1
|
Ahmed B, Aliyu M, Getso MI, Bala JA, Ahmed RJ, Kabuga AI, Adamu AMY, Yusuf AA. Exploring the impact of interferon-gamma single nucleotide polymorphisms on HTLV-1 infection: Unraveling genetic influences in viral pathogenesis. Crit Rev Oncol Hematol 2025; 207:104614. [PMID: 39798937 DOI: 10.1016/j.critrevonc.2025.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025] Open
Abstract
Human T-lymphotropic virus-1 (HTLV-1) induces neoplastic adult T-cell leukemia/lymphoma (ATLL) and neurological HTLV-1 associated myelopathy (HAM) in approximately 3 %-5 % of infected individuals. The precise factors that facilitate disease manifestation are still unknown; interaction between the virus and the host's immune response is key. Cytokines regulates physiological activities and their dysregulation may initiate the pathogenesis of various malignant and infectious diseases. Genetic variations, particularly polymorphisms in gene regulatory regions, lead to varying cytokine production patterns. Interferon-gamma (IFN-γ), a key cytokine in HTLV-1 infection, is a signature cytokine for T-helper 1 (Th1) cells that interferes with viral replication and enhances innate and adaptive immune responses during viral infections. The IFNG gene possesses several single nucleotide polymorphisms (SNPs), among which the + 874 A/T SNP has been widely studied for its functional role in HTLV-1 infection. The purpose of this review was to provide insight into the impact of IFNG SNPs on HTLV-1 Infection.
Collapse
Affiliation(s)
- Bilkisu Ahmed
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - Mansur Aliyu
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria.
| | - Muhammad Ibrahim Getso
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - Jamilu Abubakar Bala
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria; Centre for Infectious Diseases Research, Bayero University Kano, P.M.B 3011, Kano, Nigeria
| | - Ramat Jummai Ahmed
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University Zaria, P.M.B 1044, Zaria, Kaduna State, Nigeria
| | - Auwal Idris Kabuga
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - Al-Muktar Yahuza Adamu
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - Aminu Abba Yusuf
- Department of Haematology, Bayero University Kano and Aminu Kano Teaching Hospital, Kano, Nigeria
| |
Collapse
|
2
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Chen Y, Fang H, Sun H, Wu X, Xu Y, Zhou BBS, Li H. Up-regulation of ABCG1 is associated with methotrexate resistance in acute lymphoblastic leukemia cells. Front Pharmacol 2024; 14:1331687. [PMID: 38259297 PMCID: PMC10800869 DOI: 10.3389/fphar.2023.1331687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a prevalent hematologic malignancy in children, and methotrexate (MTX) is a widely employed curative treatment. Despite its common use, clinical resistance to MTX is frequently encountered. In this study, an MTX-resistant cell line (Reh-MTXR) was established through a stepwise selection process from the ALL cell line Reh. Comparative analysis revealed that Reh-MTXR cells exhibited resistance to MTX in contrast to the parental Reh cells. RNA-seq analysis identified an upregulation of ATP-binding cassette transporter G1 (ABCG1) in Reh-MTXR cells. Knockdown of ABCG1 in Reh-MTXR cells reversed the MTX-resistant phenotype, while overexpression of ABCG1 in Reh cells conferred resistance to MTX. Mechanistically, the heightened expression of ABCG1 accelerated MTX efflux, leading to a reduced accumulation of MTX polyglutamated metabolites. Notably, the ABCG1 inhibitor benzamil effectively sensitized Reh-MTXR cells to MTX treatment. Moreover, the observed upregulation of ABCG1 in Reh-MTXR cells was not induced by alterations in DNA methylation or histone acetylation. This study provides insight into the mechanistic basis of MTX resistance in ALL and also suggests a potential therapeutic approach for MTX-resistant ALL in the future.
Collapse
Affiliation(s)
- Yao Chen
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshun Fang
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xu
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin-Bing S. Zhou
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fujian Children’s Hospital, Fujian Branch of Shanghai Children’s Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Shanghai Collaborative Innovation Center for Translational Medicine Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Pediatric Translational Medicine Institute, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fujian Children’s Hospital, Fujian Branch of Shanghai Children’s Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou, China
| |
Collapse
|
4
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Mailloux J, Medwid S, Facey A, Sung I, Russell LE, Tirona RG, Kim RB, Schwarz UI. In-vitro characterization of coding variants with predicted functional implications in the efflux transporter multidrug resistance protein 4 (MRP4, ABCC4). Pharmacogenet Genomics 2022; 32:111-116. [PMID: 34693929 DOI: 10.1097/fpc.0000000000000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MRP4 (gene ABCC4) is a polymorphic efflux transporter that has been implicated in drug-induced toxicity. We selected ten commonly observed MRP4 coding variants among Europeans for experimental characterization including nine variants predicted to be deleterious or functional (combined annotation-dependent depletion score >15). We assessed protein localization and activity by quantifying intracellular accumulation of two prototypic substrates, taurocholic acid (TCA) and estradiol 17-β-glucuronide (E217βG), in HEK293T over-expressing MRP4 wildtype or variant where cellular substrate loading was optimized through co-transfection with an uptake transporter. V458M, a novel variant not previously studied, and T1142M, showed reduced activity compared to MRP4 wildtype for E217βG and TCA (P < 0.01), while L18I, G187W, K293E, and R531Q moderately increased activity in a substrate-dependent manner. Protein expression analysis indicated reduced cell surface expression for V458M (P < 0.01) but not T1142M compared to wildtype. Reduced activity may result from altered surface expression (V458M) or intrinsic activity as both variants map within the nucleotide-binding domains of MRP4. G187W showed a trend for reduced surface expression (P = 0.054) despite transport comparable or increased to wildtype suggesting enhanced intrinsic activity. Our findings suggest moderately altered MRP4 activity in six out of nine predicted functional variants with likely different mechanisms and substrate-specific effects. Cell-based studies using multiple known substrates are warranted to more accurately predict functional variants in this clinically important transporter.
Collapse
Affiliation(s)
- Jaymie Mailloux
- Department of Physiology and Pharmacology
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| | - Samantha Medwid
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| | | | - Inmo Sung
- Department of Physiology and Pharmacology
| | | | - Rommel G Tirona
- Department of Physiology and Pharmacology
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| | - Richard B Kim
- Department of Physiology and Pharmacology
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Physiology and Pharmacology
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Pai AA, Mohan A, Benjamin ESB, Illangeswaran RSS, Xavier Raj I, Janet NB, Arunachalam AK, Kavitha ML, Kulkarni U, Devasia AJ, Fouzia NA, Abraham A, Srivastava A, George B, Mathews V, Korula A, Balasubramanian P. NUDT15 c.415C>T Polymorphism Predicts 6-MP Induced Early Myelotoxicity in Patients with Acute Lymphoblastic Leukemia Undergoing Maintenance Therapy. Pharmgenomics Pers Med 2021; 14:1303-1313. [PMID: 34629890 PMCID: PMC8495143 DOI: 10.2147/pgpm.s325813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Severe myelosuppression in patients with acute lymphoblastic leukemia (ALL) undergoing 6-MP-based maintenance therapy is attributed to TPMT gene polymorphisms, which is rare in Asian populations. This study aims to evaluate the role of selected polymorphisms in NUDT15, ITPA, and MRP4 genes in addition to TPMT in predicting 6-MP intolerance during ALL maintenance therapy. PATIENTS AND METHODS We screened for the presence of NUDT15*3 (c.415 C>T, rs116855232); MRP4 c.2269 C>T (rs3765534), ITPA c.94 C>A (rs1127354) polymorphisms in addition to TPMT *2 (rs1800462), *3A (*3B and *3C; rs1800460 and rs1142345) in ALL patients with documented severe neutropenia (cohort-1; n=42). These polymorphisms were then screened in a prospective cohort of ALL patients (cohort-2; n=133) and compared with 6-MP dose reduction, early/late myelotoxicity. RESULTS Nineteen (45%) patients in cohort-1 and 18 (14%) in cohort-2 had NUDT15 c.415 C>T variant while 4 (3%) patients in cohort-2 had TPMT*3C variant. Five (12%) in cohort-1 and 30 (24%) in cohort-2 had ITPA c.94 C>A variant while 9 (22%) and 15 (12%) had MRP4 c.2269 C>T variant in cohorts-1 and 2, respectively. All in cohort-1 and 36 (27%) in cohort-2 had severe myelotoxicity. Twenty-eight patients (66.6%) in cohort-1 and 40 (30%) patients in cohort-2 had significant 6-MP dose reduction. NUDT15 c.415 C>T variant explained severe myelotoxicity in 63% and 33% in cohort 1 and 2. TPMT*3C and ITPA c.94 C>A variants also explained myelotoxicity in cohort-2 (Median ANC: 376 vs 1014 mm3; p=0.04 and 776 vs 1023 mm3; p=0.04 respectively). NUDT15 c.415 C>T polymorphism explained significant myelotoxicity (507 vs 1298 mm3; p<0.0001) in the multivariate analysis as well (β=-0.314, p<0.0001). CONCLUSION NUDT15 c.415 C>T (15*3), TPMT*3C, as well as ITPA c.94 C>A and MRP4 c.2269 C>T polymorphisms explain hematotoxicities. Preemptive genotype-based (NUDT15*3, TPMT, ITPA c.94 C>A) 6-MP dosing could improve the outcome after maintenance therapy.
Collapse
Affiliation(s)
- Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Ajith Mohan
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | | | | | - Infencia Xavier Raj
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | | | - M L Kavitha
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Uday Kulkarni
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Anup J Devasia
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - N A Fouzia
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, India
| | | |
Collapse
|
7
|
Taylor ZL, Vang J, Lopez-Lopez E, Oosterom N, Mikkelsen T, Ramsey LB. Systematic Review of Pharmacogenetic Factors That Influence High-Dose Methotrexate Pharmacokinetics in Pediatric Malignancies. Cancers (Basel) 2021; 13:cancers13112837. [PMID: 34200242 PMCID: PMC8201112 DOI: 10.3390/cancers13112837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Methotrexate (MTX) is a mainstay therapeutic agent administered at high doses for the treatment of pediatric and adult malignancies, such as acute lymphoblastic leukemia, osteosarcoma, and lymphoma. Despite the vast evidence for clinical efficacy, high-dose MTX displays significant inter-individual pharmacokinetic variability. Delayed MTX clearance can lead to prolonged, elevated exposure, causing increased risks for nephrotoxicity, mucositis, seizures, and neutropenia. Numerous pharmacogenetic studies have investigated the effects of several genes and polymorphisms on MTX clearance in an attempt to better understand the pharmacokinetic variability and improve patient outcomes. To date, several genes and polymorphisms that affect MTX clearance have been identified. However, evidence for select genes have conflicting results or lack the necessary replication and validation needed to confirm their effects on MTX clearance. Therefore, we performed a systematic review to identify and then summarize the pharmacogenetic factors that influence high-dose MTX pharmacokinetics in pediatric malignancies. Using the PRISMA guidelines, we analyzed 58 articles and 24 different genes that were associated with transporter pharmacology or the folate transport pathway. We conclude that there is only one gene that reliably demonstrates an effect on MTX pharmacokinetics: SLCO1B1.
Collapse
Affiliation(s)
- Zachary L. Taylor
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA;
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jesper Vang
- Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
- Paediatric Oncology Research Laboratory, University Hospital of Copenhagen, Rigshospitalet Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain;
- Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Natanja Oosterom
- Princess Máxima Center for Pediatric Oncology, 3720 Utrecht, The Netherlands;
| | - Torben Mikkelsen
- Department of Pediatric Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Laura B. Ramsey
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-803-8963
| |
Collapse
|
8
|
Zhang H, Liu APY, Devidas M, Lee S, Cao X, Pei D, Borowitz M, Wood B, Gastier-Foster JM, Dai Y, Raetz E, Larsen E, Winick N, Bowman WP, Karol S, Yang W, Martin PL, Carroll WL, Pui CH, Mullighan CG, Evans WE, Cheng C, Hunger SP, Relling MV, Loh ML, Yang JJ. Association of GATA3 Polymorphisms With Minimal Residual Disease and Relapse Risk in Childhood Acute Lymphoblastic Leukemia. J Natl Cancer Inst 2021; 113:408-417. [PMID: 32894760 PMCID: PMC8680540 DOI: 10.1093/jnci/djaa138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Minimal residual disease (MRD) after induction therapy is one of the strongest prognostic factors in childhood acute lymphoblastic leukemia (ALL), and MRD-directed treatment intensification improves survival. Little is known about the effects of inherited genetic variants on interpatient variability in MRD. METHODS A genome-wide association study was performed on 2597 children on the Children's Oncology Group AALL0232 trial for high-risk B-cell ALL. Association between genotype and end-of-induction MRD levels was evaluated for 863 370 single nucleotide polymorphisms (SNPs), adjusting for genetic ancestry and treatment strata. Top variants were further evaluated in a validation cohort of 491 patients from the Children's Oncology Group P9905 and 6 ALL trials. The independent prognostic value of single nucleotide polymorphisms was determined in multivariable analyses. All statistical tests were 2-sided. RESULTS In the discovery genome-wide association study, we identified a genome-wide significant association at the GATA3 locus (rs3824662, odds ratio [OR] = 1.58, 95% confidence interval [CI] = 1.35 to 1.84; P = 1.15 × 10-8 as a dichotomous variable). This association was replicated in the validation cohort (P = .003, MRD as a dichotomous variable). The rs3824662 risk allele independently predicted ALL relapse after adjusting for age, white blood cell count, and leukemia DNA index (P = .04 and .007 in the discovery and validation cohort, respectively) and remained prognostic when the analyses were restricted to MRD-negative patients (P = .04 and .03 for the discovery and validation cohorts, respectively). CONCLUSION Inherited GATA3 variant rs3824662 strongly influences ALL response to remission induction therapy and is associated with relapse. This work highlights the potential utility of germline variants in upfront risk stratification in ALL.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, St Jude
Children’s Research Hospital, Memphis, TN, USA
- Department of Hematology & Oncology,
Guangzhou Women and Children’s Medical Center, Guangzhou,
China
| | - Anthony Pak-Yin Liu
- Department of Oncology, St Jude Children’s
Research Hospital, Memphis, TN, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude
Children’s Research Hospital, Memphis, TN, USA
- Department of Biostatistics, University of
Florida, Gainesville, FL, USA
| | - Shawn HR Lee
- Department of Pharmaceutical Sciences, St Jude
Children’s Research Hospital, Memphis, TN, USA
- Division of Paediatric Hematology-Oncology, Khoo
Teck Puat-National University Children’s Medical Institute, National
University Health System, Singapore
| | - Xueyuan Cao
- Preventive Medicine, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St Jude
Children’s Research Hospital, Memphis, TN, USA
| | - Michael Borowitz
- Division of Hematologic Pathology, Department of
Pathology, Johns Hopkins Medical Institute, Baltimore, MD,
USA
| | - Brent Wood
- Department of Laboratory Medicine, University of
Washington, Seattle, WA, USA
| | | | - Yunfeng Dai
- Department of Biostatistics, University of
Florida, Gainesville, FL, USA
| | - Elizabeth Raetz
- Division of Pediatric Hematology/Oncology,
Department of Pediatrics, Stephen D. Hassenfeld Children’s Center for
Cancer & Blood Disorders, New York, NY, USA
| | - Eric Larsen
- Maine Children’s Cancer
Program, Scarborough, ME, USA
| | - Naomi Winick
- Department of Pediatrics, University of Texas
Southwestern Medical Center, Dallas, TX, USA
| | - W Paul Bowman
- Department of Pediatrics, Cook Children’s
Medical Center, Fort Worth, TX, USA
| | - Seth Karol
- Department of Oncology, St Jude Children’s
Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St Jude
Children’s Research Hospital, Memphis, TN, USA
| | - Paul L Martin
- Department of Pediatrics, Duke
University, Durham, NC, USA
| | - William L Carroll
- Division of Pediatric Hematology/Oncology,
Department of Pediatrics, Stephen D. Hassenfeld Children’s Center for
Cancer & Blood Disorders, New York, NY, USA
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children’s
Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St Jude Children’s
Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmaceutical Sciences, St Jude
Children’s Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St Jude
Children’s Research Hospital, Memphis, TN, USA
| | - Stephen P Hunger
- Division of Oncology and the Center for Childhood
Cancer Research, Department of Pediatrics, Children’s Hospital of
Philadelphia and the Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, PA, USA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St Jude
Children’s Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Division of Hematology Oncology, Department of
Pediatrics, Benioff Children’s Hospital and University of
California, San Francisco, San Francisco, CA, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St Jude
Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
9
|
Wang J, Xiong Y. HSH2D contributes to methotrexate resistance in human T‑cell acute lymphoblastic leukaemia. Oncol Rep 2020; 44:2121-2129. [PMID: 33000278 PMCID: PMC7551555 DOI: 10.3892/or.2020.7772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is a malignant proliferative disease that originates from B-lineage or T-lineage lymphoid progenitor cells. Resistance to chemotherapy remains an important factor for treatment failure. The aim of the present study was to investigate drug resistance in T-cell ALL (T-ALL). Bioinformatics analysis of Oncomine and Gene Expression Omnibus data was performed to evaluate the expression of haematopoietic SH2 domain containing (HSH2D) in various lymphomas. HuT-78 cells with HSH2D overexpression and or knockdown were constructed, and the effect on related downstream signalling molecules was detected. To study the effect of HSH2D on methotrexate (MTX) resistance, cell cycle and apoptosis analyses were conducted using flow cytometry, and MTT and EdU assays were used to detect the effect of MTX resistance and HSH2D gene expression on the biological function of HuT-78 cells. Via the analysis of the data sets, it was identified that the expression of HSH2D was downregulated in T-ALL compared with B-cell ALL. Western blotting and reverse transcription-quantitative PCR demonstrated that the overexpression of HSH2 resulted in the inhibition of CD28-mediated IL-2 activation. In related experiments with drug-resistant cell lines, it was determined that HSH2D expression is necessary for HuT-78 cells to be resistant to MTX. In conclusion, the results suggested that HSH2D serves an important role in the resistance of T-ALL to MTX, which provides a potential research target for the study of drug resistance of T-ALL.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yiying Xiong
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
10
|
Lack of the multidrug transporter MRP4/ABCC4 defines the PEL-negative blood group and impairs platelet aggregation. Blood 2020; 135:441-448. [PMID: 31826245 DOI: 10.1182/blood.2019002320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3',5'-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.
Collapse
|
11
|
Aberuyi N, Rahgozar S, Ghodousi ES, Ghaedi K. Drug Resistance Biomarkers and Their Clinical Applications in Childhood Acute Lymphoblastic Leukemia. Front Oncol 2020; 9:1496. [PMID: 32010613 PMCID: PMC6978753 DOI: 10.3389/fonc.2019.01496] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Biomarkers are biological molecules found in body fluids or tissues, which can be considered as indications of a normal or abnormal process, or of a condition or disease. There are various types of biomarkers based on their application and molecular alterations. Treatment-sensitivity or drug resistance biomarkers include prognostic and predictive molecules with utmost importance in selecting appropriate treatment protocols and improving survival rates. Acute lymphoblastic leukemia (ALL) is the most prevalent hematological malignancy diagnosed in children with nearly 80% cure rate. Despite the favorable survival rates of childhood ALL (chALL), resistance to chemotherapeutic agents and, as a consequence, a dismal prognosis develops in a significant number of patients. Therefore, there are urgent needs to have robust, sensitive, and disease-specific molecular prognostic and predictive biomarkers, which could allow better risk classification and then better clinical results. In this article, we review the currently known drug resistance biomarkers, including somatic or germ line nucleic acids, epigenetic alterations, protein expressions and metabolic variations. Moreover, biomarkers with potential clinical applications are discussed.
Collapse
Affiliation(s)
- Narges Aberuyi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Elaheh Sadat Ghodousi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
12
|
Polymorphisms of genes encoding drug transporters or cytochrome P450 enzymes and association with clinical response in cancer patients: a systematic review. Cancer Chemother Pharmacol 2019; 84:959-975. [DOI: 10.1007/s00280-019-03932-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
13
|
Chen JJ, Xiao ZJ, Meng X, Wang Y, Yu MK, Huang WQ, Sun X, Chen H, Duan YG, Jiang X, Wong MP, Chan HC, Zou F, Ruan YC. MRP4 sustains Wnt/β-catenin signaling for pregnancy, endometriosis and endometrial cancer. Am J Cancer Res 2019; 9:5049-5064. [PMID: 31410201 PMCID: PMC6691374 DOI: 10.7150/thno.32097] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Abnormal Wnt/β-catenin signaling in the endometrium can lead to both embryo implantation failure and severe pathogenic changes of the endometrium such as endometrial cancer and endometriosis. However, how Wnt/β-catenin signaling is regulated in the endometrium remains elusive. We explored possible regulation of Wnt/β-catenin signaling by multi-drug resistance protein 4 (MRP4), a potential target in cancer chemotherapy, and investigated the mechanism. Methods: Knockdown of MRP4 was performed in human endometrial cells in vitro or in a mouse embryo-implantation model in vivo. Immunoprecipitation, immunoblotting and immunofluorescence were used to assess protein interaction and stability. Wnt/β-catenin signaling was assessed by TOPflash reporter assay and quantitative PCR array. Normal and endometriotic human endometrial tissues were examined. Data from human microarray or RNAseq databases of more than 100 participants with endometriosis, endometrial cancer or IVF were analyzed. In vitro and in vivo tumorigenesis was performed. Results: MRP4-knockdown, but not its transporter-function-inhibition, accelerates β-catenin degradation in human endometrial cells. MRP4 and β-catenin are co-localized and co-immunoprecipitated in mouse and human endometrium. MRP4-knockdown in mouse uterus reduces β-catenin levels, downregulates a series of Wnt/β-catenin target genes and impairs embryo implantation, which are all reversed by blocking β-catenin degradation. Analysis of human endometrial biopsy samples and available databases reveals significant and positive correlations of MRP4 with β-catenin and Wnt/β-catenin target genes in the receptive endometrium in IVF, ectopic endometriotic lesions and endometrial cancers. Knockdown of MRP4 also inhibits in vitro and in vivo endometrial tumorigenesis. Conclusion: A previously undefined role of MRP4 in stabilizing β-catenin to sustain Wnt/β-catenin signaling in endometrial cells is revealed for both embryo implantation and endometrial disorders, suggesting MRP4 as a theranostic target for endometrial diseases associated with Wnt/β-catenin signaling abnormality.
Collapse
|
14
|
Hu YH, Zhou L, Wang SS, Jing X, Guo HL, Sun F, Zhang Y, Chen F, Xu J, Ji X. Methotrexate Disposition in Pediatric Patients with Acute Lymphoblastic Leukemia: What Have We Learnt From the Genetic Variants of Drug Transporters. Curr Pharm Des 2019; 25:627-634. [PMID: 30931851 DOI: 10.2174/1381612825666190329141003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 11/22/2022]
Abstract
Background:
Methotrexate (MTX) is one of the leading chemotherapeutic agents with the bestdemonstrated
efficacies against childhood acute lymphoblastic leukemia (ALL). Due to the narrow therapeutic
range, significant inter- and intra-patient variabilities of MTX, non-effectiveness and/or toxicity occur abruptly to
cause chemotherapeutic interruption or discontinuation. The relationship between clinical outcome and the systemic
concentration of MTX has been well established, making the monitoring of plasma MTX levels critical in
the treatment of ALL. Besides metabolizing enzymes, multiple transporters are also involved in determining the
intracellular drug levels. In this mini-review, we focused on the genetic polymorphisms of MTX-disposition
related transporters and the potential association between the discussed genetic variants and MTX pharmacokinetics,
efficacy, and toxicity in the context of MTX treatment.
Methods:
We searched PubMed for citations published in English using the terms “methotrexate”, “transporter”,
“acute lymphoblastic leukemia”, “polymorphisms”, and “therapeutic drug monitoring”. The retrieval papers were
critically reviewed and summarized according to the aims of this mini-review.
Results:
Solute carrier (SLC) transporters (SLC19A1, SLCO1A2, SLCO1B1, and SLC22A8) and ATP-binding
cassette (ABC) transporters (ABCB1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2) mediate MTX disposition.
Of note, the influences of polymorphisms of SLC19A1, SLCO1B1 and ABCB1 genes on the clinical outcome
of MTX have been extensively studied.
Conclusion:
Overall, the data critically reviewed in this mini-review article confirmed that polymorphisms in the
genes encoding SLC and ABC transporters confer higher sensitivity to altered plasma levels, MTX-induced toxicity,
and therapeutic response in pediatric patients with ALL. Pre-emptive determination may be helpful in individualizing
treatment.
Collapse
Affiliation(s)
- Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Shan-Shan Wang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Gervasini G, Mota-Zamorano S. Clinical Implications of Methotrexate Pharmacogenetics in Childhood Acute Lymphoblastic Leukaemia. Curr Drug Metab 2019; 20:313-330. [DOI: 10.2174/1389200220666190130161758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Background:In the past two decades, a great body of research has been published regarding the effects of genetic polymorphisms on methotrexate (MTX)-induced toxicity and efficacy. Of particular interest is the role of this compound in childhood acute lymphoblastic leukaemia (ALL), where it is a pivotal drug in the different treatment protocols, both at low and high doses. MTX acts on a variety of target enzymes in the folates cycle, as well as being transported out and into of the cell by several transmembrane proteins.Methods:We undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question.Results:This review has intended to summarize the current knowledge concerning the clinical impact of polymorphisms in enzymes and transporters involved in MTX disposition and mechanism of action on paediatric patients with ALL.Conclusion:In this work, we describe why, in spite of the significant research efforts, pharmacogenetics findings in this setting have not yet found their way into routine clinical practice.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| | - Sonia Mota-Zamorano
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| |
Collapse
|
16
|
Ruel NM, Nguyen KH, Vilas G, Hammond JR. Characterization of 6-Mercaptopurine Transport by the SLC43A3-Encoded Nucleobase Transporter. Mol Pharmacol 2019; 95:584-596. [PMID: 30910793 DOI: 10.1124/mol.118.114389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/14/2019] [Indexed: 02/14/2025] Open
Abstract
6-Mercaptopurine (6-MP) is a nucleobase analog used in the treatment of acute lymphoblastic leukemia and inflammatory bowel disorders. However, the mechanisms underlying its transport into target cells have remained elusive. The protein encoded by SLC43A3_1 [equilibrative nucleobase transporter 1 (ENBT1)] has recently been shown to transport endogenous nucleobases. A splice variant (SLC43A3_2), encoding a protein with 13 additional amino acids in the first extracellular loop, is also expressed but its function is unknown. We hypothesized that 6-MP is a substrate for both variants of ENBT1. Human embryonic kidney 293 (HEK293) cells (lacking endogenous ENBT1 activity) were transfected with each of the coding region variants of SLC43A3. ENBT1 function was assessed via the rate of flux of [3H]adenine and [14C]6-MP across the plasma membrane. Both SLC43A3 variants encoded proteins with similar functional properties. [14C]6-MP and [3H]adenine had K m values (±S.D.) of 163 ± 126 and 37 ± 26 µM, respectively, for this system. Decynium-22, 6-thioguanine, and 6-methylmercaptopurine inhibited 6-MP uptake with K i values of 1.0 ± 0.4, 67 ± 30, and 73 ± 20 µM, respectively. ENBT1 also mediated adenine-sensitive efflux of 6-MP from the SLC43A3-HEK293 cells. MRP4 also contributed to the efflux of 6-MP in this model, but was less efficient than ENBT1 in this regard. Furthermore, transfection of HEK293 cells with SLC43A3 increased the sensitivity of the cells to the cytotoxic effects of 6-MP by more than 7-fold. Thus, both variants of ENBT1 are key players in the transfer of 6-MP into and out of cells, and changes in SLC43A3 expression impact 6-MP cytotoxicity.
Collapse
Affiliation(s)
- Nicholas M Ruel
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Khanh H Nguyen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gonzalo Vilas
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Jaramillo AC, Cloos J, Lemos C, Stam RW, Kaspers GJL, Jansen G, Peters GJ. Ex vivo resistance in childhood acute lymphoblastic leukemia: Correlations between BCRP, MRP1, MRP4 and MRP5 ABC transporter expression and intracellular methotrexate polyglutamate accumulation. Leuk Res 2019; 79:45-51. [PMID: 30849662 DOI: 10.1016/j.leukres.2019.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023]
Abstract
Chemoresistance is an important factor in the treatment failure of childhood acute lymphoblastic leukemia (ALL). One underlying mechanism of chemoresistance involves (over)expression of ATP-dependent drug efflux transporters such as multidrug resistance protein 1-5 (MRP1-5) and breast cancer resistance protein (BCRP), which can extrude the important antileukemia drug methotrexate (MTX). Survival of childhood ALL critically depends on the leukemic blasts' capacity for intracellular retention of MTX and MTX-polyglutamates. This pilot study assessed whether expression of MRP1, MRP4, MRP5 and BCRP (real-time PCR) in primary childhood ALL blasts (n = 23) correlated with ex vivo resistance to MTX (assayed by in situ thymidylate synthase inhibition assay (TSIA)), ex vivo accumulation of (radioactive) MTX polyglutamates, and patient survival. Results show that high MRP4 expression is correlated with ex vivo MTX resistance assayed by TSIA (P = 0.01). Moreover, elevated MRP4 and BCRP expression correlated with lower accumulation of MTX-PGs (P = 0.004 and P = 0.03, respectively). Combined high expression of BCRP and MRP4 even further impacted reduced MTX-PG accumulation (P = 0.02). Overall survival was lower (P logrank = 0.04) in children with ALL cells which featured a relatively high expression of both BCRP and MRP4 transporters. These results underscore the impact of high drug efflux transporter expression, notably MRP4 and BCRP, in diminished MTX response in childhood ALL.
Collapse
Affiliation(s)
- Adrian C Jaramillo
- Department of Medical Oncology, Amsterdam, the Netherlands; Department of Hematology, Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam, the Netherlands; Department of Pediatric Oncology/Hematology, Amsterdam, the Netherlands
| | | | | | - Gertjan J L Kaspers
- Department of Pediatric Oncology/Hematology, Amsterdam, the Netherlands; Princess Máxima Center, Utrecht, the Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, Amsterdam, the Netherlands
| | | |
Collapse
|
18
|
Milosevic G, Kotur N, Krstovski N, Lazic J, Zukic B, Stankovic B, Janic D, Katsila T, Patrinos GP, Pavlovic S, Dokmanovic L. Variants in TPMT, ITPA, ABCC4 and ABCB1 Genes As Predictors of 6-mercaptopurine Induced Toxicity in Children with Acute Lymphoblastic Leukemia. J Med Biochem 2018; 37:320-327. [PMID: 30598629 PMCID: PMC6298470 DOI: 10.1515/jomb-2017-0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia is the most common childhood malignancy. Optimal use of anti leukemic drugs has led to less toxicity and adverse reactions, and a higher survival rate. Thiopurine drugs, including 6-mercaptopurine, are mostly used as antileukemic medications in the maintenance phase of treatment for children with acute lymphoblastic leukemia. For those patients, TPMT genotype- tailored 6-mercaptopurine therapy is already implemented in the treatment protocols. We investigated the role of TPMT, ITPA, ABCC4 and ABCB1 genetic variants as predictors of outcome and 6-mercaptopurine induced toxicity during the maintenance phase of treatment in pediatric acute lymphoblastic leukemia. METHODS Sixty-eight children with acute lymphoblastic leukemia were enrolled in this study. Patients have been treated according to ALL IC-BFM 2002 or ALL IC-BFM 2009 protocols. Toxicity and adverse events have been monitored via surrogate markers (off-therapy weeks, episodes of leu - ko penia and average 6-mercaptopurine dose) and a prob- abilistic model was employed to predict overall 6-mercaptopurine related toxicity. RESULTS We confirmed that patients with acute lymphoblastic leukemia that carry inactive TPMT allele(s) require 6- mercaptopurine dose reduction. ITPA and ABCC4 genetic variants failed to show an association with 6-mercapto - purine induced toxicity during the maintenance phase. Carriers of ABCB1 variant allele experienced greater hepatotoxicity. The probabilistic model Neural net which considered all the analysed genetic variants was assessed to be the best prediction model. It was able to discriminate ALL patients with good and poor 6-mercaptopurin tolerance in 71% of cases (AUC=0.71). CONCLUSIONS This study contributes to the design of a panel of pharmacogenetic markers for predicting thiopurineinduced toxicity in pediatric ALL.
Collapse
Affiliation(s)
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nada Krstovski
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Jelena Lazic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Janic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Theodora Katsila
- University of Patras School of Health Sciences, Department of Pharmacy, Patras, Greece
| | - George P. Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, Patras, Greece
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | - Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Lidija Dokmanovic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| |
Collapse
|
19
|
Chen J, Su Q, Qin J, Zhou Y, Ruan H, Chen Z, Chen Z, Li H, Zhou Y, Zhou S, Wang X, Zhou L, Huang M. Correlation of MCT1 and ABCC2 gene polymorphisms with valproic acid resistance in patients with epilepsy on valproic acid monotherapy. Drug Metab Pharmacokinet 2018; 34:165-171. [PMID: 30952578 DOI: 10.1016/j.dmpk.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 11/28/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Abstract
Valproic acid (VPA) is used as one of the first-line antiepileptic drugs to control seizure in epilepsy patients. However, one third of patients do not respond to VPA. This study is to investigate the influence of single nucleotide polymorphisms (SNPs) in multidrug transporters on VPA responses in Han Chinese epilepsy patients on VPA monotherapy. Twelve SNPs involved in VPA transport pathways, including ABCC2, ABCC4, ABCG2, MCT1, MCT2 and OATP2B1 were genotyped in 153 Han Chinese epilepsy patients. We found that among all the patients, MCT1 rs60844753 CC carriers have higher incidence of VPA-resistance than CG carriers (P = 0.05), and in subgroup of generalized seizure, ABCC2 rs3740066 CC carriers had higher frequency of VPA resistance than TC + TT carriers (P = 0.03). Although other SNPs were not correlated with VPA resistance, significant ethnic difference was found in minor allele frequency of these SNPs, indicating that the influence of these SNPs on VPA efficacy should be broadly investigated in other ethnic populations. This study provides nominal evidence that SNPs of genes involved in the transport of VPA contribute to interpatient variation in VPA response. Although the associations were abolished after Bonferroni correction, the results provide an incentive for further research in sufficiently large samples.
Collapse
Affiliation(s)
- Juan Chen
- Sun Yat-sen University, School of Pharmaceutical Sciences, 132 Outer Ring East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China; Nanfang Hospital of Southern Medical University, Department of Pharmacy, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, 510080, China.
| | - Qibiao Su
- Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Outer Ring East Road, Guangzhou, 510006, China.
| | - Jiaming Qin
- Sun Yat-sen University, The First Affiliated Hospital, 74 Zhongshan2nd, Guangzhou, 510080, China.
| | - Yi Zhou
- Sun Yat-sen University, The First affiliated hospital, Fetal medicine center, OB/GYN Dept, 74 Zhongshan2nd, Guangzhou, 510080, China.
| | - Honglian Ruan
- Guangzhou Medical University, 195 Dongfeng West Road, Guangzhou, 510182, China.
| | - Ziyi Chen
- Sun Yat-sen University, The First Affiliated Hospital, 74 Zhongshan2nd, Guangzhou, 510080, China.
| | - Zhuojia Chen
- Sun Yat -sen University Cancer Center, Department of Pharmacy, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Hongliang Li
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, 650091, China.
| | - Yafang Zhou
- Sun Yat-sen University, School of Pharmaceutical Sciences, 132 Outer Ring East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Shan Zhou
- Sun Yat-sen University, School of Pharmaceutical Sciences, 132 Outer Ring East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Xueding Wang
- Sun Yat-sen University, School of Pharmaceutical Sciences, 132 Outer Ring East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Liemin Zhou
- Sun Yat-sen University, The First Affiliated Hospital, 74 Zhongshan2nd, Guangzhou, 510080, China.
| | - Min Huang
- Sun Yat-sen University, School of Pharmaceutical Sciences, 132 Outer Ring East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
20
|
|
21
|
Ceppi F, Gagné V, Douyon L, Quintin CJ, Colombini A, Parasole R, Buldini B, Basso G, Conter V, Cazzaniga G, Krajinovic M. DNA variants in DHFR gene and response to treatment in children with childhood B ALL: revisited in AIEOP-BFM protocol. Pharmacogenomics 2017; 19:105-112. [PMID: 29210328 DOI: 10.2217/pgs-2017-0153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM We have previously reported an association of dihydrofolate reductase promoter polymorphisms with reduced event-free survival in childhood acute lymphoblastic leukemia (ALL) patients treated with Dana Farber Cancer Institute protocol. Here, we assessed whether these associations are applicable to other protocol, based on different methotrexate doses. METHODS Genotypes for six tag polymorphisms and resulting haplotypes were analyzed for an association with ALL outcome. RESULTS The association was found with the polymorphisms A-680C, A-317G and C-35T in high-risk group patients. Carriers of haplotype *1 had a remarkably higher risk of events compared with noncarriers and a lower probability of event-free survival (21.4 vs 81.3%). CONCLUSION The role of DHFR variants in predicting the outcome of childhood ALL extends beyond single-treatment protocol and can be useful biomarker in personalizing treatment.
Collapse
Affiliation(s)
- Francesco Ceppi
- Pediatric Hematology-Oncology Unit & Pediatric Hematology-Oncology Research Laboratory, Division of Pediatrics, Department of Woman-Mother-Child, University Hospital of Lausanne, 1004 Lausanne, Switzerland
| | - Vincent Gagné
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T1C5, Canada
| | - Laurance Douyon
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T1C5, Canada
| | - Camille J Quintin
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T1C5, Canada
| | - Antonella Colombini
- Department of Pediatrics, University of Milano-Bicocca, Ospedale S Gerardo, 20835 Monza, Italy
| | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129 Naples, Italy
| | - Barbara Buldini
- Department of Woman & Child Health, Laboratory of Haematology-Oncology, University of Padova, 35128 Padova, Italy
| | - Giuseppe Basso
- Department of Woman & Child Health, Laboratory of Haematology-Oncology, University of Padova, 35128 Padova, Italy
| | - Valentino Conter
- Department of Pediatrics, University of Milano-Bicocca, Ospedale S Gerardo, 20835 Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Department of Pediatrics, University Milano Bicocca, 20835 Monza, Italy
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, H4A 3J1, Canada.,Department of Pharmacology & Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
22
|
Park JE, Ryoo G, Lee W. Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters. AAPS JOURNAL 2017; 19:1643-1655. [DOI: 10.1208/s12248-017-0150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/10/2017] [Indexed: 01/18/2023]
|
23
|
Gervasini G, de Murillo SG, Jiménez M, de la Maya MD, Vagace JM. Effect of polymorphisms in transporter genes on dosing, efficacy and toxicity of maintenance therapy in children with acute lymphoblastic leukemia. Gene 2017; 628:72-77. [DOI: 10.1016/j.gene.2017.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
|
24
|
Lee SHR, Yang JJ. Pharmacogenomics in acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2017; 30:229-236. [PMID: 29050696 DOI: 10.1016/j.beha.2017.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Pharmacogenomics is a fast-growing field of personalized medicine using a patient's genomic profile to determine drug disposition or response to drug therapy, in order to develop safer and more effective pharmacotherapy. Childhood acute lymphoblastic leukemia (ALL), being the most common malignancy in childhood, which is treated with uniform and standardized clinical trials, is remarkably poised for pharmacogenomic studies. In the last decade, unbiased genome-wide association studies have identified multiple germline risk factors that strongly modify host response to drug therapy. Some of these genomic associations (e.g. TPMT, NUDT15 and mercaptopurine dosing) have accumulated a significant level of evidence on their clinical utility such that they are warranted as routine clinical tests to guide modification of treatment. Most of these germline associations however, have not yet reached such actionability. Insights have also been gathered on germline factors that affect host susceptibility to adverse effects of antileukemic agents (eg, vincristine, asparaginase, methotrexate). Further large-scale studies are required, along with the assimilation of both germline and somatic variants, to precisely predict host drug response and drug toxicities, with the eventual aim of executing genomic-based precision-pharmacotherapy in the treatment of ALL.
Collapse
Affiliation(s)
- Shawn H R Lee
- KTP-University Children's Medical Institute, National University Hospital, Singapore.
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
ABCC4 functional SNP in the 3′ splice acceptor site of exon 8 (G912T) is associated with unfavorable clinical outcome in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2017; 80:109-117. [DOI: 10.1007/s00280-017-3340-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
|
26
|
MiR-pharmacogenetics of methotrexate in childhood B-cell acute lymphoblastic leukemia. Pharmacogenet Genomics 2016; 26:517-525. [DOI: 10.1097/fpc.0000000000000245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Polymorphic variants of MRP4/ABCC4 differentially modulate the transport of methylated arsenic metabolites and physiological organic anions. Biochem Pharmacol 2016; 120:72-82. [PMID: 27659809 DOI: 10.1016/j.bcp.2016.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 01/17/2023]
Abstract
Broad inter-individual variation exists in susceptibility to arsenic-induced tumours, likely involving differences in the ability of individuals to eliminate this metalloid. We recently identified human multidrug resistance protein 4 (MRP4/ABCC4) as a novel pathway for the cellular export of dimethylarsinic acid (DMAV), the major urinary arsenic metabolite in humans, and the diglutathione conjugate of the highly toxic monomethylarsonous acid [MMA(GS)2]. These findings, together with the basolateral and apical membrane localization of MRP4 in hepatocytes and renal proximal tubule cells, respectively, suggest a role for MRP4 in the urinary elimination of hepatic arsenic metabolites. Accordingly, we have now investigated the influence of non-synonymous single nucleotide polymorphisms (SNPs) on MRP4 levels, cellular localization, and arsenical transport. Of eight MRP4 variants (C171G-, G187W-, K304N-, G487E-, Y556C-, E757K-, V776I- and C956S-MRP4) characterized, two (V776I- and C956S-MRP4) did not localize appropriately to the plasma membrane of HEK293T and LLC-PK1 cells. Characterization of the six correctly localized mutants revealed that MMA(GS)2 transport by C171G-, G187W-, and K304N-MRP4 was 180%, 73%, and 30% of WT-MRP4 activity, respectively, whereas DMAV transport by K304N- and Y556C-MRP4 was 30% and 184% of WT-MRP4, respectively. Transport of the prototypical physiological MRP4 substrates prostaglandin E2 and 17β-estradiol 17-(β-d-glucuronide) by the six variants was also differentially affected. Thus, MRP4 variants have differing abilities to transport arsenic and endogenous metabolites through both altered function and membrane localization. Further investigation is warranted to determine if genetic variations in ABCC4 contribute to inter-individual differences in susceptibility to arsenic-induced (and potentially other) diseases.
Collapse
|
28
|
Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Int J Mol Sci 2016; 17:ijms17091502. [PMID: 27618021 PMCID: PMC5037779 DOI: 10.3390/ijms17091502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
During the 3rd congress of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) in Budapest in 2015, a preliminary meeting was held aimed at establishing a pediatric individualized treatment in oncology and hematology committees. The main purpose was to facilitate the transfer and harmonization of pharmacogenetic testing from research into clinics, to bring together basic and translational research and to educate health professionals throughout Europe. The objective of this review was to provide the attendees of the meeting as well as the larger scientific community an insight into the compiled evidence regarding current pharmacogenomics knowledge in pediatric oncology. This preliminary evaluation will help steer the committee’s work and should give the reader an idea at which stage researchers and clinicians are, in terms of personalizing medicine for children with cancer. From the evidence presented here, future recommendations to achieve this goal will also be suggested.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | - Patricia Huezo-Diaz Curtis
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | | | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Centre hospitalier universitaire Sainte-Justine, 4515 Rue de Rouen, Montreal, QC H1V 1H1, Canada.
- Department of Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
| | - Marc Ansari
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Pediatric Department, Onco-Hematology Unit, Geneva University Hospital, Rue Willy-Donzé 6, 1205 Geneva, Switzerland.
| |
Collapse
|
29
|
Multidrug resistance-associated protein 4 (MRP4) controls ganciclovir intracellular accumulation and contributes to ganciclovir-induced neutropenia in renal transplant patients. Pharmacol Res 2016; 111:501-508. [PMID: 27402191 DOI: 10.1016/j.phrs.2016.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Ganciclovir (GCV) is the cornerstone of cytomegalovirus prevention and treatment in transplant patients. It is associated with problematic adverse hematological effects in this population of immunosuppressed patients, which may lead to dose reduction thus favoring resistance. GCV crosses the membranes of cells, is activated by phosphorylation, and then stops the replication of viral DNA. Its intracellular accumulation might favor host DNA polymerase inhibition, hence toxicity. Following this hypothesis, we investigated the association between a selected panel of membrane transporter polymorphisms and the evolution of neutrophil counts in n=174 renal transplant recipients. An independent population of n=96 renal transplants served as a replication and experiments using HEK293T-transfected cells were performed to validate the clinical findings. In both cohorts, we found a variant in ABCC4 (rs11568658) associated with decreased neutrophil counts following valganciclovir (GCV prodrug) administration (exploratory cohort: β±SD=-0.68±0.28, p=0.029; replication cohort: β±SD=-0.84±0.29, p=0.0078). MRP4-expressing cells showed decreased GCV accumulation as compared to negative control cells (transfected with an empty vector) (-61%; p<0.0001). The efflux process was almost abolished in cells expressing MRP4 rs11568658 variant protein. Molecular dynamic simulations of GCV membrane crossing showed a preferred location of the drug just beneath the polar head group region, which supports its interaction with efflux transporters.
Collapse
|
30
|
Hahn A, Fukuda T, Hahn D, Mizuno T, Frenck RW, Vinks AA. Pharmacokinetics and pharmacogenomics of β-lactam-induced neutropenia. Pharmacogenomics 2016; 17:547-59. [PMID: 27045542 DOI: 10.2217/pgs-2015-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Determine if individuals with β-lactam induced neutropenia have polymorphisms that impair function of MRP4 or OAT1/OAT3. METHODS Subjects with β-lactam induced neutropenia were compared to controls for the presence of MRP4 and OAT1/OAT3 polymorphisms, estimated plasma trough concentrations and area under the curve. RESULTS Subjects with a homozygous polymorphism at MRP4 3348 A to G were 5.3 times more likely to develop neutropenia (p = 0.171). No statistical differences were noted in pharmacokinetic parameters. Contingency analysis of children greater than 5 years of age showed neutropenia in subjects who were homozygous wild type at MRP4 3348 A to G was significantly associated with standard or high dosing (p = 0.03). CONCLUSION MRP4 3348 A to G should be further studied for potential contribution to the development of β-lactam induced neutropenia.
Collapse
Affiliation(s)
- Andrea Hahn
- Division of Infectious Disease, Children's National Medical Center, Washington, DC 200102, USA.,Department of Pediatrics, George Washington University School of Medicine, Washington, DC 200523, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 452294, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 452215, USA
| | - David Hahn
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 452294, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 452294, USA
| | - Robert W Frenck
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 452215, USA.,Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 452294, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 452215, USA
| |
Collapse
|
31
|
Wu Z, Sun Y, Zhu S, Tang S, Liu C, Qin W. Association of Interferon Gamma +874T/A Polymorphism and Leukemia Risk: A Meta-Analysis. Medicine (Baltimore) 2016; 95:e3129. [PMID: 27015189 PMCID: PMC4998384 DOI: 10.1097/md.0000000000003129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Interferon gamma (IFN-γ) has antitumor and antiproliferative effects, and previous studies indicated IFN-γ +874T/A (rs2430561) polymorphism were related to the risk of many types of cancer. However, the association between IFN-γ +874T/A polymorphism and leukemia risk remained controversial.We performed a comprehensive meta-analysis based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement (PRISMA). Electronic database of Embase, Pubmed, and the Cochrane Library were searched for eligible articles published up to December 13, 2015. The association between genetic polymorphisms and leukemia risk was measured by odds ratios (ORs) and its corresponding 95% confidence intervals (CIs).A total of 8 studies amounting to 420 patients and 767 control subjects were retrieved for this study. Although associations between IFN-γ +874T/A polymorphism and overall leukemia risks were lacking, decreased chronic lymphocytic leukemia (CLL) risk was detected in the allelic model (T vs A, OR=0.660, 95%CI = 0.483-0.902, P = 0.009, I = 0.0% and P = 0.863 for heterogeneity), the codominant model (TT vs AA, OR = 0.472, 95%CI = 0.247-0.902, P = 0.023, I = 0.0% and P = 0.994 for heterogeneity), and dominant model (TT + TA vs AA, OR = 0.457, 95%CI = 0.285-0.734, P = 0.001, I = 40.3% and P = 0.195 for heterogeneity) by using fixed-effect model separately. On the contrary, results indicated T carries have an increased chronic myelogenous leukemia (CML) risk in dominant model (TT + TA vs AA, OR = 1.783, 95%CI = 1.236-2.573, P = 0.002, I = 19.0% and P = 0.295 for heterogeneity).This study suggests IFN-γ +874T/A polymorphism are related to CML and CLL risk. In addition, our work also points out IFN-γ +874T/A polymorphism may play dual contrasting role in leukemia risk.
Collapse
Affiliation(s)
- Zhitong Wu
- From the Department of Clinical Laboratory (ZW, WQ), Guigang City People's Hospital, Guigang; and Department of Clinical Laboratory (YS, SZ, ST, CL), Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, Guangxi, China
| | | | | | | | | | | |
Collapse
|
32
|
Multidrug Resistance Protein-4 Influences Aspirin Toxicity in Human Cell Line. Mediators Inflamm 2015; 2015:607957. [PMID: 26491233 PMCID: PMC4600549 DOI: 10.1155/2015/607957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/24/2014] [Indexed: 01/08/2023] Open
Abstract
Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4) overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα). In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293) to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity. We first investigated the effect of high-dose aspirin in Hek-293 and we showed that aspirin is able to increase cell toxicity dose-dependently. Furthermore, aspirin effects, induced at low dose, already enhance MRP4 gene expression. Based on these findings, we compared cell viability in Hek-293, after high-dose aspirin treatment, in MRP4 overexpressing cells, either after aspirin pretreatment or in MRP4 transfected cells; in both cases, a decrease of selective aspirin cell growth inhibition was observed, in comparison with the control cultures. Altogether, these data suggest that exposing cells to low nontoxic aspirin dosages can induce gene expression alterations that may lead to the efflux transporter protein overexpression, thus increasing cellular detoxification of aspirin.
Collapse
|
33
|
Prognostic significance of NPM1 mutation-modulated microRNA−mRNA regulation in acute myeloid leukemia. Leukemia 2015; 30:274-84. [DOI: 10.1038/leu.2015.253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/19/2015] [Accepted: 09/04/2015] [Indexed: 02/08/2023]
|
34
|
Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. THE PHARMACOGENOMICS JOURNAL 2015; 16:530-535. [DOI: 10.1038/tpj.2015.63] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 07/01/2015] [Indexed: 02/08/2023]
|
35
|
Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. J Pharmacol Exp Ther 2015; 354:358-375. [PMID: 26148856 DOI: 10.1124/jpet.115.225656] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| |
Collapse
|
36
|
IL-10 gene polymorphism and influence of chemotherapy on cytokine plasma levels in childhood acute lymphoblastic leukemia patients. Blood Cells Mol Dis 2015; 55:168-72. [DOI: 10.1016/j.bcmd.2015.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/21/2022]
|
37
|
Chen Y, Shen Z. Gene polymorphisms in the folate metabolism and their association with MTX-related adverse events in the treatment of ALL. Tumour Biol 2015; 36:4913-21. [PMID: 26022160 DOI: 10.1007/s13277-015-3602-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023] Open
Abstract
The antifolate drug methotrexate (MTX) is widely used in the treatment of various neoplastic diseases, including acute lymphoblastic leukemia (ALL). MTX significantly increases cure rates and improves patients' prognosis. Despite that it achieved remarkable clinical success, a large number of patients still suffer from treatment toxicities or side effects. Even to this date, chemotherapeutic regiments have not been personalized because of interindividual differences that affect MTX response, especially polymorphisms in key genes. The pharmacological pathway of MTX in cells is useful to identify gene polymorphisms that influence the process of treatment. The aim of this review was to discuss the gene polymorphisms of drug-metabolizing enzymes in the MTX pathway and their toxicities on ALL treatment.
Collapse
Affiliation(s)
- Yang Chen
- Centre of Clinical Laboratory, Anhui Provincial Hospital Affiliated of Anhui Medical University, Hefei, 230001, China
| | | |
Collapse
|
38
|
Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood 2015; 125:3988-95. [PMID: 25999454 DOI: 10.1182/blood-2014-12-580001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
Although somatically acquired genomic alterations have long been recognized as the hallmarks of acute lymphoblastic leukemia (ALL), the last decade has shown that inherited genetic variations (germline) are important determinants of interpatient variability in ALL susceptibility, drug response, and toxicities of ALL therapy. In particular, unbiased genome-wide association studies have identified germline variants strongly associated with the predisposition to ALL in children, providing novel insight into the mechanisms of leukemogenesis and evidence for complex interactions between inherited and acquired genetic variations in ALL. Similar genome-wide approaches have also discovered novel germline genetic risk factors that independently influence ALL prognosis and those that strongly modify host susceptibility to adverse effects of antileukemic agents (eg, vincristine, asparaginase, glucocorticoids). There are examples of germline genomic associations that warrant routine clinical use in the treatment of childhood ALL (eg, TPMT and mercaptopurine dosing), but most have not reached this level of actionability. Future studies are needed to integrate both somatic and germline variants to predict risk of relapse and host toxicities, with the eventual goal of implementing genetics-driven precision-medicine approaches in ALL treatment.
Collapse
|
39
|
Matimba A, Li F, Livshits A, Cartwright CS, Scully S, Fridley BL, Jenkins G, Batzler A, Wang L, Weinshilboum R, Lennard L. Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes. Pharmacogenomics 2015; 15:433-47. [PMID: 24624911 DOI: 10.2217/pgs.13.226] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We investigated candidate genes associated with thiopurine metabolism and clinical response in childhood acute lymphoblastic leukemia. MATERIALS & METHODS We performed genome-wide SNP association studies of 6-thioguanine and 6-mercaptopurine cytotoxicity using lymphoblastoid cell lines. We then genotyped the top SNPs associated with lymphoblastoid cell line cytotoxicity, together with tagSNPs for genes in the 'thiopurine pathway' (686 total SNPs), in DNA from 589 Caucasian UK ALL97 patients. Functional validation studies were performed by siRNA knockdown in cancer cell lines. RESULTS SNPs in the thiopurine pathway genes ABCC4, ABCC5, IMPDH1, ITPA, SLC28A3 and XDH, and SNPs located within or near ATP6AP2, FRMD4B, GNG2, KCNMA1 and NME1, were associated with clinical response and measures of thiopurine metabolism. Functional validation showed shifts in cytotoxicity for these genes. CONCLUSION The clinical response to thiopurines may be regulated by variation in known thiopurine pathway genes and additional novel genes outside of the thiopurine pathway.
Collapse
Affiliation(s)
- Alice Matimba
- Division of Clinical Pharmacology, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ceppi F, Langlois-Pelletier C, Gagné V, Rousseau J, Ciolino C, De Lorenzo S, Kevin KM, Cijov D, Sallan SE, Silverman LB, Neuberg D, Kutok JL, Sinnett D, Laverdière C, Krajinovic M. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. Pharmacogenomics 2015; 15:1105-16. [PMID: 25084203 DOI: 10.2217/pgs.14.68] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Vincristine (VCR) is a standard component in the treatment of childhood acute lymphoblastic leukemia (ALL). VCR cytotoxicity is primarily due to its ability to disrupt the formation of microtubules of the mitotic spindle. PATIENTS & METHODS Seventeen polymorphisms in regulatory and coding regions of genes controlling VCR targets (TUBB1, MAP4, ACTG1 and CAPG) or potentially influencing VCR levels (ABCB1 and CYP3A5) were investigated for an association with peripheral neuropathy and outcome in childhood ALL patients. RESULTS High-grade neurotoxicity was more frequent in carriers of the A allele of synonymous (Ala310) G to A (rs1135989) variation in the ACTG1 gene. Substitution (rs4728709) in the promoter of the ABCB1 gene had a protective effect against lower grade neurotoxicity and C to A variation (rs3770102) located 17 nucleotides upstream from the transcription start site had a protective effect against high-grade neurotoxicity. Patients with the ABCB1 3435TT genotype had lower event-free survival; the association with event-free survival was not supported by the analysis in the replication patient set. CONCLUSION The polymorphisms in the ACTG1, CAPG and ABCB1 genes may modulate VCR-related neurotoxicity, whereas the risk of relapse seems not to be affected by the genes of the VCR pathway.
Collapse
Affiliation(s)
- Francesco Ceppi
- Research Center, CHU Sainte-Justine, 3175 Chemin de la Côte-Ste-Catherine, Montréal, H3T 1C5, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Winkler B, Taschik J, Haubitz I, Eyrich M, Schlegel PG, Wiegering V. TGFβ and IL10 have an impact on risk group and prognosis in childhood ALL. Pediatr Blood Cancer 2015; 62:72-9. [PMID: 25263239 DOI: 10.1002/pbc.25142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cytokines and their genes have been described to have an influence on incidence and prognosis in malignant, infectious and autoimmune disease. We previously described the impact of cytokine production on prognosis in paediatric standard-risk acute lymphoblastic leukaemia (ALL). PROCEDURE In this study, we investigated the influence of cytokine gene polymorphisms (TNFα, TGFβ, IL10 and IFNγ) on frequency, risk group and prognosis in 95 paediatric ALL-patients. We further report on intracellular production of these cytokines in T-cells. RESULTS IL10 high-producer-haplotypes were reduced in ALL-patients compared with healthy controls and resulted in a reduced relapse rate compared with low-producer haplotypes. TGFβ high-producer-haplotypes were correlated with a high initial blast-count (codon 25: G/G) and were elevated in high-risk ALL-patients (codon 10: T/T). IL10 was positively and IFNγ-production was negatively correlated with initial blast-count. At diagnosis the expression of TNFα and IFNγ was reduced in patients compared with healthy controls. This was more pronounced in high-risk and in T-ALL-patients. CONCLUSION We conclude that gene-polymorphisms of the regulatory/anti-inflammatory cytokines, TGFβ and IL10, but not of the pro-inflammatory cytokines, IFNγ and TNFα, have an impact on prognosis and risk-group of ALL. However, the reduced capacity to produce pro-inflammatory cytokines at diagnosis may serve as another important, functional risk factor. These data may help in further risk stratification and adaptation of therapy-intensity in paediatric patients with ALL.
Collapse
Affiliation(s)
- B Winkler
- Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, University of Würzburg, Children's Hospital, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Multidrug resistance protein 4 (MRP4) polymorphisms impact the 6-mercaptopurine dose tolerance during maintenance therapy in Japanese childhood acute lymphoblastic leukemia. THE PHARMACOGENOMICS JOURNAL 2014; 15:380-4. [PMID: 25403995 DOI: 10.1038/tpj.2014.74] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 01/10/2023]
Abstract
Multidrug resistance protein 4 (MRP4) is involved in the efflux of nucleoside derivatives and has a role in the determination of drug sensitivity. We investigated the relationship between MRP4 genetic polymorphisms and doses of the 6-mercaptopurine (6-MP) and methotrexate. Further, we evaluated the frequency of therapeutic interruption during maintenance therapy in Japanese children with acute lymphoblastic leukemia (ALL). Ninety-four patients received an initial 6-MP dose in the range of 30-50 mg m(-2) in this analysis. Patients with homozygous variant allele in any of MRP4 G2269A, C912A and G559T required high frequency of 6-MP dose reduction compared with non-homozygous individuals. Average 6-MP dose for patients with homozygous variant allele on either MRP4 or inosine triphosphate pyrophosphatase was significantly lower than that for patients with non-homozygous variant allele during maintenance therapy (30.5 versus 40.0 mg m(-2), P=0.024). Therefore, MRP4 genotyping may be useful for personalizing the therapeutic dose of 6-MP during the ALL maintenance therapy in Japanese.
Collapse
|
43
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
den Boer E, de Rotte MC, Pluijm SM, Heil SG, Hazes JM, de Jonge R. Determinants of Erythrocyte Methotrexate Polyglutamate Levels in Rheumatoid Arthritis. J Rheumatol 2014; 41:2167-78. [DOI: 10.3899/jrheum.131290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective.Low-dose methotrexate (MTX) is the anchor drug in the treatment for rheumatoid arthritis (RA). Response to MTX is related to the intracellular MTX-polyglutamate (MTX-PG) levels and little is known about its determinants. We aimed to define the determinants of erythrocyte MTX-PG concentrations in 2 prospective cohorts of patients with RA.Methods.Patients with RA treated with MTX from 2 longitudinal cohorts were included: 93 from the MTX-R study (Rotterdam, the Netherlands derivation cohort), and 247 from the treatment in Rotterdam Early Arthritis Cohort study (validation cohort). MTX-PG concentrations were measured at 3 months of treatment using liquid chromatography/mass spectrometry. The MTX-PG were used as outcome measure. Various sociodemographic, clinical, biochemical, and genetic factors were assessed at baseline. Associations with MTX-PG levels were analyzed using multivariate regression analysis.Results.Age was positively associated with MTX-PG1 (stβ 0.23, p = 0.033) and total MTX-PG (stβ 0.23, p = 0.018) in the derivation cohort, and with all MTX-PG in the validation cohort (MTX-PG1: stβ 0.13, p = 0.04; MTX-PG2: stβ 0.21, p = 0.001; MTX-PG3: stβ 0.22, p < 0.001; MTX-PG4+5: stβ 0.25, p < 0.001; and total MTX-PG: stβ 0.32, p < 0.001). Erythrocyte folate levels were positively associated with MTX-PG3 (stβ 0.3, p = 0.021) and total MTX-PG levels (stβ 0.32, p = 0.022) in the derivation cohort, which was replicated for MTX-PG3 (stβ 0.15, p = 0.04) in the validation cohort. Patients with the folylpolyglutamate synthase (FPGS) rs4451422 wild-type genotype had higher concentrations of MTX-PG3 (p < 0.05), MTX-PG4+5 (p < 0.05), and total MTX-PG (p < 0.05) in both cohorts. In the combined cohort, MTX dose was positively associated with levels of MTX-PG3 (stβ 0.23, p < 0.001), MTX-PG4+5 (stβ 0.30, p < 0.001), and total MTX-PG (stβ 0.20, p = 0.002), but negatively associated with MTX-PG2 levels (stβ −0.22, p < 0.001).Conclusion.Our prospective study shows that higher age, higher MTX dose, higher erythrocyte folate status, and the FPGS rs4451422 wild-type genotype are associated with higher MTX-PG concentrations. While only up to 21% of interpatient variability can be explained by these determinants, this knowledge may aid in the development of personalized treatment in RA.
Collapse
|
45
|
Lopez-Lopez E, Gutierrez-Camino A, Bilbao-Aldaiturriaga N, Pombar-Gomez M, Martin-Guerrero I, Garcia-Orad A. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics 2014; 15:1383-98. [DOI: 10.2217/pgs.14.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the major pediatric cancer in developed countries. Although treatment outcome has improved owing to advances in chemotherapy, there is still a group of patients for which therapy fails while some patients experience severe toxicity. In the last few years, several pharmacogenetic studies have been performed to search for markers of outcome and toxicity in pediatric ALL. However, to date, TPMT is the only pharmacogenetic marker in ALL with clinical guidelines for drug dosing. In this article, we will provide an overview of the most important findings carried out in pharmacogenetics for pediatric ALL, such as the interest drawn by methotrexate transporters in the context of methotrexate treatment. Even if most of the studies are centered on coding genes, we will also point to new approaches focusing on noncoding regions and epigenetic variation that could be interesting for consideration in the near future.
Collapse
Affiliation(s)
- Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Nerea Bilbao-Aldaiturriaga
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Maria Pombar-Gomez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- BioCruces Health Research Institute, Leioa, Spain
| |
Collapse
|
46
|
Dulucq S, Laverdière C, Sinnett D, Krajinovic M. Pharmacogenetic considerations for acute lymphoblastic leukemia therapies. Expert Opin Drug Metab Toxicol 2014; 10:699-719. [PMID: 24673379 DOI: 10.1517/17425255.2014.893294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Advances in our understanding of the pathobiology of childhood acute lymphoblastic leukemia (ALL) have led to risk-targeted treatment regimens and remarkable improvement in survival rates. Still, up to 20% of patients experience treatment failure due to drug resistance. Treatment-related toxicities are often life-threatening and are the primary cause of treatment interruption, while ALL survivors may develop complications due to exposure to chemotherapy and/or irradiation during a vulnerable period of development. Different factors may contribute to variable treatment outcomes including patient genetics that has been shown to play important role. AREAS COVERED This review summarizes candidate gene and genome-wide association studies that identified common polymorphisms underlying variability in treatment responses including a few studies addressing late effects of the treatment. Genetic variants influencing antileukemic drug effects or leukemic cell biology have been identified, including for example variants in folate-dependent enzymes, influx and efflux transporters, metabolizing enzymes, drug receptor or apoptotic proteins. EXPERT OPINION Many pharmacogenetic studies have been conducted in ALL and a variety of potential markers have been identified. Yet more comprehensive insight into genome variations influencing drug responses is needed. Whole exome/genome sequencing, careful study design, mechanistic explanation of association found and collaborative studies will ultimately lead to personalized treatment and improved therapeutic and health outcomes.
Collapse
Affiliation(s)
- Stéphanie Dulucq
- University Health Center Bordeaux, Heamatology Laboratory , Bordeaux , France
| | | | | | | |
Collapse
|
47
|
Digging up the human genome: current progress in deciphering adverse drug reactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:824343. [PMID: 24734245 PMCID: PMC3966344 DOI: 10.1155/2014/824343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/03/2014] [Indexed: 12/29/2022]
Abstract
Adverse drug reactions (ADRs) are a major clinical problem. In addition to their clinical impact on human health, there is an enormous cost associated with ADRs in health care and pharmaceutical industry. Increasing studies revealed that genetic variants can determine the susceptibility of individuals to ADRs. The development of modern genomic technologies has led to a tremendous advancement of improving the drug safety and efficacy and minimizing the ADRs. This review will discuss the pharmacogenomic techniques used to unveil the determinants of ADRs and summarize the current progresses concerning the identification of biomarkers for ADRs, with a focus on genetic variants for genes encoding drug-metabolizing enzymes, drug-transporter proteins, and human leukocyte antigen (HLA). The knowledge gained from these cutting-edge findings will form the basis for better prediction and management for ADRs, ultimately making the medicine personalized.
Collapse
|
48
|
Zhao X, Guo Y, Yue W, Zhang L, Gu M, Wang Y. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer. Onco Targets Ther 2014; 7:343-51. [PMID: 24591841 PMCID: PMC3937249 DOI: 10.2147/ott.s56029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Multidrug resistance protein 4 (MRP4), also known as ATP-cassette binding protein 4 (ABCC4), is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. METHODS ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. RESULTS ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. CONCLUSION ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yinan Guo
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wentao Yue
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yue Wang
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
49
|
Association of ABCC2 -24C>T polymorphism with high-dose methotrexate plasma concentrations and toxicities in childhood acute lymphoblastic leukemia. PLoS One 2014; 9:e82681. [PMID: 24404132 PMCID: PMC3880259 DOI: 10.1371/journal.pone.0082681] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/27/2013] [Indexed: 11/23/2022] Open
Abstract
Methotrexate (MTX) is a key agent for the treatment of childhood acute lymphoblastic leukemia (ALL). Increased MTX plasma concentrations are associated with a higher risk of adverse drug effects. ATP-binding cassette subfamily C member 2 (ABCC2) is important for excretion of MTX and its toxic metabolite. The ABCC2 −24C>T polymorphism (rs717620) reportedly contributes to variability of MTX kinetics. In the present study, we assessed the association between the ABCC2 −24C>T polymorphism and methotrexate (MTX) toxicities in childhood ALL patients treated with high-dose MTX. A total of 112 Han Chinese ALL patients were treated with high-dose MTX according to the ALL-Berlin-Frankfurt-Muenster 2000 protocol. Our results showed that presence of the −24T allele in ABCC2 gene led to significantly higher MTX plasma concentrations at 48 hours after the start of infusion, which would strengthen over repeated MTX infusion. The −24T allele in ABCC2 gene was significantly associated with higher risks of high-grade hematologic (leucopenia, anemia, and thrombocytopenia) and non-hematologic (gastrointestinal and mucosal damage/oral mucositis) MTX toxicities. This study provides the first evidence that the −24T allele in ABCC2 gene is associated with the severity of MTX toxicities, which add fresh insights into clinical application of high-dose MTX and individualization of MTX treatment.
Collapse
|
50
|
Marin JJG, Monte MJ, Blazquez AG, Macias RIR, Serrano MA, Briz O. The role of reduced intracellular concentrations of active drugs in the lack of response to anticancer chemotherapy. Acta Pharmacol Sin 2014; 35:1-10. [PMID: 24317012 PMCID: PMC3880477 DOI: 10.1038/aps.2013.131] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022]
Abstract
A major difficulty in the treatment of cancers is the poor response of many tumors to pharmacological regimens. This situation can be accounted for by the existence of a variety of complex mechanisms of chemoresistance (MOCs), leading to reduced intracellular concentrations of active agents, changes in the molecular targets of the drugs, enhanced repair of drug-induced modifications in macromolecules, stimulation of anti-apoptotic mechanisms, and inhibition of pro-apoptotic mechanisms. The present review focuses on alterations in the expression and appearance of the genetic variants that affect the genes involved in reducing the amount of active agents inside tumor cells. These alterations can occur through two mechanisms: either by lowering uptake or enhancing efflux (so-called MOC-1a and MOC-1b, respectively), or by decreasing the activation of prodrugs or enhancing inactivation of active agents through their biotransformation (MOC-2). The development of chemosensitizers that are useful in implementing the pharmacological manipulation of these processes constitutes a challenge to modern pharmacology. Nevertheless, the important physiological roles of the most relevant genes involved in MOC-1a, MOC-1b, and MOC-2 make it difficult to prevent the side effects of chemosensitizers. A more attainable goal in this area of pharmacological enquiry is the identification of proteomic profiles that will permit oncologists to accurately predict a lack of response to a given regimen, which would be useful for adapting treatment to the personal situation of each patient.
Collapse
|