1
|
Kuonqui KG, Campbell AC, Pollack BL, Shin J, Sarker A, Brown S, Park HJ, Mehrara BJ, Kataru RP. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front Cell Dev Biol 2025; 13:1527971. [PMID: 40046235 PMCID: PMC11880633 DOI: 10.3389/fcell.2025.1527971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3) is the principal transmembrane receptor responsible for sensing and coordinating cellular responses to environmental lymphangiogenic stimuli in lymphatic endothelial cells (LECs). VEGFC and D (VEGFC/D) function as the cognate ligands to VEGFR3 by stimulating autophosphorylation of intracellular VEGFR3 tyrosine kinase domains that activate signal cascades involved in lymphatic growth and survival. VEGFR3 primarily promotes downstream signaling through the phosphoinositide 3-kinase (PI3K) and Ras signaling cascades that promote functions including cell proliferation and migration. The importance of VEGFR3 cascades in lymphatic physiology is underscored by identification of dysfunctional VEGFR3 signaling across several lymphatic-related diseases. Recently, our group has shown that intracellular modification of VEGFR3 signaling is a potent means of inducing lymphangiogenesis independent of VEGFC. This is important because long-term treatment with recombinant VEGFC may have deleterious consequences due to off-target effects. A more complete understanding of VEGFR3 signaling pathways may lead to novel drug development strategies. The purpose of this review is to 1) characterize molecular mediators of VEGFC/VEGFR3 downstream signaling activation and their functional roles in LEC physiology and 2) explore molecular regulation of overall VEGFR3 expression and activity within LECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
2
|
Choi YH, Hsu M, Laaker C, Port J, Kovács KG, Herbath M, Yang H, Cismaru P, Johnson AM, Spellman B, Wigand K, Sandor M, Fabry Z. Dual role of vascular endothelial growth factor-C in post-stroke recovery. J Exp Med 2025; 222:e20231816. [PMID: 39665829 PMCID: PMC11636551 DOI: 10.1084/jem.20231816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/25/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dura, yet the role of these vessels during stroke is unclear. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we demonstrate stroke-induced lymphangiogenesis near the cribriform plate, peaking at day 7 and regressing by day 14. Lymphangiogenesis is restricted to the cribriform plate and deep cervical lymph nodes and is regulated by VEGF-C/VEGFR-3 signaling. The use of a VEGFR-3 inhibitor prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points, with no effects at later time points. VEGF-C delivery after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. Our data support the damaging role of VEGF-C acutely and a pro-angiogenic role chronically. This nuanced understanding of VEGFR-3 and VEGF-C in stroke pathology advises caution regarding therapeutic VEGF-C use in stroke.
Collapse
Affiliation(s)
- Yun Hwa Choi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Port
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Heeyoon Yang
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Cismaru
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexis M. Johnson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Bailey Spellman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey Wigand
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Sun Q, Yang Z, Qiu M, Wang S, Zhao X, Pang W, Liu R, Wang Y, Wang H, Hao J, Gao M. Inflammatory factor TNFα-induced circDMD mediates R-loop formation to promote tumorigenesis. Int J Biol Macromol 2024; 280:135689. [PMID: 39288863 DOI: 10.1016/j.ijbiomac.2024.135689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Chronic inflammation has been associated with the development of cancer in various anatomical sites. However, the crosstalk between inflammatory factors and circular RNAs (circRNAs) in tumorigenesis is unclear. Here, we revealed that circDMD was upregulated in Tumor necrosis factor alpha-like (TNFα)-induced HeLa cells. circDMD promoted the expression and nuclear translocation of Nuclear factor kappa B subunit (NF-κB) to activate downstream factors. circDMD absorbed miR-4711-5p to increase Lysine demethylase 5 A (KDM5A) expression, which reduced Suppressor of cytokine signaling 1 (SOCS1) to decrease the ubiquitination of Rela proto-oncogene (P65). In addition, circDMD promoted Fms related receptor tyrosine kinase 4 (VEGFR3) expression through the formation of an R-loop in its promoter. circDMD promoted tumor proliferation, metastasis and autophagy by activating the NF-κB pathways in vitro and in tumors derived from HeLa cells in vivo. Taken together, our results indicated that the expression of circDMD is induced by TNFα and contributes to tumorigenesis in cervical cancer (CC), which might help elucidate the regulatory effects of circRNAs on tumorigenesis.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Zhen Yang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China.
| | - Minghan Qiu
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Shoujun Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Xingli Zhao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Hematology, Oncology Center, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Wenwen Pang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ruxue Liu
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Yayun Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Huaqing Wang
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China
| | - Jie Hao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China.
| | - Ming Gao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China; Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300321, China.
| |
Collapse
|
4
|
Zhao Z, Ma D, Qin Y, Xu Y, Li S, Liu H. Melatonin downregulates angiogenesis and lymphangiogenesis by regulating tumor-associated macrophages via NLRP3 inflammasomes in lung adenocarcinoma. Aging (Albany NY) 2024; 16:12225-12238. [PMID: 39230586 PMCID: PMC11424589 DOI: 10.18632/aging.206057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/11/2024] [Indexed: 09/05/2024]
Abstract
Tumor-associated macrophages (TAMs), present within the tumor microenvironment (TME), strictly modulate tumor angiogenesis and lymphangiogenesis. Nevertheless, the associated signaling networks and candidate drug targets for these events remains to be elucidated. Given its antioxidative activities, we speculated that melatonin may reduce pyroptosis, and thereby modulate both angiogenesis and lymphangiogenesis. We revealed that a co-culture of A549 cells and THP-1 macrophages strongly enhanced expressions of the NLRP3 inflammasome axis members, and augmented angiogenesis and lymphangiogenesis. Next, we overexpressed NLRP3 in the A549 cells, and demonstrated that excess NLRP3 expression substantially upregulated VEGF and CXCL cytokine expressions, and enhanced lymphatic endothelial cells (LECs) tube formation. In contrast, NLRP3 inhibition produced the opposite effect. In addition, relative to controls, melatonin administration strongly inhibited the NLRP3 inflammasome axis, as well as angiogenesis and lymphangiogenesis in the co-culture system. Subsequent animal experiments using a Lewis Lung Carcinoma (LLC) subcutaneous tumor model in mice corroborate these findings. Melatonin treatment and NLRP3 knockdown significantly inhibit tumor growth and downregulate NLRP3 and IL-1β expression in tumor tissues. Furthermore, melatonin downregulates the expression of angiogenic and lymphangiogenic markers in tumor tissues. Taken together, the evidence suggested that a THP-1 macrophage and A549 cell co-culture stimulates angiogenesis and lymphangiogenesis via the NLRP3 axis. Melatonin protected against the TAMs- and NLRP3 axis-associated promotion of the aforementioned events in vitro and in vivo. Hence, melatonin is a promising candidate for managing for tumor-related angiogenesis and lymphangiogenesis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhewei Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dongjie Ma
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yingzhi Qin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Vallecillo-García P, Kühnlein MN, Orgeur M, Hansmeier NR, Kotsaris G, Meisen ZG, Timmermann B, Giesecke-Thiel C, Hägerling R, Stricker S. Mesenchymal Osr1+ cells regulate embryonic lymphatic vessel formation. Development 2024; 151:dev202747. [PMID: 39221968 PMCID: PMC11441984 DOI: 10.1242/dev.202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.
Collapse
Affiliation(s)
- Pedro Vallecillo-García
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353Berlin, Germany
| | - Mira Nicola Kühnlein
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Mickael Orgeur
- Unit for Integrated Mycobacterial Pathogenomics,Institut Pasteur, Université Paris Cité, CNRS UMR 6047, 75015 Paris, France
| | - Nils Rouven Hansmeier
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georgios Kotsaris
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Zarah Gertrud Meisen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - René Hägerling
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- BIH Academy, Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Charitéplatz 1, 10117 Berlin, Germany
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| |
Collapse
|
6
|
Liang W, Wang H, Fu B, Song Y, Zhang Z, Liu X, Lin Y, Zhang J. Inhibition of Lymphangiogenesis: A Protective Role of microRNA 146a-5p in Breast Cancer. Breast J 2024; 2024:7813083. [PMID: 39742358 PMCID: PMC11357816 DOI: 10.1155/2024/7813083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 01/03/2025]
Abstract
Breast cancer is the leading cause of death and morbidity among women. A major challenge for clinical management of breast cancer is the dissemination of breast cancer cells from the primary tumor site via lymphatic drainage, resulting in metastatic tumor spread. Recent studies have found that high expression of the microRNA miR-146a-5p is associated with better survival outcomes for breast cancer patients. However, the mechanisms for this prognostic benefit are not fully elucidated, including whether or not miR-146a-5p plays a role in suppression of lymphatic dissemination. In this study, we investigated the role and uncovered functional mechanisms of miR-146a-5p in breast cancer. We found that high expression of miR-146a-5p is associated with better clinical outcomes, specifically in the patients with N0 breast cancer. In culture, miR-146a-5p overexpression in MCF-7 breast cancer cells suppressed cell migration and lymphangiogenesis in lymphatic endothelial cells. When implanted in the mammary fat pad of mice, we observed that miR-146a-5p overexpressing MCF-7 suppressed lymphatic dissemination but had no effect on tumor progression in the primary site. This suppression was associated with fewer disseminated cancer cells and reduced lymphangiogenesis in the draining and distal lymph nodes. In conclusion, these results suggest that miR-146a-5p can exhibit a protective role against breast cancer metastasis, and it can be a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Wenlong Liang
- Department of Breast SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoran Wang
- Department of Hepatobiliary SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiyang Fu
- Department of Breast SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Song
- Department of Breast SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Zhang
- Department of Hepatobiliary SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Hepatobiliary SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujia Lin
- Department of Hepatobiliary SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianguo Zhang
- Department of Breast SurgerySecond Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Pan X, Li X, Dong L, Liu T, Zhang M, Zhang L, Zhang X, Huang L, Shi W, Sun H, Fang Z, Sun J, Huang Y, Shao H, Wang Y, Yin M. Tumour vasculature at single-cell resolution. Nature 2024; 632:429-436. [PMID: 38987599 DOI: 10.1038/s41586-024-07698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Tumours can obtain nutrients and oxygen required to progress and metastasize through the blood supply1. Inducing angiogenesis involves the sprouting of established vessel beds and their maturation into an organized network2,3. Here we generate a comprehensive atlas of tumour vasculature at single-cell resolution, encompassing approximately 200,000 cells from 372 donors representing 31 cancer types. Trajectory inference suggested that tumour angiogenesis was initiated from venous endothelial cells and extended towards arterial endothelial cells. As neovascularization elongates (through angiogenic stages SI, SII and SIII), APLN+ tip cells at the SI stage (APLN+ TipSI) advanced to TipSIII cells with increased Notch signalling. Meanwhile, stalk cells, following tip cells, transitioned from high chemokine expression to elevated TEK (also known as Tie2) expression. Moreover, APLN+ TipSI cells not only were associated with disease progression and poor prognosis but also hold promise for predicting response to anti-VEGF therapy. Lymphatic endothelial cells demonstrated two distinct differentiation lineages: one responsible for lymphangiogenesis and the other involved in antigen presentation. In pericytes, endoplasmic reticulum stress was associated with the proangiogenic BASP1+ matrix-producing pericytes. Furthermore, intercellular communication analysis showed that neovascular endothelial cells could shape an immunosuppressive microenvironment conducive to angiogenesis. This study depicts the complexity of tumour vasculature and has potential clinical significance for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xu Pan
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xin Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Liang Dong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Liu
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Min Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Lining Zhang
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Xiyuan Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Lingjuan Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Wensheng Shi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyin Sun
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhaoyu Fang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering at Central South University, Changsha, China
| | - Jie Sun
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yaoxuan Huang
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Hua Shao
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Mingzhu Yin
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China.
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China.
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Xing Y, Wang X, Liu J, Zhang Y, Tianran H, Dong L, Tian J, Liu J. Low-dose cadmium induces lymphangiogenesis through activation of the STAT3 signaling pathway. Biomed Pharmacother 2024; 175:116741. [PMID: 38744218 DOI: 10.1016/j.biopha.2024.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Cadmium (Cd) is a widespread environmental toxicant that poses significant threat to public health. After intake, Cd is distributed throughout the body via blood and lymphatic circulation. However, the effect of Cd on lymphatic vessels has not been revealed. In this study, mice were exposed to 10 μM cadmium chloride through drinking water immediately after corneal alkali burn. In vivo analyses showed that Cd treatment enhances the alkali burn-induced corneal lymphangiogenesis, which is characterized by increased expression of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), prospero-related homeobox 1 (PROX-1) and vascular endothelial growth factor receptor 3 (VEGFR3). In vitro, the proliferation and migration of human dermal lymphatic endothelial cells (HDLECs) are increased by 1 μM Cd treatment, while inhibited by 10 μM Cd treatment. At a concentration of 1 μM, Cd specifically induces phosphorylation of signal transducer and activator of transcription 3 (STAT3), but has no effect on the MAPK, AKT, or NF-κB signaling pathway. In the presence of the STAT3 inhibitor STATTIC, Cd fails to induce HDLECs proliferation and migration. In addition, Cd upregulates VEGFR3 expression and its gene promoter activity in a STAT3-dependent manner. Our study suggests that low-dose Cd promotes lymphangiogenesis through activation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yan Xing
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, 250014, China; Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Xia Wang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Jing Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Yuanqing Zhang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Huai Tianran
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Liang Dong
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, 250014, China
| | - Jinghui Tian
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.
| |
Collapse
|
9
|
Li JJ, Mao JX, Zhong HX, Zhao YY, Teng F, Lu XY, Zhu LY, Gao Y, Fu H, Guo WY. Multifaceted roles of lymphatic and blood endothelial cells in the tumor microenvironment of hepatocellular carcinoma: A comprehensive review. World J Hepatol 2024; 16:537-549. [PMID: 38689749 PMCID: PMC11056903 DOI: 10.4254/wjh.v16.i4.537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024] Open
Abstract
The tumor microenvironment is a complex network of cells, extracellular matrix, and signaling molecules that plays a critical role in tumor progression and metastasis. Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits. However, recent studies have shown that lymphatic endothelial cells (LECs) and blood endothelial cells (BECs) also play multifaceted roles in the tumor microenvironment beyond their structural functions, particularly in hepatocellular carcinoma (HCC). This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC, including their involvement in angiogenesis, immune modulation, lymphangiogenesis, and metastasis. By providing a detailed account of the complex interplay between LECs, BECs, and tumor cells, this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jing-Jing Li
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jia-Xi Mao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Han-Xiang Zhong
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yuan-Yu Zhao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xin-Yi Lu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Li-Ye Zhu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yang Gao
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Hong Fu
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Yuan Guo
- Department of Liver Surgery and Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
10
|
Chen T, Ruan Y, Ji L, Cai J, Tong M, Xue Y, Zhao H, Cai X, Xu J. S100A6 drives lymphatic metastasis of liver cancer via activation of the RAGE/NF-kB/VEGF-D pathway. Cancer Lett 2024; 587:216709. [PMID: 38350547 DOI: 10.1016/j.canlet.2024.216709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Patients diagnosed with lymph node (LN) metastatic liver cancer face an exceedingly grim prognosis. In-depth analysis of LN metastatic patients' characteristics and tumor cells' interactions with human lymphatic endothelial cells (HLECs), can provide important biological and therapeutic insights. Here we identify at the single-cell level that S100A6 expression differs between primary tumor and their LN metastasis. Of particular significance, we uncovered the disparity in S100A6 expression between tumors and normal tissues is greater in intrahepatic cholangiocarcinoma (ICC) patients, frequently accompanied by LN metastases, than that in hepatocellular carcinoma (HCC), with rare occurrence of LN metastasis. Furthermore, in the infrequent instances of LN metastasis in HCC, heightened S100A6 expression was observed, suggesting a critical role of S100A6 in the process of LN metastasis. Subsequent experiments further uncovered that S100A6 secreted from tumor cells promotes lymphangiogenesis by upregulating the expression and secretion of vascular endothelial growth factor-D (VEGF-D) in HLECs through the RAGE/NF-kB/VEGF-D pathway while overexpression of S100A6 in tumor cells also augmented their migration and invasion. Taken together, these data reveal the dual effects of S100A6 in promoting LN metastasis in liver cancer, thus highlighting its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- TianYi Chen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - YeLing Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - Lin Ji
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - JingWei Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - Meng Tong
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - YangTao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - Hu Zhao
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - XiuJun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - JunJie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
11
|
Liu Z, Liu K, Shi S, Chen X, Gu X, Wang W, Mao K, Yibulayi R, Wu W, Zeng L, Zhou W, Lin X, Zhang F, Lou B. Alkali injury-induced pathological lymphangiogenesis in the iris facilitates the infiltration of T cells and ocular inflammation. JCI Insight 2024; 9:e175479. [PMID: 38587075 PMCID: PMC11128208 DOI: 10.1172/jci.insight.175479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Inflammatory lymphangiogenesis is intimately linked to immune regulation and tissue homeostasis. However, current evidence has suggested that classic lymphatic vessels are physiologically absent in intraocular structures. Here, we show that neolymphatic vessels were induced in the iris after corneal alkali injury (CAI) in a VEGFR3-dependent manner. Cre-loxP-based lineage tracing revealed that these lymphatic endothelial cells (LECs) originate from existing Prox1+ lymphatic vessels. Notably, the ablation of iridial lymphangiogenesis via conditional deletion of VEGFR3 alleviated the ocular inflammatory response and pathological T cell infiltration. Our findings demonstrate that iridial neolymphatics actively participate in pathological immune responses following injury and suggest intraocular lymphangiogenesis as a valuable therapeutic target for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shunhua Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Weifa Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keli Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rukeye Yibulayi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wanwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
12
|
Costanzo A, Clarke D, Holt M, Sharma S, Nagy K, Tan X, Kain L, Abe B, Luce S, Boitard C, Wyseure T, Mosnier LO, Su AI, Grimes C, Finn MG, Savage PB, Gottschalk M, Pettus J, Teyton L. Repositioning the Early Pathology of Type 1 Diabetes to the Extraislet Vasculature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1094-1104. [PMID: 38426888 PMCID: PMC10944819 DOI: 10.4049/jimmunol.2300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.
Collapse
Affiliation(s)
- Anne Costanzo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Don Clarke
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marie Holt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Xuqian Tan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Lisa Kain
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Brian Abe
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Tine Wyseure
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Catherine Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT
| | - Michael Gottschalk
- Rady Children’s Hospital, University of California San Diego, San Diego, CA
| | - Jeremy Pettus
- UC San Diego School of Medicine, University of California San Diego, San Diego, CA
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
13
|
Li Y, Zhu X, Li L, Bao C, Liu Q, Zhang N, He Z, Ji Y, Bao J. Construction and applications of the EOMA spheroid model of Kaposiform hemangioendothelioma. J Biol Eng 2024; 18:21. [PMID: 38486263 PMCID: PMC10941415 DOI: 10.1186/s13036-024-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Kaposiform hemangioendothelioma (KHE) is a rare intermediate vascular tumor with unclear pathogenesis. Recently, three dimensional (3D) cell spheroids and organoids have played an indispensable role in the study of many diseases, such as infantile hemangioma and non-involuting congenital hemangiomas. However, few research on KHE are based on the 3D model. This study aims to evaluate the 3D superiority, the similarity with KHE and the ability of drug evaluation of EOMA spheroids as an in vitro 3D KHE model. RESULTS After two days, relatively uniform morphology and high viability of EOMA spheroids were generated by the rotating cell culture system (RCCS). Through transcriptome analysis, compared with 2D EOMA cells, focal adhesion-related genes such as Itgb4, Flt1, VEGFC, TNXB, LAMA3, VWF, and VEGFD were upregulated in EOMA spheroids. Meanwhile, the EOMA spheroids injected into the subcutaneous showed more obvious KMP than 2D EOMA cells. Furthermore, EOMA spheroids possessed the similar characteristics to the KHE tissues and subcutaneous tumors, such as diagnostic markers (CD31 and LYVE-1), cell proliferation (Ki67), hypoxia (HIF-1α) and cell adhesion (E-cadherin and N-cadherin). Based on the EOMA spheroid model, we discovered that sirolimus, the first-line drug for treating KHE, could inhibit EOMA cell proliferation and downregulate the VEGFC expression. Through the extra addition of VEGFC, the effect of sirolimus on EOMA spheroid could be weakened. CONCLUSION With a high degree of similarity of the KHE, 3D EOMA spheroids generated by the RCCS can be used as a in vitro model for basic researches of KHE, generating subcutaneous tumors and drug screening.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Xinglong Zhu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Li Li
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Chunjuan Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Qin Liu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Ning Zhang
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
| | - Ziyan He
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Yi Ji
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
14
|
Itai N, Gantumur E, Tsujita-Inoue K, Mitsukawa N, Akita S, Kajiya K. Lymphangiogenesis and Lymphatic Zippering in Skin Associated with the Progression of Lymphedema. J Invest Dermatol 2024; 144:659-668.e7. [PMID: 37660779 DOI: 10.1016/j.jid.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Secondary lymphedema often develops after lymph node dissection or radiation therapy for cancer treatment, resulting in marked skin fibrosis and increased stiffness owing to insufficiency of the lymphatic system caused by abnormal structure and compromised function. However, little is known about the associated changes of the dermal lymphatic vessels. In this study, using the lower limb skin samples of patients with secondary lymphedema, classified as types 1-4 by lymphoscintigraphy, we first confirmed the presence of epidermal thickening and collagen accumulation in the dermis, closely associated with the progression of lymphedema. Three-dimensional characterization of lymphatic capillaries in skin revealed prominent lymphangiogenesis in types 1 and 2 lymphedema. In contrast, increased recruitment of smooth muscle cells accompanied by development of the basement membrane in lymphatic capillaries was observed in types 3 and 4 lymphedema. Remarkably, the junctions of dermal lymphatic capillaries were dramatically remodeled from a discontinuous button-like structure to a continuous zipper-like structure. This finding is consistent with previous findings in an infection-induced mouse model. Such junction tightening (zippering) could reduce fluid transport and cutaneous viral sequestration during the progression of lymphedema and might explain the aggravation of secondary lymphedema. These findings may be helpful in developing stage-dependent treatment of patients with lymphedema.
Collapse
Affiliation(s)
- Nao Itai
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | | | | | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University, Chiba, Japan
| | - Shinsuke Akita
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University, Chiba, Japan
| | - Kentaro Kajiya
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan.
| |
Collapse
|
15
|
Zhou YW, Ren Y, Lu MM, Xu LL, Cheng WX, Zhang MM, Ding LP, Chen D, Gao JG, Du J, Jin CL, Chen CX, Li YF, Cheng T, Jiang PL, Yang YD, Qian PX, Xu PF, Jin X. Crohn's disease as the intestinal manifestation of pan-lymphatic dysfunction: An exploratory proposal based on basic and clinical data. World J Gastroenterol 2024; 30:34-49. [PMID: 38293325 PMCID: PMC10823898 DOI: 10.3748/wjg.v30.i1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Crohn's disease (CD) is caused by immune, environmental, and genetic factors. It can involve the entire gastrointestinal tract, and although its prevalence is rapidly increasing its etiology remains unclear. Emerging biological and small-molecule drugs have advanced the treatment of CD; however, a considerable proportion of patients are non-responsive to all known drugs. To achieve a breakthrough in this field, innovations that could guide the further development of effective therapies are of utmost urgency. In this review, we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases, and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data. The supporting evidence is fully summarized, including the existence of lymphatic system dysfunction, recognition of the inside-out model, disorders of immune cells, changes in cell plasticity, partial overlap of the underlying mechanisms, and common gut-derived fatty and bile acid metabolism. Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases, especially CD, as this model is good at presenting and mimicking lymphatic dysfunction. More importantly, the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.
Collapse
Affiliation(s)
- Yu-Wei Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The Second Hospital of Jiaxing, Jiaxing 314000, Zhejiang Province, China
| | - Miao-Miao Lu
- Endoscopy Center, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The Second People’s Hospital of Yuhang District, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Meng Zhang
- Department of Gastroenterology, Hangzhou Shangcheng District People’s Hospital, Hangzhou 310003, Zhejiang Province, China
| | - Lin-Ping Ding
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Juan Du
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ci-Liang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Fei Li
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Tao Cheng
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Lei Jiang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Da Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Xu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Fei Xu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
16
|
Zhou S, Zhao G, Chen R, Li Y, Huang J, Kuang L, Zhang D, Li Z, Xu H, Xiang W, Xie Y, Chen L, Ni Z. Lymphatic vessels: roles and potential therapeutic intervention in rheumatoid arthritis and osteoarthritis. Theranostics 2024; 14:265-282. [PMID: 38164153 PMCID: PMC10750203 DOI: 10.7150/thno.90940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Lymphatic vessel networks are a main part of the vertebrate cardiovascular system, which participate in various physiological and pathological processes via regulation of fluid transport and immunosurveillance. Targeting lymphatic vessels has become a potent strategy for treating various human diseases. The presence of varying degrees of inflammation in joints of rheumatoid arthritis (RA) and osteoarthritis (OA), characterized by heightened infiltration of inflammatory cells, increased levels of inflammatory factors, and activation of inflammatory signaling pathways, significantly contributes to the disruption of cartilage and bone homeostasis in arthritic conditions. Increasing evidence has demonstrated the pivotal role of lymphatic vessels in maintaining joint homeostasis, with their pathological alterations closely associated with the initiation and progression of inflammatory joint diseases. In this review, we provide a comprehensive overview of the evolving knowledge regarding the structural and functional aspects of lymphatic vessels in the pathogenesis of RA and OA. In addition, we summarized the potential regulatory mechanisms underlying the modulation of lymphatic function in maintaining joint homeostasis during inflammatory conditions, and further discuss the distinctions between RA and OA. Moreover, we describe therapeutic strategies for inflammatory arthritis based on lymphatic vessels, including the promotion of lymphangiogenesis, restoration of proper lymphatic vessel function through anti-inflammatory approaches, enhancement of lymphatic contractility and drainage, and alleviation of congestion within the lymphatic system through the elimination of inflammatory cells. At last, we envisage potential research perspectives and strategies to target lymphatic vessels in treating these inflammatory joint diseases.
Collapse
Affiliation(s)
- Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Guangyu Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Yang Li
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Junlan Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110015, People's Republic of China
| | - Zhijun Li
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Haofeng Xu
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Wei Xiang
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Zhenhong Ni
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
17
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
18
|
Lin S, Chai Y, Zheng X, Xu X. The role of HIF in angiogenesis, lymphangiogenesis, and tumor microenvironment in urological cancers. Mol Biol Rep 2023; 51:14. [PMID: 38085375 PMCID: PMC10716070 DOI: 10.1007/s11033-023-08931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Typically associated with solid tumors, hypoxia contributes to tumor angiogenesis and lymphangiogenesis through various molecular mechanisms. Accumulating studies indicate that hypoxia-inducible factor is the key transcription factor coordinating endothelial cells to respond to hypoxia in urological cancers, mainly renal cell carcinoma, prostate cancer, and bladder cancer. Moreover, it has been suggested that tumor hypoxia in tumor microenvironment simultaneously recruits stromal cells to suppress immune activities. This review summarizes the mechanisms by which HIF regulates tumorigenesis and elaborates on the associations between HIF and angiogenesis, lymphangiogenesis, and tumor microenvironment in urological cancers.
Collapse
Affiliation(s)
- Shen Lin
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueyang Chai
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangyi Zheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xin Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Wang D, Zhao Y, Zhou Y, Yang S, Xiao X, Feng L. Angiogenesis-An Emerging Role in Organ Fibrosis. Int J Mol Sci 2023; 24:14123. [PMID: 37762426 PMCID: PMC10532049 DOI: 10.3390/ijms241814123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the study of lymphangiogenesis and fibrotic diseases has made considerable achievements, and accumulating evidence indicates that lymphangiogenesis plays a key role in the process of fibrosis in various organs. Although the effects of lymphangiogenesis on fibrosis disease have not been conclusively determined due to different disease models and pathological stages of organ fibrosis, its importance in the development of fibrosis is unquestionable. Therefore, we expounded on the characteristics of lymphangiogenesis in fibrotic diseases from the effects of lymphangiogenesis on fibrosis, the source of lymphatic endothelial cells (LECs), the mechanism of fibrosis-related lymphangiogenesis, and the therapeutic effect of intervening lymphangiogenesis on fibrosis. We found that expansion of LECs or lymphatic networks occurs through original endothelial cell budding or macrophage differentiation into LECs, and the vascular endothelial growth factor C (VEGFC)/vascular endothelial growth factor receptor (VEGFR3) pathway is central in fibrosis-related lymphangiogenesis. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), as a receptor of LECs, is also involved in the regulation of lymphangiogenesis. Intervention with lymphangiogenesis improves fibrosis to some extent. In the complex organ fibrosis microenvironment, a variety of functional cells, inflammatory factors and chemokines synergistically or antagonistically form the complex network involved in fibrosis-related lymphangiogenesis and regulate the progression of fibrosis disease. Further clarifying the formation of a new fibrosis-related lymphangiogenesis network may potentially provide new strategies for the treatment of fibrosis disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Feng
- Division of Liver Surgery, Department of General Surgery and Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; (D.W.); (Y.Z.); (Y.Z.); (S.Y.); (X.X.)
| |
Collapse
|
20
|
Choi YH, Hsu M, Laaker C, Herbath M, Yang H, Cismaru P, Johnson AM, Spellman B, Wigand K, Sandor M, Fabry Z. Dual role of Vascular Endothelial Growth Factor-C (VEGF-C) in post-stroke recovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555144. [PMID: 37693558 PMCID: PMC10491156 DOI: 10.1101/2023.08.30.555144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Using a mouse model of ischemic stroke, this study characterizes stroke-induced lymphangiogenesis at the cribriform plate (CP). While blocking CP lymphangiogenesis with a VEGFR-3 inhibitor improves stroke outcome, administration of VEGF-C induced larger brain infarcts. Abstract Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dural meningeal lymphatics. However, the pathological roles of these lymphatic vessels surrounding the CNS during stroke are not well understood. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we show that stroke induces lymphangiogenesis near the cribriform plate. Interestingly, lymphangiogenesis is restricted to lymphatic vessels at the cribriform plate and downstream cervical lymph nodes, without affecting the conserved network of lymphatic vessels in the dura. Cribriform plate lymphangiogenesis peaks at day 7 and regresses by day 14 following tMCAO and is regulated by VEGF-C/VEGFR-3. These newly developed lymphangiogenic vessels transport CSF and immune cells to the cervical lymph nodes. Inhibition of VEGF-C/VEGFR-3 signaling using a blocker of VEGFR-3 prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points but had no effects at later time points following stroke. Administration of VEGF-C after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. The differential roles for VEGFR-3 inhibition and VEGF-C in regulating stroke pathology call into question recent suggestions to use VEGF-C therapeutically for stroke.
Collapse
|
21
|
Matsui K, Torii S, Hara S, Maruyama K, Arai T, Imanaka-Yoshida K. Tenascin-C in Tissue Repair after Myocardial Infarction in Humans. Int J Mol Sci 2023; 24:10184. [PMID: 37373332 DOI: 10.3390/ijms241210184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adverse ventricular remodeling after myocardial infarction (MI) is progressive ventricular dilatation associated with heart failure for weeks or months and is currently regarded as the most critical sequela of MI. It is explained by inadequate tissue repair due to dysregulated inflammation during the acute stage; however, its pathophysiology remains unclear. Tenascin-C (TNC), an original member of the matricellular protein family, is highly up-regulated in the acute stage after MI, and a high peak in its serum level predicts an increased risk of adverse ventricular remodeling in the chronic stage. Experimental TNC-deficient or -overexpressing mouse models have suggested the diverse functions of TNC, particularly its pro-inflammatory effects on macrophages. The present study investigated the roles of TNC during human myocardial repair. We initially categorized the healing process into four phases: inflammatory, granulation, fibrogenic, and scar phases. We then immunohistochemically examined human autopsy samples at the different stages after MI and performed detailed mapping of TNC in human myocardial repair with a focus on lymphangiogenesis, the role of which has recently been attracting increasing attention as a mechanism to resolve inflammation. The direct effects of TNC on human lymphatic endothelial cells were also assessed by RNA sequencing. The results obtained support the potential roles of TNC in the regulation of macrophages, sprouting angiogenesis, the recruitment of myofibroblasts, and the early formation of collagen fibrils during the inflammatory phase to the early granulation phase of human MI. Lymphangiogenesis was observed after the expression of TNC was down-regulated. In vitro results revealed that TNC modestly down-regulated genes related to nuclear division, cell division, and cell migration in lymphatic endothelial cells, suggesting its inhibitory effects on lymphatic endothelial cells. The present results indicate that TNC induces prolonged over-inflammation by suppressing lymphangiogenesis, which may be one of the mechanisms underlying adverse post-infarct remodeling.
Collapse
Affiliation(s)
- Kenta Matsui
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Shigeru Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 3-52 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
22
|
Lin X, Bell RD, Catheline SE, Takano T, McDavid A, Jonason JH, Schwarz EM, Xing L. Targeting Synovial Lymphatic Function as a Novel Therapeutic Intervention for Age-Related Osteoarthritis in Mice. Arthritis Rheumatol 2023; 75:923-936. [PMID: 36625730 PMCID: PMC10238595 DOI: 10.1002/art.42441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The synovial lymphatic system (SLS) removes catabolic factors from the joint. Vascular endothelial growth factor C (VEGF-C) and its receptor, VEGFR-3, are crucial for lymphangiogenesis. However, their involvement in age-related osteoarthritis (OA) is unknown. This study was undertaken to determine whether the SLS and the VEGF-C/VEGFR-3 pathway contribute to the development and progression of age-related OA, using a murine model of naturally occurring joint disease. METHODS SLS function was assessed in the knees of young (3-month-old) and aged (19-24-month-old) male and female C57BL/6J mice via a newly established in vivo IVIS-dextran imaging approach, which, in addition to histology, was used to assess the effects of VEGF-C treatment on SLS function and OA pathology in aged mice. RNA-sequencing of synovial tissue was performed to explore molecular mechanisms of the disease in the mouse knee joints. RESULTS Results showed that aged mice had impaired SLS function, including decreases in joint clearance (mean T1/2 of signal intensity clearance, 2.8 hours in aged mice versus 0.5 hours in young mice; P < 0.0001), synovial influx (mean ± SD 1.7 ± 0.8% in aged mice versus 4.1 ± 1.9% in young mice; P = 0.0004), and lymph node draining capacity (mean ± SD epifluorescence total radiant intensity ([photons/second]/[μW/cm2 ]) 1.4 ± 0.8 in aged mice versus 3.7 ± 1.2 in young mice; P < 0.0001). RNA-sequencing of the synovial tissue showed that Vegf-c and Vegfr3 signaling genes were decreased in the synovium of aged mice. VEGF-C treatment resulted in improvements in SLS function in aged mice, including increased percentage of signal intensity joint clearance (mean ± SD 63 ± 9% in VEGF-C-treated aged mice versus 52 ± 15% in vehicle-treated aged mice; P = 0.012), increased total articular cartilage cross-sectional area (mean ± SD 0.38 ± 0.07 mm2 in VEGF-C-treated aged mice versus 0.26 ± 0.07 mm2 in vehicle-treated aged mice; P < 0.0001), and decreased percentage of matrix metallopeptidase 13-positive staining area within total synovial area in 22-month-old VEGF-C-treated mice versus 22-month-old vehicle-treated mice (mean ± SD decrease 7 ± 2% versus 4 ± 1%; P = 0.0004). CONCLUSION SLS function is reduced in the knee joints of aged mice due to decreased VEGF-C/VEGFR-3 signaling. VEGF-C treatment attenuates OA joint damage and improves synovial lymphatic drainage in aged mice. The SLS and VEGF-C/VEGFR-3 signaling represent novel physiopathologic mechanisms that could potentially be used as therapeutic targets for age-related OA.
Collapse
Affiliation(s)
- Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Richard D. Bell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sarah E. Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrew McDavid
- Department of Biostatistics and computational biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jennifer H. Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
23
|
Yao W, Jia X, Zhu L, Xu L, Zhang Q, Xia T, Wei L. Exosomal circ_0026611 contributes to lymphangiogenesis by reducing PROX1 acetylation and ubiquitination in human lymphatic endothelial cells (HLECs). Cell Mol Biol Lett 2023; 28:13. [PMID: 36803975 PMCID: PMC9936748 DOI: 10.1186/s11658-022-00410-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/24/2022] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Esophageal squamous carcinoma (ESCC) is a common malignancy that originates in the digestive tract. Lymph node metastasis (LNM) is a complicated process, and tumor lymphangiogenesis has been reported to be associated with the spread of tumor cells to lymph nodes (LNs), including in ESCC. However, little is currently known about the mechanisms involved in lymphangiogenesis in ESCC tumors. According to previous literature, we know that hsa_circ_0026611 expresses at a high level in serum exosomes of patients with ESCC and shows a close association with LNM and poor prognosis. However, details on the functions of circ_0026611 in ESCC remain unclear. We aim to explore the effects of circ_0026611 in ESCC cell-derived exosomes on lymphangiogenesis and its potential molecular mechanism. METHODS We firstly examined how circ_0026611 may express in ESCC cells and exosomes by quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR). The potential effects circ_0026611 may exert on lymphangiogenesis in ESCC cell-derived exosomes were assessed afterward via mechanism experiments. RESULTS circ_0026611 high expression pattern was confirmed in ESCC cells and exosomes. ESCC cell-derived exosomes promoted lymphangiogenesis by transferring circ_0026611. Besides, circ_0026611 interacted with N-α-acetyltransferase 10 (NAA10) to inhibit NAA10-mediated prospero homeobox 1 (PROX1) acetylation with subsequent ubiquitination and degradation. Furthermore, circ_0026611 was verified to promote lymphangiogenesis in a PROX1-mediated manner. CONCLUSIONS Exosomal circ_0026611 inhibited PROX1 acetylation and ubiquitination to promote lymphangiogenesis in ESCC.
Collapse
Affiliation(s)
- Wenjian Yao
- grid.256922.80000 0000 9139 560XDepartment of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Xiangbo Jia
- grid.256922.80000 0000 9139 560XDepartment of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Li Zhu
- grid.414011.10000 0004 1808 090XDepartment of Thoracic Surgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, 450003 Henan China
| | - Lei Xu
- grid.256922.80000 0000 9139 560XDepartment of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Quan Zhang
- grid.256922.80000 0000 9139 560XDepartment of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Tian Xia
- grid.256922.80000 0000 9139 560XDepartment of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
24
|
Zhou Y, Zhu X, Wang H, Duan C, Cui H, Shi J, Shi S, Yuan G, Hu Y. The Role of VEGF Family in Lipid Metabolism. Curr Pharm Biotechnol 2023; 24:253-265. [PMID: 35524661 DOI: 10.2174/1389201023666220506105026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
The vascular endothelial growth factor (VEGF) family plays a major role in tumors and ophthalmic diseases. However, increasingly more data reported its potential in regulating lipids. With its biological functions mainly expressed in lymphatic vessels, some factors in the families, like VEGF-A and VEGF-C, have been proved to regulate intestinal absorption of lipids by affecting chylous ducts. Other effects, including regulating lipoprotein lipase (LPL), endothelial lipase (EL), and recombinant syndecan 1 (SDC1), have also been confirmed. However, given the scant-related studies, further research should be conducted to examine the concrete mechanisms and provide pragmatic ways to apply them in the clinic. The VEGF family may treat dyslipidemia in specific ways that are different from common methods and concurrently contribute to the treatment of other metabolic diseases, like diabetes and obesity.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Zhang L, Yuan J, Kofi Wiredu Ocansey D, Lu B, Wan A, Chen X, Zhang X, Qiu W, Mao F. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease. Int Immunopharmacol 2022; 110:109066. [DOI: 10.1016/j.intimp.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
|
26
|
Pal S, Gashev A, Roy D. Nuclear localization of histamine receptor 2 in primary human lymphatic endothelial cells. Biol Open 2022; 11:bio059191. [PMID: 35776777 PMCID: PMC9257380 DOI: 10.1242/bio.059191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Histamine exerts its physiological functions through its four receptor subtypes. In this work, we report the subcellular localization of histamine receptor 2 (H2R), a G protein-coupled receptor (GPCR), which is expressed in a wide variety of cell and tissue types. A growing number of GPCRs have been shown to be localized in the nucleus and contribute toward transcriptional regulation. In this study, for the first time, we demonstrate the nuclear localization of H2R in lymphatic endothelial cells. In the presence of its ligand, we show significant upregulation of H2R nuclear translocation kinetics. Using fluorescently tagged histamine, we explored H2R-histamine binding interaction, which exhibits a critical role in this translocation event. Altogether, our results highlight the previously unrecognized nuclear localization pattern of H2R. At the same time, H2R as a GPCR imparts many unresolved questions, such as the functional relevance of this localization, and whether H2R can contribute directly to transcriptional regulation and can affect lymphatic specific gene expression. H2R blockers are commonly used medications that recently have shown significant side effects. Therefore, it is imperative to understand the precise molecular mechanism of H2R biology. In this aspect, our present data shed new light on the unexplored H2R signaling mechanisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, USA
| | - Anatoliy Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, USA
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, USA
| |
Collapse
|
27
|
Bonetti G, Paolacci S, Samaja M, Maltese PE, Michelini S, Michelini S, Michelini S, Ricci M, Cestari M, Dautaj A, Medori MC, Bertelli M. Low Efficacy of Genetic Tests for the Diagnosis of Primary Lymphedema Prompts Novel Insights into the Underlying Molecular Pathways. Int J Mol Sci 2022; 23:ijms23137414. [PMID: 35806420 PMCID: PMC9267137 DOI: 10.3390/ijms23137414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Lymphedema is a chronic inflammatory disorder caused by ineffective fluid uptake by the lymphatic system, with effects mainly on the lower limbs. Lymphedema is either primary, when caused by genetic mutations, or secondary, when it follows injury, infection, or surgery. In this study, we aim to assess to what extent the current genetic tests detect genetic variants of lymphedema, and to identify the major molecular pathways that underlie this rather unknown disease. We recruited 147 individuals with a clinical diagnosis of primary lymphedema and used established genetic tests on their blood or saliva specimens. Only 11 of these were positive, while other probands were either negative (63) or inconclusive (73). The low efficacy of such tests calls for greater insight into the underlying mechanisms to increase accuracy. For this purpose, we built a molecular pathways diagram based on a literature analysis (OMIM, Kegg, PubMed, Scopus) of candidate and diagnostic genes. The PI3K/AKT and the RAS/MAPK pathways emerged as primary candidates responsible for lymphedema diagnosis, while the Rho/ROCK pathway appeared less critical. The results of this study suggest the most important pathways involved in the pathogenesis of lymphedema, and outline the most promising diagnostic and candidate genes to diagnose this disease.
Collapse
Affiliation(s)
- Gabriele Bonetti
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- Correspondence: ; Tel.: +39-0365-62-061
| | - Stefano Paolacci
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | | | | | - Sandro Michelini
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, 00047 Marino, Italy;
| | - Serena Michelini
- Unit of Physical Medicine, “Sapienza” University of Rome, 00185 Rome, Italy;
| | | | - Maurizio Ricci
- Division of Rehabilitation Medicine, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Marina Cestari
- Study Centre Pianeta Linfedema, 05100 Terni, Italy;
- Lymphology Sector of the Rehabilitation Service, USLUmbria2, 05100 Terni, Italy
| | - Astrit Dautaj
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Maria Chiara Medori
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Matteo Bertelli
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- MAGI Group, 25010 San Felice del Benaco, Italy;
- MAGI Euregio, 39100 Bolzano, Italy
| |
Collapse
|
28
|
Angiotensin II Induces Cardiac Edema and Hypertrophic Remodeling through Lymphatic-Dependent Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5044046. [PMID: 35222798 PMCID: PMC8881141 DOI: 10.1155/2022/5044046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Cardiac lymphatic vessel growth (lymphangiogenesis) and integrity play an essential role in maintaining tissue fluid balance. Inhibition of lymphatic lymphangiogenesis is involved in cardiac edema and cardiac remodeling after ischemic injury or pressure overload. However, whether lymphatic vessel integrity is disrupted during angiotensin II- (Ang II-) induced cardiac remodeling remains to be investigated. In this study, cardiac remodeling models were established by Ang II (1000 ng/kg/min) in VEGFR-3 knockdown (Lyve-1Cre VEGFR-3f/−) and wild-type (VEGFR-3f/f) littermates. Our results indicated that Ang II infusion not only induced cardiac lymphangiogenesis and upregulation of VEGF-C and VEGFR-3 expression in the time-dependent manner but also enhanced proteasome activity, MKP5 and VE-cadherin degradation, p38 MAPK activation, and lymphatic vessel hyperpermeability. Moreover, VEGFR-3 knockdown significantly inhibited cardiac lymphangiogenesis in mice, resulting in exacerbation of tissue edema, hypertrophy, fibrosis superoxide production, inflammation, and heart failure (HF). Conversely, administration of epoxomicin (a selective proteasome inhibitor) markedly mitigated Ang II-induced cardiac edema, remodeling, and dysfunction; upregulated MKP5 and VE-cadherin expression; inactivated p38 MAPK; and reduced lymphatic vessel hyperpermeability in WT mice, indicating that inhibition of proteasome activity is required to maintain lymphatic endothelial cell (LEC) integrity. Our results show that both cardiac lymphangiogenesis and lymphatic barrier hyperpermeability are implicated in Ang II-induced adaptive hypertrophic remodeling and dysfunction. Proteasome-mediated hyperpermeability of LEC junctions plays a predominant role in the development of cardiac remodeling. Selective stimulation of lymphangiogenesis or inhibition of proteasome activity may be a potential therapeutic option for treating hypertension-induced cardiac remodeling.
Collapse
|
29
|
García-Silva S, Benito-Martín A, Nogués L, Hernández-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M, Ximénez-Embún P, Kataru RP, Lopez AA, Merino C, Sánchez-Redondo S, Graña-Castro O, Matei I, Nicolás-Avila JÁ, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Pérez-Martínez M, Mata G, Szumera-Ciećkiewicz A, Kalinowska I, Saltari A, Martínez-Gómez JM, Hogan SA, Saragovi HU, Ortega S, Garcia-Martin C, Boskovic J, Levesque MP, Rutkowski P, Hidalgo A, Muñoz J, Megías D, Mehrara BJ, Lyden D, Peinado H. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. NATURE CANCER 2021; 2:1387-1405. [PMID: 34957415 PMCID: PMC8697753 DOI: 10.1038/s43018-021-00272-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Benito-Martín
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Amor Lopez
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Cristina Merino
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - José Ángel Nicolás-Avila
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Gadea Mata
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Iwona Kalinowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Julia M Martínez-Gómez
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Sabrina A Hogan
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Garcia-Martin
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
30
|
Black LM, Farrell ER, Barwinska D, Osis G, Zmijewska AA, Traylor AM, Esman SK, Bolisetty S, Whipple G, Kamocka MM, Winfree S, Spangler DR, Khan S, Zarjou A, El-Achkar TM, Agarwal A. VEGFR3 tyrosine kinase inhibition aggravates cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2021; 321:F675-F688. [PMID: 34658261 PMCID: PMC8714977 DOI: 10.1152/ajprenal.00186.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Laurence M Black
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elisa R Farrell
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Gunars Osis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna A Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephanie K Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Grace Whipple
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata M Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Daryll R Spangler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
31
|
Alanazi MM, Eissa IH, Alsaif NA, Obaidullah AJ, Alanazi WA, Alasmari AF, Albassam H, Elkady H, Elwan A. Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1760-1782. [PMID: 34340610 PMCID: PMC8344243 DOI: 10.1080/14756366.2021.1956488] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
32
|
Roy S, Banerjee P, Ekser B, Bayless K, Zawieja D, Alpini G, Glaser SS, Chakraborty S. Targeting Lymphangiogenesis and Lymph Node Metastasis in Liver Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2052-2063. [PMID: 34509441 PMCID: PMC8647434 DOI: 10.1016/j.ajpath.2021.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
Increased lymphangiogenesis and lymph node metastasis, the important prognostic indicators of aggressive hepatobiliary malignancies such as hepatocellular cancer and cholangiocarcinoma, are associated with poor patient outcome. The liver produces 25% to 50% of total lymphatic fluid in the body and has a dense network of lymphatic vessels. The lymphatic system plays critical roles in fluid homeostasis and inflammation and immune response. Yet, lymphatic vessel alterations and function are grossly understudied in the context of liver pathology. Expansion of the lymphatic network has been documented in clinical samples of liver cancer; and although largely overlooked in the liver, tumor-induced lymphangiogenesis is an important player, increasing tumor metastasis in several cancers. This review aims to provide a detailed perspective on the current knowledge of alterations in the hepatic lymphatic system during liver malignancies, as well as various molecular signaling mechanisms and growth factors that may provide future targets for therapeutic intervention. In addition, the review also addresses current mechanisms and bottlenecks for effective therapeutic targeting of tumor-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kayla Bayless
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - David Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, Indiana; Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| | - Shannon S Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
| |
Collapse
|
33
|
Single-Cell RNA Sequencing Reveals Heterogeneity and Functional Diversity of Lymphatic Endothelial Cells. Int J Mol Sci 2021; 22:ijms222111976. [PMID: 34769408 PMCID: PMC8584409 DOI: 10.3390/ijms222111976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Lymphatic endothelial cells (LECs) line the lymphatic vasculature and play a central role in the immune response. LECs have abilities to regulate immune transport, to promote immune cell survival, and to cross present antigens to dendritic cells. Single-cell RNA sequencing (scRNA) technology has accelerated new discoveries in the field of lymphatic vascular biology. This review will summarize these new findings in regard to embryonic development, LEC heterogeneity with associated functional diversity, and interactions with other cells. Depending on the organ, location in the lymphatic vascular tree, and micro-environmental conditions, LECs feature unique properties and tasks. Furthermore, adjacent stromal cells need the support of LECs for fulfilling their tasks in the immune response, such as immune cell transport and antigen presentation. Although aberrant lymphatic vasculature has been observed in a number of chronic inflammatory diseases, the knowledge on LEC heterogeneity and functional diversity in these diseases is limited. Combining scRNA sequencing data with imaging and more in-depth functional experiments will advance our knowledge of LECs in health and disease. Building the case, the LEC could be put forward as a new therapeutic target in chronic inflammatory diseases, counterweighting the current immune-cell focused therapies.
Collapse
|
34
|
Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 2021; 8:738325. [PMID: 34504884 PMCID: PMC8421775 DOI: 10.3389/fcvm.2021.738325] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the regulator of blood and lymphatic vessels, is mostly investigated in the tumor and ophthalmic field. However, the functions it enjoys can also interfere with the development of atherosclerosis (AS) and further diseases like coronary heart disease (CHD). The source, regulating mechanisms including upregulation and downregulation, target cells/tissues, and known functions about VEGF-A, VEGF-B, VEGF-C, and VEGF-D are covered in the review. VEGF-A can regulate angiogenesis, vascular permeability, and inflammation by binding with VEGFR-1 and VEGFR-2. VEGF-B can regulate angiogenesis, redox, and apoptosis by binding with VEGFR-1. VEGF-C can regulate inflammation, lymphangiogenesis, angiogenesis, apoptosis, and fibrogenesis by binding with VEGFR-2 and VEGFR-3. VEGF-D can regulate lymphangiogenesis, angiogenesis, fibrogenesis, and apoptosis by binding with VEGFR-2 and VEGFR-3. These functions present great potential of applying the VEGF family for treating CHD. For instance, angiogenesis can compensate for hypoxia and ischemia by growing novel blood vessels. Lymphangiogenesis can degrade inflammation by providing exits for accumulated inflammatory cytokines. Anti-apoptosis can protect myocardium from impairment after myocardial infarction (MI). Fibrogenesis can promote myocardial fibrosis after MI to benefit cardiac recovery. In addition, all these factors have been confirmed to keep a link with lipid metabolism, the research about which is still in the early stage and exact mechanisms are relatively obscure. Because few reviews have been published about the summarized role of the VEGF family for treating CHD, the aim of this review article is to present an overview of the available evidence supporting it and give hints for further research.
Collapse
Affiliation(s)
- Yan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Ocansey DKW, Pei B, Xu X, Zhang L, Olovo CV, Mao F. Cellular and molecular mediators of lymphangiogenesis in inflammatory bowel disease. J Transl Med 2021; 19:254. [PMID: 34112196 PMCID: PMC8190852 DOI: 10.1186/s12967-021-02922-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies reporting the intricate crosstalk between cellular and molecular mediators and the lymphatic endothelium in the development of inflammatory bowel diseases (IBD) suggest altered inflammatory cell drainage and lymphatic vasculature, implicating the lymphatic system as a player in the occurrence, development, and recurrence of intestinal diseases. This article aims to review recent data on the modulatory functions of cellular and molecular components of the IBD microenvironment on the lymphatic system, particularly lymphangiogenesis. It serves as a promising therapeutic target for IBD management and treatment. The interaction with gut microbiota is also explored. Main text Evidence shows that cells of the innate and adaptive immune system and certain non-immune cells participate in the complex processes of inflammatory-induced lymphangiogenesis through the secretion of a wide spectrum of molecular factors, which vary greatly among the various cells. Lymphangiogenesis enhances lymphatic fluid drainage, hence reduced infiltration of immunomodulatory cells and associated-inflammatory cytokines. Interestingly, some of the cellular mediators, including mast cells, neutrophils, basophils, monocytes, and lymphatic endothelial cells (LECs), are a source of lymphangiogenic molecules, and a target as they express specific receptors for lymphangiogenic factors. Conclusion The effective target of lymphangiogenesis is expected to provide novel therapeutic interventions for intestinal inflammatory conditions, including IBD, through both immune and non-immune cells and based on cellular and molecular mechanisms of lymphangiogenesis that facilitate inflammation resolution.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
36
|
New lymphatic cell formation is associated with damaged brain tissue clearance after penetrating traumatic brain injury. Sci Rep 2021; 11:10193. [PMID: 33986371 PMCID: PMC8119702 DOI: 10.1038/s41598-021-89616-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
We characterized the tissue repair response after penetrating traumatic brain injury (pTBI) in this study. Seventy specific pathogen-free Kunming mice were randomly divided into the following groups: normal control, 1, 3, 7, 15, 21, and 30 days after pTBI. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and immunofluorescence were performed to examine and monitor brain tissue morphology, and the distribution and expression of lymphatic-specific markers lymphatic vessel endothelial receptor-1 (LYVE-1), hematopoietic precursor cluster of differentiation 34 (CD34) antigen, and Prospero-related homeobox-1 (PROX1) protein. H&E staining revealed that damaged and necrotic tissues observed on day 1 at and around the injury site disappeared on day 7, and there was gradual shrinkage and disappearance of the lesion on day 30, suggesting a clearance mechanism. We explored the possibility of lymphangiogenesis causing this clearance as part of the post-injury response. Notably, expression of lymphangiogenesis markers LYVE-1, CD34, and PROX1 was detected in damaged mouse brain tissue but not in normal tissue. Moreover, new lymphatic cells and colocalization of LYVE-1/CD34 and LYVE-1/PROX1 were also observed. Our findings of the formation of new lymphatic cells following pTBI provide preliminary insights into a post-injury clearance mechanism in the brain. Although we showed that lymphatic cells are implicated in brain tissue repair, further research is required to clarify the origin of these cells.
Collapse
|
37
|
Hutchings G, Kruszyna Ł, Nawrocki MJ, Strauss E, Bryl R, Spaczyńska J, Perek B, Jemielity M, Mozdziak P, Kempisty B, Nowicki M, Krasiński Z. Molecular Mechanisms Associated with ROS-Dependent Angiogenesis in Lower Extremity Artery Disease. Antioxidants (Basel) 2021; 10:735. [PMID: 34066926 PMCID: PMC8148529 DOI: 10.3390/antiox10050735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, atherosclerosis, which affects the vascular bed of all vital organs and tissues, is considered as a leading cause of death. Most commonly, atherosclerosis involves coronary and peripheral arteries, which results in acute (e.g., myocardial infarction, lower extremities ischemia) or chronic (persistent ischemia leading to severe heart failure) consequences. All of them have a marked unfavorable impact on the quality of life and are associated with increased mortality and morbidity in human populations. Lower extremity artery disease (LEAD, also defined as peripheral artery disease, PAD) refers to atherosclerotic occlusive disease of the lower extremities, where partial or complete obstruction of peripheral arteries is observed. Decreased perfusion can result in ischemic pain, non-healing wounds, and ischemic ulcers, and significantly reduce the quality of life. However, the progressive atherosclerotic changes cause stimulation of tissue response processes, like vessel wall remodeling and neovascularization. These mechanisms of adapting the vascular network to pathological conditions seem to play a key role in reducing the impact of the changes limiting the flow of blood. Neovascularization as a response to ischemia induces sprouting and expansion of the endothelium to repair and grow the vessels of the circulatory system. Neovascularization consists of three different biological processes: vasculogenesis, angiogenesis, and arteriogenesis. Both molecular and environmental factors that may affect the process of development and growth of blood vessels were analyzed. Particular attention was paid to the changes taking place during LEAD. It is important to consider the molecular mechanisms underpinning vessel growth. These mechanisms will also be examined in the context of diseases commonly affecting blood vessel function, or those treatable in part by manipulation of angiogenesis. Furthermore, it may be possible to induce the process of blood vessel development and growth to treat peripheral vascular disease and wound healing. Reactive oxygen species (ROS) play an important role in regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. With regard to the repair processes taking place during diseases such as LEAD, prospective therapeutic methods have been described that could significantly improve the treatment of vessel diseases in the future. Summarizing, regenerative medicine holds the potential to transform the therapeutic methods in heart and vessel diseases treatment.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Łukasz Kruszyna
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Ewa Strauss
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Julia Spaczyńska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Michał Nowicki
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| |
Collapse
|
38
|
Sherman BT, Hu X, Singh K, Haine L, Rupert AW, Neaton JD, Lundgren JD, Imamichi T, Chang W, Lane HC. Genome-wide association study of high-sensitivity C-reactive protein, D-dimer, and interleukin-6 levels in multiethnic HIV+ cohorts. AIDS 2021; 35:193-204. [PMID: 33095540 PMCID: PMC7789909 DOI: 10.1097/qad.0000000000002738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/28/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Elevated levels of interleukin-6 (IL-6), D-dimer, and C-reactive protein (hsCRP) are associated with increased incidence of comorbid disease and mortality among people living with HIV (PLWH). Prior studies suggest a genetic basis for these biomarker elevations in the general population. The study objectives are to identify the genetic basis for these biomarkers among PLWH. METHODS Baseline levels of hsCRP, D-dimer, and IL-6, and single nucleotide polymorphisms (SNPs) were determined for 7768 participants in three HIV treatment trials. Single variant analysis was performed for each biomarker on samples from each of three ethnic groups [African (AFR), Admixed American (AMR), European (EUR)] within each trial including covariates relevant to biomarker levels. For each ethnic group, the results were pooled across trials, then further pooled across ethnicities. RESULTS The transethnic analysis identified three, two, and one known loci associated with hsCRP, D-dimer, and IL-6 levels, respectively, and two novel loci, FGB and GCNT1, associated with D-dimer levels. Lead SNPs exhibited similar effects across ethnicities. Additionally, three novel, ethnic-specific loci were identified: CATSPERG associated with D-dimer in AFR and PROX1-AS1 and TRAPPC9 associated with IL-6 in AFR and AMR, respectively. CONCLUSION Eleven loci associated with three biomarker levels were identified in PLWH from the three studies including six loci known in the general population and five novel loci associated with D-dimer and IL-6 levels. These findings support the hypothesis that host genetics may partially contribute to chronic inflammation in PLWH and help to identify potential targets for intervention of serious non-AIDS complications.
Collapse
Affiliation(s)
- Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Kanal Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Lillian Haine
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Adam W. Rupert
- AIDS Monitoring Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D. Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Jens D. Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
39
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The identification of genes mutated in the different malformations provides insight into the etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. A few familial forms of vascular anomalies exist, but most cases occur sporadically. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The use of Next Generating Sequencing for high throughput and "deep" screening of both blood and lesional DNA and RNA has been instrumental in detecting such low frequency somatic changes. The number of novel causative mutations identified for many vascular anomalies has soared within a 10-year period. The discovery of such genes aided in unraveling a holistic overview of the pathogenic mechanisms, by which in vitro and in vivo models could be generated, and opening the doors to development of more effective treatments that do not address just symptoms. Moreover, as many mutations and the implicated signaling pathways are shared with cancers, current oncological therapies could potentially be repurposed for the treatment of vascular anomalies.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
40
|
Lin QY, Bai J, Liu JQ, Li HH. Angiotensin II Stimulates the Proliferation and Migration of Lymphatic Endothelial Cells Through Angiotensin Type 1 Receptors. Front Physiol 2020; 11:560170. [PMID: 33013481 PMCID: PMC7506107 DOI: 10.3389/fphys.2020.560170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIM The proliferation and migration of lymphatic endothelial cells (LECs) is essential for lymphatic vessel growth (also known as lymphangiogenesis), which plays a crucial role in regulating the tissue fluid balance and immune cell trafficking under physiological and pathological conditions. Several growth factors, such as VEGF-C, can stimulate lymphangiogenesis. However, the effects of angiotensin II (Ang II) on the proliferation and migration of mouse LECs and the underlying potential mechanisms remain unknown. METHODS Wild-type mice were infused with Ang II (1,000 ng/kg/min) for 1-2 weeks. Murine LECs were stimulated with Ang II (500 nM) or saline for 12-48 h. Cell proliferation was determined with 5-bromo-2-deoxyuridine (BrdU) incorporation assays, while cell migration was assessed by scratch wound healing and transwell chamber assays. The gene expression profiles were obtained by time series microarray and real-time PCR analyses. RESULTS Ang II treatment significantly induced lymphangiogenesis in the hearts of mice and the proliferation and migration of cultured LECs in a time-dependent manner. This effect was completely blocked by losartan, an angiotensin II type 1 receptor (AT1R) antagonist. The microarray results identified 1,385 differentially expressed genes (DEGs) at one or more time points in the Ang II-treated cells compared with the control saline-treated cells. These DEGs were primarily involved in biological processes and pathways, including sensory perception of smell, the G protein coupled receptor signaling pathway, cell adhesion, olfactory transduction, Jak-STAT, alcoholism, RIG-I-like receptor and ECM-receptor interaction. Furthermore, these DEGs were classified into 16 clusters, 7 of which (Nos. 13, 2, 8, 15, 7, 3, and 12, containing 586 genes) were statistically significant. Importantly, the Ang II-induced alterations the expression of lymphangiogenesis-related genes were reversed by losartan. CONCLUSION The results of the present indicate that Ang II can directly regulate the proliferation and migration of LECs through AT1R in vivo and in vitro, which may provide new potential treatments for Ang II-induced hypertension and cardiac remodeling.
Collapse
Affiliation(s)
| | | | - Jin-Qiu Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Jeong KH, Cho KO, Lee MY, Kim SY, Kim WJ. Vascular endothelial growth factor receptor-3 regulates astroglial glutamate transporter-1 expression via mTOR activation in reactive astrocytes following pilocarpine-induced status epilepticus. Glia 2020; 69:296-309. [PMID: 32835451 DOI: 10.1002/glia.23897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence has shown that the vascular endothelial growth factor (VEGF) system plays a crucial role in several neuropathological processes. We previously reported an upregulation of VEGF-C and its receptor, VEGFR-3, in reactive astrocytes after the onset of status epilepticus (SE). However, it remains unknown, which molecules act as downstream signals following VEGFR-3 upregulation, and are involved in reactive astrogliosis after SE. Therefore, we investigated whether VEGFR-3 upregulation within reactive astrocytes is associated with the activation of mammalian target of rapamycin (mTOR) signaling, which we confirmed by assaying for the phosphorylated form of S6 protein (pS6), and whether VEGFR-3-mediated mTOR activation induces astroglial glutamate transporter-1 (GLT-1) expression in the hippocampus after pilocarpine-induced SE. We found that spatiotemporal expression of pS6 was consistent with VEGFR-3 expression in the hippocampus after SE, and that both pS6 and VEGFR-3 were highly expressed in SE-induced reactive astrocytes. Treatment with the mTOR inhibitor rapamycin decreased astroglial VEGFR-3 expression and GLT-1 expression after SE. Treatment with a selective inhibitor for VEGFR-3 attenuated astroglial pS6 expression as well as suppressed GLT-1 expression and astroglial reactivity in the hippocampus after SE. These findings demonstrate that VEGFR-3-mediated mTOR activation could contribute to the regulation of GLT-1 expression in reactive astrocytes during the subacute phase of epilepsy. In conclusion, the present study suggests that VEGFR-3 upregulation in reactive astrocytes may play a role in preventing hyperexcitability induced by continued seizure activity.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong Yun Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
42
|
Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu H, Zhong G, Li Y, Li J, Huang J, Chen R, Lin T. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest 2020; 130:404-421. [PMID: 31593555 DOI: 10.1172/jci130892] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with bladder cancer (BCa) with clinical lymph node (LN) metastasis have an extremely poor prognosis. VEGF-C has been demonstrated to play vital roles in LN metastasis in BCa. However, approximately 20% of BCa with LN metastasis exhibits low VEGF-C expression, suggesting a VEGF-C-independent mechanism for LN metastasis of BCa. Herein, we demonstrate that BCa cell-secreted exosome-mediated lymphangiogenesis promoted LN metastasis in BCa in a VEGF-C-independent manner. We identified an exosomal long noncoding RNA (lncRNA), termed lymph node metastasis-associated transcript 2 (LNMAT2), that stimulated human lymphatic endothelial cell (HLEC) tube formation and migration in vitro and enhanced tumor lymphangiogenesis and LN metastasis in vivo. Mechanistically, LNMAT2 was loaded to BCa cell-secreted exosomes by directly interacting with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1). Subsequently, exosomal LNMAT2 was internalized by HLECs and epigenetically upregulated prospero homeobox 1 (PROX1) expression by recruitment of hnRNPA2B1 and increasing the H3K4 trimethylation level in the PROX1 promoter, ultimately resulting in lymphangiogenesis and lymphatic metastasis. Therefore, our findings highlight a VEGF-C-independent mechanism of exosomal lncRNA-mediated LN metastasis and identify LNMAT2 as a therapeutic target for LN metastasis in BCa.
Collapse
Affiliation(s)
- Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yuming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yue Zhao
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Hongwei Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yuting Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Meng FW, Jing XN, Song GH, Jie LL, Shen FF. Prox1 induces new lymphatic vessel formation and promotes nerve reconstruction in a mouse model of sciatic nerve crush injury. J Anat 2020; 237:933-940. [PMID: 32515838 PMCID: PMC7542192 DOI: 10.1111/joa.13247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
The peripheral nervous system lacks lymphatic vessels and is protected by the blood–nerve barrier, which prevents lymphocytes and antibodies from entering the neural parenchyma. Peripheral nerve injury results in degeneration of the distal nerve and myelin degeneration causes macrophage aggregation, T lymphocyte infiltration, major histocompatibility complex class II antigen expression, and immunoglobulin G deposition in the nerve membrane, which together result in nerve edema and therefore affect nerve regeneration. In the present paper, we show myelin expression was absent from the sciatic nerve at 7 days after injury, and the expression levels of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE‐1) and Prospero Homeobox 1 (Prox1) were significantly increased in the sciatic nerve at 7 days after injury. The lymphatic vessels were distributed around the myelin sheath and co‐localized with lymphatic endothelial cells. Prox1 induces the formation of new lymphatic vessels, which play important roles in the elimination of tissue edema as well as in morphological and functional restoration of the damaged nerve. This study provides evidence of the involvement of new lymphatic vessels in nerve repair after sciatic nerve injury.
Collapse
Affiliation(s)
- Fan-Wei Meng
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Xue-Ning Jing
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Gui-Hong Song
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Lin-Lin Jie
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Fang-Fang Shen
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| |
Collapse
|
44
|
Yoshimatsu Y, Kimuro S, Pauty J, Takagaki K, Nomiyama S, Inagawa A, Maeda K, Podyma-Inoue KA, Kajiya K, Matsunaga YT, Watabe T. TGF-beta and TNF-alpha cooperatively induce mesenchymal transition of lymphatic endothelial cells via activation of Activin signals. PLoS One 2020; 15:e0232356. [PMID: 32357159 PMCID: PMC7194440 DOI: 10.1371/journal.pone.0232356] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Lymphatic systems play important roles in the maintenance of fluid homeostasis and undergo anatomical and physiological changes during inflammation and aging. While lymphatic endothelial cells (LECs) undergo mesenchymal transition in response to transforming growth factor-β (TGF-β), the molecular mechanisms underlying endothelial-to-mesenchymal transition (EndMT) of LECs remain largely unknown. In this study, we examined the effect of TGF-β2 and tumor necrosis factor-α (TNF-α), an inflammatory cytokine, on EndMT using human skin-derived lymphatic endothelial cells (HDLECs). TGF-β2-treated HDLECs showed increased expression of SM22α, a mesenchymal cell marker accompanied by increased cell motility and vascular permeability, suggesting HDLECs to undergo EndMT. Our data also revealed that TNF-α could enhance TGF-β2-induced EndMT of HDLECs. Furthermore, both cytokines induced the production of Activin A while decreasing the expression of its inhibitory molecule Follistatin, and thus enhancing EndMT. Finally, we demonstrated that human dermal lymphatic vessels underwent EndMT during aging, characterized by double immunostaining for LYVE1 and SM22α. These results suggest that both TGF-β and TNF-α signals play a central role in EndMT of LECs and could be potential targets for senile edema.
Collapse
Affiliation(s)
- Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shiori Kimuro
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Joris Pauty
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Akihiko Inagawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kentaro Maeda
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Katarzyna A. Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- * E-mail:
| |
Collapse
|
45
|
Jafree DJ, Long DA. Beyond a Passive Conduit: Implications of Lymphatic Biology for Kidney Diseases. J Am Soc Nephrol 2020; 31:1178-1190. [PMID: 32295825 DOI: 10.1681/asn.2019121320] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The kidney contains a network of lymphatic vessels that clear fluid, small molecules, and cells from the renal interstitium. Through modulating immune responses and via crosstalk with surrounding renal cells, lymphatic vessels have been implicated in the progression and maintenance of kidney disease. In this Review, we provide an overview of the development, structure, and function of lymphatic vessels in the healthy adult kidney. We then highlight the contributions of lymphatic vessels to multiple forms of renal pathology, emphasizing CKD, transplant rejection, and polycystic kidney disease and discuss strategies to target renal lymphatics using genetic and pharmacologic approaches. Overall, we argue the case for lymphatics playing a fundamental role in renal physiology and pathology and treatments modulating these vessels having therapeutic potential across the spectrum of kidney disease.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,MB/PhD Programme, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
46
|
Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J Clin Med 2020; 9:jcm9020479. [PMID: 32050484 PMCID: PMC7073692 DOI: 10.3390/jcm9020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Under normal conditions, the cornea, being the transparent “windscreen” of the eye, is free of both blood and lymphatic vessels. However, various diseases of the eye, like infections, can interfere with the balance between promoting and inhibiting factors, which leads to ingrowth of blood and lymphatic vessels. The newly formed lymphatic vessels increase the risk of graft rejection after subsequent corneal transplantation. Corneal transplantation is one of the most commonly performed transplantations worldwide, with more than 40,000 surgeries per year in Europe. To date, various anti-hem- and anti-lymphangiogenic treatment strategies have been developed specifically for the corneal vascular endothelial growth factor (VEGF) pathway. Currently, however, no treatment strategies are clinically available to specifically modulate lymphangiogenesis. In this review, we will give an overview about endogenous regulators of hem- and lymphangiogenesis and discuss potential new strategies for targeting pathological lymphangiogenesis. Furthermore, we will review recently identified modulators and demonstrate that the cornea is a suitable model for the identification of novel endogenous modulators of lymphangiogenesis. The identification of novel modulators of lymphangiogenesis and a better understanding of the signaling pathways involved will contribute to the development of new therapeutic targets for the treatment of pathological lymphangiogenesis. This, in turn, will improve graft rejection, not only for the cornea.
Collapse
|
47
|
Ji Y, Chen S, Yang K, Xia C, Li L. Kaposiform hemangioendothelioma: current knowledge and future perspectives. Orphanet J Rare Dis 2020; 15:39. [PMID: 32014025 PMCID: PMC6998257 DOI: 10.1186/s13023-020-1320-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Kaposiform hemangioendothelioma (KHE) is a rare vascular neoplasm with high morbidity and mortality. The initiating mechanism during the pathogenesis of KHE has yet to be discovered. The main pathological features of KHE are abnormal angiogenesis and lymphangiogenesis. KHEs are clinically heterogeneous and may develop into a life-threatening thrombocytopenia and consumptive coagulopathy, known as the Kasabach-Merritt phenomenon (KMP). The heterogeneity and the highly frequent occurrence of disease-related comorbidities make the management of KHE challenging. Currently, there are no medications approved by the FDA for the treatment of KHE. Multiple treatment regimens have been used with varying success, and new clinical trials are in progress. In severe patients, multiple agents with variable adjuvant therapies are given in sequence or in combination. Recent studies have demonstrated a satisfactory efficacy of sirolimus, an inhibitor of mammalian target of rapamycin, in the treatment of KHE. Novel targeted treatments based on a better understanding of the pathogenesis of KHE are needed to maximize patient outcomes and quality of life. This review summarizes the epidemiology, etiology, pathophysiology, clinical features, diagnosis and treatments of KHE. Recent new concepts and future perspectives for KHE will also be discussed.
Collapse
Affiliation(s)
- Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041 China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Li Li
- Laboratory of Pathology, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
48
|
Esposito E, Ahn BJ, Shi J, Nakamura Y, Park JH, Mandeville ET, Yu Z, Chan SJ, Desai R, Hayakawa A, Ji X, Lo EH, Hayakawa K. Brain-to-cervical lymph node signaling after stroke. Nat Commun 2019; 10:5306. [PMID: 31757960 PMCID: PMC6876639 DOI: 10.1038/s41467-019-13324-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 10/27/2019] [Indexed: 12/24/2022] Open
Abstract
After stroke, peripheral immune cells are activated and these systemic responses may amplify brain damage, but how the injured brain sends out signals to trigger systemic inflammation remains unclear. Here we show that a brain-to-cervical lymph node (CLN) pathway is involved. In rats subjected to focal cerebral ischemia, lymphatic endothelial cells proliferate and macrophages are rapidly activated in CLNs within 24 h, in part via VEGF-C/VEGFR3 signalling. Microarray analyses of isolated lymphatic endothelium from CLNs of ischemic mice confirm the activation of transmembrane tyrosine kinase pathways. Blockade of VEGFR3 reduces lymphatic endothelial activation, decreases pro-inflammatory macrophages, and reduces brain infarction. In vitro, VEGF-C/VEGFR3 signalling in lymphatic endothelial cells enhances inflammatory responses in co-cultured macrophages. Lastly, surgical removal of CLNs in mice significantly reduces infarction after focal cerebral ischemia. These findings suggest that modulating the brain-to-CLN pathway may offer therapeutic opportunities to ameliorate systemic inflammation and brain injury after stroke.
Collapse
Affiliation(s)
- Elga Esposito
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Bum Ju Ahn
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Jingfei Shi
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0004 0369 153Xgrid.24696.3fChina-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yoshihiko Nakamura
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0004 0594 9821grid.411556.2Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Jonan, Fukuoka Japan
| | - Ji Hyun Park
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Emiri T. Mandeville
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Zhanyang Yu
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Su Jing Chan
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0001 2180 6431grid.4280.eDepartment of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Rakhi Desai
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Ayumi Hayakawa
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Xunming Ji
- 0000 0004 0369 153Xgrid.24696.3fChina-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Eng H. Lo
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
49
|
Jeucken KCM, Koning JJ, Mebius RE, Tas SW. The Role of Endothelial Cells and TNF-Receptor Superfamily Members in Lymphoid Organogenesis and Function During Health and Inflammation. Front Immunol 2019; 10:2700. [PMID: 31824495 PMCID: PMC6879661 DOI: 10.3389/fimmu.2019.02700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023] Open
Abstract
Lymph nodes (LNs) are crucial for the orchestration of immune responses. LN reactions depend on interactions between incoming and local immune cells, and stromal cells. To mediate these cellular interactions an organized vascular network within the LN exists. In general, the LN vasculature can be divided into two components: blood vessels, which include the specialized high endothelial venules that recruit lymphocytes from the bloodstream, and lymphatic vessels. Signaling via TNF receptor (R) superfamily (SF) members has been implicated as crucial for the development and function of LNs and the LN vasculature. In recent years the role of cell-specific signaling of TNFRSF members in different endothelial cell (EC) subsets and their roles in development and maintenance of lymphoid organs has been elucidated. Here, we discuss recent insights into EC-specific TNFRSF member signaling and highlight its importance in different EC subsets in LN organogenesis and function during health, and in lymphocyte activation and tertiary lymphoid structure formation during inflammation.
Collapse
Affiliation(s)
- Kim C M Jeucken
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
Liang Q, Zhang L, Wood RW, Ji RC, Boyce BF, Schwarz EM, Wang Y, Xing L. Avian Reticuloendotheliosis Viral Oncogene Related B Regulates Lymphatic Endothelial Cells during Vessel Maturation and Is Required for Lymphatic Vessel Function in Adult Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2516-2530. [PMID: 31539516 DOI: 10.1016/j.ajpath.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
NF-κB signals through canonical transcription factor p65 (RelA)/p50 and noncanonical avian reticuloendotheliosis viral oncogene related B (RelB)/p52 pathways. The RelA/p50 is involved in basal and inflammatory lymphangiogenesis. However, the role of RelB/p52 in lymphatic vessel biology is unknown. Herein, we investigated changes in lymphatic vessels (LVs) in mice deficient in noncanonical NF-κB signaling and the function of RelB in lymphatic endothelial cells (LECs). LVs were examined in Relb-/-, p52-/-, or control mice, and the gene expression profiles in LECs with RelB knockdown. Relb-/-, but not p52-/-, mice exhibited multiple LV abnormalities. They include the following: i) increased capillary vessel diameter, ii) reduced smooth muscle cell (SMC) coverage of mature vessels, iii) leakage, and iv) loss of active and passive lymphatic flow. Relb-/- mature LVs had thinner vessel walls, more apoptotic LECs and SMCs, and fewer LEC junctions. RelB knockdown LECs had decreased growth, survival, and adhesion, and dysregulated signaling pathways involving these cellular events. These results suggest that Relb-/- mice have abnormal LVs, mainly in mature vessels with reduced SMC coverage, leakage, and loss of contractions. RelB knockdown in LECs leads to reduced growth, survival, and adhesion. RelB plays a vital role in LEC-mediated LV maturation and function.
Collapse
Affiliation(s)
- Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ronald W Wood
- Department of Obstetrics and Gynecology, Urology, and Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York
| | | | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|