1
|
Yijia Z, Li X, Ma L, Wang S, Du H, Wu Y, Yu J, Xiang Y, Xiong D, Shan H, Wang Y, Wang Z, Hao J, Wang J. Identification of intratumoral microbiome-driven immune modulation and therapeutic implications in diffuse large B-cell lymphoma. Cancer Immunol Immunother 2025; 74:131. [PMID: 40029433 PMCID: PMC11876501 DOI: 10.1007/s00262-025-03972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVE Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, with significant clinical heterogeneity. Recent studies suggest that the intratumoral microbiome may influence the tumor microenvironment, affecting patient prognosis and therapeutic responses. This study aims to identify microbiome-related subtypes in DLBCL and assess their impact on prognosis, immune infiltration, and therapeutic sensitivity. METHODS Transcriptomic and microbiome data from 48 DLBCL patients were obtained from public databases. Consensus clustering was used to classify patients into distinct microbiome-related subtypes. Functional enrichment analysis, immune infiltration assessments, and single-cell RNA sequencing were performed to explore the biological characteristics of these subtypes. Drug sensitivity predictions were made using the OncoPredict tool. Hub genes' expression and biological function were validated and inferred in cell lines and independent cohorts of DLBCL. RESULTS Two distinct microbiome-related subtypes were identified. Patients in Cluster 1 exhibited significantly better overall survival (P < 0.05), with higher immune infiltration of regulatory T cells and M0 macrophages compared to Cluster 2, which was associated with poorer outcomes. Functional enrichment analysis revealed that genes in Cluster 1 were involved in immune regulatory pathways, including cytokine-cytokine receptor interactions and chemokine signaling, suggesting enhanced anti-tumor immune responses. In contrast, genes in Cluster 2 were enriched in immunosuppressive pathways, contributing to a less favorable prognosis. Single-cell RNA sequencing analysis revealed significant heterogeneity in immune cell populations within the tumor microenvironment. B cells exhibited the most notable heterogeneity, as indicated by stemness and differentiation potential scoring. Intercellular communication analysis demonstrated that B cells played a key role in immune cell interactions, with significant differences observed in MIF signaling between B-cell subgroups. Pseudo-time analysis further revealed distinct differentiation trajectories of B cells, highlighting their potential heterogeneity across different immune environments. Metabolic pathway analysis showed significant differences in the average expression levels of metabolic pathways among B-cell subgroups, suggesting functional specialization. Furthermore, interaction analysis between core genes involved in B-cell differentiation and microbiome-driven differentially expressed genes identified nine common genes (GSTM5, LURAP1, LINC02802, MAB21L3, C2CD4D, MMEL1, TSPAN2, and CITED4), which were found to play critical roles in B-cell differentiation and were influenced by the intratumoral microbiome. DLBCL cell lines and clinical cohorts validated that MMEL1 and CITED4 with important biologically function in DLBCL cell survival and subtype classification. CONCLUSIONS This study demonstrates the prognostic significance of the intratumoral microbiome in DLBCL, identifying distinct microbiome-related subtypes that impact immune infiltration, metabolic activity, and therapeutic responses. The findings provide insights into the immune heterogeneity within the tumor microenvironment, focusing on B cells and their differentiation dynamics. These results lay the foundation for microbiome-based prognostic biomarkers and personalized treatment approaches, ultimately aiming to enhance patient outcomes in DLBCL.
Collapse
Affiliation(s)
- Zheng Yijia
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Xiaoyu Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Lina Ma
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Siying Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Hong Du
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yun Wu
- Department of General Medicine, The First Affiliated Hospital of the Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Yu
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yunxia Xiang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Daiqin Xiong
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Huiting Shan
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Yubo Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Zhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Jianping Hao
- Department of Haematology, The First Affiliated Hospital of the Xinjiang Medical University, Urumqi, 830011, China
| | - Jie Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China.
| |
Collapse
|
2
|
Zhao K, Wen Q, Li Q, Li P, Liu T, Zhu F, Tan Q, Zhang L. Identification of oxidative stress-related hub genes for predicting prognosis in diffuse large B-cell lymphoma. Gene 2025; 935:149077. [PMID: 39500385 DOI: 10.1016/j.gene.2024.149077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Oxidative stress is a cellular characteristic that might induce the proliferation and differentiation of tumor cells and promote tumor progression in diffuse large B-cell lymphoma (DLBCL). METHODS The DLBCL gene sequencing dataset, tumor mutation burden data, copy number variation data of Somatic cell mutation data in TCGA were downloaded for data training analysis, along with four DLBCL datasets in GEO for validation analysis. The known oxidative stress related genes (OSRGs) were collected from websites. The weighted gene co-expression network analysis (WGCNA) was conducted on the TCGA DLBCL dataset to obtain gene modules related to oxidative stress and intersected with the known OSRGs to obtain the hub genes, which were used to perform consensus clustering on the samples to obtain new phenotypes. Next, the prognosis related OSRGs were selected through regression analysis algorithms and key genes were identified. These genes were used to establish the prognostic risk model and predictive model, and to compare functional and pathway differences among different risk groups. RESULTS Through website search, we obtained 297 known OSRGs, and after intersecting with WGCNA results, we obtained 26 OSRGs. The TCGA-DLBC samples were clustered into 2 subtypes with these genes and there were significant differences in immune infiltration between subtypes. After regression analysis, we obtained a total of four key genes, BMI1, CDKN1A, NOX1, and SESN1. The risk prediction model established with these four genes as variables has accurate prognostic prediction ability. The key genes interact with 65 miRNAs, 57 TFs, 47 RBPs, and 62 drugs, respectively, and are closely related to immune infiltration of the disease. Among them, CDKN1A and SESN1 had the highest variability. CONCLUSIONS The key genes involved in oxidative stress could predict the prognosis of DLBCL and potentially become therapeutic targets.
Collapse
Affiliation(s)
- Kewei Zhao
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Qiuyue Wen
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Qiuhui Li
- The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengye Li
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Tao Liu
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Fang Zhu
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liling Zhang
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Simeth J, Hüttl P, Schön M, Nozari Z, Huttner M, Schmidt T, Altenbuchinger M, Spang R. Virtual tissue expression analysis. Bioinformatics 2024; 40:btae709. [PMID: 39589902 PMCID: PMC11631471 DOI: 10.1093/bioinformatics/btae709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/28/2024] Open
Abstract
MOTIVATION Bulk RNA expression data are widely accessible, whereas single-cell data are relatively scarce in comparison. However, single-cell data offer profound insights into the cellular composition of tissues and cell type-specific gene regulation, both of which remain hidden in bulk expression analysis. RESULTS Here, we present tissueResolver, an algorithm designed to extract single-cell information from bulk data, enabling us to attribute expression changes to individual cell types. When validated on simulated data tissueResolver outperforms competing methods. Additionally, our study demonstrates that tissueResolver reveals cell type-specific regulatory distinctions between the activated B-cell-like (ABC) and germinal center B-cell-like (GCB) subtypes of diffuse large B-cell lymphomas (DLBCL). AVAILABILITY AND IMPLEMENTATION R package available at https://github.com/spang-lab/tissueResolver (archived as 10.5281/zenodo.14160846).Code for reproducing the results of this article is available at https://github.com/spang-lab/tissueResolver-docs archived as swh:1:dir:faea2d4f0ded30de774b28e028299ddbdd0c4f89).
Collapse
Affiliation(s)
- Jakob Simeth
- Institute for Statistical Bioinformatics, Faculty of Informatics and Data Science, University of Regensburg, Am Biopark 9, 93053 Regensburg, Germany
- NGS and Data Technologies Core, Leibniz Institute for Immunotherapy (LIT), c/o Universitätsklinikum Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | - Paul Hüttl
- Institute for Statistical Bioinformatics, Faculty of Informatics and Data Science, University of Regensburg, Am Biopark 9, 93053 Regensburg, Germany
| | - Marian Schön
- Institute for Statistical Bioinformatics, Faculty of Informatics and Data Science, University of Regensburg, Am Biopark 9, 93053 Regensburg, Germany
| | - Zahra Nozari
- Institute for Statistical Bioinformatics, Faculty of Informatics and Data Science, University of Regensburg, Am Biopark 9, 93053 Regensburg, Germany
| | - Michael Huttner
- Institute for Statistical Bioinformatics, Faculty of Informatics and Data Science, University of Regensburg, Am Biopark 9, 93053 Regensburg, Germany
| | - Tobias Schmidt
- Institute for Statistical Bioinformatics, Faculty of Informatics and Data Science, University of Regensburg, Am Biopark 9, 93053 Regensburg, Germany
| | - Michael Altenbuchinger
- Department of Medical Bioinformatics, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Rainer Spang
- Institute for Statistical Bioinformatics, Faculty of Informatics and Data Science, University of Regensburg, Am Biopark 9, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Zhou F, Chen L, Liu Z, Cao Y, Deng C, Liu G, Liu C. Unveiling CKS2: A Key Player in Aggressive B-Cell Lymphoma Progression and a Target for Synergistic Therapy. Cancer Med 2024; 13:e70435. [PMID: 39560180 PMCID: PMC11574738 DOI: 10.1002/cam4.70435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The objective of this study was to investigate the expression levels and biological significance of CKS2 in Burkitt cell lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). Additionally, the potential synergistic anti-tumor effects of CKS2 knockdown in combination with etoposide in BL and DLBCL were explored for the first time. METHODS Bioinformatics analysis was utilized to explore the transcriptional levels, prognostic value, and gene function enrichment of CKS2 in BL and DLBCL. Specific shRNA sequences were designed to target CKS2 for the purpose of constructing a lentiviral expression vector, and therapeutic effects were assessed through analyses of cell proliferation, cell cycle distribution, and cell apoptosis. RESULTS First, the study examined the increased transcriptional and protein levels of CKS2 in BL and DLBCL through analysis of various databases and immunohistochemistry tests. Elevated CKS2 expression was found to be correlated with a worse prognosis in BL and DLBCL patients, as evidenced by data from the TCGA and GEO databases. Enrichment analysis indicated that CKS2 functions were primarily linked to protein kinase regulatory activity, G1/S phase transition of the cell cycle, and the p53 signaling pathway, among others. Second, stable suppression of CKS2 gene expression in Raji and SUDHL6 cells using shRNA resulted in a significant inhibition of cell proliferation. Moreover, CKS2-shRNA induced G0/G1 cell cycle arrest and apoptosis by activating the p53 signaling pathway in Raji and SUDHL6 cells. Third, the combined treatment of CKS2-shRNA and etoposide exhibited a synergistic effect on the proliferation and apoptosis of Raji and SUDHL6 cells. CONCLUSIONS Our findings suggest that CKS2 may play a critical role in the progression of BL and DLBCL and provide evidence for the potential therapeutic application of combining CKS2-shRNA and etoposide agents in the treatment of BL and DLBCL.
Collapse
MESH Headings
- Humans
- CDC2-CDC28 Kinases/metabolism
- CDC2-CDC28 Kinases/genetics
- Cell Proliferation
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Etoposide/pharmacology
- Etoposide/therapeutic use
- Cell Line, Tumor
- Apoptosis
- Gene Expression Regulation, Neoplastic
- Prognosis
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/pathology
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/metabolism
- Disease Progression
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle
- Computational Biology/methods
Collapse
Affiliation(s)
- Fenling Zhou
- Department of Hematology, Sun Yat-Sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Lu Chen
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Zhen Liu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Yuli Cao
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Cuilan Deng
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Gexiu Liu
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Chengcheng Liu
- Department of Hematology, Sun Yat-Sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Yang X, Ji Y, Mei L, Jing W, Yang X, Liu Q. Potential role of the P2X7 receptor in the proliferation of human diffused large B-cell lymphoma. Purinergic Signal 2024; 20:273-284. [PMID: 37222921 PMCID: PMC11189370 DOI: 10.1007/s11302-023-09947-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of invasive non-Hodgkin lymphoma. 60-70% of patients are curable with current chemoimmunotherapy, whereas the rest are refractory or relapsed. Understanding of the interaction between DLBCL cells and tumor microenvironment raises the hope of improving overall survival of DLBCL patients. P2X7, a member of purinergic receptors P2X family, is activated by extracellular ATP and subsequently promotes the progression of various malignancies. However, its role in DLBCL has not been elucidated. In this study, the expression level of P2RX7 in DLBCL patients and cell lines was analyzed. MTS assay and EdU incorporation assay were carried out to study the effect of activated/inhibited P2X7 signaling on the proliferation of DLBCL cells. Bulk RNAseq was performed to explore potential mechanism. The results demonstrated high level expression of P2RX7 in DLBCL patients, typically in patients with relapse DLBCL. 2'(3')-O-(4-benzoylbenzoyl) adenosine 5-triphosphate (Bz-ATP), an agonist of P2X7, significantly accelerated the proliferation of DLBCL cells, whereas delayed proliferation was detected when administrated with antagonist A740003. Furthermore, a urea cycle enzyme named CPS1 (carbamoyl phosphate synthase 1), which up-regulated in P2X7-activated DLBCL cells while down-regulated in P2X7-inhibited group, was demonstrated to involve in such process. Our study reveals the role of P2X7 in the proliferation of DLBCL cells and implies that P2X7 may serve as a potential molecular target for the treatment of DLBCL.
Collapse
Affiliation(s)
- Xiao Yang
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenwen Jing
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xin Yang
- Department of Rheumatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qianwei Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
6
|
McCrury M, Swafford K, Shuttleworth SL, Mehdi SH, Acharya B, Saha D, Naceanceno K, Byrum SD, Storey AJ, Xu YZ, Doshier C, Patel V, Post GR, De Loose A, Rodriguez A, Shultz LD, Zhan F, Yoon D, Frett B, Kendrick S. Bifunctional Inhibitor Reveals NEK2 as a Therapeutic Target and Regulator of Oncogenic Pathways in Lymphoma. Mol Cancer Ther 2024; 23:316-329. [PMID: 37816504 PMCID: PMC10932871 DOI: 10.1158/1535-7163.mct-23-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.
Collapse
Affiliation(s)
- Mason McCrury
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kennith Swafford
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sydnye L. Shuttleworth
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Syed Hassan Mehdi
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Baku Acharya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin Naceanceno
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ying-Zhi Xu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Claire Doshier
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vijay Patel
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ginell R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Annick De Loose
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Donghoon Yoon
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Patel MR, Donnellan W, Byrne M, Asch AS, Zeidan AM, Baer MR, Fathi AT, Kuykendall AT, Zheng F, Walker C, Cheng L, Marando C, Savona MR. Phase 1/2 Study of the Pan-PIM Kinase Inhibitor INCB053914 Alone or in Combination With Standard-of-Care Agents in Patients With Advanced Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:674-686. [PMID: 37290996 DOI: 10.1016/j.clml.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Proviral Integration site of Moloney murine leukemia virus (PIM) kinases are implicated in tumorigenesis; the pan-PIM kinase inhibitor, INCB053914, demonstrated antitumor activity in hematologic malignancy preclinical models. PATIENTS AND METHODS This phase 1/2 study evaluated oral INCB053914 alone or combined with standard-of-care agents for advanced hematologic malignancies (NCT02587598). In Parts 1/2 (monotherapy), patients (≥18 years) had acute leukemia, high-risk myelodysplastic syndrome (MDS), MDS/myeloproliferative neoplasm, myelofibrosis (MF), multiple myeloma, or lymphoproliferative neoplasms. In Parts 3/4 (combination therapy), patients had relapsed/refractory or newly diagnosed (≥65 years, unfit for intensive chemotherapy) acute myeloid leukemia (AML) or MF with suboptimal ruxolitinib response. RESULTS Parts 1/2 (n = 58): 6 patients experienced dose-limiting toxicities (DLTs), most commonly aspartate aminotransferase/alanine aminotransferase-elevated (AST/ALT; each n = 4). Fifty-seven patients (98.3%) had treatment-emergent adverse events (TEAEs), most commonly ALT-elevated and fatigue (36.2% each); 48 (82.8%) had grade ≥3 TEAEs, most commonly anemia (31.0%); 8 (13.8%) had grade ≥3 ALT/AST-elevated TEAEs. Parts 3/4 (n = 39): for INCB053914 + cytarabine (AML; n = 6), 2 patients experienced DLTs (grade 3 maculopapular rash, n = 1; grade 3 ALT-elevated and grade 4 hypophosphatemia, n = 1); for INCB053914 + azacitidine (AML; n = 16), 1 patient experienced a DLT (grade 3 maculopapular rash). Two complete responses were observed (1 with incomplete count recovery). For INCB053914 + ruxolitinib (MF; n = 17), no DLTs occurred; 3 patients achieved best reduction of >25% spleen volume at week 12 or 24. CONCLUSION INCB053914 was generally well tolerated as monotherapy and in combinations; TEAEs were most commonly ALT/AST-elevated. Limited responses were observed with combinations. Future studies are needed to identify rational, effective combination strategies.
Collapse
Affiliation(s)
- Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL.
| | | | - Michael Byrne
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Adam S Asch
- Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK
| | - Amer M Zeidan
- Yale University and Yale Cancer Center, New Haven, CT
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Amir T Fathi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | - Michael R Savona
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
8
|
Hoppe MM, Jaynes P, Shuangyi F, Peng Y, Sridhar S, Hoang PM, Liu CX, De Mel S, Poon L, Chan EHL, Lee J, Ong CK, Tang T, Lim ST, Nagarajan C, Grigoropoulos NF, Tan SY, Hue SSS, Chang ST, Chuang SS, Li S, Khoury JD, Choi H, Harris C, Bottos A, Gay LJ, Runge HF, Moutsopoulos I, Mohorianu I, Hodson DJ, Farinha P, Mottok A, Scott DW, Pitt JJ, Chen J, Kumar G, Kannan K, Chng WJ, Chee YL, Ng SB, Tripodo C, Jeyasekharan AD. Patterns of Oncogene Coexpression at Single-Cell Resolution Influence Survival in Lymphoma. Cancer Discov 2023; 13:1144-1163. [PMID: 37071673 PMCID: PMC10157367 DOI: 10.1158/2159-8290.cd-22-0998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 04/19/2023]
Abstract
Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fan Shuangyi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Sridhar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Limei Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng-Tsung Chang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shaoying Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carl Harris
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Laura J. Gay
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | | | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | - Anja Mottok
- BC Cancer Research Centre, Vancouver, Canada
| | | | - Jason J. Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gayatri Kumar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasthuri Kannan
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Zhu QY. Bioinformatics analysis of the pathogenic link between Epstein-Barr virus infection, systemic lupus erythematosus and diffuse large B cell lymphoma. Sci Rep 2023; 13:6310. [PMID: 37072474 PMCID: PMC10113247 DOI: 10.1038/s41598-023-33585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023] Open
Abstract
Epstein-Barr virus (EBV) is a risk factor for diffuse large B-cell lymphoma (DLBCL) and systemic lupus erythematosus (SLE). While prior research has suggested a potential correlation between SLE and DLBCL, the molecular mechanisms remain unclear. The present study aimed to explore the contribution of EBV infection to the pathogenesis of DLBCL in the individuals with SLE using bioinformatics approaches. The Gene Expression Omnibus database was used to compile the gene expression profiles of EBV-infected B cells (GSE49628), SLE (GSE61635), and DLBCL (GSE32018). Altogether, 72 shared common differentially expressed genes (DEGs) were extracted and enrichment analysis of the shared genes showed that p53 signaling pathway was a common feature of the pathophysiology. Six hub genes were selected using protein-protein interaction (PPI) network analysis, including CDK1, KIF23, NEK2, TOP2A, NEIL3 and DEPDC1, which showed preferable diagnostic values for SLE and DLBCL and involved in immune cell infiltration and immune responses regulation. Finally, TF-gene and miRNA-gene regulatory networks and 10 potential drugs molecule were predicted. Our study revealed the potential molecular mechanisms by which EBV infection contribute to the susceptibility of DLBCL in SLE patients for the first time and identified future biomarkers and therapeutic targets for SLE and DLBCL.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518003, People's Republic of China.
| |
Collapse
|
10
|
Metwally AM, Kasem AAHM, Youssif MI, Hassan SM, Abdel Wahab AHA, Refaat LA. Lymphocyte to monocyte ratio predicts survival and is epigenetically linked to miR-222-3p and miR-26b-5p in diffuse large B cell lymphoma. Sci Rep 2023; 13:4899. [PMID: 36966176 PMCID: PMC10039925 DOI: 10.1038/s41598-023-31700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. 10-20% of the patients present with bone marrow (BM) involvement which predicts a worse survival. This study aimed to determine the prognostic significance of serum miR-222-3p, miR-26b-5p, EBV-miR-BHRF1-2-5p, and EBV-miR-BHRF1-2-3p and correlate their levels to clinical and haematological markers in DLBCL with special emphasis on the lymphocyte-monocyte ratio (LMR) and neutrophil-monocyte ratio. We also studied the role of BM BMI1 and PIM2 proteins in predicting BM infiltration. Serum miRNAs were studied on 40 DLBCL and 18 normal individuals using qRT-PCR. BMI1 and PIM2 proteins were studied on BM biopsies by immunohistochemistry. The results were correlated with clinical and follow-up data. All the studied miRNAs were dysregulated in DLBCL serum samples. BMI1 and PIM2 were expressed in 67% and 77.5% of BM samples, respectively. LMR was significantly associated with disease-free survival (DFS) (P = 0.022), miR-222-3P (P = 0.043), and miR-26b-5p (P = 0.043). EBV-miR-BHRF1-2-3p was significantly correlated to haemoglobin level (P = 0.027). MiR-222-3p, miR-26b-5p, and EBV-miR-BHRF1-2-5p expressions were significantly correlated to each other (P = 0.001). There was no significant correlation between the studied markers and follow-up data. LMR is a simple method for predicting survival in DLBCL. MiR-222-3p and miR-26b-5p may be implicated in an immunological mechanism affecting patients' immunity and accordingly influence LMR. The correlation between miR-222-3p, miR-26b-5p, and EBV-miR-BHRF1-2-5p may indicate a common mechanism among the 3 miRNAs that may explain DLBCL pathogenesis.
Collapse
Affiliation(s)
- Ayman Mohamed Metwally
- Technology of Medical Laboratory Department, College of Applied Health Science Technology, Misr University for Science and Technology, 77, Almotamayez District, 6th October, Egypt.
| | | | - Magda Ismail Youssif
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Safia Mohammed Hassan
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Lobna Ahmed Refaat
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Ma S, Han J, Li Z, Xiao S, Zhang J, Yan J, Tang T, Barr T, Kraft AS, Caligiuri MA, Yu J. An XBP1s-PIM-2 positive feedback loop controls IL-15-mediated survival of natural killer cells. Sci Immunol 2023; 8:eabn7993. [PMID: 36897958 DOI: 10.1126/sciimmunol.abn7993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Spliced X-box-binding protein 1 (XBP1s) is an essential transcription factor downstream of interleukin-15 (IL-15) and AKT signaling, which controls cell survival and effector functions of human natural killer (NK) cells. However, the precise mechanisms, especially the downstream targets of XBP1s, remain unknown. In this study, by using XBP1 conditional knockout mice, we found that XBP1s is critical for IL-15-mediated NK cell survival but not proliferation in vitro and in vivo. Mechanistically, XBP1s regulates homeostatic NK cell survival by targeting PIM-2, a critical anti-apoptotic gene, which in turn stabilizes XBP1s protein by phosphorylating it at Thr58. In addition, XBP1s enhances the effector functions and antitumor immunity of NK cells by recruiting T-bet to the promoter region of Ifng. Collectively, our findings identify a previously unknown mechanism by which IL-15-XBP1s signaling regulates the survival and effector functions of NK cells.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jiazhuo Yan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tingting Tang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
12
|
Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 2023; 22:18. [PMID: 36694243 PMCID: PMC9875428 DOI: 10.1186/s12943-023-01721-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.
Collapse
|
13
|
Viswanathan A, Kundal K, Sengupta A, Kumar A, Kumar KV, Holmes AB, Kumar R. Deep learning-based classifier of diffuse large B-cell lymphoma cell-of-origin with clinical outcome. Brief Funct Genomics 2023; 22:42-48. [PMID: 36412115 DOI: 10.1093/bfgp/elac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive form of non-Hodgkin lymphoma with poor response to R-CHOP therapy due to remarkable heterogeneity. Based on gene expression, DLBCL cases were divided into two subtypes, i.e. ABC and GCB, where ABC subtype is associated with poor outcomes. Due to its association with clinical outcome, this classification, also known as cell-of-origin (COO), is an efficient way to predict the response to R-CHOP therapy. Previous COO classification methods have some shortcomings, e.g. limited number of samples in the training dataset. These shortcomings challenge the robustness of methods and make it difficult to implicate these methods at clinical level. To overcome the shortcomings of previous methods, we developed a deep learning-based classifier model on a cohort of 381 DLBCL patients using expression data of 20 genes. We implemented multilayer perceptron (MLP) to train deep learning-based classifier, named MLP-COO. MLP-COO achieved accuracy of 99.70% and 94.70% on training and testing datasets, respectively, with 10-fold cross-validation. We also assessed its performance on an independent dataset of 294 DLBCL patients. On independent dataset, we achieved an accuracy of 95.90% with MCC of 0.917. To show its broader applicability, we used this classifier to predict the clinical outcome using survival data from two large cohorts of DLBCL patients. In survival analysis, MLP-COO recapitulates the survival probabilities of DLBCL patients based on their COO in both cohorts. We anticipate that MLP-COO model developed in this study will benefit in the accurate COO prediction of DLBCL patients and their clinical outcomes.
Collapse
|
14
|
Bioinformatics Analysis of miRNAs Targeting TRAF5 in DLBCL Involving in NF- κB Signaling Pathway and Affecting the Apoptosis and Signal Transduction. Genet Res (Camb) 2022; 2022:3222253. [PMID: 36619898 PMCID: PMC9803564 DOI: 10.1155/2022/3222253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphoma with high heterogeneity. There is an unmet need to investigate valid indicators for the diagnosis and therapy of DLBCL. Methods GEO database was utilized to screen for differentially expressed genes (DEGs) and differential miRNAs in DLBCL tissues. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyse DEGs. Then multiple databases were searched for related miRNAs within DLBCL, TNF receptor-associated factor 5 (TRAF5) and NF-kappa B (NF-κB) signaling pathways. The KOBAS database was used to assist in the screening of miRNAs of interest and construct the regulatory network of miRNA-mRNA. Finally, the expression level and diagnostic performance of miRNAs were analyzed with GEO datasets, and DEGs were identified from the GEPIA database. Results DEGs were significantly concentrated in the NF-κB signaling pathway and cytokine-cytokine receptor interaction, and involved in the process of immune response and protein binding. MiR-15a-5p, miR-147a, miR-192-5p, miR-197-3p, miR-532-5p, and miR-650 were revealed to be targeting TRAF5 and participating in NF-κB signaling pathway and might impact the apoptosis and signal transduction of DLBCL. In the GEPIA database, TRAF5 was significantly overexpressed in DLBCL. The expression of miR-197-3p was upregulated within GEO datasets, while the rest of the miRNAs were downregulated in DLBCL. Conclusions Subsets of miRNAs may participate in the NF-κB signaling pathway by co-targeting TRAF5 and could be prospective biomarkers exploring the pathogenesis of DLBCL.
Collapse
|
15
|
Richter Syndrome: From Molecular Pathogenesis to Druggable Targets. Cancers (Basel) 2022; 14:cancers14194644. [PMID: 36230566 PMCID: PMC9563287 DOI: 10.3390/cancers14194644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Richter syndrome (RS) represents the occurrence of an aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL), in patients with chronic lymphocytic leukemia (CLL). Most cases of RS originate from the direct transformation of CLL, whereas 20% are de novo DLBCL arising as secondary malignancies. Multiple molecular mechanisms contribute to RS pathogenesis. B-cell receptor (BCR) overreactivity to multiple autoantigens is due to frequent stereotyped BCR configuration. Genetic lesions of TP53, CDKN2A, NOTCH1 and c-MYC deregulate DNA damage response, tumor suppression, apoptosis, cell cycle and proliferation. Hyperactivation of Akt and NOTCH1 signaling also plays a role. Altered expression of PD-1/PD-L1 and of other immune checkpoints leads to RS resistance to cytotoxicity exerted by T-cells. The molecular features of RS provide vulnerabilities for therapy. Targeting BCR signaling with noncovalent BTK inhibitors shows encouraging results, as does the combination of BCL2 inhibitors with chemoimmunotherapy. The association of immune checkpoint inhibitors with BCL2 inhibitors and anti-CD20 monoclonal antibodies is explored in early phase clinical trials with promising results. The development of patient-derived xenograft mice models reveals new molecular targets for RS, exemplified by ROR1. Although RS still represents an unmet medical need, understanding its biology is opening new avenues for precision medicine therapy.
Collapse
|
16
|
Han G, Deng Q, Marques-Piubelli ML, Dai E, Dang M, Ma MCJ, Li X, Yang H, Henderson J, Kudryashova O, Meerson M, Isaev S, Kotlov N, Nomie KJ, Bagaev A, Parra ER, Solis Soto LM, Parmar S, Hagemeister FB, Ahmed S, Iyer SP, Samaniego F, Steiner R, Fayad L, Lee H, Fowler NH, Flowers CR, Strati P, Westin JR, Neelapu SS, Nastoupil LJ, Vega F, Wang L, Green MR. Follicular Lymphoma Microenvironment Characteristics Associated with Tumor Cell Mutations and MHC Class II Expression. Blood Cancer Discov 2022; 3:428-443. [PMID: 35687817 PMCID: PMC9894575 DOI: 10.1158/2643-3230.bcd-21-0075] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/02/2021] [Accepted: 06/03/2022] [Indexed: 01/01/2023] Open
Abstract
Follicular lymphoma (FL) is a B-cell malignancy with a complex tumor microenvironment that is rich in nonmalignant immune cells. We applied single-cell RNA sequencing to characterize the diverse tumor and immune cell populations of FL and identified major phenotypic subsets of FL T cells, including a cytotoxic CD4 T-cell population. We characterized four major FL subtypes with differential representation or relative depletion of distinct T-cell subsets. By integrating exome sequencing, we observed that somatic mutations are associated with, but not definitive for, reduced MHC expression on FL cells. In turn, expression of MHCII genes by FL cells was associated with significant differences in the proportions and targetable immunophenotypic characteristics of T cells. This provides a classification framework of the FL microenvironment in association with FL genotypes and MHC expression, and informs different potential immunotherapeutic strategies based upon tumor cell MHCII expression. SIGNIFICANCE We have characterized the FL-infiltrating T cells, identified cytotoxic CD4 T cells as an important component that is associated with tumor cell-intrinsic characteristics, and identified sets of targetable immune checkpoints on T cells that differed from FLs with normal versus low MHC expression. See related commentary by Melnick, p. 374. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Deng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xubin Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haopeng Yang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared Henderson
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | - Edwin R. Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simrit Parmar
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fredrick B. Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Swaminathan P. Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hun Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nathan H. Fowler
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
- BostonGene Corporation, Waltham, Massachusetts
| | - Christopher R. Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason R. Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Loretta J. Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael R. Green
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Identification of Hub Genes and Key Pathways Associated with Follicular Lymphoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5369104. [PMID: 35965624 PMCID: PMC9357743 DOI: 10.1155/2022/5369104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Follicular lymphoma (FL) is the second most prevalent form of non-Hodgkin lymphoma (NHL) and accounts for almost 20% of all NHL cases. Although FL patients' overall survival rates have steadily increased, there is still no accepted standard of care for individuals who experience recurrence or resistance to treatment. Hence, it is needed to evaluate the precise molecular cascades underlying FL to develop efficient diagnostic and treatment approaches. Herein, we aimed to evaluate variations in gene expression profiles, explore the underlying mechanisms, and find new FL targets. In the present study, Gene Expression Omnibus (GEO) database was employed to evaluate microarray datasets including GSE32018 and GSE55267. R software was employed to evaluate differentially expressed genes (DEGs) between FL and noncancer samples. The DEGs were evaluated using GO, KEGG pathway enrichment analysis, and PPI network to evaluate hub genes, which were then, examined using gene function enrichment analysis. According to the obtained results, a total of 190 upregulated and 162 downregulated DEGs were evaluated. Following the generation of PPI networks, 15 hub genes in highly connected upregulated DEGs were selected including FN1, MMP9, CCL2, CD8A, POSTN, CCR5, COL3A1, CXCL12, VCAM1, COL1A2, CCL5, SPARC, TIMP1, CXCL9, and IL18. The GO enrichment evaluation of the underlined hub genes indicated that the immunological response was the most considerably enriched term. Twelve significant cascades were found using the KEGG pathway analysis, most of which were linked to cellular structure and immunity. Our findings suggested that FN1, SPARC, POSTN, MMP9, and VCAM1 genes are potential biomarkers of FL, and cellular immunity contributes to the pathogenesis of FL. Moreover, the unique DEGs and cascades found in the present study may present new perspectives on the molecular basis of FL's underlying mechanisms as well as a new understanding of FL's future precise management.
Collapse
|
18
|
Xiang X, Gao LM, Zhang Y, Tang Y, Zhao S, Liu W, Ye Y, Zhang W. Identification of FCER1G related to Activated Memory CD4 + T Cells Infiltration by Gene Co-expression Network and Construction of a Risk Prediction Module in Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:849422. [PMID: 35711924 PMCID: PMC9196638 DOI: 10.3389/fgene.2022.849422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a group of biologically heterogeneous tumors with different prognoses. The tumor microenvironment plays a vital role in the tumorigenesis and development of DLBCL, and activated memory CD4+ T cells are an essential component of immunological cells in the lymphoma microenvironment. So far, there are few reports about activated memory CD4+T cells infiltration and related genes in the DLBCL tumor microenvironment. This study obtained the mRNA expression profile information of the testing GSE87371 dataset and another six validation datasets (GSE53786, GSE181063, GSE10846, GSE32918, GSE32018, GSE9327, GSE3892, TCGA-DLBC) from the GEO and TCGA databases. Weighted Gene Co-expression Network Analysis (WGCNA) screened gene module associated with activated memory CD4+ T cells infiltration. CIBERSORT and TIMER (immune cells infiltrating estimation analysis tools) were used to identify the relationship between activated memory CD4+ T cells and genes associated with immune infiltrating cells in the tumor microenvironment. The least absolute shrinkage and selection operator (LASSO) built the risk prediction model and verified it using nomogram and Kaplan-Meier analysis. Further functional characterization includes Gene Ontology, KEGG pathway analysis and Gene Set Enrichment Analysis (GSEA) to investigate the role and underlying mechanisms of these genes. These results suggest that the expression of FCER1G can reflect the invasion of activated memory CD4+ T cells in DLBCL, which provides a new idea for studying the tumor microenvironment and may become a potential predictive biomarker for the assessment of DLBCL.
Collapse
Affiliation(s)
- Xiaoyu Xiang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuehua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Tang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Weiping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yunxia Ye
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Marino D, Pizzi M, Kotova I, Schmidt R, Schröder C, Guzzardo V, Talli I, Peroni E, Finotto S, Scapinello G, Dei Tos AP, Piazza F, Trentin L, Zagonel V, Piovan E. High ETV6 Levels Support Aggressive B Lymphoma Cell Survival and Predict Poor Outcome in Diffuse Large B-Cell Lymphoma Patients. Cancers (Basel) 2022; 14:cancers14020338. [PMID: 35053500 PMCID: PMC8774128 DOI: 10.3390/cancers14020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of prognostic factors for aggressive B-cell lymphomas still represents an unmet clinical need. We used forward phase protein arrays (FFPA) to identify proteins associated with overall survival (OS) from diagnostic formalin-fixed paraffin-embedded material of diffuse large B-cell lymphoma (DLBCL) patients (n = 47). Univariate Cox regression analysis identified numerous proteins, including immune check-point molecules (PDCD1, PDCD2 and PD1L2) and BCL2 to be significantly associated with OS. However, only ETV6 and PIM2 proteins persisted following multivariate Cox analysis. Independent validation studies by immunohistochemistry and analysis of public gene expression profiles of DLBCL confirmed a prognostic role for high ETV6 and ETV6/PIM2 ratios in DLBCL. ETV6 is a recurrently mutated/deleted gene in DLBCL for which its function in this disease entity is currently unknown. We find that ETV6 is upregulated during oncogenic transformation of germinal center B-cells and that it regulates DLBCL survival, as its acute loss results in marked apoptosis. Fluctuations in survivin (BIRC5) expression levels were associated with this phenomenon. Furthermore, an inverse correlation between ETV6 and BIRC5 expression levels was found and correlated with a response to the BIRC5 inhibitor, YM155. In conclusion, we present evidence for an oncogenic function of ETV6 in DLBCL.
Collapse
Affiliation(s)
- Dario Marino
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Marco Pizzi
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Iuliia Kotova
- Sciomics GmbH, 69151 Neckargemünd, Germany; (I.K.); (R.S.); (C.S.)
| | - Ronny Schmidt
- Sciomics GmbH, 69151 Neckargemünd, Germany; (I.K.); (R.S.); (C.S.)
| | | | - Vincenza Guzzardo
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Ilaria Talli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy;
| | - Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy;
| | - Silvia Finotto
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Greta Scapinello
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Angelo Paolo Dei Tos
- Surgical Pathology & Cytopathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (M.P.); (V.G.); (A.P.D.T.)
| | - Francesco Piazza
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Livio Trentin
- Hematology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy; (G.S.); (F.P.); (L.T.)
| | - Vittorina Zagonel
- Medical Oncology 1, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy; (D.M.); (S.F.); (V.Z.)
| | - Erich Piovan
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy;
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy;
- Correspondence: ; Tel.: +39-(049)-8215895
| |
Collapse
|
20
|
Abed El Rahman SKED, Elshafy SSA, Samra M, Ali HM, Mohamed RA. PIM2 and NF-κβ gene expression in a sample of AML and ALL Egyptian patients and its relevance to response to treatment. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The relation between PIM2 and the transcriptional factor NF κβ have been controversial in literature. The significance of PIM2 and NF-κβ genes expression on the incidence of acute leukemia (AML and ALL) and its relevance to the response rate was evaluated. Sixty de novo acute leukemia patients were stratified in 2 groups: 30 acute myeloid leukemia (AML) and 30 acute lymphoblastic leukemia (ALL) patients and compared to 30 sex- and age-matched controls. The expression level of PIM2 and NF κβ genes was measured using quantitative real-time polymerase chain reaction (QRT-PCR). The patients were followed with clinical examination and complete blood counts.
Results
The expression level of PIM2 gene was significantly higher in AML patients (P<0.001) compared to the control group. The mean expression level of NF κβ gene was significantly high in AML and ALL patients compared to the healthy control group (P=0.037 and P<0.001; respectively). The overall survival in AML patients was higher in NF κβ gene low expressers compared to high expressers (P=0.047). The number of AML patients who achieved complete remission was significantly higher in PIM2 gene low expressers in comparison to PIM2 gene high expressers (P=0.042).
Conclusion
PIM2 and NF κβ genes might have a role in the pathogenesis of acute leukemia, poor overall survival, and failure of response to induction therapy.
Collapse
|
21
|
Engineered Fully Human Single-Chain Monoclonal Antibodies to PIM2 Kinase. Molecules 2021; 26:molecules26216436. [PMID: 34770845 PMCID: PMC8588357 DOI: 10.3390/molecules26216436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022] Open
Abstract
Proviral integration site of Moloney virus-2 (PIM2) is overexpressed in multiple human cancer cells and high level is related to poor prognosis; thus, PIM2 kinase is a rational target of anti-cancer therapeutics. Several chemical inhibitors targeting PIMs/PIM2 or their downstream signaling molecules have been developed for treatment of different cancers. However, their off-target toxicity is common in clinical trials, so they could not be advanced to official approval for clinical application. Here, we produced human single-chain antibody fragments (HuscFvs) to PIM2 by using phage display library, which was constructed in a way that a portion of phages in the library carried HuscFvs against human own proteins on their surface with the respective antibody genes in the phage genome. Bacterial derived-recombinant PIM2 (rPIM2) was used as an antigenic bait to fish out the rPIM2-bound phages from the library. Three E. coli clones transfected with the HuscFv genes derived from the rPIM2-bound phages expressed HuscFvs that bound also to native PIM2 from cancer cells. The HuscFvs presumptively interact with the PIM2 at the ATP binding pocket and kinase active loop. They were as effective as small chemical drug inhibitor (AZD1208, which is an ATP competitive inhibitor of all PIM isoforms for ex vivo use) in inhibiting PIM kinase activity. The HuscFvs should be engineered into a cell-penetrating format and tested further towards clinical application as a novel and safe pan-anti-cancer therapeutics.
Collapse
|
22
|
Szydłowski M, Garbicz F, Jabłońska E, Górniak P, Komar D, Pyrzyńska B, Bojarczuk K, Prochorec-Sobieszek M, Szumera-Ciećkiewicz A, Rymkiewicz G, Cybulska M, Statkiewicz M, Gajewska M, Mikula M, Gołas A, Domagała J, Winiarska M, Graczyk-Jarzynka A, Białopiotrowicz E, Polak A, Barankiewicz J, Puła B, Pawlak M, Nowis D, Golab J, Tomirotti AM, Brzózka K, Pacheco-Blanco M, Kupcova K, Green MR, Havranek O, Chapuy B, Juszczyński P. Inhibition of PIM Kinases in DLBCL Targets MYC Transcriptional Program and Augments the Efficacy of Anti-CD20 Antibodies. Cancer Res 2021; 81:6029-6043. [PMID: 34625423 DOI: 10.1158/0008-5472.can-21-1023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
The family of PIM serine/threonine kinases includes three highly conserved oncogenes, PIM1, PIM2, and PIM3, which regulate multiple pro-survival pathways and cooperate with other oncogenes such as MYC. Recent genomic CRISPR-Cas9 screens further highlighted oncogenic functions of PIMs in diffuse large B cell lymphoma (DLBCL) cells, justifying development of small molecule PIM inhibitors and therapeutic targeting of PIM kinases in lymphomas. However, detailed consequences of PIM inhibition in DLBCL remain undefined. Using chemical and genetic PIM blockade, we comprehensively characterized PIM kinase-associated pro-survival functions in DLBCL and the mechanisms of PIM inhibition-induced toxicity. Treatment of DLBCL cells with SEL24/MEN1703, a pan PIM inhibitor in clinical development, decreased BAD phosphorylation and cap-dependent protein translation, reduced MCL1 expression, and induced apoptosis. PIM kinases were tightly coexpressed with MYC in diagnostic DLBCL biopsies, and PIM inhibition in cell lines and patient-derived primary lymphoma cells decreased MYC levels as well as expression of multiple MYC-dependent genes, including PLK1. Chemical and genetic PIM inhibition upregulated surface CD20 levels in a MYC-dependent fashion. Consistently, MEN1703 and other clinically available pan-PIM inhibitors synergized with the anti-CD20 monoclonal antibody rituximab in vitro, increasing complement-dependent cytotoxicity and antibody-mediated phagocytosis. Combined treatment with PIM inhibitor and rituximab suppressed tumor growth in lymphoma xenografts more efficiently than either drug alone. Taken together, these results show that targeting PIM in DLBCL exhibits pleiotropic effects that combine direct cytotoxicity with potentiated susceptibility to anti-CD20 antibodies, justifying further clinical development of such combinatorial strategies.
Collapse
Affiliation(s)
- Maciej Szydłowski
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine
| | - Filip Garbicz
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine
| | - Ewa Jabłońska
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine
| | - Patryk Górniak
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine
| | - Dorota Komar
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine
| | | | - Kamil Bojarczuk
- Department of Hematology and Medical Oncology, University Medical Center - Georg-August-Universität Göttingen
| | | | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Diagnostics, IMaria Sklodowska-Curie National Research Institute of Oncology
| | - Grzegorz Rymkiewicz
- Dept. of Pathology and Laboratory Diagnostics, National Research Institute of Oncology
| | | | | | - Marta Gajewska
- Dept. of Genetics, National Research Institute of Oncology
| | - Michal Mikula
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology
| | | | | | | | | | | | - Anna Polak
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine
| | | | - Bartosz Puła
- Dept. of Hematology, Institute of Hematology and Transfusion Medicine
| | - Michał Pawlak
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw
| | | | | | | | | | - Michael R Green
- Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center
| | | | - Bjoern Chapuy
- Department of Hematology and Medical Oncology, Universitätsmedizin Göttingen
| | | |
Collapse
|
23
|
Loss of synergistic transcriptional feedback loops drives diverse B-cell cancers. EBioMedicine 2021; 71:103559. [PMID: 34461601 PMCID: PMC8403728 DOI: 10.1016/j.ebiom.2021.103559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
Background The most common B-cell cancers, chronic lymphocytic leukemia/lymphoma (CLL), follicular and diffuse large B-cell (FL, DLBCL) lymphomas, have distinct clinical courses, yet overlapping “cell-of-origin”. Dynamic changes to the epigenome are essential regulators of B-cell differentiation. Therefore, we reasoned that these distinct cancers may be driven by shared mechanisms of disruption in transcriptional circuitry. Methods We compared purified malignant B-cells from 52 patients with normal B-cell subsets (germinal center centrocytes and centroblasts, naïve and memory B-cells) from 36 donor tonsils using >325 high-resolution molecular profiling assays for histone modifications, open chromatin (ChIP-, FAIRE-seq), transcriptome (RNA-seq), transcription factor (TF) binding, and genome copy number (microarrays). Findings From the resulting data, we identified gains in active chromatin in enhancers/super-enhancers that likely promote unchecked B-cell receptor signaling, including one we validated near the immunoglobulin superfamily receptors FCMR and PIGR. More striking and pervasive was the profound loss of key B-cell identity TFs, tumor suppressors and their super-enhancers, including EBF1, OCT2(POU2F2), and RUNX3. Using a novel approach to identify transcriptional feedback, we showed that these core transcriptional circuitries are self-regulating. Their selective gain and loss form a complex, iterative, and interactive process that likely curbs B-cell maturation and spurs proliferation. Interpretation Our study is the first to map the transcriptional circuitry of the most common blood cancers. We demonstrate that a critical subset of B-cell TFs and their cognate enhancers form self-regulatory transcriptional feedback loops whose disruption is a shared mechanism underlying these diverse subtypes of B-cell lymphoma. Funding National Institute of Health, Siteman Cancer Center, Barnes-Jewish Hospital Foundation, Doris Duke Foundation.
Collapse
|
24
|
The Second-Generation PIM Kinase Inhibitor TP-3654 Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Int J Mol Sci 2021; 22:ijms22179440. [PMID: 34502348 PMCID: PMC8431370 DOI: 10.3390/ijms22179440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
Human ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) mediates the transport of a wide variety of conventional cytotoxic anticancer drugs and molecular targeted agents. Consequently, the overexpression of ABCG2 in cancer cells is linked to the development of the multidrug resistance (MDR) phenotype. TP-3654 is an experimental second-generation inhibitor of PIM kinase that is currently under investigation in clinical trials to treat advanced solid tumors and myelofibrosis. In this study, we discovered that by attenuating the drug transport function of ABCG2, TP-3654 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic ABCG2 substrate drugs topotecan, SN-38 and mitoxantrone. Moreover, our results indicate that ABCG2 does not mediate resistance to TP-3654 and may not play a major role in the induction of resistance to TP-3654 in cancer patients. Taken together, our findings reveal that TP-3654 is a selective, potent modulator of ABCG2 drug efflux function that may offer an additional combination therapy option for the treatment of multidrug-resistant cancers.
Collapse
|
25
|
Zheng W, Lin Q, Issah MA, Liao Z, Shen J. Identification of PLA2G7 as a novel biomarker of diffuse large B cell lymphoma. BMC Cancer 2021; 21:927. [PMID: 34404374 PMCID: PMC8369790 DOI: 10.1186/s12885-021-08660-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma is the most common form of non-Hodgkin lymphoma globally, and patients with relapsed or refractory DLBCL typically experience poor long-term outcomes. METHODS Differentially expressed genes associated with DLBCL were identified using two GEO datasets in an effort to detect novel diagnostic or prognostic biomarkers of this cancer type, after which receiver operating characteristic curve analyses were conducted. Genes associated with DLBCL patient prognosis were additionally identified via WCGNA analyses of the TCGA database. The expression of PLA2G7 in DLBCL patient clinical samples was further assessed, and the functional role of this gene in DLBCL was assessed through in vitro and bioinformatics analyses. RESULTS DLBCL-related DEGs were found to be most closely associated with immune responses, cell proliferation, and angiogenesis. WCGNA analyses revealed that PLA2G7 exhibited prognostic value in DLBCL patients, and the upregulation of this gene in DLBCL patient samples was subsequently validated. PLA2G7 was also found to be closely linked to tumor microenvironmental composition such that DLBCL patients expressing higher levels of this gene exhibited high local monocyte and gamma delta T cell levels. In vitro experiments also revealed that knocking down PLA2G7 expression was sufficient to impair the migration and proliferation of DLBCL cells while promoting their apoptotic death. Furthmore, the specific inhibitor of PLA2G7, darapladib, could noticeably restrained the DLBCL cell viability and induced apoptosis. CONCLUSIONS PLA2G7 may represent an important diagnostic, prognostic, or therapeutic biomarker in patients with DLBCL.
Collapse
Affiliation(s)
- Weili Zheng
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Fujian Provincial Key Laboratory on Hematology; Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiaochu Lin
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Fujian Provincial Key Laboratory on Hematology; Fujian Medical University Union Hospital, Fuzhou, China
| | - Mohammed Awal Issah
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Fujian Provincial Key Laboratory on Hematology; Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyuan Liao
- Meng Chao Hepatobiliary Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Jianzhen Shen
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Fujian Provincial Key Laboratory on Hematology; Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
26
|
Bachireddy P, Ennis C, Nguyen VN, Gohil SH, Clement K, Shukla SA, Forman J, Barkas N, Freeman S, Bavli N, Elagina L, Leshchiner I, Mohammad AW, Mathewson ND, Keskin DB, Rassenti LZ, Kipps TJ, Brown JR, Getz G, Ho VT, Gnirke A, Neuberg D, Soiffer RJ, Ritz J, Alyea EP, Kharchenko PV, Wu CJ. Distinct evolutionary paths in chronic lymphocytic leukemia during resistance to the graft-versus-leukemia effect. Sci Transl Med 2021; 12:12/561/eabb7661. [PMID: 32938797 DOI: 10.1126/scitranslmed.abb7661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022]
Abstract
Leukemic relapse remains a major barrier to successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) for aggressive hematologic malignancies. The basis for relapse of advanced lymphoid malignancies remains incompletely understood and may involve escape from the graft-versus-leukemia (GvL) effect. We hypothesized that for patients with chronic lymphocytic leukemia (CLL) treated with allo-HSCT, leukemic cell-intrinsic features influence transplant outcomes by directing the evolutionary trajectories of CLL cells. Integrated genetic, transcriptomic, and epigenetic analyses of CLL cells from 10 patients revealed that the clinical kinetics of post-HSCT relapse are shaped by distinct molecular dynamics. Early relapses after allo-HSCT exhibited notable genetic stability; single CLL cell transcriptional analysis demonstrated a cellular heterogeneity that was static over time. In contrast, CLL cells relapsing late after allo-HSCT displayed notable genetic evolution and evidence of neoantigen depletion, consistent with marked single-cell transcriptional shifts that were unique to each patient. We observed a greater rate of epigenetic change for late relapses not seen in early relapses or relapses after chemotherapy alone, suggesting that the selection pressures of the GvL bottleneck are unlike those imposed by chemotherapy. No selective advantage for human leukocyte antigen (HLA) loss was observed, even when present in pretransplant subpopulations. Gain of stem cell modules was a common signature associated with leukemia relapse regardless of posttransplant relapse kinetics. These data elucidate the biological pathways that underlie GvL resistance and posttransplant relapse.
Collapse
Affiliation(s)
- Pavan Bachireddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Christina Ennis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Vinhkhang N Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Satyen H Gohil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Academic Haematology, University College London, London WC1E 6BT, UK
| | - Kendell Clement
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Juliet Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nikolaos Barkas
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samuel Freeman
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Natalie Bavli
- Division of Hematology and Oncology, UT Southwestern, Dallas, TX 75390, USA
| | | | | | | | - Nathan D Mathewson
- Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gad Getz
- Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Andreas Gnirke
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Donna Neuberg
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Edwin P Alyea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. .,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
27
|
Lu C, Qiao P, Sun Y, Ren C, Yu Z. Positive regulation of PFKFB3 by PIM2 promotes glycolysis and paclitaxel resistance in breast cancer. Clin Transl Med 2021; 11:e400. [PMID: 33931981 PMCID: PMC8087946 DOI: 10.1002/ctm2.400] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most common female malignancies in the world. Chemotherapeutic resistance is the major cause of BC therapy failure, leading to tumor recurrence and metastasis. Studies have illustrated the close relationship between glycolysis and BC progression and drug resistance. The key glycolysis regulator, PFKFB3 makes a difference during BC progression and drug resistance. However, the mechanism remains to be unknown. METHODS Mass spectrometry analyses were used to found that PIM2 was a potential new binding protein of PFKFB3. Co-immunoprecipitated and western blot were used to verify the interaction between PIM2 and PFKFB3 in BC and the molecular mechanism by which PIM2 phosphorylates PFKFB3 in regulating the protein function. PFKFB3 mutant forms were used to demonstrate the need for PFKFB3 in BC drug resistance. RESULTS We identified that PIM2 is a new binding protein of PFKFB3. We used biochemical methods to determine that PIM2 can directly bind and change the phosphorylation of PFKFB3 at Ser478 to enhance PFKFB3 protein stability through the ubiquitin-proteasome pathway. Importantly, phosphorylation of PFKFB3 at Ser478 promoted glycolysis, BC cell growth, and paclitaxel resistance together with PIM2 in vitro and in vivo. CONCLUSION Our study demonstrates that PIM2 mediates PFKFB3 phosphorylation thus regulates glycolysis and paclitaxel resistance to promote tumor progression in BC and provides preclinical evidence for targeting PFKFB3 as a new strategy in BC treatment to battle paclitaxel resistance.
Collapse
Affiliation(s)
- Chao Lu
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityWeifangShandong ProvinceP. R. China
| | - Pengyun Qiao
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityWeifangShandong ProvinceP. R. China
| | - Yonghong Sun
- Department of PathologyAffiliated Hospital of Weifang Medical UniversityWeifangShandong ProvinceP. R. China
| | - Chune Ren
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityWeifangShandong ProvinceP. R. China
| | - Zhenhai Yu
- Department of Reproductive MedicineAffiliated Hospital of Weifang Medical UniversityWeifangShandong ProvinceP. R. China
| |
Collapse
|
28
|
Guo C, Gao YY, Ju QQ, Zhang CX, Gong M, Li ZL. HELQ and EGR3 expression correlate with IGHV mutation status and prognosis in chronic lymphocytic leukemia. J Transl Med 2021; 19:42. [PMID: 33485349 PMCID: PMC7825181 DOI: 10.1186/s12967-021-02708-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background IGHV mutation status is a crucial prognostic biomarker for CLL. In the present study, we investigated the transcriptomic signatures associating with IGHV mutation status and CLL prognosis. Methods The co-expression modules and hub genes correlating with IGHV status, were identified using the GSE28654, by ‘WGCNA’ package and R software (version 4.0.2). The over-representation analysis was performed to reveal enriched cell pathways for genes of correlating modules. Then 9 external cohorts were used to validate the correlation of hub genes expression with IGHV status or clinical features (treatment response, transformation to Richter syndrome, etc.). Moreover, to elucidate the significance of hub genes on disease course and prognosis of CLL patients, the Kaplan–Meier analysis for the OS and TTFT of were performed between subgroups dichotomized by the median expression value of individual hub genes. Results 2 co-expression modules and 9 hub genes ((FCRL1/FCRL2/HELQ/EGR3LPL/LDOC1/ZNF667/SOWAHC/SEPTIN10) correlating with IGHV status were identified by WGCNA, and validated by external datasets. The modules were found to be enriched in NF-kappaB, HIF-1 and other important pathways, involving cell proliferation and apoptosis. The expression of hub genes was revealed to be significantly different, not only between CLL and normal B cell, but also between various types of lymphoid neoplasms. HELQ expression was found to be related with response of immunochemotherapy treatment significantly (p = 0.0413), while HELQ and ZNF667 were expressed differently between stable CLL and Richter syndrome patients (p < 0.0001 and p = 0.0278, respectively). By survival analysis of subgroups, EGR3 expression was indicated to be significantly associated with TTFT by 2 independent cohorts (GSE39671, p = 0.0311; GSE22762, p = 0.0135). While the expression of HELQ and EGR3 was found to be associated with OS (p = 0.0291 and 0.0114 respectively).The Kras, Hedgehog and IL6-JAK-STAT3 pathways were found to be associating with the expression of hub genes, resulting from GSEA. Conclusions The expression of HELQ and EGR3 were correlated with IGHV mutation status in CLL patients. Additionally, the expression of HELQ/EGR3 were prognostic markers for CLL associating with targetable cell signaling pathways.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, China.
| |
Collapse
|
29
|
PIM2 deletion alleviates lipopolysaccharide (LPS)-induced respiratory distress syndrome (ARDS) by suppressing NLRP3 inflammasome. Biochem Biophys Res Commun 2020; 533:1419-1426. [PMID: 33333710 DOI: 10.1016/j.bbrc.2020.08.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 11/24/2022]
Abstract
Inflammation has an essential role in regulating the pathogenesis of acute respiratory distress syndrome (ARDS). The serine/threonine kinase PIM2 is highly expressed in human macrophages, and exhibits regulatory role in inflammatory response. However, its effect on ARDS progression has not been investigated and still remains unclear. In the study, we attempted to investigate the potential of PIM2 during ARDS progression, and to reveal the underlying molecular mechanisms. Here, we found that PIM2 expression was dramatically up-regulated in lipopolysaccharide (LPS)-exposed murine macrophages through a dose- and time-dependent manner. Additionally, we found that PIM2 knockdown greatly alleviated LPS-triggered activation of Caspase-1, interleukin (IL)-1β, NOD-like receptor pyrin domain 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) in macrophages, along with suppressed inflammatory response. Importantly, we identified that PIM2 could directly interact with NLRP3. PIM2 over-expression could further promote LPS-triggered inflammation and NLRP3 inflammasome in macrophages. Furthermore, PIM2 knockout significantly alleviated the severity of ARDS in LPS-challenged mice. Evidently decreased inflammatory response and NLRP3 inflammasome were detected in pulmonary tissues of LPS-treated mice with PIM2 deficiency. Together, our findings demonstrated that PIM2 as a promising therapeutic target for ARDS treatment through regulating NLRP3 inflammasome.
Collapse
|
30
|
Sun C, Li M, Feng Y, Sun F, Zhang L, Xu Y, Lu S, Zhu J, Huang J, Wang J, Hu Y, Zhang Y. MDM2-P53 Signaling Pathway-Mediated Upregulation of CDC20 Promotes Progression of Human Diffuse Large B-Cell Lymphoma. Onco Targets Ther 2020; 13:10475-10487. [PMID: 33116627 PMCID: PMC7575066 DOI: 10.2147/ott.s253758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023] Open
Abstract
Background Cell-division cycle 20 (CDC20) is overexpressed in a variety of tumor cells and is negatively regulated by wild-type p53 (wtp53). Our previous study uncovered that CDC20 was upregulated and associated with poor outcome in diffuse large B-cell lymphoma (DLBCL) based on bioinformatics analysis. Dysregulation of the MDM2-p53 is a major mechanism to promote DLBCL. Thus, we hypothesized that CDC20 could be a downstream gene of the MDM2-p53 signaling pathway. However, the clinical significance and mechanistic role of a novel MDM2-p53-CDC20 signaling pathway in DLBCL have still remained unclear. Materials and Methods RT-qPCR was performed in MDM2 knocked down (KD) and control (Ctrl) OCI-Ly3/OCI-Ly10 cells to investigate whether CDC20 was a downstream gene of the MDM2-p53 pathway. The effects of CDC20 on cell proliferation, cell cycle and apoptosis were assessed, as well as the role of CDC20 in suppressing tumorigenicity in vivo. Furthermore, we also investigated the roles of CDC20 and MDM2 in progression of DLBCL and the underlying mechanisms. Results The results of RT-qPCR revealed that CDC20 was downregulated while TP53 was upregulated in MDM2 KD OCI-Ly3 and OCI-Ly10 cells. It was unveiled that the expression levels of CDC20 and MDM2 were upregulated in DLBCL tissues and cells, and high CDC20 expression was correlated with adverse clinical features and poor outcome. Functional assays showed that downregulation of CDC20 could inhibit proliferation, induce apoptosis and cell cycle arrest in vitro. In addition, inactivation of the MDM2-p53 pathway by downregulation of MDM2 restored wtp53 expression level and reduced CDC20 protein level in OCI-Ly3 and OCI-Ly10 cells. Besides, targeting CDC20 was found to suppress tumorigenesis of DLBCL in vivo. Conclusion CDC20 was identified as a key downstream gene of the MDM2-p53 signaling pathway in DLBCL and may be used as a novel target gene to guide therapeutic applications.
Collapse
Affiliation(s)
- Chengtao Sun
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Mengzhen Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yanfen Feng
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Feifei Sun
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Zhang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yanjie Xu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Suying Lu
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Jia Zhu
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Junting Huang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Juan Wang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Hu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
31
|
Klener P. Mantle cell lymphoma: insights into therapeutic targets at the preclinical level. Expert Opin Ther Targets 2020; 24:1029-1045. [PMID: 32842810 DOI: 10.1080/14728222.2020.1813718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is a chronically relapsing B-cell non-Hodgkin lymphoma characterized by recurrent molecular-cytogenetic aberrations that lead to deregulation of DNA damage response, cell cycle progression, epigenetics, apoptosis, proliferation, and motility. In the last 10 years, clinical approval of several innovative drugs dramatically changed the landscape of treatment options in the relapsed/refractory (R/R) MCL, which translated into significantly improved survival parameters. AREAS COVERED Here, up-to-date knowledge on the biology of MCL together with currently approved and clinically tested frontline and salvage therapies are reviewed. In addition, novel therapeutic targets in MCL based on the scientific reports published in Pubmed are discussed. EXPERT OPINION Bruton tyrosine-kinase inhibitors, NFkappaB inhibitors, BCL2 inhibitors, and immunomodulary agents in combination with monoclonal antibodies and genotoxic drugs have the potential to induce long-term remissions in majority of newly diagnosed MCL patients. Several other classes of anti-tumor drugs including phosphoinositole-3-kinase, cyclin-dependent kinase or DNA damage response kinase inhibitors have demonstrated promising anti-lymphoma efficacy in R/R MCL. Most importantly, adoptive immunotherapy with genetically modified T-cells carrying chimeric antigen receptor represents a potentially curative treatment approach even in the patients with chemotherapy and ibrutinib-refractory disease.
Collapse
Affiliation(s)
- Pavel Klener
- First Department of Internal Medicine- Hematology, University General Hospital and First Faculty of Medicine, Charles University , Prague, Czech Republic.,Institute of Pathological Physiology, First Faculty of Medicine, Charles University , Prague, Czech Republic
| |
Collapse
|
32
|
Lu C, Ren C, Yang T, Sun Y, Qiao P, Han X, Yu Z. Fructose-1, 6-bisphosphatase 1 interacts with NF-κB p65 to regulate breast tumorigenesis via PIM2 induced phosphorylation. Am J Cancer Res 2020; 10:8606-8618. [PMID: 32754266 PMCID: PMC7392005 DOI: 10.7150/thno.46861] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor and could mediate the activities of multiple transcriptional factors via its non-canonical functions. However, the underlying mechanism of posttranscriptional modification on the non-canonical functions of FBP1 remains elusive. Methods: We employed immunoaffinity purification to identify binding partner(s) and used co-immunoprecipitation to verify their interactions. Kinase reaction was used to confirm PIM2 could phosphorylate FBP1. Overexpression or knockdown proteins were used to assess the role in modulating p65 protein stability. Mechanistic analysis was involved in protein degradation and polyubiquitination assays. Nude mice and PIM2-knockout mice was used to study protein functions in vitro and in vivo. Results: Here, we identified Proviral Insertion in Murine Lymphomas 2 (PIM2) as a new binding partner of FBP1, which could phosphorylate FBP1 on Ser144. Surprisingly, phosphorylated FBP1 Ser144 abrogated its interaction with NF-κB p65, promoting its protein stability through the CHIP-mediated proteasome pathway. Furthermore, phosphorylation of FBP1 on Ser144 increased p65 regulated PD-L1 expression. As a result, phosphorylation of FBP1 on Ser144 promoted breast tumor growth in vitro and in vivo. Moreover, the levels of PIM2 and pSer144-FBP1 proteins were positively correlated with each other in human breast cancer and PIM2 knockout mice. Conclusions: Our findings revealed that phosphorylation noncanonical FBP1 by PIM2 was a novel regulator of NF-κB pathway, and highlights PIM2 inhibitors as breast cancer therapeutics.
Collapse
|
33
|
Ferrante F, Giaimo BD, Bartkuhn M, Zimmermann T, Close V, Mertens D, Nist A, Stiewe T, Meier-Soelch J, Kracht M, Just S, Klöble P, Oswald F, Borggrefe T. HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Res 2020; 48:3496-3512. [PMID: 32107550 PMCID: PMC7144913 DOI: 10.1093/nar/gkaa088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant Notch signaling plays a pivotal role in T-cell acute lymphoblastic leukemia (T-ALL) and chronic lymphocytic leukemia (CLL). Amplitude and duration of the Notch response is controlled by ubiquitin-dependent proteasomal degradation of the Notch1 intracellular domain (NICD1), a hallmark of the leukemogenic process. Here, we show that HDAC3 controls NICD1 acetylation levels directly affecting NICD1 protein stability. Either genetic loss-of-function of HDAC3 or nanomolar concentrations of HDAC inhibitor apicidin lead to downregulation of Notch target genes accompanied by a local reduction of histone acetylation. Importantly, an HDAC3-insensitive NICD1 mutant is more stable but biologically less active. Collectively, these data show a new HDAC3- and acetylation-dependent mechanism that may be exploited to treat Notch1-dependent leukemias.
Collapse
Affiliation(s)
- Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | | | - Marek Bartkuhn
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Tobias Zimmermann
- Bioinformatics and Systems Biology, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Viola Close
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, Albert-Einstein-Allee 23, 89081 Ulm, Germany.,Cooperation Unit "Mechanisms of Leukemogenesis'' (B061), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg Germany
| | - Daniel Mertens
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, Albert-Einstein-Allee 23, 89081 Ulm, Germany.,Cooperation Unit "Mechanisms of Leukemogenesis'' (B061), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, University of Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, University of Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Steffen Just
- University Medical Center Ulm, Center for Internal Medicine, Molecular Cardiology, Department of Internal Medicine II, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Patricia Klöble
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
34
|
Salazar C, Yañez O, Elorza AA, Cortes N, García-Beltrán O, Tiznado W, Ruiz LM. Biosystem Analysis of the Hypoxia Inducible Domain Family Member 2A: Implications in Cancer Biology. Genes (Basel) 2020; 11:genes11020206. [PMID: 32085461 PMCID: PMC7074167 DOI: 10.3390/genes11020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The expression of HIGD2A is dependent on oxygen levels, glucose concentration, and cell cycle progression. This gene encodes for protein HIG2A, found in mitochondria and the nucleus, promoting cell survival in hypoxic conditions. The genomic location of HIGD2A is in chromosome 5q35.2, where several chromosomal abnormalities are related to numerous cancers. The analysis of high definition expression profiles of HIGD2A suggests a role for HIG2A in cancer biology. Accordingly, the research objective was to perform a molecular biosystem analysis of HIGD2A aiming to discover HIG2A implications in cancer biology. For this purpose, public databases such as SWISS-MODEL protein structure homology-modelling server, Catalogue of Somatic Mutations in Cancer (COSMIC), Gene Expression Omnibus (GEO), MethHC: a database of DNA methylation and gene expression in human cancer, and microRNA-target interactions database (miRTarBase) were accessed. We also evaluated, by using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), the expression of Higd2a gene in healthy bone marrow-liver-spleen tissues of mice after quercetin (50 mg/kg) treatment. Thus, among the structural features of HIG2A protein that may participate in HIG2A translocation to the nucleus are an importin α-dependent nuclear localization signal (NLS), a motif of DNA binding residues and a probable SUMOylating residue. HIGD2A gene is not implicated in cancer via mutation. In addition, DNA methylation and mRNA expression of HIGD2A gene present significant alterations in several cancers; HIGD2A gene showed significant higher expression in Diffuse Large B-cell Lymphoma (DLBCL). Hypoxic tissues characterize the “bone marrow-liver-spleen” DLBCL type. The relative quantification, by using qRT-PCR, showed that Higd2a expression is higher in bone marrow than in the liver or spleen. In addition, it was observed that quercetin modulated the expression of Higd2a gene in mice. As an assembly factor of mitochondrial respirasomes, HIG2A might be unexpectedly involved in the change of cellular energetics happening in cancer. As a result, it is worth continuing to explore the role of HIGD2A in cancer biology.
Collapse
Affiliation(s)
- Celia Salazar
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370251, Chile; (O.Y.); (W.T.)
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Natalie Cortes
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730002, Colombia; (N.C.); (O.G.-B.)
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730002, Colombia; (N.C.); (O.G.-B.)
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370251, Chile; (O.Y.); (W.T.)
| | - Lina María Ruiz
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
- Correspondence: ; Tel.: +56-2-2303-6662
| |
Collapse
|
35
|
Cho H, Yadav AK, Do Y, Heo M, Bishop-Bailey D, Lee J, Jang BC. Anti‑survival and pro‑apoptotic effects of meridianin C derivatives on MV4‑11 human acute myeloid leukemia cells. Int J Oncol 2019; 56:368-378. [PMID: 31789392 DOI: 10.3892/ijo.2019.4925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
Meridianin C is a marine natural product with anticancer activity. Several meridianin C derivatives (compounds 7a‑j) were recently synthesized, and their inhibitory effects on pro‑viral integration site for Moloney murine leukemia virus (PIM) kinases, as well as their antiproliferative effects on human leukemia cells, were reported. However, the anti‑leukemic effects and mechanisms of action of meridianin C and its derivatives remain largely unknown. The aim of the present study was to investigate the effects of meridianin C and its derivatives on MV4‑11 human acute myeloid leukemia cell growth. The parent compound meridianin C did not markedly affect the viability and survival of MV4‑11 cells. By contrast, MV4‑11 cell viability and survival were reduced by meridianin C derivatives, with compound 7a achieving the most prominent reduction. Compound 7a notably inhibited the expression and activity of PIM kinases, as evidenced by reduced B‑cell lymphoma‑2 (Bcl‑2)‑associated death promoter phosphorylation at Ser112. However, meridianin C also suppressed PIM kinase expression and activity, and the pan‑PIM kinase inhibitor AZD1208 only slightly suppressed the survival of MV4‑11 cells. Thus, the anti‑survival effect of compound 7a on MV4‑11 cells was unrelated to PIM kinase inhibition. Moreover, compound 7a induced apoptosis, caspase‑9 and ‑3 activation and poly(ADP‑ribose) polymerase (PARP) cleavage, but did not affect death receptor (DR)‑4 or DR‑5 expression in MV4‑11 cells. Compound 7a also induced the generation of cleaved Bcl‑2, and the downregulation of myeloid cell leukemia (Mcl)‑1 and X‑linked inhibitor of apoptosis (XIAP) in MV4‑11 cells. Furthermore, compound 7a increased eukaryotic initiation factor (eIF)‑2α phosphorylation and decreased S6 phosphorylation, whereas GRP‑78 expression was unaffected. Importantly, treatment with a pan‑caspase inhibitor (z‑VAD‑fmk) significantly attenuated compound 7a‑induced apoptosis, caspase‑9 and ‑3 activation, PARP cleavage, generation of cleaved Bcl‑2 and downregulation of Mcl‑1 and XIAP in MV4‑11 cells. Collectively, these findings demonstrated the strong anti‑survival and pro‑apoptotic effects of compound 7a on MV4‑11 cells through regulation of caspase‑9 and ‑3, Bcl‑2, Mcl‑1, XIAP, eIF‑2α and S6 molecules.
Collapse
Affiliation(s)
- Hyorim Cho
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Youngrok Do
- Department of Hematology and Oncology, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Mihwa Heo
- Department of Hematology and Oncology, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - David Bishop-Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW 10TU, United Kingdom
| | - Jinho Lee
- Department of Chemistry, College of Life Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
36
|
Whillock AL, Mambetsariev N, Lin WW, Stunz LL, Bishop GA. TRAF3 regulates the oncogenic proteins Pim2 and c-Myc to restrain survival in normal and malignant B cells. Sci Rep 2019; 9:12884. [PMID: 31501481 PMCID: PMC6733949 DOI: 10.1038/s41598-019-49390-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
TRAF3 is a versatile intracellular adapter protein with multiple context-specific roles. Uniquely in B cells, TRAF3 deficiency enhances survival and increases the risk of transformation, as loss of TRAF3 is observed in several types of B cell cancers. Here, we report a new mechanism for TRAF3 in the restraint of B cell survival. We found that TRAF3 deficiency was associated with induction of the pro-survival kinase Pim2 in mouse primary B cells and human malignant B cell lines. The increase in Pim2 was independent of NF-κB2 activation but was ameliorated with inhibition of STAT3 expression or function. TRAF3 deficiency also led to a Pim2-dependent increase in c-Myc protein levels and was associated with reduced c-Myc ubiquitination. TRAF3-deficient primary B cells were less sensitive to cell death induced by the Pim inhibitors SGI-1776 and TP-3654. Interestingly, human malignant B cell lines with low expression of TRAF3 were more sensitive to Pim inhibition-induced cell death. Combination treatment of TRAF3-deficient B cells and B cell tumor lines with c-Myc inhibitors enhanced their sensitivity to Pim inhibition, suggesting a possible therapeutic strategy. TRAF3 thus suppresses a Pim2-mediated B cell survival axis, which can be a potential target for treatment of B cell malignancies.
Collapse
Affiliation(s)
- Amy L Whillock
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Nurbek Mambetsariev
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.,Northwestern Memorial Hospital, Chicago, IL, USA
| | - Wai W Lin
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Laura L Stunz
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gail A Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA. .,Internal Medicine, University of Iowa, Iowa City, IA, USA. .,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA. .,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA. .,VA Medical Center, Iowa City, IA, USA.
| |
Collapse
|
37
|
Huang Q, Liu F, Shen J. Bioinformatic validation identifies candidate key genes in diffuse large-B cell lymphoma. Per Med 2019; 16:313-323. [PMID: 31331250 DOI: 10.2217/pme-2018-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aim: In this study, four datasets concerning 167 diffuse large B-cell lymphoma (DLBCL) patients versus 56 controls and seven datasets involving 280 germinal center B-cell like (GCB) versus 224 activated B-cell like (ABC) DLBCL were included. Materials & methods: We identified 80 different expression genes (DEGs) for DLBCL versus nontumor and 77 DEGs for GCB versus ABC DLBCL. Results: These DEGs were found to be enriched in cell activity, signal transduction and extracellular region. Then ten central node genes for DLBCL versus nontumor and two hub genes for GCB versus ABC DLBCL were identified. Last, PAICS, IRF4 and PTPN1 were explored to be correlated with poor prognosis in DLBCL patients. Conclusion: Our study has identified critical genes from transcriptional profiles for DLBCL.
Collapse
Affiliation(s)
- Qian Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, PR China
| | - Feifei Liu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, PR China
| | - Jianzhen Shen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, PR China
| |
Collapse
|
38
|
Kapelski S, Cleiren E, Attar RM, Philippar U, Häsler J, Chiu ML. Influence of the bispecific antibody IgG subclass on T cell redirection. MAbs 2019; 11:1012-1024. [PMID: 31242061 PMCID: PMC6748600 DOI: 10.1080/19420862.2019.1624464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 01/07/2023] Open
Abstract
T cell redirection mediated by bispecific antibodies (BsAbs) is a promising cancer therapy. Dual antigen binding is necessary for potent T cell redirection and is influenced by the structural characteristics of a BsAb, which are dependent on its IgG subclass. In this study, model BsAbs targeting CD19xCD3 were generated in variants of IgG1, IgG2, and IgG4 carrying Fc mutations that reduce FcγR interaction, and two chimeric IgG subclasses termed IgG1:2 and IgG4:2, in which the IgG1- or IgG4-F(ab)2 are grafted on an IgG2 Fc. Molecules containing an IgG2 or IgG4-F(ab)2 domain were confirmed to be the most structurally compact molecules. All BsAbs were shown to bind both of their target proteins (and corresponding cells) equally well. However, CD19xCD3 IgG2 did not bind both antigens simultaneously as measured by the absence of cellular clustering of T cells with target cells. This translated to a reduced potency of IgG2 BsAbs in T-cell redirection assays. The activity of IgG2 BsAbs was fully restored in the chimeric subclasses IgG4:2 and IgG1:2. This confirmed the major contribution of the F(ab)2 region to the BsAb's functional activity and demonstrated that function of BsAbs can be modulated by engineering molecules combining different Fc and F(ab)2 domains. Abbreviations: ADCC: Antibody-dependent cellular cytotoxicity; AlphaScreenTM: Amplified Luminescent Proximity Homogeneous Assay Screening; ANOVA: Analysis of variance; BiTE: bispecific T-cell engager; BSA: bovine serum albumin; BsAb: bispecific antibody; cFAE: controlled Fab-arm exchange; CDC: complement-dependent cellular cytotoxicity; CIEX: cation-exchange; CIR: chimeric immune receptor; DPBS: Dulbecco's phosphate-buffered saline; EC50 value: effective concentration to reach half-maximum effect; EGFR: epidermal growth factor receptor; EI: expansion index (RAt=x/RAt=0); FACS: fluorescence-activated cell sorting; FVD: fixable viability dye; HI-HPLC: hydrophobic interaction HPLC; HI-FBS: heat-inactivated fetal bovine serum; HPLC: high-pressure liquid chromatography; IC50 value: effective concentration to reach half-maximum inhibition; IQ: Inhibition Quotient; IS: immunological synapse; MES: 2-(N-morpholino)ethanesulfonic acid; R-PE: recombinant phycoerythrin; RA: red area in μm2/well; RD: receptor density; RFP: red fluorescent protein; Rg: radius of gyration; RSV: respiratory syncytial virus; SAXS: small-angle x-ray scattering; scFv: single-chain variable fragment; SD: standard deviation; SPR: surface plasmon resonance; WT: wild-type.
Collapse
Affiliation(s)
- Stephanie Kapelski
- Biologics Discovery, Janssen BioTherapeutics, Janssen Research and Development, Beerse, Belgium
- Oncology Biology & Discovery, Janssen Research and Development, Beerse, Belgium
| | - Erna Cleiren
- Former Discovery Sciences, LD-Screening BE, Janssen Research and Development, Beerse, Belgium
- Charles River Laboratories, Beerse, Belgium
| | - Ricardo M. Attar
- Oncology Biology & Discovery, Janssen Research and Development, Spring House, PA,USA
| | - Ulrike Philippar
- Oncology Biology & Discovery, Janssen Research and Development, Beerse, Belgium
| | - Julien Häsler
- Biologics Discovery, Janssen BioTherapeutics, Janssen Research and Development, Beerse, Belgium
| | - Mark L. Chiu
- BioTherapeutics Analytical Development, Discovery, Product Development & Supply, Janssen Research and Development, Malvern, PA, USA
| |
Collapse
|
39
|
Vences-Catalán F, Kuo CC, Rajapaksa R, Duault C, Andor N, Czerwinski DK, Levy R, Levy S. CD81 is a novel immunotherapeutic target for B cell lymphoma. J Exp Med 2019; 216:1497-1508. [PMID: 31123084 PMCID: PMC6605745 DOI: 10.1084/jem.20190186] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
The anti-CD81 mAb (5A6) eliminates lymphoma tumor cells from patient follicular biopsy specimens while sparing the imbedded normal B and T lymphocytes. It has equivalent therapeutic effects as rituximab against a xenografted human B cell lymphoma. The tetraspanin CD81 was initially discovered by screening mAbs elicited against a human B cell lymphoma for their direct antiproliferative effects. We now show that 5A6, one of the mAbs that target CD81, has therapeutic potential. This antibody inhibits the growth of B cell lymphoma in a xenograft model as effectively as rituximab, which is a standard treatment for B cell lymphoma. Importantly, unlike rituximab, which depletes normal as well as malignant B cells, 5A6 selectively kills human lymphoma cells from fresh biopsy specimens while sparing the normal lymphoid cells in the tumor microenvironment. The 5A6 antibody showed a good safety profile when administered to a mouse transgenic for human CD81. Taken together, these data provide the rationale for the development of the 5A6 mAb and its humanized derivatives as a novel treatment against B cell lymphoma.
Collapse
Affiliation(s)
- Felipe Vences-Catalán
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Chiung-Chi Kuo
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ranjani Rajapaksa
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Caroline Duault
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Noemi Andor
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Debra K Czerwinski
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Shoshana Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
40
|
Cervantes-Gomez F, Stellrecht CM, Ayres ML, Keating MJ, Wierda WG, Gandhi V. PIM kinase inhibitor, AZD1208, inhibits protein translation and induces autophagy in primary chronic lymphocytic leukemia cells. Oncotarget 2019; 10:2793-2809. [PMID: 31073371 PMCID: PMC6497463 DOI: 10.18632/oncotarget.26876] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/23/2019] [Indexed: 11/25/2022] Open
Abstract
The PIM1, PIM2, and PIM3 serine/threonine kinases play a role in the proliferation and survival of cancer cells. Mice lacking these three kinases were viable. Further, in human hematological malignancies, these proteins are overexpressed making them suitable targets. Several small molecule inhibitors against this enzyme were synthesized and tested. AZD1208, an orally available small-molecule drug, inhibits all three PIM kinases at a low nanomolar range. AZD1208 has been tested in clinical trials for patients with solid tumors and hematological malignancies, especially acute myelogenous leukemia. The present study evaluated the efficacy and biological actions of AZD1208 in chronic lymphocytic leukemia (CLL) cells. CLL cells had higher levels of PIM2 protein and mRNAs than did normal lymphocytes from healthy donors. Treatment of CLL lymphocytes with AZD1208 resulted in modest cell death, whereas practically no cytotoxicity was observed in healthy lymphocytes. To determine the mechanism by which AZD1208 inhibits PIM kinase function, we evaluated PIM kinase pathway and downstream substrates. Because peripheral blood CLL cells are replicationally quiescent, we analyzed substrates involved in apoptosis, transcription, and translation but not cell cycle targets. AZD1208 inhibited protein translation by decreasing phosphorylation levels of 4E-binding protein 1 (4E-BP1). AZD1208 induced autophagy in replicationally-quiescent CLL cells, which is consistent with protein translation inhibition. These data suggest that AZD1208 may elicit cytotoxicity in CLL cells through inhibiting translation and autophagy induction.
Collapse
Affiliation(s)
- Fabiola Cervantes-Gomez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine M Stellrecht
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Mary L Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
41
|
Serrano-Saenz S, Palacios C, Delgado-Bellido D, López-Jiménez L, Garcia-Diaz A, Soto-Serrano Y, Casal JI, Bartolomé RA, Fernández-Luna JL, López-Rivas A, Oliver FJ. PIM kinases mediate resistance of glioblastoma cells to TRAIL by a p62/SQSTM1-dependent mechanism. Cell Death Dis 2019; 10:51. [PMID: 30718520 PMCID: PMC6362213 DOI: 10.1038/s41419-018-1293-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor and is associated with poor prognosis. GBM cells are frequently resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and finding new combinatorial therapies to sensitize glioma cells to TRAIL remains an important challenge. PIM kinases are serine/threonine kinases that promote cell survival and proliferation and are highly expressed in different tumors. In this work, we studied the role of PIM kinases as regulators of TRAIL sensitivity in GBM cells. Remarkably, PIM inhibition or knockdown facilitated activation by TRAIL of a TRAIL-R2/DR5-mediated and mitochondria-operated apoptotic pathway in TRAIL-resistant GBM cells. The sensitizing effect of PIM knockdown on TRAIL-induced apoptosis was mediated by enhanced caspase-8 recruitment to and activation at the death-inducing signaling complex (DISC). Interestingly, TRAIL-induced internalization of TRAIL-R2/DR5 was significantly reduced in PIM knockdown cells. Phospho-proteome profiling revealed a decreased phosphorylation of p62/SQSTM1 after PIM knockdown. Our results also showed an interaction between p62/SQSTM1 and the DISC that was reverted after PIM knockdown. In line with this, p62/SQSTM1 ablation increased TRAIL-R2/DR5 levels and facilitated TRAIL-induced caspase-8 activation, revealing an inhibitory role of p62/SQSTM1 in TRAIL-mediated apoptosis in GBM. Conversely, upregulation of TRAIL-R2/DR5 upon PIM inhibition and apoptosis induced by the combination of PIM inhibitor and TRAIL were abrogated by a constitutively phosphorylated p62/SQSTM1S332E mutant. Globally, our data represent the first evidence that PIM kinases regulate TRAIL-induced apoptosis in GBM and identify a specific role of p62/SQSTM1Ser332 phosphorylation in the regulation of the extrinsic apoptosis pathway activated by TRAIL.
Collapse
Affiliation(s)
- Santiago Serrano-Saenz
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain
| | - Carmen Palacios
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, CIBERONC, Avda Américo Vespucio 24, 41092, Sevilla, Spain
| | - Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Laura López-Jiménez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Angel Garcia-Diaz
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Yolanda Soto-Serrano
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - José Luis Fernández-Luna
- HUMV-Hospital Universitario Marqués de Valdecilla Avenida Valdecilla, 25, 39008, Santander, Cantabria, Spain
| | - Abelardo López-Rivas
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain. .,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, CIBERONC, Avda Américo Vespucio 24, 41092, Sevilla, Spain.
| | - F Javier Oliver
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain. .,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
42
|
Yadav AK, Kumar V, Bailey DB, Jang BC. AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK. Int J Mol Sci 2019; 20:ijms20020363. [PMID: 30654529 PMCID: PMC6359068 DOI: 10.3390/ijms20020363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Overexpression of Pim kinases has an oncogenic/pro-survival role in many hematological and solid cancers. AZD1208 is a pan-Pim kinase inhibitor that has anti-cancer and anti-adipogenic actions. Here, we investigated the effects of AZD1208 on the growth of 93T449 cells, a differentiated human liposarcoma cell line. At 20 µM, AZD1208 was cytotoxic (cytostatic) but not apoptotic, reducing cell survival without DNA fragmentation, caspase activation or increasing cells in the sub G1 phase; known apoptotic parameters. Notably, AZD1208 reduced phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in 93T449 cells. STAT-3 inhibition by AG490, a JAK2/STAT-3 inhibitor similarly reduced cell survival. AZD1208 down-regulated phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal S6 while up-regulated eukaryotic initiation factor-2α (eIF-2α). In addition, AZD1208 induced a LKB-1-independent AMPK activation, which was crucial for its cytostatic effect, as knock-down of AMPK greatly blocked AZD1208s ability to reduce cell survival. AZD1208 had no effect on expression of two members of Pim kinase family (Pim-1 and Pim-3) but inhibited phosphorylation of 4EBP-1, a downstream effector of Pim kinases. Importantly, a central role for Pim-3 in the actions of AZD1208 was confirmed by knock-down, which not only reduced 93T449 cell survival but also led to the inhibition of 4EBP-1, mTOR, eIF-2α and STAT-3, along with the activation of AMPK. In summary, this is the first report demonstrating that AZD1208 inhibits growth of liposarcoma cells and that this activity is mediated through Pim-3 kinase, STAT-3, mTOR, S6 and AMPK expression and phosphorylation pathways.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Vinoth Kumar
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - David Bishop Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| |
Collapse
|
43
|
Gene expression profiles analysis identifies a novel two-gene signature to predict overall survival in diffuse large B-cell lymphoma. Biosci Rep 2019; 39:BSR20181293. [PMID: 30393234 PMCID: PMC6328866 DOI: 10.1042/bsr20181293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common hematologic malignancy, however, specific tumor-associated genes and signaling pathways are yet to be deciphered. Differentially expressed genes (DEGs) were computed based on gene expression profiles from GSE32018, GSE56315, and The Cancer Genome Atlas (TCGA) DLBC. Overlapping DEGs were then evaluated for gene ontology (GO), pathways enrichment, DNA methylation, protein–protein interaction (PPI) network analysis as well as survival analysis. Seventy-four up-regulated and 79 down-regulated DEGs were identified. From PPI network analysis, majority of the DEGs were involved in cell cycle, oocyte meiosis, and epithelial-to-mesenchymal transition (EMT) pathways. Six hub genes including CDC20, MELK, PBK, prostaglandin D2 synthase (PTGDS), PCNA, and CDK1 were selected using the Molecular Complex Detection (MCODE). CDC20 and PTGDS were able to predict overall survival (OS) in TCGA DLBC and in an additional independent cohort GSE31312. Furthermore, CDC20 DNA methylation negatively regulated CDC20 expression and was able to predict OS in DLBCL. A two-gene panel consisting of CDC20 and PTGDS had a better prognostic value compared with CDC20 or PTGDS alone in the TCGA cohort (P=0.026 and 0.039). Overall, the present study identified a set of novel genes and pathways that may play a significant role in the initiation and progression of DLBCL. In addition, CDC20 and PTGDS will provide useful guidance for therapeutic applications.
Collapse
|
44
|
Yan W, Li SX, Wei M, Gao H. Identification of MMP9 as a novel key gene in mantle cell lymphoma based on bioinformatic analysis and design of cyclic peptides as MMP9 inhibitors based on molecular docking. Oncol Rep 2018; 40:2515-2524. [PMID: 30226602 PMCID: PMC6151885 DOI: 10.3892/or.2018.6682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive disease. MCL is associated with poor patient prognosis and limited survival. To identify key genes and explore targeting cyclic peptide inhibitors for the treatment of MCL, we downloaded two gene expression profiles (GSE32018 and GSE9327) from the Gene Expression Omnibus (GEO) database. We screened 84 differentially expressed genes (DEGs). Pathway analysis showed that DEMs were mainly enriched in the ‘Pathway in cancer’, ‘PI3K-Akt signaling pathway’, ‘Cytokine-cytokine receptor interaction’, ‘Rap1 signaling pathway’, ‘NF-κB signaling pathway’ and ‘Leukocyte trans-endothelial migration’. We subsequently constructed a protein-protein interaction (PPI) network of DEGs. In addition, matrix metalloproteinase 9 (MMP9) with a high degree in the PPI network was identified as a hub gene in MCL. Meanwhile in the Molecular Complex Detection (MCODE) analysis, MMP9 was located in the important cluster. Thus, MMP9 can be used as a therapeutic target for MCL and we designed cyclic peptides as MMP9 inhibitors. MMP9 protein structure was gathered from the Protein Data Bank (PDB), with a PDB ID: 1L6J. MMP9 and cyclic peptides were docked using Molecular Operating Environment (MOE) software after structural optimization. It was revealed that cyclic peptide 2 bound deeply in the binding pocket of MMP9 and had interaction with the active-site Zn2+ ion in the catalytic domain. Cyclic peptides 1, 2, 4–6 also displayed potential interaction with active residues of MMP9; thus, these cyclic peptides can serve as potential drug candidates to block MMP9 activity and future studies are warranted to confirm their efficacy.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Shawn Xiang Li
- International College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hua Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
45
|
Koblish H, Li YL, Shin N, Hall L, Wang Q, Wang K, Covington M, Marando C, Bowman K, Boer J, Burke K, Wynn R, Margulis A, Reuther GW, Lambert QT, Dostalik Roman V, Zhang K, Feng H, Xue CB, Diamond S, Hollis G, Yeleswaram S, Yao W, Huber R, Vaddi K, Scherle P. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018; 13:e0199108. [PMID: 29927999 PMCID: PMC6013247 DOI: 10.1371/journal.pone.0199108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine protein kinases are overexpressed in many hematologic and solid tumor malignancies and play central roles in intracellular signaling networks important in tumorigenesis, including the Janus kinase-signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and PIM3) share similar downstream substrates with other key oncogenic kinases and have differing but mutually compensatory functions across tumors. This supports the therapeutic potential of pan-PIM kinase inhibitors, especially in combination with other anticancer agents chosen based on their role in overlapping signaling networks. Reported here is a preclinical characterization of INCB053914, a novel, potent, and selective adenosine triphosphate-competitive pan-PIM kinase inhibitor. In vitro, INCB053914 inhibited proliferation and the phosphorylation of downstream substrates in cell lines from multiple hematologic malignancies. Effects were confirmed in primary bone marrow blasts from patients with acute myeloid leukemia treated ex vivo and in blood samples from patients receiving INCB053914 in an ongoing phase 1 dose-escalation study. In vivo, single-agent INCB053914 inhibited Bcl-2-associated death promoter protein phosphorylation and dose-dependently inhibited tumor growth in acute myeloid leukemia and multiple myeloma xenografts. Additive or synergistic inhibition of tumor growth was observed when INCB053914 was combined with selective PI3Kδ inhibition, selective JAK1 or JAK1/2 inhibition, or cytarabine. Based on these data, pan-PIM kinase inhibitors, including INCB053914, may have therapeutic utility in hematologic malignancies when combined with other inhibitors of oncogenic kinases or standard chemotherapeutics.
Collapse
Affiliation(s)
- Holly Koblish
- Incyte Corporation, Wilmington, Delaware, United States of America
- * E-mail:
| | - Yun-long Li
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Niu Shin
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Leslie Hall
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Qian Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kathy Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | | | - Cindy Marando
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kevin Bowman
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Jason Boer
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Krista Burke
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Richard Wynn
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Alex Margulis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Que T. Lambert
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | | | - Ke Zhang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Hao Feng
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Chu-Biao Xue
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Sharon Diamond
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Greg Hollis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Swamy Yeleswaram
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Wenqing Yao
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Reid Huber
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kris Vaddi
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Peggy Scherle
- Incyte Corporation, Wilmington, Delaware, United States of America
| |
Collapse
|
46
|
Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen HD, Bastian D, Zhang M, Sofi MH, Chatterjee S, Hill EG, Mehrotra S, Kraft AS, Yu XZ. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest 2018; 128:2787-2801. [PMID: 29781812 DOI: 10.1172/jci95407] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/29/2018] [Indexed: 01/03/2023] Open
Abstract
PIM kinase family members play a crucial role in promoting cell survival and proliferation via phosphorylation of their target substrates. In this study, we investigated the role of the PIM kinases with respect to T cell responses in transplantation and tumor immunity. We found that the PIM-2 isoform negatively regulated T cell responses to alloantigen, in contrast to the PIM-1 and PIM-3 isoforms, which acted as positive regulators. T cells deficient in PIM-2 demonstrated increased T cell differentiation toward Th1 subset, proliferation, and migration to target organs after allogeneic bone marrow transplantation, resulting in dramatically accelerated graft-versus-host disease (GVHD) severity. Restoration of PIM-2 expression markedly attenuated the pathogenicity of PIM-2-deficient T cells to induce GVHD. On the other hand, mice deficient in PIM-2 readily rejected syngeneic tumor, which was primarily dependent on CD8+ T cells. Furthermore, silencing PIM-2 in polyclonal or antigen-specific CD8+ T cells substantially enhanced their antitumor response in adoptive T cell immunotherapy. We conclude that PIM-2 kinase plays a prominent role in suppressing T cell responses, and provide a strong rationale to target PIM-2 for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yongxia Wu
- Department of Microbiology and Immunology
| | | | | | | | | | | | | | - Elizabeth G Hill
- Department of Public Health Science, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Andrew S Kraft
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
47
|
Brunen D, García-Barchino MJ, Malani D, Jagalur Basheer N, Lieftink C, Beijersbergen RL, Murumägi A, Porkka K, Wolf M, Zwaan CM, Fornerod M, Kallioniemi O, Martínez-Climent JÁ, Bernards R. Intrinsic resistance to PIM kinase inhibition in AML through p38α-mediated feedback activation of mTOR signaling. Oncotarget 2018; 7:37407-37419. [PMID: 27270648 PMCID: PMC5122321 DOI: 10.18632/oncotarget.9822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Although conventional therapies for acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) are effective in inducing remission, many patients relapse upon treatment. Hence, there is an urgent need for novel therapies. PIM kinases are often overexpressed in AML and DLBCL and are therefore an attractive therapeutic target. However, in vitro experiments have demonstrated that intrinsic resistance to PIM inhibition is common. It is therefore likely that only a minority of patients will benefit from single agent PIM inhibitor treatment. In this study, we performed an shRNA-based genetic screen to identify kinases whose suppression is synergistic with PIM inhibition. Here, we report that suppression of p38α (MAPK14) is synthetic lethal with the PIM kinase inhibitor AZD1208. PIM inhibition elevates reactive oxygen species (ROS) levels, which subsequently activates p38α and downstream AKT/mTOR signaling. We found that p38α inhibitors sensitize hematological tumor cell lines to AZD1208 treatment in vitro and in vivo. These results were validated in ex vivo patient-derived AML cells. Our findings provide mechanistic and translational evidence supporting the rationale to test a combination of p38α and PIM inhibitors in clinical trials for AML and DLBCL.
Collapse
Affiliation(s)
- Diede Brunen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Disha Malani
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Noorjahan Jagalur Basheer
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maarten Fornerod
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Liu Z, Liu H, Yuan X, Wang Y, Li L, Wang G, Song J, Shao Z, Fu R. Downregulation of Pim-2 induces cell cycle arrest in the G 0/G 1 phase via the p53-non-dependent p21 signaling pathway. Oncol Lett 2018. [PMID: 29541172 PMCID: PMC5835926 DOI: 10.3892/ol.2018.7865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pim-2 is a serine/threonine protein kinase that is highly expressed in various types of cancer, with essential roles in the regulation of signal transduction cascades, which promote cell survival and proliferation. The present study demonstrated that Pim-2 was expressed in cells lines derived from hematopoietic tumors and lung cancer. In vitro, downregulation of Pim-2 by short interfering RNA inhibited proliferation and delayed G0/G1 cell cycle progression in K562 leukemia, RPMI-8226 multiple myeloma, and H1299 and A549 non-small cell lung carcinoma cell lines. Furthermore, downregulation of Pim-2 resulted in upregulation of cyclin-dependent kinase (CDK) inhibitor p21, irrespective of the p53 status. In addition, the present study revealed that CDK2 and phosphorylated retinoblastoma (pRb) were significantly downregulated. This finding suggested that inhibition of CDK2 and pRb expression via upregulated p21 was involved in the downregulation of Pim-2-induced G0/G1 cell cycle arrest in lung cancer and hematopoietic malignancy cells. These results suggested that Pim-2 may serve a role in hematopoietic tumors, lung cancer proliferation and cell cycle progression by regulating the p21 signaling pathway. Downregulation of Pim-2 decreased cancer cell proliferation. Therefore, Pim-2 may be a potential therapy target in clinical cancer therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| | - Xin Yuan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| | - Yihao Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| | - Guojin Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| |
Collapse
|
49
|
The oncogenic membrane protein LMP1 sequesters TRAF3 in B-cell lymphoma cells to produce functional TRAF3 deficiency. Blood Adv 2017; 1:2712-2723. [PMID: 29296923 DOI: 10.1182/bloodadvances.2017009670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Loss-of-function mutations in genes encoding the signaling protein tumor necrosis factor receptor-associated factor 3 (TRAF3) are commonly found in human B-cell malignancies, especially multiple myeloma and B-cell lymphoma (BCL). B-cell TRAF3 deficiency results in enhanced cell survival, elevated activation receptor signaling, and increased activity of certain transcriptional pathways regulating expression of prosurvival proteins. A recent analysis of TRAF3 protein staining of ∼300 human BCL tissue samples revealed that a higher proportion of samples expressing the oncogenic Epstein-Barr virus-encoded protein latent membrane protein 1 (LMP1) showed low/negative TRAF3 staining than predicted. LMP1, a dysregulated mimic of the CD40 receptor, binds TRAF3 more effectively than CD40. We hypothesized that LMP1 may sequester TRAF3, reducing its availability to inhibit prosurvival signaling pathways in the B cell. This hypothesis was addressed via 2 complementary approaches: (1) comparison of TRAF3-regulated activation and survival-related events with relative LMP1 expression in human BCL lines and (2) analysis of the impact upon such events in matched pairs of mouse BCL lines, both parental cells and subclones transfected with inducible LMP1, either wild-type LMP1 or a mutant LMP1 with defective TRAF3 binding. Results from both approaches showed that LMP1-expressing B cells display a phenotype highly similar to that of B cells lacking TRAF3 genes, indicating that LMP1 can render B cells functionally TRAF3 deficient without TRAF3 gene mutations, a finding of significant relevance to selecting pathway-targeted therapies for B-cell malignancies.
Collapse
|
50
|
Franco F, González-Rincón J, Lavernia J, García JF, Martín P, Bellas C, Piris MA, Pedrosa L, Miramón J, Gómez-Codina J, Rodríguez-Abreu D, Machado I, Illueca C, Alfaro J, Provencio M, Sánchez-Beato M. Mutational profile of primary breast diffuse large B-cell lymphoma. Oncotarget 2017; 8:102888-102897. [PMID: 29262531 PMCID: PMC5732697 DOI: 10.18632/oncotarget.21986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023] Open
Abstract
Primary breast lymphoma is a rare form of extra-nodal lymphoid neoplasm. The most common histological type is the diffuse large B-cell lymphoma, which represents 60–80% of all the cases. Our study analyzes the mutational profile of the primary lymphoma of the breast through targeted massive sequencing with a panel of 38 genes in a group of 17 patients with primary breast diffuse large B-cell lymphoma. Seventy-point-five percent of the patients presented with stage IE and 29.5% with stage IIE. 44% of the cases correspond to lymphomas with germinal center phenotype and 33.3% to activated B-cell. The genes with a higher mutational frequency include PIM1 (in 50% of the analyzed samples), MYD88 (39%), CD79B, PRDM1 and CARD11 (17%), KMT2D, TNFIAP3 and CREBBP (11%). The profile of mutant genes involves mostly the NFκB signaling pathway. The high frequency of mutations in PIM1 compared with other lymphomas may have implications in the clinical presentation and evolution of this type of lymphoma.
Collapse
Affiliation(s)
- Fernando Franco
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain.,GOTEL (Spanish Lymphoma Oncology Group), Madrid, Spain
| | - Julia González-Rincón
- Group of Research in Lymphomas, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Lavernia
- GOTEL (Spanish Lymphoma Oncology Group), Madrid, Spain.,Medical Oncology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | - Juan F García
- Pathology Department, MD Anderson Cancer Center, Madrid, Spain
| | - Paloma Martín
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Carmen Bellas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Miguel A Piris
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Lucia Pedrosa
- Group of Research in Lymphomas, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - José Miramón
- GOTEL (Spanish Lymphoma Oncology Group), Madrid, Spain.,Medical Oncology Department, Hospital Serranía de Ronda, Málaga, Spain
| | - José Gómez-Codina
- GOTEL (Spanish Lymphoma Oncology Group), Madrid, Spain.,Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Delvys Rodríguez-Abreu
- GOTEL (Spanish Lymphoma Oncology Group), Madrid, Spain.,Medical Oncology Department, Hospital Universitario Insular de Gran Canaria, Las Palmas, Spain
| | - Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | - Carmen Illueca
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | - Jesús Alfaro
- GOTEL (Spanish Lymphoma Oncology Group), Madrid, Spain.,Medical Oncology Department, Instituto Oncológico de Kutxa, Donostia, Spain
| | - Mariano Provencio
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain.,GOTEL (Spanish Lymphoma Oncology Group), Madrid, Spain
| | - Margarita Sánchez-Beato
- GOTEL (Spanish Lymphoma Oncology Group), Madrid, Spain.,Group of Research in Lymphomas, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|