1
|
Lai YG, Liao HT, Chen YH, Huang SW, Liou YH, Wu ZQ, Liao NS. cGAS and STING in Host Myeloid Cells Are Essential for Effective Cyclophosphamide Treatment of Advanced Breast Cancer. Cancers (Basel) 2025; 17:1130. [PMID: 40227734 PMCID: PMC11987962 DOI: 10.3390/cancers17071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cyclophosphamide (CTX) treatment in vivo kills proliferating tumor cells by DNA crosslinking; however, the suppression of tumor growth by CTX in several murine models requires CD8+ T cells. Given that CTX induces DNA damage and type I interferon (IFN-I), we investigated the role of host cGAS and STING in the anti-tumor effect of CTX in vivo. METHODS A metastasized EO771 breast cancer model with chromosomal instability and bone marrow (BM) chimera approach were used in this study. RESULTS We found that CTX therapy induces long-term survival of the mice, with this outcome being dependent on CD8+ T cells and cGAS/STING of BM-derived cells. Furthermore, the STING of type 1 conventional dendritic cells (cDC1s) and LysM+ cells and the IFN-I response of non-cDC1 myeloid cells are essential for CTX efficacy. We also found that the cGAS and STING of BM-derived cells positively modulate intratumoral exhausted and stem-cell-like CD8+ T cell populations under CTX treatment, with the latter only being affected by cGAS. CONCLUSIONS Our study demonstrates that the CD8+-T-cell-dependent anti-tumor mechanisms of CTX critically involve the cGAS-STING-IFN-I axis, IFN-I response, and STING-independent cGAS function in host myeloid cells. These findings suggest the deployment of CTX in treating advanced solid tumor to bypass the often-failed IFN-I production by tumor cells due to the chronic activation of intrinsic cGAS-STING caused by chromosomal instability.
Collapse
Affiliation(s)
- Yein-Gei Lai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (Y.-G.L.); (H.-T.L.); (Y.-H.C.); (S.-W.H.); (Y.-H.L.); (Z.-Q.W.)
| | - Hao-Ting Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (Y.-G.L.); (H.-T.L.); (Y.-H.C.); (S.-W.H.); (Y.-H.L.); (Z.-Q.W.)
- Department of Life Sciences, National Central University, Taoyuan 320, Taiwan
| | - Yung-Hsiang Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (Y.-G.L.); (H.-T.L.); (Y.-H.C.); (S.-W.H.); (Y.-H.L.); (Z.-Q.W.)
| | - Shih-Wen Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (Y.-G.L.); (H.-T.L.); (Y.-H.C.); (S.-W.H.); (Y.-H.L.); (Z.-Q.W.)
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (Y.-G.L.); (H.-T.L.); (Y.-H.C.); (S.-W.H.); (Y.-H.L.); (Z.-Q.W.)
| | - Zhen-Qi Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (Y.-G.L.); (H.-T.L.); (Y.-H.C.); (S.-W.H.); (Y.-H.L.); (Z.-Q.W.)
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (Y.-G.L.); (H.-T.L.); (Y.-H.C.); (S.-W.H.); (Y.-H.L.); (Z.-Q.W.)
| |
Collapse
|
2
|
Lin YX, Pan JY, Feng WD, Huang TC, Li CZ. MRPL48 is a novel prognostic and predictive biomarker of hepatocellular carcinoma. Eur J Med Res 2023; 28:589. [PMID: 38093387 PMCID: PMC10720175 DOI: 10.1186/s40001-023-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent forms of cancer and poses a threat to the health and survival of humans. Mitochondrial ribosomal protein L48 (MRPL48) belongs to the mitochondrial ribosomal protein family, which participates in energy production. Studies have shown that MRPL48 can predict osteosarcoma incidence and prognosis, as well as promotes colorectal cancer progression. However, the role of MRPL48 in HCC remains unknown. METHODS TCGA, GEO, HCCDB, CPTAC, SMART, UALCAN, Kaplan-Meier plotter, cBioPortal, and MethSurv were performed for bioinformatics purposes. Quantitative RT-PCR, immunoblotting, and functional studies were conducted to validate the methodology in vitro. RESULTS MRPL48 was greatly overexpressed in HCC tissues, compared with healthy tissue, which was subsequently demonstrated in vitro as well. The survival and regression analyses showed that MRPL48 expression is of significant clinical prognostic value in HCC. The ROC curve and nomogram analysis indicated that MRPL48 is a powerful predictor of HCC. MRPL48 methylation was adversely associated with the expression of MRPL48, and patients with a low level of methylation had poorer overall survival than those with a high level of methylation. GSEA showed that the expression of the MRPL48 was correlated with Resolution of Sister Chromatid Cohesion, Mitotic Prometaphase, Retinoblastoma Gene in Cancer, RHO Gtpases Activate Formins, Mitotic Metaphase and Anaphase, and Cell Cycle Checkpoints. An analysis of immune cell infiltration showed a significant association between MRPL48 and immune cell infiltration subsets, which impacted the survival of HCC patients. Additionally, MRPL48 knockdown reduced HCC cell proliferation, migration, and invasion in vitro. CONCLUSIONS We demonstrated that MRPL48 expression may be associated with HCC development and prognosis. These findings may open up new research directions and opportunities for the development of HCC treatments.
Collapse
Affiliation(s)
- Yu-Xiang Lin
- Central Supply Service Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 36200, People's Republic of China
| | - Jun-Yong Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou, 36200, People's Republic of China
| | - Wen-Du Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou, 36200, People's Republic of China
| | - Tian-Cong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou, 36200, People's Republic of China
| | - Cheng-Zong Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University (Donghai District), Quanzhou, 36200, People's Republic of China.
| |
Collapse
|
3
|
Brightman SE, Becker A, Thota RR, Naradikian MS, Chihab L, Zavala KS, Ramamoorthy Premlal AL, Griswold RQ, Dolina JS, Cohen EEW, Miller AM, Peters B, Schoenberger SP. Neoantigen-specific stem cell memory-like CD4 + T cells mediate CD8 + T cell-dependent immunotherapy of MHC class II-negative solid tumors. Nat Immunol 2023; 24:1345-1357. [PMID: 37400675 PMCID: PMC10382322 DOI: 10.1038/s41590-023-01543-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
CD4+ T cells play key roles in a range of immune responses, either as direct effectors or through accessory cells, including CD8+ T lymphocytes. In cancer, neoantigen (NeoAg)-specific CD8+ T cells capable of direct tumor recognition have been extensively studied, whereas the role of NeoAg-specific CD4+ T cells is less well understood. We have characterized the murine CD4+ T cell response against a validated NeoAg (CLTCH129>Q) expressed by the MHC-II-deficient squamous cell carcinoma tumor model (SCC VII) at the level of single T cell receptor (TCR) clonotypes and in the setting of adoptive immunotherapy. We find that the natural CLTCH129>Q-specific repertoire is diverse and contains TCRs with distinct avidities as measured by tetramer-binding assays and CD4 dependence. Despite these differences, CD4+ T cells expressing high or moderate avidity TCRs undergo comparable in vivo proliferation to cross-presented antigen from growing tumors and drive similar levels of therapeutic immunity that is dependent on CD8+ T cells and CD40L signaling. Adoptive cellular therapy (ACT) with NeoAg-specific CD4+ T cells is most effective when TCR-engineered cells are differentiated ex vivo with IL-7 and IL-15 rather than IL-2 and this was associated with both increased expansion as well as the acquisition and stable maintenance of a T stem cell memory (TSCM)-like phenotype in tumor-draining lymph nodes (tdLNs). ACT with TSCM-like CD4+ T cells results in lower PD-1 expression by CD8+ T cells in the tumor microenvironment and an increased frequency of PD-1+CD8+ T cells in tdLNs. These findings illuminate the role of NeoAg-specific CD4+ T cells in mediating antitumor immunity via providing help to CD8+ T cells and highlight their therapeutic potential in ACT.
Collapse
Affiliation(s)
- Spencer E Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Angelica Becker
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rukman R Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Martin S Naradikian
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Leila Chihab
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Karla Soria Zavala
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Ryan Q Griswold
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph S Dolina
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ezra E W Cohen
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Aaron M Miller
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Stephen P Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
4
|
Colombo I, Karakasis K, Suku S, Oza AM. Chasing Immune Checkpoint Inhibitors in Ovarian Cancer: Novel Combinations and Biomarker Discovery. Cancers (Basel) 2023; 15:3220. [PMID: 37370830 DOI: 10.3390/cancers15123220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A deep understanding of the tumor microenvironment and the recognition of tumor-infiltrating lymphocytes as a prognostic factor have resulted in major milestones in immunotherapy that have led to therapeutic advances in treating many cancers. Yet, the translation of this knowledge to clinical success for ovarian cancer remains a challenge. The efficacy of immune checkpoint inhibitors as single agents or combined with chemotherapy has been unsatisfactory, leading to the exploration of alternative combination strategies with targeted agents (e.g., poly-ADP-ribose inhibitors (PARP)and angiogenesis inhibitors) and novel immunotherapy approaches. Among the different histological subtypes, clear cell ovarian cancer has shown a higher sensitivity to immunotherapy. A deeper understanding of the mechanism of immune resistance within the context of ovarian cancer and the identification of predictive biomarkers remain central discovery benchmarks to be realized. This will be critical to successfully define the precision use of immune checkpoint inhibitors for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ilaria Colombo
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Via A. Gallino, 6500 Bellinzona, Switzerland
| | - Katherine Karakasis
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Sneha Suku
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
5
|
Huang J, Gan J, Wang J, Zheng M, Xiao H. VPS72, a member of VPS protein family, can be used as a new prognostic marker for hepatocellular carcinoma. Immun Inflamm Dis 2023; 11:e856. [PMID: 37249275 PMCID: PMC10201960 DOI: 10.1002/iid3.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Vacuolar protein sorting (VPS) plays a crucial role in intracellular molecular transport between organelles. However, studies have indicated a correlation between VPSs and tumorigenesis and the development of several cancers. Nevertheless, the association between VPSs and hepatocellular carcinoma (HCC) remains unclear. METHODS By analyzing databases such as The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC), we investigated the differences in VPSs expression between normal tissue and HCC transcriptomes. Furthermore, we examined the relationship between VPSs expression and overall survival (OS) in patients with HCC. Univariate and multivariate Cox analyses were employed to assess the prognostic value of VPS72 as an independent factor, and the correlation between VPS72 and the tumor immune microenvironment was also analyzed. RESULTS We observed significant overexpression of 28 VPSs in HCC tissues compared to normal tissues. The mRNA expression of VPSs displayed a negative correlation with OS, while exhibiting a positive correlation with tumor grade and stage. Additionally, both univariate and multivariate Cox analyses identified VPS72 as a potential independent risk factor for HCC prognosis. Overexpression of VPS72 demonstrated a positive correlation with various clinicopathological factors associated with poor prognosis, as well as the infiltration levels of immune cells. CONCLUSION Therefore, our research shows that VPSs participate in HCC occurrence and development, especially VPS72, which may act as a potential target for HCC treatment and prognosis biomarker.
Collapse
Affiliation(s)
- Jian Huang
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
| | - Jin Gan
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
| | - Jian Wang
- Department of Hepato‐Biliary‐Pancreatic SurgeryPingxiang People's HospitalPingxiangChina
| | - Min Zheng
- Department of rehabilitationLushan People's HospitalJiujiangChina
| | - Han Xiao
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
- Department of Hepato‐Biliary‐Pancreatic SurgeryJiujiang First People's HospitalJiujiangChina
| |
Collapse
|
6
|
Cai C, Zhang Y, Hu X, Yang S, Ye J, Wei Z, Chu T. Spindle and Kinetochore-associated Family Genes are Prognostic and Predictive Biomarkers in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:627-641. [PMID: 36062274 PMCID: PMC9396317 DOI: 10.14218/jcth.2021.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. Spindle and kinetochore-associated (SKA) family genes are essential for the maintenance of the metaphase plate and spindle checkpoint silencing during mitosis. Recent studies have indicated that dysregulation of SKA family genes induces tumorigenesis, tumor progression, and chemoresistance via modulation of cell cycle and DNA replication. However, the differential transcription of SKAs in the context of HCC and its prognostic significance has not been demonstrated. METHODS Bioinformatics analyses were performed using TCGA, ONCOMINE, HCCDB, Kaplan-Meier plotter, STRING, GEPIA databases. qRT-PCR, western blot, and functional assays were utilized for in vitro experiments. RESULTS We found remarkable upregulation of transcripts of SKA family genes in HCC samples compared with normal liver samples on bioinformatics analyses and in vitro validation. Interaction analysis and enrichment analysis showed that SKA family members were mainly related to microtubule motor activity, mitosis, and cell cycle. Immuno-infiltration analysis showed a correlation of all SKA family genes with various immune cell subsets, especially T helper 2 (Th2) cells. Transcriptional levels of SKA family members were positively associated with histologic grade, T stage, and α-fetoprotein in HCC patients. Receiver operating characteristic curve analysis demonstrated a strong predictive ability of SKA1/2/3 for HCC. Increased expression of these SKAs was associated with unfavorable overall survival, progression-free survival, and disease-specific survival. On Cox proportional hazards regression analyses, SKA1 upregulation and pathological staging were independent predictors of overall survival and disease-specific survival of HCC patients. Finally, clinical tissue microarray validation and in vitro functional assays revealed SKA1 acts an important regulatory role in tumor malignant behavior. CONCLUSIONS SKA family members may potentially serve as diagnostic and prognostic markers in the context of HCC. The correlation between SKAs and immune cell infiltration provides a promising research direction for SKA-targeted immunotherapeutics for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tongwei Chu
- Correspondence to: Tongwei Chu, Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), No.83 Xinqiao Main Street, Shapingba District, Chongqing 400037, China. ORCID: https://orcid.org/0000-0003-0309-7082. Tel: +86-13708388336, E-mail:
| |
Collapse
|
7
|
Medrano RFV, Salles TA, Dariolli R, Antunes F, Feitosa VA, Hunger A, Catani JPP, Mendonça SA, Tamura RE, Lana MG, Rodrigues EG, Strauss BE. Potentiation of combined p19Arf and interferon-beta cancer gene therapy through its association with doxorubicin chemotherapy. Sci Rep 2022; 12:13636. [PMID: 35948616 PMCID: PMC9365852 DOI: 10.1038/s41598-022-17775-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/30/2022] [Indexed: 11/11/2022] Open
Abstract
Balancing safety and efficacy is a major consideration for cancer treatments, especially when combining cancer immunotherapy with other treatment modalities such as chemotherapy. Approaches that induce immunogenic cell death (ICD) are expected to eliminate cancer cells by direct cell killing as well as activation of an antitumor immune response. We have developed a gene therapy approach based on p19Arf and interferon-β gene transfer that, similar to conventional inducers of ICD, results in the release of DAMPS and immune activation. Here, aiming to potentiate this response, we explore whether association between our approach and treatment with doxorubicin (Dox), a known inducer of ICD, could further potentiate treatment efficacy without inducing cardiotoxicity, a critical side effect of Dox. Using central composite rotational design analysis, we show that cooperation between gene transfer and chemotherapy killed MCA205 and B16F10 cells and permitted the application of reduced viral and drug doses. The treatments also cooperated to induce elevated levels of ICD markers in MCA205, which correlated with improved efficacy of immunotherapy in vivo. Treatment of subcutaneous MCA205 tumors associating gene transfer and low dose (10 mg/kg) chemotherapy resulted in inhibition of tumor progression. Moreover, the reduced dose did not cause cardiotoxicity as compared to the therapeutic dose of Dox (20 mg/kg). The association of p19Arf/interferon-β gene transfer and Dox chemotherapy potentiated antitumor response and minimized cardiotoxicity.
Collapse
Affiliation(s)
- Ruan F V Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thiago A Salles
- Laboratório de Genética e Cardiologia Molecular/LIM 13, Instituto do Coração, FM-USP, São Paulo, SP, Brazil
| | - Rafael Dariolli
- Laboratório de Genética e Cardiologia Molecular/LIM 13, Instituto do Coração, FM-USP, São Paulo, SP, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fernanda Antunes
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil
| | - Valker A Feitosa
- Núcleo de Bionanomanufatura, Instituto de Pesquisas Tecnológicas (Bionano-IPT), São Paulo, SP, Brazil.,Faculdade de Ciências Farmaceuticas, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, SP, Brazil
| | - Aline Hunger
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Cristalia, Biotecnologia Unidade 1, Rodoviária SP 147, Itapira, SP, Brazil
| | - João P P Catani
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Vlaams Instituut Voor Biotenchnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Samir A Mendonça
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rodrigo E Tamura
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.,Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Marlous G Lana
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional Em Oncologia/LIM 24, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, Universidade de São Paulo (FM-USP), Av. Dr. Arnaldo, 251, 8° Andar, São Paulo, SP, CEP: 01246-000, Brazil.
| |
Collapse
|
8
|
Huang H, Peng L, Zhang B, Till BG, Yang Y, Zhang X, Zhao L, Fu X, Li T, Han L, Qin P, Chen L, Yan X, Liu Y, Wang W, Ye Z, Li H, Gao Q, Wang Z. Combination of Low-Dose Gemcitabine and PD-1 Inhibitors for Treatment in Patients With Advanced Malignancies. Front Immunol 2022; 13:882172. [PMID: 35911715 PMCID: PMC9328170 DOI: 10.3389/fimmu.2022.882172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study determined the efficacy of low-dose gemcitabine combined with programmed death-1 (PD-1) inhibitors for treating multiple malignancies, providing a cost-effective and safe treatment option. Study Design This study included 61 patients with advanced solid tumors treated with low-dose gemcitabine combined with PD-1 inhibitors at the Henan Cancer Hospital between January 2018 and February 2022. We retrospectively reviewed medical records to evaluate several clinical factors, including progression-free survival (PFS), overall survival (OS), adverse effects (AEs), and objective response to treatment. Results Sixty-one patients received treatment with low-dose gemcitabine combined with PD-1 inhibitors. The objective response rate (ORR) was 29.5% and the disease control rate (DCR) was 62.3%. The median PFS was 4.3 months (95% confidence interval, 2.3 to 6.3 months) and the median OS was 15.0 months (95% confidence interval, 8.8 to 21.2 months). Hematological toxicity, mainly leukopenia or thrombocytopenia, was the most common AE, with any-grade and grade 3/4 hematological toxicity reported in 60.7 and 13.1% of patients, respectively. Conclusions Low-dose gemcitabine combined with PD-1 inhibitors may offer a novel treatment option for patients with advanced malignancies.
Collapse
Affiliation(s)
- Hao Huang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Bicheng Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Brian G. Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yonghao Yang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaojie Zhang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lingdi Zhao
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaomin Fu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Tiepeng Li
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lu Han
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Peng Qin
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lin Chen
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang Yan
- Medical Oncology Department, Chinese People's Liberation Army PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Radiotherapy, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenkang Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenlong Ye
- Mengchao Cancer Hospital, Shanghai University, Shanghai, China
- Department of Immune Cell Research, Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
- School of Pharmacy, Binzhou Medical University, Binzhou, China
| | - Hongle Li
- Molecular Pathology Department, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zibing Wang, ; Quanli Gao, ; Hongle Li,
| | - Quanli Gao
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zibing Wang, ; Quanli Gao, ; Hongle Li,
| | - Zibing Wang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zibing Wang, ; Quanli Gao, ; Hongle Li,
| |
Collapse
|
9
|
Aboelella NS, Brandle C, Okoko O, Gazi MY, Ding ZC, Xu H, Gorman G, Bollag R, Davila ML, Bryan LJ, Munn DH, Piazza GA, Zhou G. Indomethacin-induced oxidative stress enhances death receptor 5 signaling and sensitizes tumor cells to adoptive T-cell therapy. J Immunother Cancer 2022; 10:e004938. [PMID: 35882449 PMCID: PMC9330341 DOI: 10.1136/jitc-2022-004938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) using genetically modified T cells has evolved into a promising treatment option for patients with cancer. However, even for the best-studied and clinically validated CD19-targeted chimeric antigen receptor (CAR) T-cell therapy, many patients face the challenge of lack of response or occurrence of relapse. There is increasing need to improve the efficacy of ACT so that durable, curative outcomes can be achieved in a broad patient population. METHODS Here, we investigated the impact of indomethacin (indo), a non-steroidal anti-inflammatory drug (NSAID), on the efficacy of ACT in multiple preclinical models. Mice with established B-cell lymphoma received various combinations of preconditioning chemotherapy, infusion of suboptimal dose of tumor-reactive T cells, and indo administration. Donor T cells used in the ACT models included CD4+ T cells expressing a tumor-specific T cell receptor (TCR) and T cells engineered to express CD19CAR. Mice were monitored for tumor growth and survival. The effects of indo on donor T cell phenotype and function were evaluated. The molecular mechanisms by which indo may influence the outcome of ACT were investigated. RESULTS ACT coupled with indo administration led to improved tumor growth control and prolonged mouse survival. Indo did not affect the activation status and tumor infiltration of the donor T cells. Moreover, the beneficial effect of indo in ACT did not rely on its inhibitory effect on the immunosuppressive cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) axis. Instead, indo-induced oxidative stress boosted the expression of death receptor 5 (DR5) in tumor cells, rendering them susceptible to donor T cells expressing TNF-related apoptosis-inducing ligand (TRAIL). Furthermore, the ACT-potentiating effect of indo was diminished against DR5-deficient tumors, but was amplified by donor T cells engineered to overexpress TRAIL. CONCLUSION Our results demonstrate that the pro-oxidative property of indo can be exploited to enhance death receptor signaling in cancer cells, providing rationale for combining indo with genetically modified T cells to intensify tumor cell killing through the TRAIL-DR5 axis. These findings implicate indo administration, and potentially similar use of other NSAIDs, as a readily applicable and cost-effective approach to augment the efficacy of ACT.
Collapse
Affiliation(s)
- Nada S Aboelella
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Ogacheko Okoko
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Md Yeashin Gazi
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Zhi-Chun Ding
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Hongyan Xu
- Division of Biostatistics & Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gregory Gorman
- McWhorter School of Pharmacy, Samford University, Birmingham, Alabama, USA
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Marco L Davila
- Blood and Marrow Transplant & Cellular Immunotherapy Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Locke J Bryan
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gary A Piazza
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
10
|
Harnessing Antitumor CD4 + T Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14010260. [PMID: 35008422 PMCID: PMC8750687 DOI: 10.3390/cancers14010260] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Diverse evidence revealed that CD4+ T cells play an important role in antitumor immunity by promoting or suppressing cytotoxic T cell responses. This review outlines the role of CD4+ T subsets within the tumor microenvironment and summarizes the latest progress regarding their potentials in cancer immunotherapy and methods for improving outcomes in cancer strategies by modulating CD4+ T responses. Abstract Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.
Collapse
|
11
|
Cai C, Zhang Y, Hu X, Hu W, Yang S, Qiu H, Chu T. CDT1 Is a Novel Prognostic and Predictive Biomarkers for Hepatocellular Carcinoma. Front Oncol 2021; 11:721644. [PMID: 34631549 PMCID: PMC8497762 DOI: 10.3389/fonc.2021.721644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is one of the most common malignant tumors endangering human health and life in the 21st century. Chromatin licensing and DNA replication factor 1 (CDT1) is an important regulator of DNA replication licensing, which is essential for initiation of DNA replication. CDT1 overexpression in several human cancers reportedly leads to abnormal cell replication, activates DNA damage checkpoints, and predisposes malignant transformation. However, the abnormal expression of CDT1 in HCC and its diagnostic and prognostic value remains to be elucidated. Methods TCGA, ONCOMINE, UALCAN, HCCDB, HPA, Kaplan-Meier plotter, STRING, GEPIA, GeneMANIA, and TIMER were conducted for bioinformatics analysis. CDT1 protein expression was evaluated by immunohistochemistry in HCC tissues through a tissue microarray. qRT-PCR, western blot and a cohort of functional experiments were performed for in vitro validation. Results In this study, we discovered remarkably upregulated transcription of CDT1 in HCC samples relative to normal liver samples through bioinformatic analysis, which was further verified in clinical tissue microarray samples and in vitro experiments. Moreover, the transcriptional level of CDT1 in HCC samples was positively associated with clinical parameters such as clinical tumor stage. Survival, logistic regression, and Cox regression analyses revealed the significant clinical prognostic value of CDT1 expression in HCC. The receiver operating characteristic curve and nomogram analysis results demonstrated the strong predictive ability of CDT1 in HCC. Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analyses indicated that CDT1 was mainly associated with the cell cycle, DNA repair, and DNA replication. We further demonstrated the significant correlation between CDT1 and minichromosome maintenance (MCM) family genes, revealing abnormal expression and prognostic significance of MCMs in HCC. Immune infiltration analysis indicated that CDT1 was significantly associated with immune cell subsets and affected the survival of HCC patients. Finally, knockdown of CDT1 decreased, whereas overexpression of CDT1 promoted the proliferation, migration, invasion of HCC cells in vitro. Conclusions Our study findings demonstrate the potential diagnostic and prognostic significance of CDT1 expression in HCC, and elucidate the potential molecular mechanism underlying its role in promoting the occurrence and development of liver cancer. These results may provide new opportunities and research paths for targeted therapies in HCC.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xu Hu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sizhen Yang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Qiu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
12
|
Ring SS, Królik M, Hartmann F, Schmidt E, Ali OH, Ludewig B, Kochanek S, Flatz L. Heterologous Prime Boost Vaccination Induces Protective Melanoma-Specific CD8 + T Cell Responses. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:179-187. [PMID: 33209978 PMCID: PMC7658660 DOI: 10.1016/j.omto.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
Abstract
Cancer vaccination aims at inducing an adaptive immune response against tumor-derived antigens. In this study, we utilize recombinant human adenovirus serotype 5 (rAd5) and recombinant lymphocytic choriomeningitis virus (rLCMV)-based vectors expressing the melanocyte differentiation antigen gp100. In contrast to single or homologous vaccination, a heterologous prime boost vaccination starting with a rAd5-gp100 prime immunization followed by a rLCMV-gp100 boost injection induces a high magnitude of polyfunctional gp100-specific CD8+ T cells. Our data indicate that an optimal T cell induction is dependent on the order and interval of the vaccinations. A prophylactic prime boost vaccination with rAd5- and rLCMV-gp100 protects mice from a B16.F10 melanoma challenge. In the therapeutic setting, combination of the vaccination with low-dose cyclophosphamide showed a synergistic effect and significantly delayed tumor growth. Our findings suggest that heterologous viral vector prime boost immunizations can mediate tumor control in a mouse melanoma model.
Collapse
Affiliation(s)
- Sandra S Ring
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Michał Królik
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Fabienne Hartmann
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Erika Schmidt
- Department of Gene Therapy, Ulm University, Helmholtzstrasse 8, 89081 Ulm, Germany
| | - Omar Hasan Ali
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, Helmholtzstrasse 8, 89081 Ulm, Germany
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.,Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.,Department of Oncology and Hematology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.,Department of Dermatology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| |
Collapse
|
13
|
The Mechanism of Action of Cyclophosphamide and Its Consequences for the Development of a New Generation of Oxazaphosphorine Cytostatics. Sci Pharm 2020. [DOI: 10.3390/scipharm88040042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although cyclophosphamide (CP) has been used successfully in the clinic for over 50 years, it has so far not been possible to elucidate the mechanism of action and to use it for improvement. This was not possible because the basis of the mechanism of action of CP, which was found by lucky coincidence, is apoptosis, the discovery of which was honored with the Nobel Prize only in 2002. Another reason was that results from cell culture experiments were used to elucidate the mechanism of action, ignoring the fact that in vivo metabolism differs from in vitro conditions. In vitro, toxic acrolein is formed during the formation of the cytotoxic metabolite phosphoreamidemustard (PAM), whereas in vivo proapoptotic hydroxypropanal (HPA) is formed. The CP metabolites formed in sequence 4-hydroxycyclophosphamide (OHCP) are the main cause of toxicity, aldophosphamide (ALDO) is the pharmacologically active metabolite and HPA amplifies the cytotoxic apoptosis initiated by DNA alkylation by PAM. It is shown that toxicity is drastically reduced but anti-tumor activity strongly increased by the formation of ALDO bypassing OHCP. Furthermore, it is shown that the anti-tumor activity against advanced solid P388 tumors that grow on CD2F1 mice is increased by orders of magnitude if DNA damage caused by a modified PAM is poorly repairable.
Collapse
|
14
|
Bhatia K, Bhumika, Das A. Combinatorial drug therapy in cancer - New insights. Life Sci 2020; 258:118134. [PMID: 32717272 DOI: 10.1016/j.lfs.2020.118134] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Cancer can arise due to mutations in numerous pathways present in our body and thus has many alternatives for getting aggravated. Due to this attribute, it gets difficult to treat cancer patients with monotherapy alone and has a risk of not being eliminated to the full extent. This necessitates the introduction of combinatorial therapy as it employs cancer treatment using more than one method and shows a greater success rate. Combinatorial therapy involves a complementary combination of two different therapies like a combination of radio and immunotherapy or a combination of drugs that can target more than one pathway of cancer formation like combining CDK targeting drugs with Growth factors targeting drugs. In this review, we discuss the various aspects of cancer which include, its causes; four regulatory mechanisms namely: apoptosis, cyclin-dependent kinases, tumor suppressor genes, and growth factors; some of the pathways involved; treatment: monotherapy and combinatorial therapy and combinatorial drug formulation in chemotherapy. The present review gives a holistic account of the different mechanisms of therapies and also drug combinations that may serve to not only complement the monotherapy but can also surpass the resistance against monotherapy agents.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Bhumika
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India.
| |
Collapse
|
15
|
Chen AC, Xu R, Wang T, Wei J, Yang XY, Liu CX, Lei G, Lyerly HK, Heiland T, Hartman ZC. HER2-LAMP vaccines effectively traffic to endolysosomal compartments and generate enhanced polyfunctional T cell responses that induce complete tumor regression. J Immunother Cancer 2020; 8:jitc-2019-000258. [PMID: 32532838 PMCID: PMC7295440 DOI: 10.1136/jitc-2019-000258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The advent of immune checkpoint blockade antibodies has demonstrated that effective mobilization of T cell responses can cause tumor regression of metastatic cancers, although these responses are heterogeneous and restricted to certain histologic types of cancer. To enhance these responses, there has been renewed emphasis in developing effective cancer-specific vaccines to stimulate and direct T cell immunity to important oncologic targets, such as the oncogene human epidermal growth factor receptor 2 (HER2), expressed in ~20% of breast cancers (BCs). METHODS In our study, we explored the use of alternative antigen trafficking through use of a lysosome-associated membrane protein 1 (LAMP) domain to enhance vaccine efficacy against HER2 and other model antigens in both in vitro and in vivo studies. RESULTS We found that inclusion of this domain in plasmid vaccines effectively trafficked antigens to endolysosomal compartments, resulting in enhanced major histocompatibility complex (MHC) class I and II presentation. Additionally, this augmented the expansion/activation of antigen-specific CD4+ and CD8+ T cells and also led to elevated levels of antigen-specific polyfunctional CD8+ T cells. Significantly, vaccination with HER2-LAMP produced tumor regression in ~30% of vaccinated mice with established tumors in an endogenous model of metastatic HER2+ BC, compared with 0% of HER2-WT vaccinated mice. This therapeutic benefit is associated with enhanced tumor infiltration of activated CD4+ and CD8+ T cells. CONCLUSIONS These data demonstrate the potential of using LAMP-based endolysosomal trafficking as a means to augment the generation of polyfunctional, antigen-specific T cells in order to improve antitumor therapeutic responses using cancer antigen vaccines.
Collapse
Affiliation(s)
- Alan Chen Chen
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Renhuan Xu
- Department of R&D, Immunomic Therapeutics, Rockville, Maryland, USA
| | - Tao Wang
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Junping Wei
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Gangjun Lei
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA.,Department of Pathology, Duke University, Durham, North Carolina, USA.,Department of Immunology, Duke University, Durham, NC, USA
| | - Teri Heiland
- Department of R&D, Immunomic Therapeutics, Rockville, Maryland, USA
| | - Zachary Conrad Hartman
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA .,Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
16
|
Luo Y, Xue Y, Wang J, Dang J, Fang Q, Huang G, Olsen N, Zheng SG. Negligible Effect of Sodium Chloride on the Development and Function of TGF-β-Induced CD4 + Foxp3 + Regulatory T Cells. Cell Rep 2020; 26:1869-1879.e3. [PMID: 30759396 PMCID: PMC6948355 DOI: 10.1016/j.celrep.2019.01.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/05/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
High-salt diets inhibit the suppressive function of thymus-derived natural regulatory T cells (tTreg). Transforming growth factor β (TGF-β)-induced ex vivo regulatory T cells (iTreg) comprise another Treg subset that exhibits similarities and differences with tTreg. Here, we demonstrate that iTregs are completely stable and fully functional under high salt conditions. High salt does not influence the development, differentiation, and functional activities of iTreg but affects Foxp3 stability and function of tTreg in vitro and in vivo. In addition, high salt does not significantly change the transcription profiles of the iTreg signature or pro-inflammatory genes. Therefore, we conclude that iTreg, unlike tTreg, are stable and functional in the presence of high salt. Our findings provide additional evidence that iTreg may have different biological features from tTreg and suggest a greater potential for clinical utility in patients with autoimmune diseases, in which the complicated role of environmental factors, including diet, must be considered.
Collapse
Affiliation(s)
- Yang Luo
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Youqiu Xue
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China; Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Julie Wang
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Junlong Dang
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China
| | - Qiannan Fang
- Department of Clinical Immunology, Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
17
|
Urbani F, Ferraresi V, Capone I, Macchia I, Palermo B, Nuzzo C, Torsello A, Pezzotti P, Giannarelli D, Pozzi AF, Santaquilani M, Roazzi P, Bastucci S, Catricalà C, La Malfa A, Vercillo G, Gualtieri N, Buccione C, Castiello L, Cognetti F, Nisticò P, Belardelli F, Moschella F, Proietti E. Clinical and Immunological Outcomes in High-Risk Resected Melanoma Patients Receiving Peptide-Based Vaccination and Interferon Alpha, With or Without Dacarbazine Preconditioning: A Phase II Study. Front Oncol 2020; 10:202. [PMID: 32211314 PMCID: PMC7069350 DOI: 10.3389/fonc.2020.00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical studies based on novel rationales and mechanisms of action of chemotherapy agents and cytokines can contribute to the development of new concepts and strategies of antitumor combination therapies. In previous studies, we investigated the paradoxical immunostimulating effects of some chemotherapeutics and the immunoadjuvant activity of interferon alpha (IFN-α) in preclinical and clinical models, thus unraveling novel rationales and mechanisms of action of chemotherapy agents and cytokines for cancer immunotherapy. Here, we carried out a randomized, phase II clinical trial, in which we analyzed the relapse-free (RFS) and overall survival (OS) of 34 completely resected stage III–IV melanoma patients, treated with peptide-based vaccination (Melan-A/MART-1 and NY-ESO-1) in combination with IFN-α2b, with (arm 2) or without (arm 1) dacarbazine preconditioning. All patients were included in the intention-to-treat analysis. At a median follow-up of 4.5 years (interquartile range, 15.4–81.0 months), the rates of RFS were 52.9 and 35.3% in arms 1 and 2, respectively. The 4.5-year OS rates were 68.8% in arm 1 and 62.7% in arm 2. No significant differences were observed between the two arms for both RFS and OS. Interestingly, the RFS and OS curves remained stable starting from 18 and 42 months, respectively. Grade 3 adverse events occurred in 5.9% of patients, whereas grade 4 events were not observed. Both treatments induced a significant expansion of vaccine-specific CD8+ T cells, with no correlation with the clinical outcome. However, treatment-induced increase of polyfunctionality and of interleukin 2 production by Melan-A–specific CD8+ T cells and expansion/activation of natural killer cells correlated with RFS, being observed only in nonrelapsing patients. Despite the recent availability of different therapeutic options, low-cost, low-toxic therapies with long-lasting clinical effects are still needed in patients with high-risk resected stage III/IV melanoma. The combination of peptide vaccination with IFN-α2b showed a minimal toxicity profile and resulted in encouraging RFS and OS rates, justifying further evaluation in clinical trials, which may include the use of checkpoint inhibitors to further expand the antitumor immune response and the clinical outcome. Clinical Trial Registration:https://www.clinicaltrialsregister.eu/ctr-search/search, identifier: 2008-008211-26
Collapse
Affiliation(s)
- Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Medical Biotechnology and Translational Medicine, Tor Vergata University, Rome, Italy
| | - Virginia Ferraresi
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Imerio Capone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Belinda Palermo
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen Nuzzo
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Angela Torsello
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizio Pezzotti
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Diana Giannarelli
- Biostatistical Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Fausta Pozzi
- Hospital Pharmacia, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Paolo Roazzi
- Health Technology Assessement, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Bastucci
- Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Antonia La Malfa
- Hospital Pharmacia, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Vercillo
- Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Novella Gualtieri
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Francesco Cognetti
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Federica Moschella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Proietti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
18
|
Lasso P, Llano Murcia M, Sandoval TA, Urueña C, Barreto A, Fiorentino S. Breast Tumor Cells Highly Resistant to Drugs Are Controlled Only by the Immune Response Induced in an Immunocompetent Mouse Model. Integr Cancer Ther 2019; 18:1534735419848047. [PMID: 31056957 PMCID: PMC6505237 DOI: 10.1177/1534735419848047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The tumor cells responsible for metastasis are highly
resistant to chemotherapy and have characteristics of stem cells, with a high
capacity for self-regeneration and the use of detoxifying mechanisms that
participate in drug resistance. In vivo models of highly resistant cells allow
us to evaluate the real impact of the immune response in the control of cancer.
Materials and Methods: A tumor population derived from the 4T1
breast cancer cell line that was stable in vitro and highly aggressive in vivo
was obtained, characterized, and determined to exhibit cancer stem cell (CSC)
phenotypes (CD44+, CD24+, ALDH+,
Oct4+, Nanog+, Sox2+, and high self-renewal
capacity). Orthotopic transplantation of these cells allowed us to evaluate
their in vivo susceptibility to chemo and immune responses induced after
vaccination. Results: The immune response induced after vaccination
with tumor cells treated with doxorubicin decreased the formation of tumors and
macrometastasis in this model, which allowed us to confirm the immune response
relevance in the control of highly chemotherapy-resistant ALDH+ CSCs
in an aggressive tumor model in immunocompetent animals.
Conclusions: The antitumor immune response was the main element
capable of controlling tumor progression as well as metastasis in a highly
chemotherapy-resistant aggressive breast cancer model.
Collapse
Affiliation(s)
- Paola Lasso
- 1 Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
19
|
mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc Natl Acad Sci U S A 2018; 115:E9153-E9161. [PMID: 30201728 DOI: 10.1073/pnas.1810002115] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vivo delivery of antigen-encoding mRNA is a promising approach to personalized cancer treatment. The therapeutic efficacy of mRNA vaccines is contingent on safe and efficient gene delivery, biological stability of the mRNA, and the immunological properties of the vaccine. Here we describe the development and evaluation of a versatile and highly efficient mRNA vaccine-delivery system that employs charge-altering releasable transporters (CARTs) to deliver antigen-coding mRNA to antigen-presenting cells (APCs). We demonstrate in human peripheral blood mononuclear cells that CART vaccines can activate a robust antigen-specific immune response against mRNA-encoded viral epitopes. In an established mouse model, we demonstrate that CARTs preferentially target professional APCs in secondary lymphoid organs upon i.v. injections and target local APCs upon s.c. injection. Finally, we show that CARTs coformulated with mRNA and a Toll-like receptor ligand simultaneously transfect and activate target cells to generate an immune response that can treat and cure mice with large, established tumors.
Collapse
|
20
|
Habtetsion T, Ding ZC, Pi W, Li T, Lu C, Chen T, Xi C, Spartz H, Liu K, Hao Z, Mivechi N, Huo Y, Blazar BR, Munn DH, Zhou G. Alteration of Tumor Metabolism by CD4+ T Cells Leads to TNF-α-Dependent Intensification of Oxidative Stress and Tumor Cell Death. Cell Metab 2018; 28:228-242.e6. [PMID: 29887396 PMCID: PMC6082691 DOI: 10.1016/j.cmet.2018.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
The inhibitory effects of cancer on T cell metabolism have been well established, but the metabolic impact of immunotherapy on tumor cells is poorly understood. Here, we developed a CD4+ T cell-based adoptive immunotherapy protocol that was curative for mice with implanted colorectal tumors. By conducting metabolic profiling on tumors, we show that adoptive immunotherapy profoundly altered tumor metabolism, resulting in glutathione depletion and accumulation of reactive oxygen species (ROS) in tumor cells. We further demonstrate that T cell-derived tumor necrosis factor alpha (TNF-α) can synergize with chemotherapy to intensify oxidative stress and tumor cell death in an NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase-dependent manner. Reduction of oxidative stress, by preventing TNF-α-signaling in tumor cells or scavenging ROS, antagonized the therapeutic effects of adoptive immunotherapy. Conversely, provision of pro-oxidants after chemotherapy can partially recapitulate the antitumor effects of T cell transfer. These findings imply that reinforcing tumor oxidative stress represents an important mechanism underlying the efficacy of adoptive immunotherapy.
Collapse
Affiliation(s)
- Tsadik Habtetsion
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA
| | - Wenhu Pi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tao Li
- Department of Oncology and Surgery, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, Ningxia Province 750004, PR China
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tingting Chen
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA
| | - Caixia Xi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA; Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Helena Spartz
- Department of Pathology, Section of Anatomic Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zhonglin Hao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nahid Mivechi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA; Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1120 15(th) Street, CN-4140, Augusta, GA 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
21
|
Immunostimulating and cancer-reductive experimental therapy with the oxazaphosphorine cytostatic SUM-IAP. Anticancer Drugs 2018; 29:411-415. [DOI: 10.1097/cad.0000000000000608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Al Malki MM, Jones R, Ma Q, Lee D, Reisner Y, Miller JS, Lang P, Hongeng S, Hari P, Strober S, Yu J, Maziarz R, Mavilio D, Roy DC, Bonini C, Champlin RE, Fuchs EJ, Ciurea SO. Proceedings From the Fourth Haploidentical Stem Cell Transplantation Symposium (HAPLO2016), San Diego, California, December 1, 2016. Biol Blood Marrow Transplant 2018; 24:895-908. [PMID: 29339270 PMCID: PMC7187910 DOI: 10.1016/j.bbmt.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 02/04/2023]
Abstract
The resurgence of haploidentical stem cell transplantation (HaploSCT) over the last decade is one of the most important advances in the field of hematopoietic stem cell transplantation (HSCT). The modified platforms of T cell depletion either ex vivo (CD34+ cell selection, "megadoses" of purified CD34+ cells, or selective depletion of T cells) or newer platforms of in vivo depletion of T cells, with either post-transplantation high-dose cyclophosphamide or intensified immune suppression, have contributed to better outcomes, with survival similar to that in HLA-matched donor transplantation. Further efforts are underway to control viral reactivation using modified T cells, improve immunologic reconstitution, and decrease the relapse rate post-transplantation using donor-derived cellular therapy products, such as genetically modified donor lymphocytes and natural killer cells. Improvements in treatment-related mortality have allowed the extension of haploidentical donor transplants to patients with hemoglobinopathies, such as thalassemia and sickle cell disease, and the possible development of platforms for immunotherapy in solid tumors. Moreover, combining HSCT from a related donor with solid organ transplantation could allow early tapering of immunosuppression in recipients of solid organ transplants and hopefully prevent organ rejection in this setting. This symposium summarizes some of the most important recent advances in HaploSCT and provides a glimpse in the future of fast growing field.
Collapse
Affiliation(s)
- Monzr M Al Malki
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, California
| | - Richard Jones
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland
| | - Qing Ma
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Dean Lee
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yair Reisner
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | - Jeffrey S Miller
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Peter Lang
- Department of General Paediatrics, Oncology/Haematology, Tübingen University Hospital for Children and Adolescents, Tübingen, Germany
| | - Suradej Hongeng
- Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samuel Strober
- Division of Immunology and Rheumatology, Department of Medicine, Stanford Medical School, Palo Alto, California
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Richard Maziarz
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Denis-Claude Roy
- Blood and Marrow Transplantation Program, Hôpital Maisonneuve-Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Hospital, Milan, Italy
| | | | - Ephraim J Fuchs
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland
| | - Stefan O Ciurea
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
23
|
Hughes E, Scurr M, Campbell E, Jones E, Godkin A, Gallimore A. T-cell modulation by cyclophosphamide for tumour therapy. Immunology 2018; 154:62-68. [PMID: 29460448 PMCID: PMC5904691 DOI: 10.1111/imm.12913] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The power of T cells for cancer treatment has been demonstrated by the success of co-inhibitory receptor blockade and adoptive T-cell immunotherapies. These treatments are highly successful for certain cancers, but are often personalized, expensive and associated with harmful side effects. Other T-cell-modulating drugs may provide additional means of improving immune responses to tumours without these disadvantages. Conventional chemotherapeutic drugs are traditionally used to target cancers directly; however, it is clear that some also have significant immune-modulating effects that can be harnessed to target tumours. Cyclophosphamide is one such drug; used at lower doses than in mainstream chemotherapy, it can perturb immune homeostasis, tipping the balance towards generation of anti-tumour T-cell responses and control of cancer growth. This review discusses its growing reputation as an immune-modulator whose multiple effects synergize with the microbiota to tip the balance towards tumour immunity offering widespread benefits as a safe, and relatively inexpensive component of cancer immunotherapy.
Collapse
Affiliation(s)
- Ellyn Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
- Present address:
Faculty of Medicine Nursing and Health SciencesSchool of Biomedical SciencesMonash UniversityMelbourneAustralia
| | - Martin Scurr
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Emma Campbell
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Emma Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Andrew Godkin
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Awen Gallimore
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| |
Collapse
|
24
|
Kuczma MP, Ding ZC, Li T, Habtetsion T, Chen T, Hao Z, Bryan L, Singh N, Kochenderfer JN, Zhou G. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget 2017; 8:111931-111942. [PMID: 29340102 PMCID: PMC5762370 DOI: 10.18632/oncotarget.22953] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years the combined use of chemotherapy and immunotherapy, collectively termed chemoimmunotherapy, has emerged as a promising treatment option for patients with cancer. Antibiotics are commonly used to reduce infection-related complications in patients undergoing chemotherapy. Intriguingly, accumulating evidence has implicated gut microbiota as a critical determinant of host antitumor immune responses, raising the question as to whether the use of broad-spectrum antibiotics would invariably diminish tumor response to chemoimmunotherapies. We investigated the impact of antibiotics on the therapeutic outcomes of cyclophosphamide (CTX) chemotherapy and adoptive T-cell therapy (ACT) where CTX was used as the host-conditioning regimen in mice. We show that antibiotic prophylaxis dampened the endogenous T cell responses elicited by CTX, and reduced the efficacy of CTX against B-cell lymphoma. In the ACT setting, antibiotics administration impaired the therapeutic effects of adoptively transferred tumor-specific CD4+ T cells in mice with implanted colorectal tumors. In contrast, long-term antibiotic exposure did not affect the efficacy of ACT using CD19-targeting chimeric antigen receptor (CAR) T cells in mice with systemic B-cell lymphoma, although it correlated with prolonged CAR expression and sustained B-cell aplasia. Our study demonstrates that chemoimmunotherapies may have variable reliance on intestinal microbiota for T cell activation and function, and thus have different sensitivities to antibiotic prophylaxis. These findings may have implications for the judicial use of antibiotics in cancer patients receiving chemoimmunotherapies.
Collapse
Affiliation(s)
- Michal P Kuczma
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA.,Current/Present address: Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Zhi-Chun Ding
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Tao Li
- Department of Oncology and Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, PR China
| | | | - Tingting Chen
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Zhonglin Hao
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Locke Bryan
- Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - James N Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
25
|
Chee SJ, Lopez M, Mellows T, Gankande S, Moutasim KA, Harris S, Clarke J, Vijayanand P, Thomas GJ, Ottensmeier CH. Evaluating the effect of immune cells on the outcome of patients with mesothelioma. Br J Cancer 2017; 117:1341-1348. [PMID: 28817839 PMCID: PMC5672927 DOI: 10.1038/bjc.2017.269] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We systematically assessed the prognostic and predictive value of infiltrating adaptive and innate immune cells in a large cohort of patients with advanced mesothelioma. METHODS A tissue microarray from 302 samples was constructed. Markers of adaptive immune response in T-cells (CD8+, FOXP3+, CD4+, CD45RO+, CD3+) and B-cells (CD20+), and of innate immune response; neutrophils (NP57+), natural killer cells (CD56+) and macrophages (CD68+) were evaluated. RESULTS We found that in the epithelioid tumours, high CD4+ and CD20+ counts, and low FOXP3+, CD68+ and NP57+ counts linked to better outcome. In the non-epithelioid group low CD8+ and low FOXP3+ counts were beneficial.On multivariate analysis low FOXP3+ remained independently associated with survival in both groups. In the epithelioid group additionally high CD4+, high CD20+, and low NP57+ counts were prognostic. CONCLUSIONS Our data demonstrate for the first time, in predominately advanced disease, the association of key markers of adaptive and innate immunity with survival and the differential effect of histology. A better understanding of the immunological drivers of the different subtypes of mesothelioma will assist prognostication and disease-specific clinical decision-making.
Collapse
Affiliation(s)
- Serena J Chee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, Tremona Road Southampton General Hospital Southampton SO16 6YD, UK
| | - Maria Lopez
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Toby Mellows
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Southampton National Institute for Health Research Respiratory Biomedical Research Unit, University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Sharmali Gankande
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Karwan A Moutasim
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Scott Harris
- Public Health Sciences and Medical Statistics, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - James Clarke
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Pandurangan Vijayanand
- Clinical and Experimental Sciences, Southampton National Institute for Health Research Respiratory Biomedical Research Unit, University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Gareth J Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
- NIHR CRUK Experimental Cancer Medicine Centre Southampton, Tremona Road, Southampton SO16 7YD, UK
| | - Christian H Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, Tremona Road Southampton General Hospital Southampton SO16 6YD, UK
- NIHR CRUK Experimental Cancer Medicine Centre Southampton, Tremona Road, Southampton SO16 7YD, UK
| |
Collapse
|
26
|
Buccione C, Fragale A, Polverino F, Ziccheddu G, Aricò E, Belardelli F, Proietti E, Battistini A, Moschella F. Role of interferon regulatory factor 1 in governing
T
reg depletion,
T
h1 polarization, inflammasome activation and antitumor efficacy of cyclophosphamide. Int J Cancer 2017; 142:976-987. [DOI: 10.1002/ijc.31083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Carla Buccione
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| | - Alessandra Fragale
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| | - Federica Polverino
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| | - Giovanna Ziccheddu
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| | - Eleonora Aricò
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| | - Filippo Belardelli
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| | - Enrico Proietti
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| | - Angela Battistini
- Department of Infectious DiseasesIstituto Superiore di SanitàRome Italy
| | - Federica Moschella
- Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRome Italy
| |
Collapse
|
27
|
Nejati R, Goldstein JB, Halperin DM, Wang H, Hejazi N, Rashid A, Katz MH, Lee JE, Fleming JB, Rodriguez-Canales J, Blando J, Wistuba II, Maitra A, Wolff RA, Varadhachary GR, Wang H. Prognostic Significance of Tumor-Infiltrating Lymphocytes in Patients With Pancreatic Ductal Adenocarcinoma Treated With Neoadjuvant Chemotherapy. Pancreas 2017; 46:1180-1187. [PMID: 28902789 PMCID: PMC5790553 DOI: 10.1097/mpa.0000000000000914] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to examine tumor-infiltrating lymphocytes (TILs) and their prognostic value in patients with pancreatic ductal adenocarcinoma (PDAC) after neoadjuvant therapy. METHODS Intratumoral CD4, CD8, and FOXP3 lymphocytes were examined by immunohistochemistry using a computer-assisted quantitative analysis in 136 PDAC patients who received neoadjuvant therapy and pancreaticoduodenectomy. The results were correlated with clinicopathological parameters and survival. RESULTS High CD4 TILs in treated PDAC were associated with high CD8 TILs (P = 0.003), differentiation (P = 0.04), and a lower frequency of recurrence (P = 0.02). Patients with high CD4 TILs had longer disease-free survival and overall survival (OS) than did patients with low CD4 TILs (P < 0.01). The median OS of patients with a high CD8/FOXP3 lymphocyte ratio (39.5 [standard deviation, 6.1] months) was longer than that of patients with a low CD8/FOXP3 lymphocyte ratio (28.3 [standard deviation, 2.3] months; P = 0.01). In multivariate analysis, high CD4 TILs were an independent prognostic factor for disease-free survival (hazard ratio, 0.49; 95% confidence interval, 0.30-0.81; P = 0.005) and OS (hazard ratio, 0.54; 95% confidence interval, 0.33-0.89; P = 0.02). CONCLUSIONS High level of CD4 lymphocytes is associated with tumor differentiation and lower recurrence and is an independent prognostic factor for survival in PDAC patients treated with neoadjuvant therapy.
Collapse
Affiliation(s)
- Reza Nejati
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer B. Goldstein
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel M. Halperin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nazila Hejazi
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew H. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason B. Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jorge Blando
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gauri R. Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
28
|
Ding ZC, Habtetsion T, Cao Y, Li T, Liu C, Kuczma M, Chen T, Hao Z, Bryan L, Munn DH, Zhou G. Adjuvant IL-7 potentiates adoptive T cell therapy by amplifying and sustaining polyfunctional antitumor CD4+ T cells. Sci Rep 2017; 7:12168. [PMID: 28939858 PMCID: PMC5610351 DOI: 10.1038/s41598-017-12488-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
Increased availability of homeostatic cytokines is considered a major mechanism by which lymphodepletion enhances the efficacy of adoptive T cell therapy (ACT). IL-7 is one such cytokine capable of augmenting the function of tumor-reactive CD8+ T cells. However, whether host-derived IL-7 plays a role in driving the proper function of CD4+ T cells in an ACT setting remains unclear. Here we report that lymphodepleting chemotherapy by cyclophosphamide (CTX) does not lead to increased availability of the endogenous IL-7 in mice. Despite of a paucity of IL-7 in the immune milieu, CTX preconditioning allowed adoptively transferred naïve tumor-specific CD4+ T cells to undergo effector differentiation and regain IL-7Rα expression, giving rise to IL-7-responsive polyfunctional CD4+ effector cells. Correspondingly, supplementation of exogenous recombinant IL-7 markedly amplified and sustained polyfunctional CD4+ effector cells, resulting in improved therapeutic outcome in a mouse lymphoma model. We further demonstrated that the immune-enhancing effects of IL-7 were also applicable to donor CD4+ T cells pre-activated under Th1 polarizing condition. These findings suggest caution in relying on the endogenous IL-7 to enhance donor T cell expansion and persistence after lymphodepleting chemotherapy, and highlight the usefulness of recombinant IL-7 as an adjuvant for adoptive immunotherapy.
Collapse
Affiliation(s)
- Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tsadik Habtetsion
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yang Cao
- Department of Orthodontics, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, PR China
| | - Tao Li
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Oncology Surgery, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, PR China
| | - Chufeng Liu
- Department of Orthodontics, Guangdong Provincial Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, PR China
| | - Michal Kuczma
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tingting Chen
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhonglin Hao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Locke Bryan
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
29
|
Snell LM, McGaha TL, Brooks DG. Type I Interferon in Chronic Virus Infection and Cancer. Trends Immunol 2017; 38:542-557. [PMID: 28579323 DOI: 10.1016/j.it.2017.05.005] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFN-Is) are emerging as key drivers of inflammation and immunosuppression in chronic infection. Control of these infections requires IFN-I signaling; however, prolonged IFN-I signaling can lead to immune dysfunction. IFN-Is are also emerging as double-edged swords in cancer, providing necessary inflammatory signals, while initiating feedback suppression in both immune and cancer cells. Here, we review the proinflammatory and suppressive mechanisms potentiated by IFN-Is during chronic virus infections and discuss the similar, newly emerging dichotomy in cancer. We then discuss how this understanding is leading to new therapeutic concepts and immunotherapy combinations. We propose that, by modulating the immune response at its foundation, it may be possible to widely reshape immunity to control these chronic diseases.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| | - David G Brooks
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ONT, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
30
|
Ding ZC, Liu C, Cao Y, Habtetsion T, Kuczma M, Pi W, Kong H, Cacan E, Greer SF, Cui Y, Blazar BR, Munn DH, Zhou G. IL-7 signaling imparts polyfunctionality and stemness potential to CD4(+) T cells. Oncoimmunology 2016; 5:e1171445. [PMID: 27471650 DOI: 10.1080/2162402x.2016.1171445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
The functional status of CD4(+) T cells is a critical determinant of antitumor immunity. Polyfunctional CD4(+) T cells possess the ability to concomitantly produce multiple Th1-type cytokines, exhibiting a functional attribute desirable for cancer immunotherapy. However, the mechanisms by which these cells are induced are neither defined nor it is clear if these cells can be used therapeutically to treat cancer. Here, we report that CD4(+) T cells exposed to exogenous IL-7 during antigenic stimulation can acquire a polyfunctional phenotype, characterized by their ability to simultaneously express IFNγ, IL-2, TNFα and granzyme B. This IL-7-driven polyfunctional phenotype was associated with increased histone acetylation in the promoters of the effector genes, indicative of increased chromatin accessibility. Moreover, forced expression of a constitutively active (CA) form of STAT5 recapitulated IL-7 in inducing CD4(+) T-cell polyfunctionality. Conversely, the expression of a dominant negative (DN) form of STAT5 abolished the ability of IL-7 to induce polyfunctional CD4(+) T cells. These in-vitro-generated polyfunctional CD4(+) T cells can traffic to tumor and expand intratumorally in response to immunization. Importantly, adoptive transfer of polyfunctional CD4(+) T cells following lymphodepletive chemotherapy was able to eradicate large established tumors. This beneficial outcome was associated with the occurrence of antigen epitope spreading, activation of the endogenous CD8(+) T cells and persistence of donor CD4(+) T cells exhibiting memory stem cell attributes. These findings indicate that IL-7 signaling can impart polyfunctionality and stemness potential to CD4(+) T cells, revealing a previously unknown property of IL-7 that can be exploited in adoptive T-cell immunotherapy.
Collapse
Affiliation(s)
- Zhi-Chun Ding
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Chufeng Liu
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Orthodontics, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, PR, China
| | - Yang Cao
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Orthodontics, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR, China
| | - Tsadik Habtetsion
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Michal Kuczma
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Wenhu Pi
- Department of Biochemistry and Molecular Biology, Augusta University , Augusta, GA, USA
| | - Heng Kong
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Thyroid and Breast Surgery, Shenzhen Nanshan District People's Hospital, Shenzhen, Guangzhou, PR, China
| | - Ercan Cacan
- Department of Biology, Georgia State University , Atlanta, GA, USA
| | - Susanna F Greer
- Department of Biology, Georgia State University , Atlanta, GA, USA
| | - Yan Cui
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Bruce R Blazar
- Department of Pediatrics and Division of Blood and Marrow Transplantation, University of Minnesota , Minneapolis, MN, USA
| | - David H Munn
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Gang Zhou
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| |
Collapse
|
31
|
Wojas-Turek J, Szczygieł A, Kicielińska J, Rossowska J, Piasecki E, Pajtasz-Piasecka E. Treatment with cyclophosphamide supported by various dendritic cell-based vaccines induces diversification in CD4⁺ T cell response against MC38 colon carcinoma. Int J Oncol 2015; 48:493-505. [PMID: 26648160 PMCID: PMC4725454 DOI: 10.3892/ijo.2015.3278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/26/2015] [Indexed: 12/18/2022] Open
Abstract
The present study shows that an application of cyclophosphamide (CY) supported by dendritic cell (DC)-based vaccines affected differentiation of the activity of CD4+ T cell subpopulations accompanied by an alteration in CD8+ cell number. Vaccines were composed of bone marrow-derived DCs activated with tumor cell lysate (BM-DC/TAgTNF-α) and/or genetically modified DCs of JAWS II line (JAWS II/ Neo or JAWS II/IL-2 cells). Compared to untreated or CY-treated mice, the combined treatment of MC38 colon carcinoma-bearing mice resulted in significant tumor growth inhibition associated with an increase in influx of CD4+ and CD8+ T cells into tumor tissue. Whereas, the division of these cell population in spleen was not observed. Depending on the nature of DC-based vaccines and number of their applications, both tumor infiltrating cells and spleen cells were able to produce various amount of IFN-γ, IL-4 and IL-10 after mitogenic ex vivo stimulation. The administration of CY followed by BM-DC/TAgTNF-α and genetically modified JAWS II cells, increased the percentage of CD4+T-bet+ and CD4+GATA3+ cells and decreased the percentage of CD4+RORγt+ and CD4+FoxP3+ lymphocytes. However, the most intensive response against tumor was noted after the ternary treatment with CY + BM-DC/TAgTNF-α + JAWS II/IL-2 cells. Thus, the administration of various DC-based vaccines was responsible for generation of the diversified antitumor response. These findings demonstrate that the determination of the size of particular CD4+ T cell subpopulations may become a prognostic factor and be the basis for future development of anticancer therapy.
Collapse
Affiliation(s)
- Justyna Wojas-Turek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Agnieszka Szczygieł
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Jagoda Kicielińska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Egbert Piasecki
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Elżbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
32
|
Apetoh L, Ladoire S, Coukos G, Ghiringhelli F. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann Oncol 2015; 26:1813-1823. [PMID: 25922066 DOI: 10.1093/annonc/mdv209] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
Recent clinical trials revealed the impressive efficacy of immunological checkpoint blockade in different types of metastatic cancers. Such data underscore that immunotherapy is one of the most promising strategies for cancer treatment. In addition, preclinical studies provide evidence that some cytotoxic drugs have the ability to stimulate the immune system, resulting in anti-tumor immune responses that contribute to clinical efficacy of these agents. These observations raise the hypothesis that the next step for cancer treatment is the combination of cytotoxic agents and immunotherapies. The present review aims to summarize the immune-mediated effects of chemotherapeutic agents and their clinical relevance, the biological and clinical features of immune checkpoint blockers and finally, the preclinical and clinical rationale for novel therapeutic strategies combining anticancer agents and immune checkpoint blockers.
Collapse
Affiliation(s)
- L Apetoh
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France
| | - S Ladoire
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France
| | - G Coukos
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - F Ghiringhelli
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France.
| |
Collapse
|
33
|
Lu X, Ding ZC, Cao Y, Liu C, Habtetsion T, Yu M, Lemos H, Salman H, Xu H, Mellor AL, Zhou G. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2011-21. [PMID: 25560408 DOI: 10.4049/jimmunol.1401894] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the present study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4(+) T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelodepletion and leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum-resident calreticulin and extracellular release of high-mobility group box 1. Additionally, there was enhanced tumor Ag uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8(+) T cells and, more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4(+) T cells. Notably, the combination of melphalan and CD4(+) T cell adoptive cell therapy was more efficacious than either treatment alone in prolonging the survival of mice with advanced B cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan's immunostimulatory effects and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4(+) T cells.
Collapse
Affiliation(s)
- Xiaoyun Lu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Division of Digestive Endoscopy, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Zhi-Chun Ding
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Yang Cao
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Orthodontics, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tsadik Habtetsion
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Miao Yu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Henrique Lemos
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Huda Salman
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Andrew L Mellor
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - Gang Zhou
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| |
Collapse
|
34
|
Hao YB, Yi SY, Ruan J, Zhao L, Nan KJ. New insights into metronomic chemotherapy-induced immunoregulation. Cancer Lett 2014; 354:220-6. [DOI: 10.1016/j.canlet.2014.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
|
35
|
Tung CY, Lewis DE, Han L, Jaja M, Yao S, Li F, Robertson MJ, Zhou B, Sun J, Chang HC. Activation of dendritic cell function by soypeptide lunasin as a novel vaccine adjuvant. Vaccine 2014; 32:5411-9. [DOI: 10.1016/j.vaccine.2014.07.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/15/2014] [Accepted: 07/30/2014] [Indexed: 12/30/2022]
|
36
|
Wu J, Waxman DJ. Metronomic cyclophosphamide schedule-dependence of innate immune cell recruitment and tumor regression in an implanted glioma model. Cancer Lett 2014; 353:272-80. [PMID: 25069038 DOI: 10.1016/j.canlet.2014.07.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 01/13/2023]
Abstract
Metronomic cyclophosphamide (CPA) treatment activates robust innate anti-tumor immunity and induces major regression of large, implanted brain tumor xenografts when administered on an intermittent, every 6-day schedule, but not on a daily low-dose or a maximum-tolerated dose CPA schedule. Here, we used an implanted GL261 glioma model to compare five intermittent metronomic CPA schedules to elucidate the kinetics and schedule dependence of innate immune cell recruitment and tumor regression. Tumor-recruited natural killer cells induced by two every 6-day treatment cycles were significantly ablated 1 day after a third CPA treatment, but largely recovered several days later. Natural killer and other tumor-infiltrating innate immune cells peaked 12 days after the last CPA treatment on the every 6-day schedule, suggesting that drug-free intervals longer than 6 days may show increased efficacy. Metronomic CPA treatments spaced 9 or 12 days apart, or on an alternating 6 and 9 day schedule, induced extensive tumor regression, similar to the 6-day schedule; however, the tumor-infiltrating natural killer cell responses were not sustained, leading to rapid resumption of tumor growth after day 24, despite ongoing metronomic CPA treatment. Increasing the CPA dose prolonged the period of tumor regression on the every 9-day schedule, but natural killer cell activation was markedly decreased. Thus, while several intermittent metronomic CPA treatment schedules can activate innate immune cell recruitment leading to major tumor regression, sustained immune and anti-tumor responses are only achieved on the 6-day schedule. However, even with this schedule, some tumors eventually relapse, indicating a need for further improvements in this immunogenic metronomic therapy.
Collapse
Affiliation(s)
- Junjie Wu
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Ding ZC, Lu X, Yu M, Lemos H, Huang L, Chandler P, Liu K, Walters M, Krasinski A, Mack M, Blazar BR, Mellor AL, Munn DH, Zhou G. Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1-PD-L1 axis. Cancer Res 2014; 74:3441-53. [PMID: 24780756 DOI: 10.1158/0008-5472.can-13-3596] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In recent years, immune-based therapies have become an increasingly attractive treatment option for patients with cancer. Cancer immunotherapy is often used in combination with conventional chemotherapy for synergistic effects. The alkylating agent cyclophosphamide (CTX) has been included in various chemoimmunotherapy regimens because of its well-known immunostimulatory effects. Paradoxically, cyclophosphamide can also induce suppressor cells that inhibit immune responses. However, the identity and biologic relevance of these suppressor cells are poorly defined. Here we report that cyclophosphamide treatment drives the expansion of inflammatory monocytic myeloid cells (CD11b(+)Ly6C(hi)CCR2(hi)) that possess immunosuppressive activities. In mice with advanced lymphoma, adoptive transfer (AT) of tumor-specific CD4(+) T cells following cyclophosphamide treatment (CTX+CD4 AT) provoked a robust initial antitumor immune response, but also resulted in enhanced expansion of monocytic myeloid cells. These therapy-induced monocytes inhibited long-term tumor control and allowed subsequent relapse by mediating functional tolerization of antitumor CD4(+) effector cells through the PD-1-PD-L1 axis. PD-1/PD-L1 blockade after CTX+CD4 AT therapy led to persistence of CD4(+) effector cells and durable antitumor effects. Depleting proliferative monocytes by administering low-dose gemcitabine effectively prevented tumor recurrence after CTX+CD4 AT therapy. Similarly, targeting inflammatory monocytes by disrupting the CCR2 signaling pathway markedly potentiated the efficacy of cyclophosphamide-based therapy. Besides cyclophosphamide, we found that melphalan and doxorubicin can also induce monocytic myeloid suppressor cells. These findings reveal a counter-regulation mechanism elicited by certain chemotherapeutic agents and highlight the importance of overcoming this barrier to prevent late tumor relapse after chemoimmunotherapy.
Collapse
Affiliation(s)
- Zhi-Chun Ding
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of
| | - Xiaoyun Lu
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of Department of Gastroenterology, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Yu
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of
| | - Henrique Lemos
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of
| | - Lei Huang
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of
| | - Phillip Chandler
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of
| | - Kebin Liu
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of
| | | | | | - Matthias Mack
- Department of Internal Medicine, University Hospital of Regensburg, Regensburg, Germany; and
| | - Bruce R Blazar
- Department of Pediatrics and Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Andrew L Mellor
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of Medicine and
| | - David H Munn
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of Pediatrics, School of Medicine, Georgia Regents University (GRU), Augusta, Georgia
| | - Gang Zhou
- Authors' Affiliations: Cancer Immunotherapy, Inflammation and Tolerance Program, Cancer Center; Departments of Medicine and
| |
Collapse
|
38
|
Li W, Fan D, Yang M, Yan Y, Shi R, Cheng J, Li Z, Zhang M, Wang J, Xiong D. Cytosine arabinoside promotes cytotoxic effect of T cells on leukemia cells mediated by bispecific antibody. Hum Gene Ther 2014; 24:751-60. [PMID: 23879717 DOI: 10.1089/hum.2013.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemotherapeutic drugs can enhance an immune response of the host against the tumor in addition to killing cancer cells by direct cytotoxicity. Therefore, the combination of chemotherapy and immunotherapy is a promising approach for eliminating tumors, particularly in advanced stages. A strategic medication is to use a bispecific antibody format that is capable of recruiting polyclonal T cells around antibody-target-expressing tumor cells. Recently, we have constructed a bispecific antibody, anti-CD3×anti-CD19, in a diabody configuration. In this study, we measured B7 family members B7.1 (CD80) and B7.2 (CD86) expressed on a CD19(+) human leukemia cell line, Nalm-6, stimulated by cytosine arabinoside (Ara-C). We found that a low concentration of Ara-C could upregulate CD80 expressed on CD19(+) Nalm-6 cells. The cytotoxicity of T lymphocytes against Nalm-6 cells in vitro and in vivo mediated by the anti-CD3×anti-CD19 diabody with or without a low dose of Ara-C was compared. The combination of the anti-CD3×anti-CD19 diabody and Ara-C showed the greatest effectiveness in enhancing the cytotoxicity of T cells against the tumor cells in vitro and in vivo. Activated T cells expressed higher levels of CD25 and CD69 and released more interleukin 2. Both perforin/granzyme B system and Fas/FasL pathway were involved in the diabody-induced T-cell cytotoxicity. Moreover, the activated T cells could upregulate ICAM-3 expression on Nalm-6 cells, and inhibition of LFA-1-ICAM-3 interaction impaired cytotoxicity of T cells. It was noted that Ara-C could upregulate CD80 expressed on two of five specimens of acute B lymphoblastic leukemia patient-derived cells. Cytotoxicity of T cells against these two patient-derived cells was enhanced in the presence of the anti-CD3×anti-CD19 diabody. These findings indicate that treatment strategy using both cytotoxic lymphocyte-based immunotherapy and chemotherapy may have synergistic effects.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 2014; 21:15-25. [PMID: 23787994 PMCID: PMC3857622 DOI: 10.1038/cdd.2013.67] [Citation(s) in RCA: 689] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023] Open
Abstract
Conventional anticancer chemotherapy has been historically thought to act through direct killing of tumor cells. This concept stems from the fact that cytotoxic drugs interfere with DNA synthesis and replication. Accumulating evidence, however, indicates that the antitumor activities of chemotherapy also rely on several off-target effects, especially directed to the host immune system, that cooperate for successful tumor eradication. Chemotherapeutic agents stimulate both the innate and adaptive arms of the immune system through several modalities: (i) by promoting specific rearrangements on dying tumor cells, which render them visible to the immune system; (ii) by influencing the homeostasis of the hematopoietic compartment through transient lymphodepletion followed by rebound replenishment of immune cell pools; (iii) by subverting tumor-induced immunosuppressive mechanisms and (iv) by exerting direct or indirect stimulatory effects on immune effectors. Among the indirect ways of immune cell stimulation, some cytotoxic drugs have been shown to induce an immunogenic type of cell death in tumor cells, resulting in the emission of specific signals that trigger phagocytosis of cell debris and promote the maturation of dendritic cells, ultimately resulting in the induction of potent antitumor responses. Here, we provide an extensive overview of the multiple immune-based mechanisms exploited by the most commonly employed cytotoxic drugs, with the final aim of identifying prerequisites for optimal combination with immunotherapy strategies for the development of more effective treatments against cancer.
Collapse
Affiliation(s)
- L Bracci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - G Schiavoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - A Sistigu
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - F Belardelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
40
|
Karakatsanis S, Bertsias G, Roussou P, Boumpas D. Programmed death 1 and B and T lymphocyte attenuator immunoreceptors and their association with malignant T-lymphoproliferative disorders: brief review. Hematol Oncol 2013; 32:113-9. [PMID: 24038528 DOI: 10.1002/hon.2098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/28/2013] [Accepted: 08/17/2013] [Indexed: 01/03/2023]
Abstract
Malignant T-cell lymphoproliferative diseases are relatively rare. T cells are activated through the T-cell receptor with the aid of costimulating molecules that can be either excitatory or inhibitory. Such pathways have been also implicated in mechanisms of malignant T-cell lymphoproliferative diseases' persistence and relapse by circumventing immune responses. To date, three major immunoinhibitory molecules have been recognized, namely programmed cell death-1 (PD-1), B and T lymphocyte attenuator (BTLA) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although CTLA-4 is considered the 'gatekeeper' of immune tolerance, PD-1 negatively regulates immune responses broadly, whereas BTLA activation has been shown to inhibit CD8+ cancer-specific T cells. Both PD-1 and BTLA downregulate proximal T-cell receptor signalling cascade and are involved in immune evasion of leukaemias and lymphomas, even after allogeneic stem cell transplantation. These immunoregulatory molecules can have seemingly a synergistic effect on weakening the immune response of patients with haematological malignancies, and their manipulation represents a very active field of preclinical as well as clinical interest.
Collapse
Affiliation(s)
- Stamatis Karakatsanis
- Hematology, Lymphomas' and Bone Marrow Transplantation Unit, General Hospital of Athens "O Evaggelismos", Athens, Greece
| | | | | | | |
Collapse
|
41
|
Marabelle A, Kohrt H, Sagiv-Barfi I, Ajami B, Axtell RC, Zhou G, Rajapaksa R, Green MR, Torchia J, Brody J, Luong R, Rosenblum MD, Steinman L, Levitsky HI, Tse V, Levy R. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest 2013; 123:2447-63. [PMID: 23728179 DOI: 10.1172/jci64859] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 03/14/2013] [Indexed: 01/22/2023] Open
Abstract
Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti-CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response.
Collapse
Affiliation(s)
- Aurélien Marabelle
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moschella F, Torelli GF, Valentini M, Urbani F, Buccione C, Petrucci MT, Natalino F, Belardelli F, Foà R, Proietti E. Cyclophosphamide induces a type I interferon-associated sterile inflammatory response signature in cancer patients' blood cells: implications for cancer chemoimmunotherapy. Clin Cancer Res 2013; 19:4249-61. [PMID: 23759676 DOI: 10.1158/1078-0432.ccr-12-3666] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Certain chemotherapeutics, particularly cyclophosphamide, can enhance the antitumor efficacy of immunotherapy. A better understanding of the cellular and molecular basis of cyclophosphamide-mediated immunomodulation is needed to improve the efficacy of chemoimmunotherapy. EXPERIMENTAL DESIGN Transcript profiling and flow cytometry were used to explore cyclophosphamide-induced immunoadjuvanticity in patients with hematologic malignancies. RESULTS A single high-dose treatment rapidly (1-2 days) induced peripheral blood mononuclear cell (PBMC) transcriptional modulation, leading to reduction of cell-cycle and biosynthetic/metabolic processes and augmentation of DNA damage and cell death pathways (p53 signaling pathway), death-related scavenger receptors, antigen processing/presentation mediators, T-cell activation markers and, noticeably, a type I IFN (IFN-I) signature (OAS1, CXCL10, BAFF, IFITM2, IFI6, IRF5, IRF7, STAT2, UBE2L6, UNC93B1, ISG20L1, TYK2). Moreover, IFN-I-induced proinflammatory mediators (CXCL10, CCL2, IL-8, and BAFF) were increased in patients' plasma. Accordingly, cyclophosphamide induced the expansion/activation of CD14(+)CD16(+) monocytes, of HLA-DR(+), IL-8RA(+), and MARCO(+) monocytes/dendritic cells, and of CD69(+), OX40(+), and IL-8RA(+) lymphocytes. CONCLUSIONS Altogether, these data identify the cyclophosphamide-induced immunomodulatory factors in humans and indicate that preconditioning chemotherapy may stimulate immunity as a consequence of danger perception associated with blood cell death, through p53 and IFN-I-related mechanisms.
Collapse
Affiliation(s)
- Federica Moschella
- Department of Hematology Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsukamoto H, Nishikata R, Senju S, Nishimura Y. Myeloid-derived suppressor cells attenuate TH1 development through IL-6 production to promote tumor progression. Cancer Immunol Res 2013; 1:64-76. [PMID: 24777249 DOI: 10.1158/2326-6066.cir-13-0030] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Collaborative action between tumor cells and host-derived suppressor cells leads to peripheral tolerance of T cells to tumor antigens. Here, we showed that in tumor-bearing mice, generation of tumor antigen-specific effector T-helper cells (TH1) was significantly attenuated, and impaired TH1 differentiation was restored by the temporal blockade of interleukin (IL)-6 activity at the T-cell priming phase. Furthermore, we found that Gr-1(+) myeloid-derived suppressor cells (MDSC) served as a source of IL-6 in tumor-bearing mice. Adoptive transfer of effector CD4(+) T cells revealed that MDSC-sensitized effector CD4(+) T cells were less potent in mounting antitumor immune responses, although effector T cells generated together with Gr-1(+) cells from tumor-free mice eradicated established tumors. CD8(+) T cells, IFN-γ, and MHC-class II expression in host mice were indispensable for the antitumor activity initiated by effector CD4(+) T cells. Despite comparable suppressive activity of IL-6(+/+) and IL-6(-/-) MDSC on primary T-cell activation, transfer of IL-6(+/+) MDSC, but not IL-6(-/-) MDSC, dampened the efficient induction of effector TH1 cells and counteracted CD4(+) T cell-mediated antitumor immunity including cognate help for CD8(+) T cells in vivo. These findings suggest that, apart from the inhibitory effects on primary T-cell activation, MDSC promote tumor progression by attenuating functional differentiation of tumor-specific CD4(+) T cells into effector TH1 cells through IL-6 production to promote tumor progression. This novel mode of MDSC-induced tolerance of effector CD4(+) T cells should be considered as the basis for the rational design of effective T cell-mediated antitumor therapies.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Authors' Affiliation: Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | |
Collapse
|
44
|
Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, Fulton A, Tamada K, Strome SE, Antony PA. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. THE JOURNAL OF IMMUNOLOGY 2013; 190:4899-909. [PMID: 23536636 DOI: 10.4049/jimmunol.1300271] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recurrent solid malignancies are often refractory to standard therapies. Although adoptive T cell transfer may benefit select individuals, the majority of patients succumb to their disease. To address this important clinical dilemma, we developed a mouse melanoma model in which initial regression of advanced disease was followed by tumor recurrence. During recurrence, Foxp3(+) tumor-specific CD4(+) T cells became PD-1(+) and represented >60% of the tumor-specific CD4(+) T cells in the host. Concomitantly, tumor-specific CD4(+) T effector cells showed traits of chronic exhaustion, as evidenced by their high expression of the PD-1, TIM-3, 2B4, TIGIT, and LAG-3 inhibitory molecules. Although blockade of the PD-1/PD-L1 pathway with anti-PD-L1 Abs or depletion of tumor-specific regulatory T cells (Tregs) alone failed to reverse tumor recurrence, the combination of PD-L1 blockade with tumor-specific Treg depletion effectively mediated disease regression. Furthermore, blockade with a combination of anti-PD-L1 and anti-LAG-3 Abs overcame the requirement to deplete tumor-specific Tregs. In contrast, successful treatment of primary melanoma with adoptive cell therapy required only Treg depletion or Ab therapy, underscoring the differences in the characteristics of treatment between primary and relapsing cancer. These data highlight the need for preclinical development of combined immunotherapy approaches specifically targeting recurrent disease.
Collapse
Affiliation(s)
- Stephen R Goding
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ramakrishnan R, Gabrilovich DI. Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer. Cancer Immunol Immunother 2013; 62:405-10. [PMID: 23423351 PMCID: PMC11029489 DOI: 10.1007/s00262-012-1390-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/24/2012] [Indexed: 12/12/2022]
Abstract
There is mounting evidence to support the use of a combination of immunotherapy with chemotherapy in the treatment of various types of cancers. However, the mechanism(s), by which these modalities are synergized, are not fully understood. In this review, we discuss several possible mechanisms of the combined effect of immunotherapy and chemotherapy of cancer. We will examine various aspects of this issue such as the combination of different treatment options, the dosage for each arm of treatment, and, more importantly, the timing and sequence of the administration of these treatments.
Collapse
Affiliation(s)
- Rupal Ramakrishnan
- H. Lee Moffitt Cancer Center and Research Institute, MRC 2067, 12902 Magnolia Dr., Tampa, FL 33612 USA
| | - Dmitry I. Gabrilovich
- H. Lee Moffitt Cancer Center and Research Institute, MRC 2067, 12902 Magnolia Dr., Tampa, FL 33612 USA
| |
Collapse
|
46
|
Zheng SG. Regulatory T cells vs Th17: differentiation of Th17 versus Treg, are the mutually exclusive? AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2013; 2:94-106. [PMID: 23885327 PMCID: PMC3714204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/22/2013] [Indexed: 06/02/2023]
Abstract
Naive CD4(+) cells differentiate into T helper (Th1, Th2, Th9, Th17) and regulatory T (Treg) cells to execute their immunologic function. Whereas TGF-β suppresses Th1 and Th2 cell differentiation, this cytokine promotes Th9, Th17 and Foxp3(+) regulatory T cells depending upon the presence of other cytokines. IL-6 promotes Th17, but suppresses regulatory T cell differentiation. Moreover, natural but not TGF-β-induced regulatory T cells convert into Th17 cells in the inflammatory milieu. Here an update of T cell differentiation and conversion, as well as underlying mechanisms are given.
Collapse
Affiliation(s)
- Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine Los Angeles, CA. 90033, United States
| |
Collapse
|
47
|
Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol Immunother 2013; 62:203-16. [PMID: 23389507 PMCID: PMC3608094 DOI: 10.1007/s00262-012-1388-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/13/2012] [Indexed: 12/30/2022]
Abstract
Cancer chemotherapy drugs have long been considered immune suppressive. However, more recent data indicate that some cytotoxic drugs effectively treat cancer in part by facilitating an immune response to the tumor when given at the standard dose and schedule. These drugs induce a form of tumor cell death that is immunologically active, thereby inducing an adaptive immune response specific for the tumor. In addition, cancer chemotherapy drugs can promote tumor immunity through ancillary and largely unappreciated immunologic effects on both the malignant and normal host cells present within the tumor microenvironment. These more subtle immunomodulatory effects are dependent on the drug itself, its dose, and its schedule in relation to an immune-based intervention. The recent approvals of two new immune-based therapies for prostate cancer and melanoma herald a new era in cancer treatment and have led to heightened interest in immunotherapy as a valid approach to cancer treatment. A detailed understanding of the cellular and molecular basis of interactions between chemotherapy drugs and the immune system is essential for devising the optimal strategy for integrating new immune-based therapies into the standard of care for various cancers, resulting in the greatest long-term clinical benefit for cancer patients.
Collapse
Affiliation(s)
- Gang Chen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231-1000, USA
| | | |
Collapse
|
48
|
Procházka V, Jarošová M, Prouzová Z, Nedomová R, Papajík T, Indrák K. Immune Escape Mechanisms in Diffuse Large B-Cell Lymphoma. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/208903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent subtype of non-Hodgkin lymphomas in Western countries. Implementation of immunotherapy using monoclonal antibodies to therapeutic protocols has led to dramatic improvements in overall survival. DLBCL became a model of a successful immunochemotherapy concept. Despite this fact, there is still a proportion of patients who do not respond to or relapse early after treatment. Growing evidence suggests that host antitumor immunity is suppressed by lymphoma cells in many ways. First, host cytotoxic T cells are directly suppressed by interaction with programmed cell death (PD) ligand on lymphoma cell surface and a similar mechanism enhances the activity of suppressive regulatory T cells (Tregs). Second, tumor cells escape host cytotoxic cells due to lower immunogenicity caused by reduced expression of HLA antigens. Both mechanisms have an origin in primary genetic events in lymphomagenesis. Rearrangement of MHC class II transcriptional activator (CIITA) gene and amplification of Janus kinase (JAK2) gene lead to enhanced expression of PD ligands 1 and 2, higher proliferation activity, and lower expression of HLA. This paper summarizes current knowledge about clinically relevant immune escape mechanisms in DLBCL.
Collapse
Affiliation(s)
- V. Procházka
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 6, Olomouc 77520, Czech Republic
| | - M. Jarošová
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 6, Olomouc 77520, Czech Republic
| | - Z. Prouzová
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - R. Nedomová
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 6, Olomouc 77520, Czech Republic
| | - T. Papajík
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 6, Olomouc 77520, Czech Republic
| | - K. Indrák
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 6, Olomouc 77520, Czech Republic
| |
Collapse
|
49
|
Mitchell LA, Henderson AJ, Dow SW. Suppression of vaccine immunity by inflammatory monocytes. THE JOURNAL OF IMMUNOLOGY 2012; 189:5612-21. [PMID: 23136203 DOI: 10.4049/jimmunol.1202151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccine adjuvant-induced inflammation augments vaccine immunity in part by recruiting APCs to vaccine draining lymph nodes (LNs). However, the role of one APC subtype, inflammatory monocytes, in regulating vaccine immunity in healthy animals has not been fully examined in detail. Therefore, vaccine-mediated monocyte recruitment and subsequent immune responses were investigated using murine vaccination models and in vitro assays. Recruitment of inflammatory monocytes to vaccine draining LNs was rapid and mediated primarily by local production of MCP-1, as revealed by studies in MCP-1(-/-) mice. Interrupting monocyte recruitment to LNs by either transient monocyte depletion or monocyte migration blockade led to marked amplification of both cellular and humoral immune responses to vaccination. These results were most consistent with the idea that rapidly mobilized inflammatory monocytes were actually suppressing vaccine responses. The suppressive nature of vaccine-elicited monocytes was confirmed using in vitro cocultures of murine monocytes and T cells. Furthermore, it was determined that inflammatory monocytes suppressed T cell responses by sequestering cysteine, as cysteine supplementation in vitro and in vivo appreciably augmented vaccine responses. These findings indicated, therefore, that vaccination-elicited inflammation, although necessary for effective immunity, also generated potent counter-regulatory immune responses that were mediated primarily by inflammatory monocytes. Therefore, interrupting monocyte-mediated vaccine counterregulatory responses may serve as an effective new strategy for broadly amplifying vaccine immunity.
Collapse
Affiliation(s)
- Leah A Mitchell
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
50
|
Cyclic adenosine monophosphate involvement in low-dose cyclophosphamide-reversed immune evasion in a mouse lymphoma model. Cell Mol Immunol 2012; 9:482-8. [PMID: 23000689 DOI: 10.1038/cmi.2012.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphoma cells mobilize many mechanisms to evade the immune system. There is substantial evidence that CD4(+)CD25(+) regulatory T cells (Tregs) play a key role in the control of immune evasion. Tregs can transfer cyclic adenosine monophosphate (cAMP) to effector T cells, suggesting an association between Tregs' immune-evasion role and the intracellular cAMP pathway. In this study, we used A20 B-cell lymphoma mice as aggressive tumor models to investigate the mechanism of the depletion of Tregs by low-dose cyclophosphamide (CY, 20 mg/kg). The tumor-bearing mice had longer survival times and slower tumor growth rates following treatment with CY, but its effects were temporary. Along with the depletion of Tregs by low-dose CY treatment, the expression of interleukin-2 (IL-2) in T effector cells increased, and intracellular cAMP concentrations in immune cells decreased. Our study demonstrates the ability of low-dose CY to reverse Tregs-mediated immune evasion in a mouse model. The changes in intracellular cAMP concentrations correlated with the upregulation of effector T cells and the downregulation of Tregs, indicating the close association of cAMP analogs and low-dose CY in the immune therapy of B-cell lymphoma.
Collapse
|