JAK1 and JAK3 mutants in T-cell transformation and represent a new mechanism of acquisition of resistance against JAK inhibitors.
Collapse
|
41
|
Frequent cases of RAS-mutated Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations. Nat Commun 2014; 5:4654. [PMID: 25105841 DOI: 10.1038/ncomms5654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) and acute lymphoblastic leukaemia (ALL) have poorer survival and more relapses than non-DS children with ALL, highlighting an urgent need for deeper mechanistic understanding of DS-ALL. Here, using full-exome or cancer genes-targeted sequencing of 42 ALL samples from 39 DS patients, we uncover driver mutations in RAS, (KRAS and NRAS) recurring to a similar extent (15/42) as JAK2 (12/42) mutations or P2RY8-CRLF2 fusions (14/42). RAS mutations are almost completely mutually exclusive with JAK2 mutations (P=0.016), driving a combined total of two-thirds of analysed cases. Clonal architecture analysis reveals that both RAS and JAK2 drove sub-clonal expansions primarily initiated by CRLF2 rearrangements, and/or mutations in chromatin remodellers and lymphocyte differentiation factors. Remarkably, in 2/3 relapsed cases, there is a switch from a primary JAK2- or PTPN11-mutated sub-clone to a RAS-mutated sub-clone in relapse. These results provide important new insights informing the patient stratification strategies for targeted therapeutic approaches for DS-ALL.
Collapse
|
42
|
Hanada I, Terui K, Ikeda F, Toki T, Kanezaki R, Sato T, Kamio T, Kudo K, Sasaki S, Takahashi Y, Hayashi Y, Inukai T, Kojima S, Koike K, Kosaka Y, Kobayashi M, Imaizumi M, Mitsui T, Hori H, Hara J, Horibe K, Nagai JI, Goto H, Ito E. Gene alterations involving the CRLF2-JAK pathway and recurrent gene deletions in Down syndrome-associated acute lymphoblastic leukemia in Japan. Genes Chromosomes Cancer 2014; 53:902-10. [PMID: 25044358 DOI: 10.1002/gcc.22201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/15/2014] [Accepted: 06/15/2014] [Indexed: 01/15/2023] Open
Abstract
In Western countries, gene alterations involving the CRLF2-JAK signaling pathway are identified in approximately 50-60% of patients with Down syndrome-associated acute lymphoblastic leukemia (DS-ALL), and this pathway is considered a potential therapeutic target. The frequency of BTG1 deletions in DS-ALL is controversial. IKZF1 deletions, found in 20-30% of DS-ALL patients, are associated with a poor outcome and EBF1 deletions are very rare (∼2%). We analyzed 38 patients to determine the frequencies and clinical implications of CRLF2-JAK pathway genetic alterations and recurrent gene deletions in Japanese DS-ALL patients. We confirmed a high incidence of P2RY8-CRLF2 (29%) and JAK2 mutations (16%), though the frequency of P2RY8-CRLF2 was slightly lower than that in Western countries (∼50%). BTG1 deletions were common in our cohort (25%). IKZF1 deletions were detected in 25% of patients and associated with shorter overall survival (OS). EBF1 deletions were found at an unexpectedly high frequency (16%), and at a significantly higher level in P2RY8-CRLF2-positive patients than in P2RY8-CRLF2-negative patients (44% vs. 4%, P=0.015). Deletions of CDKN2A/B and PAX5 were common in P2RY8-CRLF2-negative patients (48 and 39%, respectively) but not in P2RY8-CRLF2-positive patients (11% each). Associations between these genetic alterations and clinical characteristics were not observed except for inferior OS in patients with IKZF1 deletions. These results suggest that differences exist between the genetic profiles of DS-ALL patients in Japan and in Western countries, and that P2RY8-CRLF2 and EBF1 deletions may cooperate in leukemogenesis in a subset of Japanese DS-ALL patients.
Collapse
Affiliation(s)
- Isamu Hanada
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc Natl Acad Sci U S A 2014; 111:8025-30. [PMID: 24843152 DOI: 10.1073/pnas.1401180111] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase-kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and "exon 12" JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.
Collapse
|
44
|
Lundin C, Forestier E, Klarskov Andersen M, Autio K, Barbany G, Cavelier L, Golovleva I, Heim S, Heinonen K, Hovland R, Johannsson JH, Kjeldsen E, Nordgren A, Palmqvist L, Johansson B. Clinical and genetic features of pediatric acute lymphoblastic leukemia in Down syndrome in the Nordic countries. J Hematol Oncol 2014; 7:32. [PMID: 24726034 PMCID: PMC4022076 DOI: 10.1186/1756-8722-7-32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/08/2014] [Indexed: 11/23/2022] Open
Abstract
Background Children with Down syndrome (DS) have an increased risk for acute lymphoblastic leukemia (ALL). Although previous studies have shown that DS-ALL differs clinically and genetically from non-DS-ALL, much remains to be elucidated as regards genetic and prognostic factors in DS-ALL. Methods To address clinical and genetic differences between DS-ALL and non-DS-ALL and to identify prognostic factors in DS-ALL, we ascertained and reviewed all 128 pediatric DS-ALL diagnosed in the Nordic countries between 1981 and 2010. Their clinical and genetic features were compared with those of the 4,647 B-cell precursor (BCP) ALL cases diagnosed during the same time period. Results All 128 DS-ALL were BCP ALL, comprising 2.7% of all such cases. The 5-year event-free survival (EFS) and overall survival (OS) were significantly (P = 0.026 and P = 0.003, respectively) worse for DS-ALL patients with white blood cell counts ≥50 × 109/l. The age distributions varied between the DS and non-DS cases, with age peaks at 2 and 3 years, respectively; none of the DS patients had infant ALL (P = 0.029). The platelet counts were lower in the DS-ALL group (P = 0.005). Abnormal karyotypes were more common in non-DS-ALL (P < 0.0001), and there was a significant difference in the modal number distribution, with only 2% high hyperdiploid DS-ALL cases (P < 0.0001). The 5-year EFS and 5-year OS were significantly worse for DS-ALL (0.574 and 0.691, respectively) compared with non-DS-ALL (0.783 and 0.894, respectively) in the NOPHO ALL-1992/2000 protocols (P < 0.001). Conclusions The present study adds further support for genetic and clinical differences between DS-ALL and non-DS-ALL.
Collapse
Affiliation(s)
- Catarina Lundin
- Department of Clinical Genetics, University and Regional Laboratories Region Skåne, SE-221 85 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Varghese LN, Ungureanu D, Liau NPD, Young SN, Laktyushin A, Hammaren H, Lucet IS, Nicola NA, Silvennoinen O, Babon JJ, Murphy JM. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Biochem J 2014; 458:395-405. [PMID: 24354892 PMCID: PMC4085142 DOI: 10.1042/bj20131516] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
JAK2 (Janus kinase 2) initiates the intracellular signalling cascade downstream of cell surface receptor activation by cognate haemopoietic cytokines, including erythropoietin and thrombopoietin. The pseudokinase domain (JH2) of JAK2 negatively regulates the catalytic activity of the adjacent tyrosine kinase domain (JH1) and mutations within the pseudokinase domain underlie human myeloproliferative neoplasms, including polycythaemia vera and essential thrombocytosis. To date, the mechanism of JH2-mediated inhibition of JH1 kinase activation as well as the susceptibility of pathological mutant JAK2 to inhibition by the physiological negative regulator SOCS3 (suppressor of cytokine signalling 3) have remained unclear. In the present study, using recombinant purified JAK2JH1-JH2 proteins, we demonstrate that, when activated, wild-type and myeloproliferative neoplasm-associated mutants of JAK2 exhibit comparable enzymatic activity and inhibition by SOCS3 in in vitro kinase assays. SAXS (small-angle X-ray scattering) showed that JAK2JH1-JH2 exists in an elongated configuration in solution with no evidence for interaction between JH1 and JH2 domains in cis. Collectively, these data are consistent with a model in which JAK2's pseudokinase domain does not influence the activity of JAK2 once it has been activated. Our data indicate that, in the absence of the N-terminal FERM domain and thus cytokine receptor association, the wild-type and pathological mutants of JAK2 are enzymatically equivalent and equally susceptible to inhibition by SOCS3.
Collapse
Affiliation(s)
- Leila N. Varghese
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Daniela Ungureanu
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Nicholas P. D. Liau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Samuel N. Young
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Artem Laktyushin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Henrik Hammaren
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Isabelle S. Lucet
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nicos A. Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Olli Silvennoinen
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere 33014, Finland
| | - Jeffrey J. Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
46
|
Izraeli S, Shochat C, Tal N, Geron I. Towards precision medicine in childhood leukemia--insights from mutationally activated cytokine receptor pathways in acute lymphoblastic leukemia. Cancer Lett 2014; 352:15-20. [PMID: 24569093 DOI: 10.1016/j.canlet.2014.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 01/30/2023]
Abstract
The successful therapy of childhood leukemia has been characterized by careful personalized adaptation of therapy by risk stratification. Yet almost all drugs are relatively non-specific. To achieve greater precision in therapy, druggable targets and specific targeting drugs are necessary. Here we review the recent discoveries of cytokine receptors and their signaling components in high risk leukemias and the potential approaches to target them.
Collapse
Affiliation(s)
- Shai Izraeli
- Childhood Leukemia Research Section, Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| | - Chen Shochat
- Childhood Leukemia Research Section, Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel; Migal Galilee Technology Center, Kiryat Shmona, Israel; Tel Hai College, Upper Galilee 12210, Israel
| | - Noa Tal
- Childhood Leukemia Research Section, Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Ifat Geron
- Childhood Leukemia Research Section, Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel; Division of Biological Sciences and Department of Medicine Stem Cell Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
47
|
Mughal TI, Girnius S, Rosen ST, Kumar S, Wiestner A, Abdel-Wahab O, Kiladjian JJ, Wilson WH, Van Etten RA. Emerging therapeutic paradigms to target the dysregulated Janus kinase/signal transducer and activator of transcription pathway in hematological malignancies. Leuk Lymphoma 2014; 55:1968-79. [PMID: 24206094 DOI: 10.3109/10428194.2013.863307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past decade, there has been increasing biochemical evidence that the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is aberrantly activated in malignant cells from patients with a wide spectrum of cancers of the blood and immune systems. The emerging availability of small molecule inhibitors of JAK and other signaling molecules in the JAK/STAT pathway has allowed preclinical studies validating an important role of this pathway in the pathogenesis of many hematologic malignancies, and provided motivation for new strategies for treatment of these diseases. Here, a round-table panel of experts review the current preclinical and clinical landscape of the JAK/STAT pathway in acute lymphoid and myeloid leukemias, lymphomas and myeloma, and chronic myeloid neoplasms.
Collapse
|
48
|
August KJ, Narendran A, Neville KA. Pediatric relapsed or refractory leukemia: new pharmacotherapeutic developments and future directions. Drugs 2014; 73:439-61. [PMID: 23568274 DOI: 10.1007/s40265-013-0026-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 50 years, numerous advances in treatment have produced dramatic increases in the cure rates of pediatric leukemias. Despite this progress, the majority of children with relapsed leukemia are not expected to survive. With current chemotherapy regimens, approximately 15 % of children with acute lymphoblastic leukemia and 45 % of children with acute myeloid leukemia will have refractory disease or experience a relapse. Advances in the treatment of pediatric relapsed leukemia have not mirrored the successes of upfront therapy, and newer treatments are desperately needed in order to improve survival in these challenging patients. Recent improvements in our knowledge of cancer biology have revealed an extensive number of targets that have the potential to be exploited for anticancer therapy. These advances have led to the development of a number of new treatments that are now being explored in children with relapsed or refractory leukemia. Novel agents seek to exploit the same molecular aberrations that contribute to leukemia development and resistance to therapy. Newer classes of drugs, including monoclonal antibodies, tyrosine kinase inhibitors and epigenetic modifiers are transforming the treatment of patients who are not cured with conventional therapies. As the side effects of many new agents are distinct from those seen with conventional chemotherapy, these treatments are often explored in combination with each other or combined with conventional treatment regimens. This review discusses the biological rationale for the most promising new agents and the results of recent studies conducted in pediatric patients with relapsed leukemia.
Collapse
Affiliation(s)
- Keith J August
- Children's Mercy Hospitals and Clinics, 2401 Gillham Road, Kansas City, MO, USA.
| | | | | |
Collapse
|
49
|
Xavier AC, Ge Y, Taub J. Unique clinical and biological features of leukemia in Down syndrome children. Expert Rev Hematol 2014; 3:175-86. [DOI: 10.1586/ehm.10.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Acute lymphoblastic leukemia (ALL). Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|