1
|
Tosello V, Di Martino L, Papathanassiu AE, Santa SD, Pizzi M, Mussolin L, Liu J, Van Vlierberghe P, Piovan E. BCAT1 is a NOTCH1 target and sustains the oncogenic function of NOTCH1. Haematologica 2025; 110:350-367. [PMID: 39234857 PMCID: PMC11788623 DOI: 10.3324/haematol.2024.285552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
High levels of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) have been associated with tumor aggressiveness and drug resistance in several cancer types. Nevertheless, the mechanistic role of BCAT1 in T-cell acute lymphoblastic leukemia (T-ALL) remains uncertain. We provide evidence that Bcat1 was over-expressed following NOTCH1-induced transformation of leukemic progenitors and that NOTCH1 directly controlled BCAT1 expression by binding to a BCAT1 promoter. Further, using a NOTCH1 gain-of-function retroviral model of T-ALL, mouse cells genetically deficient for Bcat1 showed defects in developing leukemia. In murine T-ALL cells, Bcat1 depletion or inhibition redirected leucine metabolism towards production of 3-hydroxy butyrate (3-HB), an endogenous histone deacetylase inhibitor. Consistently, BCAT1-depleted cells showed altered protein acetylation levels which correlated with a pronounced sensitivity to DNA damaging agents. In human NOTCH1-dependent leukemias, high expression levels of BCAT1 may predispose to worse prognosis. Therapeutically, BCAT1 inhibition specifically synergized with etoposide to eliminate tumors in patient-derived xenograft models suggesting that BCAT1 inhibitors may have a part to play in salvage protocols for refractory T-ALL.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua
| | | | | | - Silvia Dalla Santa
- Department of Surgery, Oncology and Gastroenterology, University of Padua
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padua
| | - Lara Mussolin
- Unit of Onco-hematology, stem cell transplant and gene therapy, Department of Women's and Children's Health, University of Padua
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Erich Piovan
- Department of Surgery, Oncology and Gastroenterology, University of Padua; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua.
| |
Collapse
|
2
|
Tosello V, Di Martino L, Piovan E. Targeted Metabolomics of Tissue and Plasma Identifies Biomarkers in Mice with NOTCH1-Dependent T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:6543. [PMID: 38928249 PMCID: PMC11204162 DOI: 10.3390/ijms25126543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
While the genomics era has allowed remarkable advances in understanding the mechanisms driving the biology and pathogenesis of numerous blood cancers, including acute lymphoblastic leukemia (ALL), metabolic studies are still lagging, especially regarding how the metabolism differs between healthy and diseased individuals. T-cell ALL (T-ALL) is an aggressive hematological neoplasm deriving from the malignant transformation of T-cell progenitors characterized by frequent NOTCH1 pathway activation. The aim of our study was to characterize tumor and plasma metabolomes during T-ALL development using a NOTCH1-induced murine T-ALL model (ΔE-NOTCH1). In tissue, we found a significant metabolic shift with leukemia development, as metabolites linked to glycolysis (lactic acid) and Tricarboxylic acid cycle replenishment (succinic and malic acids) were elevated in NOTCH1 tumors, while metabolites associated with lipid oxidation (e.g., carnitine) as well as purine and pyrimidine metabolism were elevated in normal thymic tissue. Glycine, serine, and threonine metabolism, glutathione metabolism, as well as valine, leucine, and isoleucine biosynthesis were enriched pathways in tumor tissue. Phenylalanine and tyrosine metabolism was highly enriched in plasma from leukemia-bearing mice compared to healthy mice. Further, we identified a metabolic signature consisting of glycine, alanine, proline, 3-hydroxybutyrate, and glutamic acid as potential biomarkers for leukemia progression in plasma. Hopefully, the metabolic differences detected in our leukemia model will apply to humans and contribute to the development of metabolism-oriented therapeutic approaches.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy;
| | - Ludovica Di Martino
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, 35128 Padova, Italy;
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, 35128 Padova, Italy;
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy
| |
Collapse
|
3
|
Hao BB, Ma K, Xu JY, Fan RF, Zhao WS, Jia XL, Zhai LH, Lee S, Xie D, Tan MJ. Proteomics analysis of histone deacetylase inhibitor-resistant solid tumors reveals resistant signatures and potential drug combinations. Acta Pharmacol Sin 2024; 45:1305-1315. [PMID: 38383757 PMCID: PMC11130134 DOI: 10.1038/s41401-024-01236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Histone deacetylase inhibitors (HDACis) are important drugs for cancer therapy, but the indistinct resistant mechanisms of solid tumor therapy greatly limit their clinical application. In this study we conducted HDACi-perturbated proteomics and phosphoproteomics analyses in HDACi-sensitive and -resistant cell lines using a tandem mass tag (TMT)-based quantitative proteomic strategy. We found that the ribosome biogenesis proteins MRTO4, PES1, WDR74 and NOP16 vital to tumorigenesis might regulate the tumor sensitivity to HDACi. By integrating HDACi-perturbated protein signature with previously reported proteomics and drug sensitivity data, we predicted and validated a series of drug combination pairs potentially to enhance the sensitivity of HDACi in diverse solid tumor. Functional phosphoproteomic analysis further identified the kinase PDK1 and ROCK as potential HDACi-resistant signatures. Overall, this study reveals the potential HDACi-resistant signatures and may provide promising drug combination strategies to attenuate the resistance of solid tumor to HDACi.
Collapse
Affiliation(s)
- Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ke Ma
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Ru-Feng Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Si Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xing-Long Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - SangKyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Hussan SS, Ali MS, Fatima M, Altaf M, Sadaf S. Epigenetically dysregulated NOTCH-Delta-HES signaling cascade can serve as a subtype classifier for acute lymphoblastic leukemia. Ann Hematol 2024; 103:511-523. [PMID: 37922005 DOI: 10.1007/s00277-023-05515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2023]
Abstract
The NOTCH-Delta-HES signaling cascade is regarded as a double-edged sword owing to its dual tumor-suppressor and oncogenic roles, in different cellular environments. In the T-cells, it supports leukemogenesis by promoting differentiation while in B-cells, it controls leukemogenesis by inhibiting early differentiation/inducing growth arrest in the lead to apoptosis. The present study was undertaken to assess if this bi-faceted behavior of NOTCH family can be exploited as a diagnostic biomarker or subtype classifier of acute lymphoblastic leukemia (ALL). In this pursuit, expression of seven NOTCH cascade genes was analyzed in bone marrow (BM) biopsy and blood plasma (BP) of pediatric ALL patients using quantitative PCR (qPCR). Further, promoter DNA methylation status of the differentially expressed genes (DEGs) was assessed by methylation-specific qMSP and validated through bisulphite amplicon sequencing. Whereas hypermethylation of JAG1, DLL1, and HES-2, HES-4, and HES-5 was observed in all patients, NOTCH3 was found hypermethylated specifically in Pre-B ALL cases while DLL4 in Pre-T ALL cases. Aberrant DNA methylation strongly correlated with downregulated gene expression, which restored at complete remission stage as observed in "follow-up/post-treatment" subjects. The subtype-specific ROC curve analysis and Kaplan-Meier survival analysis predicted a clinically applicable diagnostic and prognostic potential of the panel. Moreover, the logistic regression model (Pre-B vs Pre-T ALL) was found to be the best-fitted model (McFadden's R2 = 0.28, F1 measure = 0.99). Whether analyzed in BM-aspirates or blood plasma, the NOTCH epigenetic signatures displayed comparable results (p < 0.001), advocating the potential of NOTCH-Delta-HES cascade, as a subtype classifier, in minimally invasive diagnosis of ALL.
Collapse
Affiliation(s)
- Syeda Saliah Hussan
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Shrafat Ali
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Mishal Fatima
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Memoona Altaf
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Saima Sadaf
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
5
|
Li XY, Han XW, Huang K, Zhang YT, Xu HG, Zhou DH, Xu LH, Fang JP. Chidamide as maintenance after chemotherapy or hematopoietic stem cell transplantation in 27 children with T-cell lymphoblastic leukemia: A real-world prospective study. Front Med (Lausanne) 2023; 10:1096529. [PMID: 36817761 PMCID: PMC9932021 DOI: 10.3389/fmed.2023.1096529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background The long-term overall survival of children with T-cell acute lymphoblastic leukemia (T-ALL) is limited to approximately 80-85% because of a high incidence of relapse after achieving remission with intensive chemotherapy and hematopoietic stem cell transplantation (HSCT). Novel treatment strategies inducing long-term remission are needed to improve the outcome. Histone deacetylase inhibitors (HDACis) have been reported to be effective in a series of T-ALL cases. Preclinical studies suggested that T-ALL cells are sensitive to Chidamide, which is a selective HDACi. Methods This preliminary clinical study evaluated the efficacy and safety of Chidamide in combination with chemotherapy or post-HSCT for children with T-ALL at a dose of 0.5 mg/kg weight of patient twice per week for at least 6 months. Results In total, 27 children with a mean age of 7.88 years were included. The high-risk proportion was 66.7%. After a median follow-up period of 37.8 months (9.5-67.9 months), the overall survival and event-free survival in the patients treated with Chidamide were 94.1 and 95.2%, respectively. All patients except two maintained persistent remission with <0.01% blast cells in minimal residual disease. Conclusion The combination therapy with Chidamide in a case series of T-ALL shows the promising clinical efficacy and good safety in children. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2000030357.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia-Wei Han
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ya-Ting Zhang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong-Gui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dun-Hua Zhou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Pei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Jian-Pei Fang,
| |
Collapse
|
6
|
Xu X, Zhang W, Xuan L, Yu Y, Zheng W, Tao F, Nemechek J, He C, Ma W, Han X, Xie S, Zhao M, Wang J, Qu Y, Liu Q, Perry JM, Jiang L, Zhao M. PD-1 signalling defines and protects leukaemic stem cells from T cell receptor-induced cell death in T cell acute lymphoblastic leukaemia. Nat Cell Biol 2023; 25:170-182. [PMID: 36624186 DOI: 10.1038/s41556-022-01050-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023]
Abstract
T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy with poor prognosis, but a decisive marker and effective treatment for leukaemia stem cells (LSCs) remain unclear. Here, using lineage tracing, limiting dilution assays and in vivo live imaging approaches, we identify rare inhibitory receptor programmed cell death 1 (PD-1)-expressing cells that reside at the apex of leukaemia hierarchy for initiation and relapse in T-ALL. Ablation of PD-1-expressing cells, deletion of PD-1 in T-ALL cells or blockade of PD-1 or PD-1 ligand 1 significantly eradicated LSCs and suppressed disease progression. Combination therapy using PD-1 blockade and chemotherapy substantially extended the survival of mice engrafted with mouse or human T-ALL cells. Mechanistically, PD-1+ LSCs had high NOTCH1-MYC activity for disease initiation. Furthermore, PD-1 signalling maintained quiescence and protected LSCs against T cell receptor-signal-induced apoptosis. Overall, our data highlight the hierarchy of leukaemia by identifying PD-1+ LSCs and provide a therapeutic approach for the elimination of LSCs through PD-1 blockade in T-ALL.
Collapse
Affiliation(s)
- Xi Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenwen Zhang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wen Zheng
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Tao
- Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Chong He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Ma
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xue Han
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Siyu Xie
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minyi Zhao
- Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Wang
- Department of Pediatric Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhua Qu
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John M Perry
- Children's Mercy Kansas City, Kansas City, MO, USA.,University of Kansas Medical Center, Kansas City, KS, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Lim FQ, Chan ASY, Yokomori R, Huang XZ, Theardy MS, Yeoh AEJ, Tan SH, Sanda T. Targeting dual oncogenic machineries driven by TAL1 and PI3K-AKT pathways in T-cell acute lymphoblastic leukemia. Haematologica 2022; 108:367-381. [PMID: 36073513 PMCID: PMC9890034 DOI: 10.3324/haematol.2022.280761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 02/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of thymic T-cell precursors. Overexpression of oncogenic transcription factor TAL1 is observed in 40-60% of human T-ALL cases, frequently together with activation of the NOTCH1 and PI3K-AKT pathways. In this study, we performed chemical screening to identify small molecules that can inhibit the enhancer activity driven by TAL1 using the GIMAP enhancer reporter system. Among approximately 3,000 compounds, PIK- 75, a known inhibitor of PI3K and CDK, was found to strongly inhibit the enhancer activity. Mechanistic analysis demonstrated that PIK-75 blocks transcriptional activity, which primarily affects TAL1 target genes as well as AKT activity. TAL1-positive, AKT-activated T-ALL cells were very sensitive to PIK-75, as evidenced by growth inhibition and apoptosis induction, while T-ALL cells that exhibited activation of the JAK-STAT pathway were insensitive to this drug. Together, our study demonstrates a strategy targeting two types of core machineries mediated by oncogenic transcription factors and signaling pathways in T-ALL.
Collapse
Affiliation(s)
- Fang Qi Lim
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore,VIVA-NUS CenTRAL, Department of Pediatrics, National University of Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599.
| |
Collapse
|
8
|
Chen R, Wang X, Deng X, Chen L, Liu Z, Li D. CPDR: An R Package of Recommending Personalized Drugs for Cancer Patients by Reversing the Individual’s Disease-Related Signature. Front Pharmacol 2022; 13:904909. [PMID: 35795573 PMCID: PMC9252520 DOI: 10.3389/fphar.2022.904909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Due to cancer heterogeneity, only some patients can benefit from drug therapy. The personalized drug usage is important for improving the treatment response rate of cancer patients. The value of the transcriptome of patients has been recently demonstrated in guiding personalized drug use, and the Connectivity Map (CMAP) is a reliable computational approach for drug recommendation. However, there is still no personalized drug recommendation tool based on transcriptomic profiles of patients and CMAP. To fill this gap, here, we proposed such a feasible workflow and a user-friendly R package—Cancer-Personalized Drug Recommendation (CPDR). CPDR has three features. 1) It identifies the individual disease signature by using the patient subgroup with transcriptomic profiles similar to those of the input patient. 2) Transcriptomic profile purification is supported for the subgroup with high infiltration of non-cancerous cells. 3) It supports in silico drug efficacy assessment using drug sensitivity data on cancer cell lines. We demonstrated the workflow of CPDR with the aid of a colorectal cancer dataset from GEO and performed the in silico validation of drug efficacy. We further assessed the performance of CPDR by a pancreatic cancer dataset with clinical response to gemcitabine. The results showed that CPDR can recommend promising therapeutic agents for the individual patient. The CPDR R package is available at https://github.com/AllenSpike/CPDR.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Li
- *Correspondence: Zhongyang Liu, ; Dong Li,
| |
Collapse
|
9
|
Li C, You X, Xu X, Wu B, Liu Y, Tong T, Chen J, Li Y, Dai C, Ye Z, Tian X, Wei Y, Hao Z, Jiang L, Wu J, Zhao M. A Metabolic Reprogramming Amino Acid Polymer as an Immunosurveillance Activator and Leukemia Targeting Drug Carrier for T-Cell Acute Lymphoblastic Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104134. [PMID: 35080145 PMCID: PMC8948613 DOI: 10.1002/advs.202104134] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Indexed: 05/10/2023]
Abstract
Compromised immunosurveillance leads to chemotherapy resistance and disease relapse of hematological malignancies. Amino acid metabolism regulates immune responses and cancer; however, a druggable amino acid metabolite to enhance antitumor immunosurveillance and improve leukemia targeting-therapy efficacy remains unexplored. Here, an L-phenylalanine polymer, Metabolic Reprogramming Immunosurveillance Activation Nanomedicine (MRIAN), is invented to effectively target bone marrow (BM) and activate the immune surveillance in T-cell acute lymphoblastic leukemia (T-ALL) by inhibiting myeloid-derived suppressor cells (MDSCs) in T-ALL murine model. Stable-isotope tracer and in vivo drug distribution experiments show that T-ALL cells and MDSCs have enhanced cellular uptake of L-phenylalanine and MRIANs than normal hematopoietic cells and progenitors. Therefore, MRIAN assembled Doxorubicin (MRIAN-Dox) specifically targets T-ALL cells and MDSCs but spare normal hematopoietic cells and hematopoietic stem and progenitor cells with enhanced leukemic elimination efficiency. Consequently, MRIAN-Dox has reduced cardiotoxicity and myeloablation side effects in treating T-ALL mice. Mechanistically, MRIAN degrades into L-phenylalanine, which inhibits PKM2 activity and reduces ROS levels in MDSCs to disturb their immunosuppressive function and increase their differentiation toward normal myeloid cells. Overall, a novel amino acid metabolite nanomedicine is invented to treat T-ALL through the combination of leukemic cell targeting and immunosurveillance stimulation.
Collapse
Affiliation(s)
- Changzheng Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xinru You
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Xi Xu
- Department of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghuo Wu
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuye Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tong Tong
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yishan Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Chunlei Dai
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Zhitao Ye
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaobin Tian
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yan Wei
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zechen Hao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education)Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
10
|
Mannheimer JD, Prasad A, Gustafson DL. Predicting chemosensitivity using drug perturbed gene dynamics. BMC Bioinformatics 2021; 22:15. [PMID: 33413081 PMCID: PMC7789515 DOI: 10.1186/s12859-020-03947-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Background One of the current directions of precision medicine is the use of computational methods to aid in the diagnosis, prognosis, and treatment of disease based on data driven approaches. For instance, in oncology, there has been a particular focus on development of algorithms and biomarkers that can be used for pre-clinical and clinical applications. In particular large-scale omics-based models to predict drug sensitivity in in vitro cancer cell line panels have been used to explore the utility and aid in the development of these models as clinical tools. Additionally, a number of web-based interfaces have been constructed for researchers to explore the potential of drug perturbed gene expression as biomarkers including the NCI Transcriptional Pharmacodynamic Workbench. In this paper we explore the influence of drug perturbed gene dynamics of the NCI Transcriptional Pharmacodynamics Workbench in computational models to predict in vitro drug sensitivity for 15 drugs on the NCI60 cell line panel. Results This work presents three main findings. First, our models show that gene expression profiles that capture changes in gene expression after 24 h of exposure to a high concentration of drug generates the most accurate predictive models compared to the expression profiles under different dosing conditions. Second, signatures of 100 genes are developed for different gene expression profiles; furthermore, when the gene signatures are applied across gene expression profiles model performance is substantially decreased when gene signatures developed using changes in gene expression are applied to non-drugged gene expression. Lastly, we show that the gene interaction networks developed on these signatures show different network topologies and can be used to inform selection of cancer relevant genes. Conclusion Our models suggest that perturbed gene signatures are predictive of drug response, but cannot be applied to predict drug response using unperturbed gene expression. Furthermore, additional drug perturbed gene expression measurements in in vitro cell lines could generate more predictive models; but, more importantly be used in conjunction with computational methods to discover important drug disease relationships.
Collapse
Affiliation(s)
- Joshua D Mannheimer
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.,Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - Ashok Prasad
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Daniel L Gustafson
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA. .,Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA. .,Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA. .,University of Colorado, Cancer Center Developmental Therapeutics Program, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
11
|
Zheng R, Li M, Wang S, Liu Y. Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia. Exp Hematol Oncol 2020; 9:31. [PMID: 33292596 PMCID: PMC7664086 DOI: 10.1186/s40164-020-00187-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the hematological malignancies. With the applications of chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the cure rate of T-ALL has been significantly improved. However, patients with relapsed and refractory T-ALL still lack effective treatment options. Gene mutations play an important role in T-ALL. The NOTCH1 gene mutation is the important one among these genetic mutations. Since the mutation of NOTCH1 gene is considered as a driving oncogene in T-ALL, targeting the NOTCH1 signaling patheway may be an effective option to overcome relapsed and refractory T-ALL. This review mainly summarizes the recent research advances of targeting on NOTCH1 signaling pathway in T-ALL.
Collapse
Affiliation(s)
- Ruyue Zheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Menglin Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
12
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
13
|
Gao Y, Kim S, Lee YI, Lee J. Cellular Stress-Modulating Drugs Can Potentially Be Identified by in Silico Screening with Connectivity Map (CMap). Int J Mol Sci 2019; 20:ijms20225601. [PMID: 31717493 PMCID: PMC6888006 DOI: 10.3390/ijms20225601] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Accompanied by increased life span, aging-associated diseases, such as metabolic diseases and cancers, have become serious health threats. Recent studies have documented that aging-associated diseases are caused by prolonged cellular stresses such as endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress. Thus, ameliorating cellular stresses could be an effective approach to treat aging-associated diseases and, more importantly, to prevent such diseases from happening. However, cellular stresses and their molecular responses within the cell are typically mediated by a variety of factors encompassing different signaling pathways. Therefore, a target-based drug discovery method currently being used widely (reverse pharmacology) may not be adequate to uncover novel drugs targeting cellular stresses and related diseases. The connectivity map (CMap) is an online pharmacogenomic database cataloging gene expression data from cultured cells treated individually with various chemicals, including a variety of phytochemicals. Moreover, by querying through CMap, researchers may screen registered chemicals in silico and obtain the likelihood of drugs showing a similar gene expression profile with desired and chemopreventive conditions. Thus, CMap is an effective genome-based tool to discover novel chemopreventive drugs.
Collapse
Affiliation(s)
- Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Sungwoo Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Yun-Il Lee
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (Y.-I.L.); (J.L.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
- Correspondence: (Y.-I.L.); (J.L.)
| |
Collapse
|
14
|
Xia T, Zhang J, Zhou C, Li Y, Duan W, Zhang B, Wang M, Fang J. 20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway. J Ginseng Res 2019; 44:725-737. [PMID: 32913402 PMCID: PMC7471214 DOI: 10.1016/j.jgr.2019.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background T-cell acute lymphoblastic leukemia (T-ALL) is a kind of aggressive hematological cancer, and the PI3K/Akt/mTOR signaling pathway is activated in most patients with T-ALL and responsible for poor prognosis. 20(S)-Ginsenoside Rh2 (20(S)-GRh2) is a major active compound extracted from ginseng, which exhibits anti-cancer effects. However, the underlying anticancer mechanisms of 20(S)-GRh2 targeting the PI3K/Akt/mTOR pathway in T-ALL have not been explored. Methods Cell growth and cell cycle were determined to investigate the effect of 20(S)-GRh2 on ALL cells. PI3K/Akt/mTOR pathway–related proteins were detected in 20(S)-GRh2–treated Jurkat cells by immunoblotting. Antitumor effect of 20(S)-GRh2 against T-ALL was investigated in xenograft mice. The mechanisms of 20(S)-GRh2 against T-ALL were examined by cell proliferation, apoptosis, and autophagy. Results In the present study, the results showed that 20(S)-GRh2 decreased cell growth and arrested cell cycle at the G1 phase in ALL cells. 20(S)-GRh2 induced apoptosis through enhancing reactive oxygen species generation and upregulating apoptosis-related proteins. 20(S)-GRh2 significantly elevated the levels of pEGFP-LC3 and autophagy-related proteins in Jurkat cells. Furthermore, the PI3K/Akt/mTOR signaling pathway was effectively blocked by 20(S)-GRh2. 20(S)-GRh2 suppressed cell proliferation and promoted apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in Jurkat cells. Finally, 20(S)-GRh2 alleviated symptoms of leukemia and reduced the number of white blood cells and CD3 staining in the spleen of xenograft mice, indicating antitumor effects against T-ALL invivo. Conclusion These findings indicate that 20(S)-GRh2 exhibits beneficial effects against T-ALL through the PI3K/Akt/mTOR pathway and could be a natural product of novel target for T-ALL therapy.
Collapse
Affiliation(s)
- Ting Xia
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Jin Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Chuanxin Zhou
- Department of Pediatrics, The Fifth Hospital of Sun Yat Sen University, Sun Yat sen University, Zhuhai, Guangdong, China
| | - Yu Li
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhui Duan
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guang Dong, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, Guang Dong, China
| |
Collapse
|
15
|
|
16
|
Tan TK, Zhang C, Sanda T. Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. Int J Hematol 2018; 109:5-17. [PMID: 30145780 DOI: 10.1007/s12185-018-2518-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
TAL1/SCL is a prime example of an oncogenic transcription factor that is abnormally expressed in acute leukemia due to the replacement of regulator elements. This gene has also been recognized as an essential regulator of hematopoiesis. TAL1 expression is strictly regulated in a lineage- and stage-specific manner. Such precise control is crucial for the switching of the transcriptional program. The misexpression of TAL1 in immature thymocytes leads to a widespread series of orchestrated downstream events that affect several different cellular machineries, resulting in a lethal consequence, namely T-cell acute lymphoblastic leukemia (T-ALL). In this article, we will discuss the transcriptional regulatory network and downstream target genes, including protein-coding genes and non-coding RNAs, controlled by TAL1 in normal hematopoiesis and T-cell leukemogenesis.
Collapse
Affiliation(s)
- Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
17
|
Musa A, Ghoraie LS, Zhang SD, Glazko G, Yli-Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib F. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 2018; 19:506-523. [PMID: 28069634 PMCID: PMC5952941 DOI: 10.1093/bib/bbw112] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large-scale perturbation databases, such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular Signatures (LINCS), provide enormous opportunities for computational pharmacogenomics and drug design. A reason for this is that in contrast to classical pharmacology focusing at one target at a time, the transcriptomics profiles provided by CMap and LINCS open the door for systems biology approaches on the pathway and network level. In this article, we provide a review of recent developments in computational pharmacogenomics with respect to CMap and LINCS and related applications.
Collapse
Affiliation(s)
- Aliyu Musa
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Galina Glazko
- University of Rochester Department of Biostatistics and Computational Biology, Rochester, New York, USA
| | - Olli Yli-Harja
- Computational Systems Biology, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT- The Health and Life Sciences University, Eduard Wallnoefer Zentrum 1, Hall in Tyrol, Austria
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Frank Emmert-Streib
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
18
|
Musa A, Ghoraie LS, Zhang SD, Glazko G, Yli-Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib F. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 2018. [PMID: 28069634 DOI: 10.1093/bib] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Large-scale perturbation databases, such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular Signatures (LINCS), provide enormous opportunities for computational pharmacogenomics and drug design. A reason for this is that in contrast to classical pharmacology focusing at one target at a time, the transcriptomics profiles provided by CMap and LINCS open the door for systems biology approaches on the pathway and network level. In this article, we provide a review of recent developments in computational pharmacogenomics with respect to CMap and LINCS and related applications.
Collapse
Affiliation(s)
- Aliyu Musa
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry BT47 6SB, Northern Ireland, UK
| | - Galina Glazko
- University of Rochester Department of Biostatistics and Computational Biology, Rochester, New York 14642, USA
| | - Olli Yli-Harja
- Computational Systems Biology, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT- The Health and Life Sciences University, Eduard Wallnoefer Zentrum 1, 6060 Hall in Tyrol, Austria
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Frank Emmert-Streib
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
19
|
Tan SH, Bertulfo FC, Sanda T. Leukemia-Initiating Cells in T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2017; 7:218. [PMID: 29034206 PMCID: PMC5627022 DOI: 10.3389/fonc.2017.00218] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy characterized by the clonal proliferation of immature T-cell precursors. T-ALL has many similar pathophysiological features to acute myeloid leukemia, which has been extensively studied in the establishment of the cancer stem cell (CSC) theory, but the CSC concept in T-ALL is still debatable. Although leukemia-initiating cells (LICs), which can generate leukemia in a xenograft setting, have been found in both human T-ALL patients and animal models, the nature and origin of LICs are largely unknown. In this review, we discuss recent studies on LICs in T-ALL and the potential mechanisms of LIC emergence in this disease. We focus on the oncogenic transcription factors TAL1, LMO2, and NOTCH1 and highlight the significance of the transcriptional regulatory programs in normal hematopoietic stem cells and T-ALL.
Collapse
Affiliation(s)
- Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fatima Carla Bertulfo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Epigenetic targeting of Notch1-driven transcription using the HDACi panobinostat is a potential therapy against T-cell acute lymphoblastic leukemia. Leukemia 2017; 32:237-241. [DOI: 10.1038/leu.2017.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Sanda T, Leong WZ. TAL1 as a master oncogenic transcription factor in T-cell acute lymphoblastic leukemia. Exp Hematol 2017; 53:7-15. [PMID: 28652130 DOI: 10.1016/j.exphem.2017.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/11/2017] [Indexed: 11/29/2022]
Abstract
In hematopoietic cell development, the transcriptional program is strictly regulated in a lineage- and stage-specific manner that requires a number of transcription factors to work in a cascade or in a loop, in addition to interactions with nonhematopoietic cells in the microenvironment. Disruption of the transcriptional program alters the cellular state and may predispose cells to the acquisition of genetic abnormalities. Early studies have shown that proteins that promote cell differentiation often serve as tumor suppressors, whereas inhibitors of those proteins act as oncogenes in the context of acute leukemia. A prime example is T-cell acute lymphoblastic leukemia (T-ALL), a malignant disorder characterized by clonal proliferation of immature stage thymocytes. Although a relatively small number of genetic abnormalities are observed in T-ALL, these abnormalities are crucial for leukemogenesis. Many oncogenes and tumor suppressors in T-ALL are transcription factors that are required for normal hematopoiesis. The transformation process in T-ALL is efficient and orchestrated; the oncogene disrupts the transcriptional program directing T-cell differentiation and also uses its native ability as a master transcription factor in hematopoiesis. This imbalance in the transcriptional program is a primary determinant underlying the molecular pathogenesis of T-ALL. In this review, we focus on the oncogenic transcription factor TAL1 and the tumor-suppressor E-proteins and discuss the malignant cell state, the transcriptional circuit, and the consequence of molecular abnormalities in T-ALL.
Collapse
Affiliation(s)
- Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
22
|
Abstract
The Notch1 gene is a major oncogenic driver and therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL). However, inhibition of NOTCH signaling with γ-secretase inhibitors (GSIs) has shown limited antileukemic activity in clinical trials. Here we performed an expression-based virtual screening to identify highly active antileukemic drugs that synergize with NOTCH1 inhibition in T-ALL. Among these, withaferin A demonstrated the strongest cytotoxic and GSI-synergistic antileukemic effects in vitro and in vivo. Mechanistically, network perturbation analyses showed eIF2A-phosphorylation-mediated inhibition of protein translation as a critical mediator of the antileukemic effects of withaferin A and its interaction with NOTCH1 inhibition. Overall, these results support a role for anti-NOTCH1 therapies and protein translation inhibitor combinations in the treatment of T-ALL.
Collapse
|
23
|
The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Lett 2017; 392:9-16. [PMID: 28159681 DOI: 10.1016/j.canlet.2017.01.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/17/2022]
Abstract
Although significant improvements have been made in the treatment of acute lymphoblastic leukemia (ALL), there is a substantial subset of high-risk T-cell ALL (T-ALL) patients with relatively poor prognosis. Like in other leukemia types, alterations of the PI3K/mTOR pathway are predominant in ALL which is also responsible for treatment failure and relapse. In this study, we show that relapsed T-ALL patients display an enrichment of the PI3K/mTOR pathway. Using a panel of inhibitors targeting multiple components of the PI3K/mTOR pathway, we observed that the dual-specific PI3K/mTOR inhibitor PKI-587 was the most selective inhibitor for T-ALL cells dependent on the PI3K/mTOR pathway. Furthermore, we observed that PKI-587 blocked proliferation and colony formation of T-ALL cell lines. Additionally, PKI-587 selectively abrogated PI3K/mTOR signaling without affecting MAPK signaling both in in vitro and in vivo. Inhibition of the PI3K/mTOR pathway using PKI-587 delayed tumor progression, reduced tumor load and enhanced the survival rate in immune-deficient mouse xenograft models without inducing weight loss in the inhibitor treated mice. This preclinical study shows beneficial effects of PKI-587 on T-ALL that warrants further investigation in the clinical setting.
Collapse
|
24
|
Hawkins ED, Duarte D, Akinduro O, Khorshed RA, Passaro D, Nowicka M, Straszkowski L, Scott MK, Rothery S, Ruivo N, Foster K, Waibel M, Johnstone RW, Harrison SJ, Westerman DA, Quach H, Gribben J, Robinson MD, Purton LE, Bonnet D, Lo Celso C. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 2016; 538:518-522. [PMID: 27750279 PMCID: PMC5164929 DOI: 10.1038/nature19801] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/24/2016] [Indexed: 11/10/2022]
Abstract
It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.
Collapse
Affiliation(s)
- Edwin D Hawkins
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Delfim Duarte
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Olufolake Akinduro
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Reema A Khorshed
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Diana Passaro
- The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, WC2A 3LY, London, UK
| | - Malgorzata Nowicka
- SIB Swiss Institute of Bioinformatics and Institute of Molecular Life Sciences
- University of Zurich, 8057 Zurich, Switzerland
| | - Lenny Straszkowski
- Stem Cell Regulation Unit, St Vincent’s Institute of Medical Research, Fitzroy, Australia
| | - Mark K Scott
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Steve Rothery
- Imperial College Facility for Imaging by Light Microscopy, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Nicola Ruivo
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Katie Foster
- The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, WC2A 3LY, London, UK
| | - Michaela Waibel
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3052
- Peter MacCallum Cancer Centre, East Melbourne Victoria, Australia 3002
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3052
- Peter MacCallum Cancer Centre, East Melbourne Victoria, Australia 3002
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3052
- Peter MacCallum Cancer Centre, East Melbourne Victoria, Australia 3002
| | - David A Westerman
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3052
- Peter MacCallum Cancer Centre, East Melbourne Victoria, Australia 3002
| | - Hang Quach
- Department of Haematology, St. Vincent's Hospital, Fitzroy, Vic., 3065, Australia
- Department of Medicine, The University of Melbourne, Fitzroy, Vic., 3065, Australia
| | - John Gribben
- Centre of Haemato-Oncology, Cancer Research UK Clinical Centre, Barts Cancer Institute, St Bartholomew’s Hospital, Queen Mary University of London, London, UK
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics and Institute of Molecular Life Sciences
- University of Zurich, 8057 Zurich, Switzerland
| | - Louise E Purton
- Stem Cell Regulation Unit, St Vincent’s Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, The University of Melbourne, Fitzroy, Vic., 3065, Australia
| | - Dominique Bonnet
- The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, WC2A 3LY, London, UK
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| |
Collapse
|
25
|
GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia 2016; 30:1237-45. [DOI: 10.1038/leu.2016.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/08/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
|
26
|
From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood 2015; 126:2561-9. [PMID: 26447191 DOI: 10.1182/blood-2015-06-655043] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022] Open
Abstract
The DNA-binding zinc finger transcription factors Gfi1 and Gfi1b were discovered more than 20 years ago and are recognized today as major regulators of both early hematopoiesis and hematopoietic stem cells. Both proteins function as transcriptional repressors by recruiting histone-modifying enzymes to promoters and enhancers of target genes. The establishment of Gfi1 and Gfi1b reporter mice made it possible to visualize their cell type-specific expression and to understand their function in hematopoietic lineages. We now know that Gfi1 is primarily important in myeloid and lymphoid differentiation, whereas Gfi1b is crucial for the generation of red blood cells and platelets. Several rare hematologic diseases are associated with acquired or inheritable mutations in the GFI1 and GFI1B genes. Certain patients with severe congenital neutropenia carry mutations in the GFI1 gene that lead to the disruption of the C-terminal zinc finger domains. Other mutations have been found in the GFI1B gene in families with inherited bleeding disorders. In addition, the Gfi1 locus is frequently found to be a proviral integration site in retrovirus-induced lymphomagenesis, and new, emerging data suggest a role of Gfi1 in human leukemia and lymphoma, underlining the role of both factors not only in normal hematopoiesis, but also in a wide spectrum of human blood diseases.
Collapse
|
27
|
Tan Y, Sementino E, Pei J, Kadariya Y, Ito TK, Testa JR. Co-targeting of Akt and Myc inhibits viability of lymphoma cells from Lck-Dlx5 mice. Cancer Biol Ther 2015; 16:580-8. [PMID: 25793663 DOI: 10.1080/15384047.2015.1018495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Constitutive activation of AKT is a frequent occurrence in the development of human T-cell acute lymphocytic leukemia/lymphomas (T-ALLs), due largely to inactivation of PTEN. Up regulation of MYC is also commonly observed in human T-ALLs. We previously demonstrated that expression of a constitutively active form of Lck-Akt2 alone is sufficient to initiate T-cell lymphoma in mice, and that tumor formation typically requires up regulation of Myc or Dlx5 caused by specific chromosomal rearrangements. Furthermore, Lck-Dlx5 mice develop T-ALLs that consistently acquire overexpression of Myc and activation of Akt, the latter due to loss of Pten expression. Proliferation of T-ALL cells from Lck-Dlx5 mice was found to be highly sensitive to the Akt pathway inhibitors BEZ235 and RAD001, as well as to JQ1, an inhibitor of bromodomain proteins, one of which (BRD4) regulates Myc transcription. Additionally, low concentrations of BEZ235 were found to cooperate with JQ1 to enhance cell cycle arrest. Higher concentrations of BEZ235 (≥0.5 µM) promoted cell death, although the addition of JQ1 did not result in a further increase in apoptosis. In contrast, the specific Myc inhibitor 10058-F4 caused apoptosis, and when combined with BEZ235 (≥0.5 µM), an enhanced effect on apoptosis was consistently observed. In addition, BEZ235 and RAD001 potentiated vincristine-induced apoptosis when the cells were treated with both drugs simultaneously, whereas pretreatment with BEZ235 antagonized the cell-killing effect of vincristine. Collectively, these experimental findings provide rationale for the design of novel combination therapies for T-ALL that includes targeting of AKT and MYC.
Collapse
Affiliation(s)
- Yinfei Tan
- a Cancer Biology Program; Fox Chase Cancer Center ; Philadelphia , PA USA
| | | | | | | | | | | |
Collapse
|
28
|
Yu P, Petrus MN, Ju W, Zhang M, Conlon KC, Nakagawa M, Maeda M, Bamford RN, Waldmann TA. Augmented efficacy with the combination of blockade of the Notch-1 pathway, bortezomib and romidepsin in a murine MT-1 adult T-cell leukemia model. Leukemia 2015; 29:556-66. [PMID: 25118879 PMCID: PMC4329116 DOI: 10.1038/leu.2014.241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023]
Abstract
Adult T-cell leukemia (ATL) is an aggressive malignancy caused by human T-cell lymphotropic virus-1. There is no accepted curative therapy for ATL. We have reported that certain ATL patients have increased Notch-1 signaling along with constitutive activation of the nuclear factor-κB pathway. Physical and functional interaction between these two pathways provides the rationale to combine the γ-secretase inhibitor compound E with the proteasome inhibitor bortezomib. Moreover, romidepsin, a histone deacetylase inhibitor, has demonstrated major antitumor action in leukemia/lymphoma. In this study, we investigated the therapeutic efficacy of the single agents and the combination of these agents in a murine model of human ATL, the MT-1 model. Single and double agents inhibited tumor growth as monitored by tumor size (P<0.05), and prolonged survival of leukemia-bearing mice (P<0.05) compared with the control group. The combination of three agents significantly enhanced the antitumor efficacy as assessed by tumor size, tumor markers in the serum (human soluble interleukin-2 receptor-α and β2-microglobulin) and survival of the MT-1 tumor-bearing mice, compared with all other treatment groups (P<0.05). Improved therapeutic efficacy obtained by combining compound E, bortezomib and romidepsin supports a clinical trial of this combination in the treatment of ATL.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases/antagonists & inhibitors
- Amyloid Precursor Protein Secretases/genetics
- Amyloid Precursor Protein Secretases/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Benzodiazepinones/pharmacology
- Biomarkers, Tumor/blood
- Boronic Acids/pharmacology
- Bortezomib
- Depsipeptides/pharmacology
- Disease Models, Animal
- Drug Therapy, Combination
- Gene Expression Regulation, Leukemic
- Humans
- Interleukin-2 Receptor alpha Subunit/blood
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Pyrazines/pharmacology
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- beta 2-Microglobulin/blood
Collapse
Affiliation(s)
- Ping Yu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Michael N. Petrus
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Wei Ju
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Meili Zhang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
- Laboratory Animal Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, 21702
| | - Kevin C. Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Masao Nakagawa
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Michiyuki Maeda
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
29
|
Jia D, Huang L, Bischoff J, Moses MA. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells. FASEB J 2014; 29:1371-82. [PMID: 25550468 DOI: 10.1096/fj.14-258947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/24/2014] [Indexed: 11/11/2022]
Abstract
We have previously identified a zinc finger transcription factor, ZNF24 (zinc finger protein 24), as a novel inhibitor of tumor angiogenesis and have demonstrated that ZNF24 exerts this effect by repressing the transcription of VEGF in breast cancer cells. Here we focused on the role of ZNF24 in modulating the angiogenic potential of the endothelial compartment. Knockdown of ZNF24 by siRNA in human primary microvascular endothelial cells (ECs) led to significantly decreased cell migration and invasion compared with control siRNA. ZNF24 knockdown consistently led to significantly impaired VEGF receptor 2 (VEGFR2) signaling and decreased levels of matrix metalloproteinase-2 (MMP-2), with no effect on levels of major regulators of MMP-2 activity such as the tissue inhibitors of metalloproteinases and MMP-14. Moreover, silencing ZNF24 in these cells led to significantly decreased EC proliferation. Quantitative PCR array analyses identified multiple cell cycle regulators as potential ZNF24 downstream targets which may be responsible for the decreased proliferation in ECs. In vivo, knockdown of ZNF24 specifically in microvascular ECs led to significantly decreased formation of functional vascular networks. Taken together, these results demonstrate that ZNF24 plays an essential role in modulating the angiogenic potential of microvascular ECs by regulating the proliferation, migration, and invasion of these cells.
Collapse
Affiliation(s)
- Di Jia
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Huang
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce Bischoff
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Marsha A Moses
- *Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Bentley VL, Veinotte CJ, Corkery DP, Pinder JB, LeBlanc MA, Bedard K, Weng AP, Berman JN, Dellaire G. Focused chemical genomics using zebrafish xenotransplantation as a pre-clinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica 2014; 100:70-6. [PMID: 25281505 DOI: 10.3324/haematol.2014.110742] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer therapeutics is evolving to precision medicine, with the goal of matching targeted compounds with molecular aberrations underlying a patient's cancer. While murine models offer a pre-clinical tool, associated costs and time are not compatible with actionable patient-directed interventions. Using the paradigm of T-cell acute lymphoblastic leukemia, a high-risk disease with defined molecular underpinnings, we developed a zebrafish human cancer xenotransplantation model to inform therapeutic decisions. Using a focused chemical genomic approach, we demonstrate that xenografted cell lines harboring mutations in the NOTCH1 and PI3K/AKT pathways respond concordantly to their targeted therapies, patient-derived T-cell acute lymphoblastic leukemia can be successfully engrafted in zebrafish and specific drug responses can be quantitatively determined. Using this approach, we identified a mutation sensitive to γ-secretase inhibition in a xenograft from a child with T-cell acute lymphoblastic leukemia, confirmed by Sanger sequencing and validated as a gain-of-function NOTCH1 mutation. The zebrafish xenotransplantation platform provides a novel cost-effective means of tailoring leukemia therapy in real time.
Collapse
Affiliation(s)
| | | | - Dale P Corkery
- Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS
| | | | | | | | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC
| | - Jason N Berman
- IWK Health Centre, Halifax, NS Pediatrics and Microbiology & Immunology Dalhousie University, Halifax, NS, Canada
| | - Graham Dellaire
- Pathology, Dalhousie University, Halifax, NS Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS
| |
Collapse
|
31
|
A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia. Blood Cancer J 2014; 4:e232. [PMID: 25083816 PMCID: PMC4219466 DOI: 10.1038/bcj.2014.52] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022] Open
Abstract
Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). ‘Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies.
Collapse
|
32
|
Hagenbeek TJ, Wu X, Choy L, Sanchez-Irizarry C, Seshagiri S, Stinson J, Siebel CW, Spits H. Murine Pten−/− T-ALL requires non-redundant PI3K/mTOR and DLL4/Notch1 signals for maintenance and γc/TCR signals for thymic exit. Cancer Lett 2014; 346:237-48. [DOI: 10.1016/j.canlet.2013.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
|
33
|
Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K–AKT–mTOR1 signaling axis: Targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 2014; 26:149-61. [DOI: 10.1016/j.cellsig.2013.09.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 02/01/2023]
|
34
|
Hernandez Tejada FN, Galvez Silva JR, Zweidler-McKay PA. The challenge of targeting notch in hematologic malignancies. Front Pediatr 2014; 2:54. [PMID: 24959528 PMCID: PMC4051192 DOI: 10.3389/fped.2014.00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/21/2014] [Indexed: 01/12/2023] Open
Abstract
Notch signaling can play oncogenic and tumor suppressor roles depending on cell type. Hematologic malignancies encompass a wide range of transformed cells, and consequently the roles of Notch are diverse in these diseases. For example Notch is a potent T-cell oncogene, with >50% of T-cell acute lymphoblastic leukemia (T-ALL) cases carry activating mutations in the Notch1 receptor. Targeting Notch signaling in T-ALL with gamma-secretase inhibitors, which prevent Notch receptor activation, has shown pre-clinical activity, and is under evaluation clinically. In contrast, Notch signaling inhibits acute myeloblastic leukemia growth and survival, and although targeting Notch signaling in AML with Notch activators appears to have pre-clinical activity, no Notch agonists are clinically available at this time. As such, despite accumulating evidence about the biology of Notch signaling in different hematologic cancers, which provide compelling clinical promise, we are only beginning to target this pathway clinically, either on or off. In this review, we will summarize the evidence for oncogenic and tumor suppressor roles of Notch in a wide range of leukemias and lymphomas, and describe therapeutic opportunities for now and the future.
Collapse
Affiliation(s)
| | - Jorge R Galvez Silva
- Department of Pediatrics, University of Texas M. D. Anderson Cancer Center , Houston, TX , USA
| | | |
Collapse
|
35
|
Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CHM, von Boehmer H, Young RA, Look AT. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:1545-57. [PMID: 23857984 PMCID: PMC3727321 DOI: 10.1084/jem.20122516] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
miR-223 is upregulated by the transcription factor TAL1 in human T-ALL cells and suppress the FBXW7 tumor suppressor. The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02216, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tosello V, Ferrando AA. The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 2013; 4:199-210. [PMID: 23730497 DOI: 10.1177/2040620712471368] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is characterized by aberrant activation of NOTCH1 in over 60% of T-ALL cases. The high prevalence of activating NOTCH1 mutations highlights the critical role of NOTCH signaling in the pathogenesis of this disease and has prompted the development of therapeutic approaches targeting the NOTCH signaling pathway. Small molecule gamma secretase inhibitors (GSIs) can effectively inhibit oncogenic NOTCH1 and are in clinical testing for the treatment of T-ALL. Treatment with GSIs and glucocorticoids are strongly synergistic and may overcome the gastrointestinal toxicity associated with systemic inhibition of the NOTCH pathway. In addition, emerging new anti-NOTCH1 therapies include selective inhibition of NOTCH1 with anti-NOTCH1 antibodies and stapled peptides targeting the NOTCH transcriptional complex in the nucleus.
Collapse
|
37
|
Lounnas N, Rosilio C, Nebout M, Mary D, Griessinger E, Neffati Z, Chiche J, Spits H, Hagenbeek TJ, Asnafi V, Poulsen SA, Supuran CT, Peyron JF, Imbert V. Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas. Cancer Lett 2013; 333:76-88. [DOI: 10.1016/j.canlet.2013.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/17/2022]
|
38
|
Hartzell C, Ksionda O, Lemmens E, Coakley K, Yang M, Dail M, Harvey RC, Govern C, Bakker J, Lenstra TL, Ammon K, Boeter A, Winter SS, Loh M, Shannon K, Chakraborty AK, Wabl M, Roose JP. Dysregulated RasGRP1 responds to cytokine receptor input in T cell leukemogenesis. Sci Signal 2013; 6:ra21. [PMID: 23532335 DOI: 10.1126/scisignal.2003848] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhanced signaling by the small guanosine triphosphatase Ras is common in T cell acute lymphoblastic leukemia/lymphoma (T-ALL), but the underlying mechanisms are unclear. We identified the guanine nucleotide exchange factor RasGRP1 (Rasgrp1 in mice) as a Ras activator that contributes to leukemogenesis. We found increased RasGRP1 expression in many pediatric T-ALL patients, which is not observed in rare early T cell precursor T-ALL patients with KRAS and NRAS mutations, such as K-Ras(G12D). Leukemia screens in wild-type mice, but not in mice expressing the mutant K-Ras(G12D) that encodes a constitutively active Ras, yielded frequent retroviral insertions that led to increased Rasgrp1 expression. Rasgrp1 and oncogenic K-Ras(G12D) promoted T-ALL through distinct mechanisms. In K-Ras(G12D) T-ALLs, enhanced Ras activation had to be uncoupled from cell cycle arrest to promote cell proliferation. In mouse T-ALL cells with increased Rasgrp1 expression, we found that Rasgrp1 contributed to a previously uncharacterized cytokine receptor-activated Ras pathway that stimulated the proliferation of T-ALL cells in vivo, which was accompanied by dynamic patterns of activation of effector kinases downstream of Ras in individual T-ALLs. Reduction of Rasgrp1 abundance reduced cytokine-stimulated Ras signaling and decreased the proliferation of T-ALL in vivo. The position of RasGRP1 downstream of cytokine receptors as well as the different clinical outcomes that we observed as a function of RasGRP1 abundance make RasGRP1 an attractive future stratification marker for T-ALL.
Collapse
Affiliation(s)
- Catherine Hartzell
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Identifizierung der Zielproteine bioaktiver Verbindungen: Die Suche nach der Nadel im Heuhaufen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208749] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 2013; 52:2744-92. [PMID: 23418026 DOI: 10.1002/anie.201208749] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 01/10/2023]
Abstract
Identification and confirmation of bioactive small-molecule targets is a crucial, often decisive step both in academic and pharmaceutical research. Through the development and availability of several new experimental techniques, target identification is, in principle, feasible, and the number of successful examples steadily grows. However, a generic methodology that can successfully be applied in the majority of the cases has not yet been established. Herein we summarize current methods for target identification of small molecules, primarily for a chemistry audience but also the biological community, for example, the chemist or biologist attempting to identify the target of a given bioactive compound. We describe the most frequently employed experimental approaches for target identification and provide several representative examples illustrating the state-of-the-art. Among the techniques currently available, protein affinity isolation using suitable small-molecule probes (pulldown) and subsequent mass spectrometric analysis of the isolated proteins appears to be most powerful and most frequently applied. To provide guidance for rapid entry into the field and based on our own experience we propose a typical workflow for target identification, which centers on the application of chemical proteomics as the key step to generate hypotheses for potential target proteins.
Collapse
Affiliation(s)
- Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie, Abt. Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
41
|
Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL, Signoretti S, Look AT, Kung AL, von Boehmer H, Sicinski P. The requirement for cyclin D function in tumor maintenance. Cancer Cell 2012; 22:438-51. [PMID: 23079655 PMCID: PMC3487466 DOI: 10.1016/j.ccr.2012.09.015] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 06/24/2012] [Accepted: 09/18/2012] [Indexed: 11/24/2022]
Abstract
D-cyclins represent components of cell cycle machinery. To test the efficacy of targeting D-cyclins in cancer treatment, we engineered mouse strains that allow acute and global ablation of individual D-cyclins in a living animal. Ubiquitous shutdown of cyclin D1 or inhibition of cyclin D-associated kinase activity in mice bearing ErbB2-driven mammary carcinomas triggered tumor cell senescence, without compromising the animals' health. Ablation of cyclin D3 in mice bearing Notch1-driven T cell acute lymphoblastic leukemias (T-ALL) triggered tumor cell apoptosis. Such selective killing of leukemic cells can also be achieved by inhibiting cyclin D associated kinase activity in mouse and human T-ALL models. Inhibition of cyclin D-kinase activity represents a highly-selective anticancer strategy that specifically targets cancer cells without significantly affecting normal tissues.
Collapse
Affiliation(s)
- Yoon Jong Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Xiaoyu Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115
| | - Per Hydbring
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Takaomi Sanda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Joanna Stefano
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amanda L. Christie
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Andrew L. Kung
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Harald von Boehmer
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Correspondence:
| |
Collapse
|
42
|
Ma W, Gutierrez A, Goff DJ, Geron I, Sadarangani A, Jamieson CAM, Court AC, Shih AY, Jiang Q, Wu CC, Li K, Smith KM, Crews LA, Gibson NW, Deichaite I, Morris SR, Wei P, Carson DA, Look AT, Jamieson CHM. NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches. PLoS One 2012; 7:e39725. [PMID: 22768113 PMCID: PMC3387267 DOI: 10.1371/journal.pone.0039725] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 05/25/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Leukemia initiating cells (LIC) contribute to therapeutic resistance through acquisition of mutations in signaling pathways, such as NOTCH1, that promote self-renewal and survival within supportive niches. Activating mutations in NOTCH1 occur commonly in T cell acute lymphoblastic leukemia (T-ALL) and have been implicated in therapeutic resistance. However, the cell type and context specific consequences of NOTCH1 activation, its role in human LIC regeneration, and sensitivity to NOTCH1 inhibition in hematopoietic microenvironments had not been elucidated. METHODOLOGY AND PRINCIPAL FINDINGS We established humanized bioluminescent T-ALL LIC mouse models transplanted with pediatric T-ALL samples that were sequenced for NOTCH1 and other common T-ALL mutations. In this study, CD34(+) cells from NOTCH1(Mutated) T-ALL samples had higher leukemic engraftment and serial transplantation capacity than NOTCH1(Wild-type) CD34(+) cells in hematopoietic niches, suggesting that self-renewing LIC were enriched within the NOTCH1(Mutated) CD34(+) fraction. Humanized NOTCH1 monoclonal antibody treatment reduced LIC survival and self-renewal in NOTCH1(Mutated) T-ALL LIC-engrafted mice and resulted in depletion of CD34(+)CD2(+)CD7(+) cells that harbor serial transplantation capacity. CONCLUSIONS These results reveal a functional hierarchy within the LIC population based on NOTCH1 activation, which renders LIC susceptible to targeted NOTCH1 inhibition and highlights the utility of NOTCH1 antibody targeting as a key component of malignant stem cell eradication strategies.
Collapse
Affiliation(s)
- Wenxue Ma
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Daniel J. Goff
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Ifat Geron
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Anil Sadarangani
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Christina A. M. Jamieson
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Angela C. Court
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Alice Y. Shih
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Qingfei Jiang
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Christina C. Wu
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Kang Li
- Oncology Research Unit, Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California, United States of America
| | - Kristen M. Smith
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Leslie A. Crews
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Neil W. Gibson
- Oncology Research Unit, Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California, United States of America
| | - Ida Deichaite
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Sheldon R. Morris
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Ping Wei
- Oncology Research Unit, Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California, United States of America
| | - Dennis A. Carson
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Catriona H. M. Jamieson
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
43
|
Belyaev NN, Biró J, Athanasakis D, Fernandez-Reyes D, Potocnik AJ. Global transcriptional analysis of primitive thymocytes reveals accelerated dynamics of T cell specification in fetal stages. Immunogenetics 2012; 64:591-604. [PMID: 22581009 PMCID: PMC3395349 DOI: 10.1007/s00251-012-0620-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/24/2012] [Indexed: 11/24/2022]
Abstract
T cell development constitutes a multistage process allowing the dissection of events resulting in cellular commitment and functional specification in a specialized microenvironment. This process is guided by the appropriate expression of regulatory genetic factors like transcriptional activators or repressors which are, in part, dependent on instructive signals of the microenvironment. To date, it remains unclear whether exactly the same genetic mechanism acts in adult compared to fetal T cell development. In order to directly compare T cell commitment during adult and fetal differentiation, we isolated subsequent stages of intrathymic subpopulations starting with early canonical T cell progenitors up to irreversibly committed T cell precursors. The genome-wide analysis revealed several distinct gene clusters with a specific pattern of gene regulation for each subset. The largest cluster contained genes upregulated after transition through the most primitive pool into the next transitory population with a consistently elevated expression of elements associated with ongoing T cell fate specification, like Gata3 and Tcf7, in fetal progenitors. Furthermore, adult and fetal T cell progenitors occupied distinct "transcriptional territories" revealing a precise land map of the progression to final T cell commitment operating in different developmental windows. The presence and/or elevated expression of elements associated with an ongoing establishment of a T cell signature in the most primitive fetal subset is highly suggestive for an extrathymic initiation of T cell specification and underlines the fundamental differences in fetal versus adult lymphopoiesis.
Collapse
Affiliation(s)
- Nikolai N Belyaev
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
44
|
[T-cell pediatric acute lymphoblastic leukemia: analysis of survival and prognostic factors in 4 consecutive protocols of the Spanish cooperative study group SHOP]. Med Clin (Barc) 2012; 139:141-9. [PMID: 22459573 DOI: 10.1016/j.medcli.2011.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Acute lymphoblastic leukemia (ALL) is the most frequent cancer in childhood, with cure rates of 80-85%. In T-cell ALL (15% of ALL), prognostic factors are ill defined. We aimed to describe the event-free survival (EFS) and analyze clinical prognostic factors in a series of pediatric T-ALL of 4 consecutive clinical trials. PATIENTS AND METHODS Children with T-ALL aged 1-18 years treated in 37 institutions in Spain were enrolled in 4 consecutive trials from February-1989 to November-2009. RESULTS A total of 218 T-ALL patients out of 1,652 pediatric ALL were evaluable during the study period (SHOP/ALL-89: 35, ALL-94: 63, ALL-99: 62, ALL-2005: 58). There were 164 boys (75%). Median age (years) was 7.8 range (1.3-18.6). Median leukocytes (10(9)/L) was 78.2, range 0.8-930. Fifteen (6.8%) children had central nervous system (CNS) involvement at diagnosis. Regarding response to induction treatment, 150 (75%) patients had less than 5% blasts on day-14 bone marrow and 199 achieved complete remission at the end of induction. Overall survival (OS) at 60 months for SHOP/ALL-89, ALL-94, ALL-99 was 48 (8), 49 (6), 70 (6) %, respectively, and at 48 months for SHOP/ALL-2005 (ongoing protocol) was 74 (8) %. Median follow-up (months) was 206, 152, 74 and 17 respectively. Analysis of prognostic factors revealed no statistical differences regarding sex or age. Leukocyte count over 200×10(9)/l (P=.024), CNS infiltration at diagnosis (P<.006) and treatment response had prognostic significance (end-induction complete remission) (P=.0000), day 14-bone marrow (P=.005). CONCLUSIONS Results for the SHOP/ALL-89 and ALL-94 protocols were inferior to other contemporary protocols but there has been an improvement in survival in the 2 last trials. In line with other T-ALL series, response to treatment had the strongest prognostic impact.
Collapse
|
45
|
Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D, Toms AV, Marubayashi S, Christie AL, McKeown M, Paranal RM, Bradner JE, Yoda A, Gaul C, Vangrevelinghe E, Romanet V, Murakami M, Tiedt R, Ebel N, Evrot E, De Pover A, Régnier CH, Erdmann D, Hofmann F, Eck MJ, Sallan SE, Levine RL, Kung AL, Baffert F, Radimerski T, Weinstock DM. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. ACTA ACUST UNITED AC 2012; 209:259-73. [PMID: 22271575 PMCID: PMC3280877 DOI: 10.1084/jem.20111694] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Enzymatic inhibitors of Janus kinase 2 (JAK2) are in clinical development for the treatment of myeloproliferative neoplasms (MPNs), B cell acute lymphoblastic leukemia (B-ALL) with rearrangements of the cytokine receptor subunit cytokine receptor-like factor 2 (CRLF2), and other tumors with constitutive JAK2 signaling. In this study, we identify G935R, Y931C, and E864K mutations within the JAK2 kinase domain that confer resistance across a panel of JAK inhibitors, whether present in cis with JAK2 V617F (observed in MPNs) or JAK2 R683G (observed in B-ALL). G935R, Y931C, and E864K do not reduce the sensitivity of JAK2-dependent cells to inhibitors of heat shock protein 90 (HSP90), which promote the degradation of both wild-type and mutant JAK2. HSP90 inhibitors were 100-1,000-fold more potent against CRLF2-rearranged B-ALL cells, which correlated with JAK2 degradation and more extensive blockade of JAK2/STAT5, MAP kinase, and AKT signaling. In addition, the HSP90 inhibitor AUY922 prolonged survival of mice xenografted with primary human CRLF2-rearranged B-ALL further than an enzymatic JAK2 inhibitor. Thus, HSP90 is a promising therapeutic target in JAK2-driven cancers, including those with genetic resistance to JAK enzymatic inhibitors.
Collapse
Affiliation(s)
- Oliver Weigert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nwabo Kamdje AH, Krampera M. Notch signaling in acute lymphoblastic leukemia: any role for stromal microenvironment? Blood 2011; 118:6506-6514. [PMID: 21979940 DOI: 10.1182/blood-2011-08-376061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Notch signaling pathway regulates many different events of embryonic and adult development; among them, Notch plays an essential role in the onset of hematopoietic stem cells and influences multiple maturation steps of developing lymphoid and myeloid cells. Deregulation of Notch signaling determines several human disorders, including cancer. In the last decade it became evident that Notch signaling plays pivotal roles in the onset and development of T- and B-cell acute lymphoblastic leukemia by regulating the intracellular molecular pathways involved in leukemia cell survival and proliferation. On the other hand, bone marrow stromal cells are equally necessary for leukemia cell survival by preventing blast cell apoptosis and favoring their reciprocal interactions and cross-talk with bone marrow microenvironment. Quite surprisingly, the link between Notch signaling pathway and bone marrow stromal cells in acute lymphoblastic leukemia has been pointed out only recently. In fact, bone marrow stromal cells express Notch receptors and ligands, through which they can interact with and influence normal and leukemia T- and B-cell survival. Here, the data concerning the development of T- and B-cell acute lymphoblastic leukemia has been critically reviewed in light of the most recent findings on Notch signaling in stromal microenvironment.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, Piazzale L. A. Scuro 10, Verona, Italy
| | | |
Collapse
|
47
|
Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O, Trumpp A, Pflumio F, Carboni J, Gottardis M, Pollak M, Kung AL, Aster JC, Holzenberger M, Weng AP. High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. ACTA ACUST UNITED AC 2011; 208:1809-22. [PMID: 21807868 PMCID: PMC3171095 DOI: 10.1084/jem.20110121] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Notch-driven expression of IGF1R promotes the growth, viability, and transplantability of T-ALL cells. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of Notch1 and PI3K–Akt pathways. Although mutations that activate PI3K–Akt signaling have previously been identified, the relative contribution of growth factor-dependent activation is unclear. We show here that pharmacologic inhibition or genetic deletion of insulin-like growth factor 1 receptor (IGF1R) blocks the growth and viability of T-ALL cells, whereas moderate diminution of IGF1R signaling compromises leukemia-initiating cell (LIC) activity as defined by transplantability in syngeneic/congenic secondary recipients. Furthermore, IGF1R is a Notch1 target, and Notch1 signaling is required to maintain IGF1R expression at high levels in T-ALL cells. These findings suggest effects of Notch on LIC activity may be mediated in part by enhancing the responsiveness of T-ALL cells to ambient growth factors, and provide strong rationale for use of IGF1R inhibitors to improve initial response to therapy and to achieve long-term cure of patients with T-ALL.
Collapse
Affiliation(s)
- Hind Medyouf
- Terry Fox Laboratory/Department of Pathology, BC Cancer Agency, Vancouver, BC, V52 1L3 Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li X, Sanda T, Look AT, Novina CD, von Boehmer H. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. ACTA ACUST UNITED AC 2011; 208:663-75. [PMID: 21464222 PMCID: PMC3135352 DOI: 10.1084/jem.20102384] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miR-451 represses expression of Myc and acts as a tumor suppressor in murine and human T cell acute lymphoblastic leukemia. The NOTCH1 signaling pathway is a critical determinant of cell fate decisions and drives oncogenesis through mechanisms that are incompletely understood. Using an established mouse model of T cell acute lymphoblastic leukemia (T-ALL), here we report that induction of intracellular Notch1 (ICN1) leads to repression of miR-451 and miR-709. ICN1 decreases expression of these miRNAs by inducing degradation of the E2a tumor suppressor, which transcriptionally activates the genes encoding miR-451 and miR-709. Both miR-451 and miR-709 directly repress Myc expression. In addition, miR-709 directly represses expression of the Akt and Ras-GRF1 oncogenes. We also show that repression of miR-451 and miR-709 expression is required for initiation and maintenance of mouse T-ALL. miR-451 but not miR-709 is conserved in humans, and human T-ALLs with activating NOTCH1 mutations have decreased miR-451 and increased MYC levels compared with T-ALLs with wild-type NOTCH1. Thus, miR-451 and miR-709 function as potent suppressors of oncogenesis in NOTCH1-induced mouse T-ALL, and miR-451 influences MYC expression in human T-ALL bearing NOTCH1 mutations.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
49
|
Guo D, Teng Q, Ji C. NOTCH and phosphatidylinositide 3-kinase/phosphatase and tensin homolog deleted on chromosome ten/AKT/mammalian target of rapamycin (mTOR) signaling in T-cell development and T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2011; 52:1200-10. [PMID: 21463127 DOI: 10.3109/10428194.2011.564696] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activating mutations in NOTCH1 consitute the most prominent genetic abnormality in T-cell acute lymphoblastic leukemia (T-ALL). However, most T-ALL cell lines with NOTCH1 mutations are resistant to treatment with γ-secretase inhibitors (GSIs). The spotlight is now shifting to the phosphatidylinositide 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome ten (PTEN)/AKT/mammalian target of rapamycin (mTOR) pathway as another key potential target. These two signaling routes are deregulated in many types of cancer. In this review we discuss these two pathways with respect to their signaling mechanisms, functions during T-cell development, and their mutual roles in the development of T-ALL.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Hematology, The Central Hospital of Taian, Taian, Shandong, P R China.
| | | | | |
Collapse
|
50
|
Margolin JF. Molecular diagnosis and risk-adjusted therapy in pediatric hematologic malignancies: a primer for pediatricians. Eur J Pediatr 2011; 170:419-25. [PMID: 21350806 DOI: 10.1007/s00431-011-1424-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/08/2011] [Indexed: 12/17/2022]
Abstract
UNLABELLED Progress in the care of the hematologic malignancies of childhoond has been one of the proudest success stories in modern pediatrics. The cure rates of these diseases have improved from essentially zero in the 1950's and early 1960's to cure rates that range from 65%-90% in modern centers. While the largest improvements have been made in the most common (and the lower risk subtypes) of Acute Lymphoblastic Leukemia (ALL), there has also been significant progress in both the higher risk forms of ALL (i.e. Philadelphia chromosome positive, Ph+ ALL) and in Acute Myeloid Leukemia (AML). This progress has been achieved by the careful and stepwise identification of clinical, cytogenetic, molecular, and most recently response-based prognostic criteria, that now allow oncologists to focus the intensity of the therapy more closely to what is required to cure individual subgroups of patients. CONCLUSION Pediatricians need to be familiar with the changes in diagnostic and therapeutic approaches, because these changes have impact on: the laboratory tests that should be ordered at the time of specialist referral; counseling of patients and their families; and with the advent of "shared care models" pediatricians will need to be more involved in the general, supportive, and long-term care of these patients.
Collapse
|