1
|
Storck TN, Morsink LM, Biswana A, Hazenberg CLE, Huls G, Choi G. Donor lymphocyte infusions after HLA-identical hematopoietic stem cell transplantation with post-transplant cyclophosphamide in acute myeloid leukemia patients. Bone Marrow Transplant 2025:10.1038/s41409-025-02552-y. [PMID: 40108437 DOI: 10.1038/s41409-025-02552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Tatum N Storck
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands.
| | - Linde M Morsink
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| | - Anouschka Biswana
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| | - Carin L E Hazenberg
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| | - Goda Choi
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Hamad N. How I approach intersectionality in hematopoietic stem cell transplantation. Blood 2024; 144:2482-2489. [PMID: 39158069 DOI: 10.1182/blood.2023020778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
ABSTRACT In the context of health care, intersectionality refers to a framework that focuses on the ways in which multiple axes of social inequality intersect and compound at the macro and micro levels to produce a broad range of unequal health outcomes. With the aid of tools such as the wheel of power and privilege, this framework can help identify systemic biases hidden in plain sight in the routine diagnostic, therapeutic, and prognostic paradigms used in clinical practice. Hematopoietic stem cell transplantation is a high-cost, highly specialized complex procedure that exemplifies the impact of intersectional identities and systemic biases in health care systems, clinical research, and clinical practice. Examples include the derivation of clinical algorithms for prognosis and risk assessments from data with limited representation of diverse populations in our communities. Transplant clinicians and teams are uniquely positioned to appreciate the concept of intersectionality and to apply it in clinical practice to redress inequities in outcomes in patients with marginalizing social determinants of health. An intersectional approach is the most efficient way to deliver effective and compassionate care for all.
Collapse
Affiliation(s)
- Nada Hamad
- Department of Haematology, St. Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
- St. Vincent's Clincial School, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW, Australia
- St. Vincent's Clinical School, School of Medicine, University of Notre Dame Australia, Sydney, NSW, Australia
| |
Collapse
|
3
|
Hamad N. Precision medicine may mitigate racial biases. Blood 2024; 144:927-929. [PMID: 39207811 DOI: 10.1182/blood.2024025880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Nada Hamad
- St Vincent's Hospital Sydney
- UNSW Sydney
- University of Notre Dame Australia
| |
Collapse
|
4
|
Muñiz P, Martínez-García M, Bailén R, Chicano M, Oarbeascoa G, Triviño JC, de la Iglesia-San Sebastian I, Fernández de Córdoba S, Anguita J, Kwon M, Díez-Martín JL, Olmos PM, Martínez-Laperche C, Buño I. Identification of predictive models including polymorphisms in cytokines genes and clinical variables associated with post-transplant complications after identical HLA-allogeneic stem cell transplantation. Front Immunol 2024; 15:1396284. [PMID: 39247183 PMCID: PMC11377344 DOI: 10.3389/fimmu.2024.1396284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Backgrounds Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies, it can be associated with relevant post-transplant complications. Several reports have shown that polymorphisms in immune system genes are correlated with the development of post-transplant complications. Within this context, this work focuses on identifying novel polymorphisms in cytokine genes and developing predictive models to anticipate the risk of developing graft-versus-host disease (GVHD), transplantation-related mortality (TRM), relapse and overall survival (OS). Methods Our group developed a 132-cytokine gene panel which was tested in 90 patients who underwent an HLA-identical sibling-donor allo-HSCT. Bayesian logistic regression (BLR) models were used to select the most relevant variables. Based on the cut-off points selected for each model, patients were classified as being at high or low-risk for each of the post-transplant complications (aGVHD II-IV, aGVHD III-IV, cGVHD, mod-sev cGVHD, TRM, relapse and OS). Results A total of 737 polymorphisms were selected from the custom panel genes. Of these, 41 polymorphisms were included in the predictive models in 30 cytokine genes were selected (17 interleukins and 13 chemokines). Of these polymorphisms, 5 (12.2%) were located in coding regions, and 36 (87.8%) in non-coding regions. All models had a statistical significance of p<0.0001. Conclusion Overall, genomic polymorphisms in cytokine genes make it possible to anticipate the development all complications studied following allo-HSCT and, consequently, to optimize the clinical management of patients.
Collapse
Affiliation(s)
- Paula Muñiz
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - María Martínez-García
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
- Department of Signal Theory and Communications, University Carlos III of Madrid, Madrid, Spain
| | - Rebeca Bailén
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - María Chicano
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Gillen Oarbeascoa
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | | | - Ismael de la Iglesia-San Sebastian
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Sara Fernández de Córdoba
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Javier Anguita
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - José Luis Díez-Martín
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Pablo M Olmos
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
- Department of Signal Theory and Communications, University Carlos III of Madrid, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
- Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, Madrid, Spain
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Cieri N, Hookeri N, Stromhaug K, Li L, Keating J, Díaz-Fernández P, Gómez-García de Soria V, Stevens J, Kfuri-Rubens R, Shao Y, Kooshesh KA, Powell K, Ji H, Hernandez GM, Abelin J, Klaeger S, Forman C, Clauser KR, Sarkizova S, Braun DA, Penter L, Kim HT, Lane WJ, Oliveira G, Kean LS, Li S, Livak KJ, Carr SA, Keskin DB, Muñoz-Calleja C, Ho VT, Ritz J, Soiffer RJ, Neuberg D, Stewart C, Getz G, Wu CJ. Systematic identification of minor histocompatibility antigens predicts outcomes of allogeneic hematopoietic cell transplantation. Nat Biotechnol 2024:10.1038/s41587-024-02348-3. [PMID: 39169264 PMCID: PMC11912513 DOI: 10.1038/s41587-024-02348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
T cell alloreactivity against minor histocompatibility antigens (mHAgs)-polymorphic peptides resulting from donor-recipient (D-R) disparity at sites of genetic polymorphisms-is at the core of the therapeutic effect of allogeneic hematopoietic cell transplantation (allo-HCT). Despite the crucial role of mHAgs in graft-versus-leukemia (GvL) and graft-versus-host disease (GvHD) reactions, it remains challenging to consistently link patient-specific mHAg repertoires to clinical outcomes. Here we devise an analytic framework to systematically identify mHAgs, including their detection on HLA class I ligandomes and functional verification of their immunogenicity. The method relies on the integration of polymorphism detection by whole-exome sequencing of germline DNA from D-R pairs with organ-specific transcriptional- and proteome-level expression. Application of this pipeline to 220 HLA-matched allo-HCT D-R pairs demonstrated that total and organ-specific mHAg load could independently predict the occurrence of acute GvHD and chronic pulmonary GvHD, respectively, and defined promising GvL targets, confirmed in a validation cohort of 58 D-R pairs, for the prevention or treatment of post-transplant disease recurrence.
Collapse
Affiliation(s)
- Nicoletta Cieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nidhi Hookeri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kari Stromhaug
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Liang Li
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Julia Keating
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paula Díaz-Fernández
- Department of Immunology, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Valle Gómez-García de Soria
- Department of Hematology, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Jonathan Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Raphael Kfuri-Rubens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Yiren Shao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kaila Powell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Helen Ji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gabrielle M Hernandez
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jennifer Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Cleo Forman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Siranush Sarkizova
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - David A Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Haesook T Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William J Lane
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Leslie S Kean
- Harvard Medical School, Boston, MA, USA
- Division Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Cecilia Muñoz-Calleja
- Department of Immunology, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chip Stewart
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Susana A, Galletti G, De Simone G, Camisaschi C, Lugli E. Identification and analysis of alloreactive T lymphocytes from peripheral blood mononuclear cells. Methods Cell Biol 2024; 189:71-84. [PMID: 39393887 DOI: 10.1016/bs.mcb.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Alloreactive T-cell responses against mismatched MHC or minor histocompatibility antigens may result in deleterious graft-versus-host disease (GVHD) and increased morbidity and mortality in allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nevertheless, these T-cell responses may be directed against residual tumor cells (the graft-versus-tumor effect, GVT), thus preventing relapse of the disease. Recent findings have shown that CD45RA+ naïve T cells, but not CD45RA- memory T cells are the major contributors to GVHD, thus leading to clinical trials where CD45RA+-depleted, memory-enriched T-cell products are adoptively transferred following allo-HSCT to prevent GVHD and enhance immune reconstitution. However, residual alloreactivity may still be present in the memory T-cell compartment, thus contributing to prevent disease relapse by GVT. Here, we describe a simple cell-based protocol to identify alloreactive naïve and memory T cells by co-culturing T-cell subsets and third-party antigen-presenting cells. The responding cells are identified following dilution of carboxyfluorescein succinimidyl ester (CFSE) and upregulation of the activation marker CD25. These CFSE-diluting cells can be further phenotyped by high-dimensional flow cytometry, or purified with a cell sorter for downstream genomic and functional assays.
Collapse
Affiliation(s)
- Alberto Susana
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giovanni Galletti
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | | | | | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| |
Collapse
|
7
|
Harding J, Vintersten-Nagy K, Yang H, Tang JK, Shutova M, Jong ED, Lee JH, Massumi M, Oussenko T, Izadifar Z, Zhang P, Rogers IM, Wheeler MB, Lye SJ, Sung HK, Li C, Izadifar M, Nagy A. Immune-privileged tissues formed from immunologically cloaked mouse embryonic stem cells survive long term in allogeneic hosts. Nat Biomed Eng 2024; 8:427-442. [PMID: 37996616 PMCID: PMC11087263 DOI: 10.1038/s41551-023-01133-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/30/2023] [Indexed: 11/25/2023]
Abstract
The immunogenicity of transplanted allogeneic cells and tissues is a major hurdle to the advancement of cell therapies. Here we show that the overexpression of eight immunomodulatory transgenes (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, Ccl21 and Mfge8) in mouse embryonic stem cells (mESCs) is sufficient to immunologically 'cloak' the cells as well as tissues derived from them, allowing their survival for months in outbred and allogeneic inbred recipients. Overexpression of the human orthologues of these genes in human ESCs abolished the activation of allogeneic human peripheral blood mononuclear cells and their inflammatory responses. Moreover, by using the previously reported FailSafe transgene system, which transcriptionally links a gene essential for cell division with an inducible and cell-proliferation-dependent kill switch, we generated cloaked tissues from mESCs that served as immune-privileged subcutaneous sites that protected uncloaked allogeneic and xenogeneic cells from rejection in immune-competent hosts. The combination of cloaking and FailSafe technologies may allow for the generation of safe and allogeneically accepted cell lines and off-the-shelf cell products.
Collapse
Affiliation(s)
- Jeffrey Harding
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kristina Vintersten-Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Kit Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Shutova
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Eric D Jong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Massumi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Tatiana Oussenko
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Zohreh Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Puzheng Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - ChengJin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Mohammad Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Low-Intensity Immunosuppressive Therapy for Chronic Graft-versus-Host Disease. Transplant Cell Ther 2022; 28:597.e1-597.e9. [DOI: 10.1016/j.jtct.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
|
10
|
Trofimov A, Brouillard P, Larouche JD, Séguin J, Laverdure JP, Brasey A, Ehx G, Roy DC, Busque L, Lachance S, Lemieux S, Perreault C. Two types of human TCR differentially regulate reactivity to self and non-self antigens. iScience 2022; 25:104968. [PMID: 36111255 PMCID: PMC9468382 DOI: 10.1016/j.isci.2022.104968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Based on analyses of TCR sequences from over 1,000 individuals, we report that the TCR repertoire is composed of two ontogenically and functionally distinct types of TCRs. Their production is regulated by variations in thymic output and terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived from TDT-negative progenitors persist throughout life, are highly shared among subjects, and are reported as disease-associated. Thus, 10%–30% of most frequent cord blood TCRs are associated with common pathogens and autoantigens. TDT-dependent TCRs present distinct structural features and are less shared among subjects. TDT-dependent TCRs are produced in maximal numbers during infancy when thymic output and TDT activity reach a summit, are more abundant in subjects with AIRE mutations, and seem to play a dominant role in graft-versus-host disease. Factors decreasing thymic output (age, male sex) negatively impact TCR diversity. Males compensate for their lower repertoire diversity via hyperexpansion of selected TCR clonotypes. Over 108 TCR CDR3 sequences from ∼103 individuals and 7 cohorts were analyzed The TCR repertoire is composed of two layers: neonatal and TDT-dependent layer ∼70% of frequent cord blood TCRs are associated with common pathogens Acute graft-vs-host disease correlates with a high proportion of TDT-dependent TCRs
Collapse
Affiliation(s)
- Assya Trofimov
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
- Currently Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Currently Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
| | - Philippe Brouillard
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jonathan Séguin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ann Brasey
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Currently Interdisciplinary Cluster for Applied Geno-Proteomics (GIGA-I3), University of Liege, Liege 4000, Belgium
| | | | - Lambert Busque
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry at University of Montreal, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
- Corresponding author
| |
Collapse
|
11
|
Saliba RM, Srour SA, Greenbaum U, Ma Q, Carmazzi Y, Moller M, Wood J, Ciurea SO, Kongtim P, Rondon G, Li D, Saengboon S, Alousi AM, Rezvani K, Shpall EJ, Cao K, Champlin RE, Zou J. SIRPα Mismatch Is Associated With Relapse Protection and Chronic Graft-Versus-Host Disease After Related Hematopoietic Stem Cell Transplantation for Lymphoid Malignancies. Front Immunol 2022; 13:904718. [PMID: 35874659 PMCID: PMC9301275 DOI: 10.3389/fimmu.2022.904718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematologic malignancies. Alloreactivity after HSCT is known to be mediated by adaptive immune cells expressing rearranging receptors. Recent studies demonstrated that the innate immune system could likewise sense the non-self signals and subsequently enhance the alloimmune response. We recently demonstrated that the donor/recipient mismatch of signal regulatory protein α (SIRPα), an immunoglobulin receptor exclusively expressed on innate cells, is associated with a higher risk of cGVHD and relapse protection in a cohort of acute myeloid leukemia patients who underwent allo-HSCT. Whether these effects also occur in other hematologic malignancies remains unclear. In the present study, we compared outcomes by SIRPα match status in a cohort of 310 patients who received allo-HSCT from an HLA matched-related donor for the treatment of lymphoid malignancies. Multivariable analysis showed that SIRPα mismatch was associated with a significantly higher rate of cGVHD (hazard ratio [HR] 1.8, P= .002), cGVHD requiring systemic immunosuppressive therapy (HR 1.9, P= .005), a lower rate of disease progression (HR 0.5, P= .003) and improved progression-free survival (HR 0.5, P= .001). Notably, the effects of SIRPα mismatch were observed only in the patients who achieved >95% of donor T-cell chimerism. The mismatch in SIRPα is associated with favorable relapse protection and concurrently increased risk of cGVHD in patients who undergo allo-HSCT for lymphoid malignancies, and the optimal donor could be selected based on the finding of the study to mitigate the risk of GVHD and relapse.
Collapse
Affiliation(s)
- Rima M. Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samer A. Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uri Greenbaum
- Department of Hematology, Soroka University Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yudith Carmazzi
- Department of Laboratory Medicine, Division of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Moller
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Janet Wood
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefan O. Ciurea
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
| | - Piyanuch Kongtim
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
- Center of Excellence in Applied Epidemiology, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dan Li
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Supawee Saengboon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amin M. Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kai Cao
- Department of Laboratory Medicine, Division of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jun Zou, ; Richard E. Champlin,
| | - Jun Zou
- Department of Laboratory Medicine, Division of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jun Zou, ; Richard E. Champlin,
| |
Collapse
|
12
|
Martin PJ, Levine DM, Storer BE, Zheng X, Jain D, Heavner B, Norris BM, Geraghty DE, Spellman SR, Sather CL, Wu F, Hansen JA. A Model of Minor Histocompatibility Antigens in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:782152. [PMID: 34868058 PMCID: PMC8636906 DOI: 10.3389/fimmu.2021.782152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Minor histocompatibility antigens (mHAg) composed of peptides presented by HLA molecules can cause immune responses involved in graft-versus-host disease (GVHD) and graft-versus-leukemia effects after allogeneic hematopoietic cell transplantation (HCT). The current study was designed to identify individual graft-versus-host genomic mismatches associated with altered risks of acute or chronic GVHD or relapse after HCT between HLA-genotypically identical siblings. Our results demonstrate that in allogeneic HCT between a pair of HLA-identical siblings, a mHAg manifests as a set of peptides originating from annotated proteins and non-annotated open reading frames, which i) are encoded by a group of highly associated recipient genomic mismatches, ii) bind to HLA allotypes in the recipient, and iii) evoke a donor immune response. Attribution of the immune response and consequent clinical outcomes to individual peptide components within this set will likely differ from patient to patient according to their HLA types.
Collapse
Affiliation(s)
- Paul J. Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - David M. Levine
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Barry E. Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Ben Heavner
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Brandon M. Norris
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN, United States
| | - Cassie L. Sather
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Feinan Wu
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - John A. Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
13
|
Koyama M, Hill GR. Mouse Models of Antigen Presentation in Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:715893. [PMID: 34594330 PMCID: PMC8476754 DOI: 10.3389/fimmu.2021.715893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/25/2021] [Indexed: 02/02/2023] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) is a curative therapy for hematopoietic malignancies. The therapeutic effect relies on donor T cells and NK cells to recognize and eliminate malignant cells, known as the graft-versus-leukemia (GVL) effect. However, off target immune pathology, known as graft-versus-host disease (GVHD) remains a major complication of alloSCT that limits the broad application of this therapy. The presentation of recipient-origin alloantigen to donor T cells is the primary process initiating GVHD and GVL. Therefore, the understanding of spatial and temporal characteristics of alloantigen presentation is pivotal to attempts to separate beneficial GVL effects from detrimental GVHD. In this review, we discuss mouse models and the tools therein, that permit the quantification of alloantigen presentation after alloSCT.
Collapse
Affiliation(s)
- Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Giaccone L, Faraci DG, Butera S, Lia G, Di Vito C, Gabrielli G, Cerrano M, Mariotti J, Dellacasa C, Felicetti F, Brignardello E, Mavilio D, Bruno B. Biomarkers for acute and chronic graft versus host disease: state of the art. Expert Rev Hematol 2020; 14:79-96. [PMID: 33297779 DOI: 10.1080/17474086.2021.1860001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Despite significant advances in treatment and prevention, graft-versus-host disease (GVHD) still represents the main cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Thus, considerable research efforts have been made to find and validate reliable biomarkers for diagnosis, prognosis, and risk stratification of GVHD. AREAS COVERED In this review the most recent evidences on different types of biomarkers studied for GVHD, such as genetic, plasmatic, cellular markers, and those associated with microbiome, were summarized. A comprehensive search of peer-review literature was performed in PubMed including meta-analysis, preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graft-versus-host disease, cytokines, and allogeneic hematopoietic stem cell transplantation. EXPERT OPINION In the near future, several validated biomarkers will be available to help clinicians in the diagnosis of GVHD, the identification of patients at high risk of GVHD development and in patients' stratification according to its severity. Then, immunosuppressive treatment could be tailored to each patient's real needs. However, more efforts are needed to achieve this goal. Although most of the proposed biomarkers currently lack validation with large-scale clinical data, their study led to improved knowledge of the biological basis of GVHD, and ultimately to implementation of GHVD treatment.
Collapse
Affiliation(s)
- Luisa Giaccone
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Danilo Giuseppe Faraci
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Sara Butera
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Giuseppe Lia
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Giulia Gabrielli
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Marco Cerrano
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Chiara Dellacasa
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy
| | - Francesco Felicetti
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Enrico Brignardello
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| |
Collapse
|
15
|
Partanen J, Hyvärinen K, Bickeböller H, Bogunia-Kubik K, Crossland RE, Ivanova M, Perutelli F, Dressel R. Review of Genetic Variation as a Predictive Biomarker for Chronic Graft-Versus-Host-Disease After Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:575492. [PMID: 33193367 PMCID: PMC7604383 DOI: 10.3389/fimmu.2020.575492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is one of the major complications of allogeneic stem cell transplantation (HSCT). cGvHD is an autoimmune-like disorder affecting multiple organs and involves a dermatological rash, tissue inflammation and fibrosis. The incidence of cGvHD has been reported to be as high as 30% to 60% and there are currently no reliable tools for predicting the occurrence of cGvHD. There is therefore an important unmet clinical need for predictive biomarkers. The present review summarizes the state of the art for genetic variation as a predictive biomarker for cGvHD. We discuss three different modes of action for genetic variation in transplantation: genetic associations, genetic matching, and pharmacogenetics. The results indicate that currently, there are no genetic polymorphisms or genetic tools that can be reliably used as validated biomarkers for predicting cGvHD. A number of recommendations for future studies can be drawn. The majority of studies to date have been under-powered and included too few patients and genetic markers. Like in all complex multifactorial diseases, large collaborative genome-level studies are now needed to achieve reliable and unbiased results. Some of the candidate genes, in particular, CTLA4, HSPE, IL1R1, CCR6, FGFR1OP, and IL10, and some non-HLA variants in the HLA gene region have been replicated to be associated with cGvHD risk in independent studies. These associations should now be confirmed in large well-characterized cohorts with fine mapping. Some patients develop cGvHD despite very extensive immunosuppression and other treatments, indicating that the current therapeutic regimens may not always be effective enough. Hence, more studies on pharmacogenetics are also required. Moreover, all of these studies should be adjusted for diagnostic and clinical features of cGvHD. We conclude that future studies should focus on modern genome-level tools, such as machine learning, polygenic risk scores and genome-wide association study-transcription meta-analyses, instead of focusing on just single variants. The risk of cGvHD may be related to the summary level of immunogenetic differences, or whole genome histocompatibility between each donor-recipient pair. As the number of genome-wide analyses in HSCT is increasing, we are approaching an era where there will be sufficient data to incorporate these approaches in the near future.
Collapse
Affiliation(s)
- Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Rachel E Crossland
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Milena Ivanova
- Medical University, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Francesca Perutelli
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Comparison of characteristics and outcomes of late acute and NIH chronic GVHD between Japanese and white patients. Blood Adv 2020; 3:2764-2777. [PMID: 31551243 DOI: 10.1182/bloodadvances.2019000386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022] Open
Abstract
Although differences in the incidence of chronic graft-versus-host disease (GVHD) across the races have been suggested, these have not been systematically investigated. This study compared the incidence, sites, severity, and outcomes of late acute GVHD and chronic GVHD according to National Institutes of Health (NIH) consensus criteria between Japanese (n = 413) and white (n = 708) patients after first allogeneic hematopoietic cell transplantation. Analysis was stratified according to bone marrow transplantation (BMT) or peripheral blood stem cell transplantation (PBSCT). Japanese patients, compared with white patients, had a similar incidence of late acute GVHD (BMT, 19% vs 16%; PBSCT, 19% vs 16%) but experienced more frequent liver late acute GVHD as defined by transaminase elevation (BMT, 79% vs 8%; PBSCT, 92% vs 33%) and less frequent gastrointestinal late acute GVHD (BMT, 11% vs 58%; PBSCT, 20% vs 68%). Japanese patients were more likely to discontinue systemic immunosuppression after late acute GVHD than white patients (hazard ratio, 3.68; 95% confidence interval, 1.96-6.94; P < .001). Japanese patients, compared with white patients, had a lower incidence of chronic GVHD (BMT, 15% vs 30% [P = .002]; PBSCT, 37% vs 45% [P < .001]) and experienced more frequent chronic GVHD of the mouth, eyes, and liver and less frequent gastrointestinal chronic GVHD. The duration of immunosuppressive treatment of NIH chronic GVHD was similar between the races. These differences could not be entirely attributed to practice variation between the centers. This study shows that the incidence, affected sites, severity, and clinical outcomes of late acute GVHD and NIH chronic GVHD differ between Japanese and white patients.
Collapse
|
17
|
BM is preferred over PBSCs in transplantation from an HLA-matched related female donor to a male recipient. Blood Adv 2020; 3:1750-1760. [PMID: 31182560 DOI: 10.1182/bloodadvances.2019000077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/14/2019] [Indexed: 01/13/2023] Open
Abstract
The use of granulocyte colony-stimulating factor-mobilized peripheral blood stem cells (PBSCs) and sex-mismatched hematopoietic cell transplantation (HCT), especially with female donors and male recipients (FtoM), is known to be associated with an increased risk of chronic graft-versus-host disease (GVHD) compared with transplantation with bone marrow (BM). This raises the question of whether the use of PBSCs in FtoM HCT might affect allogeneic responses, resulting in fatal complications. Using a Japanese transplantation registry database, we analyzed 1132 patients (FtoM, n = 315; MtoF, n = 260; sex-matched, n = 557) with standard-risk diseases who underwent HCT with an HLA-matched related donor without in vivo T-cell depletion between 2013 and 2016. The impact of PBSC vs BM on transplantation outcomes was separately assessed in FtoM, MtoF, and sex-matched HCT. Overall survival (OS) and nonrelapse mortality (NRM) at 2 years post-HCT were significantly worse in patients with PBSCs vs those with BM in FtoM HCT (2-year OS, 76% vs 62%; P = .0084; 2-year NRM, 10% vs 21%; P = .0078); no differences were observed for MtoF or sex-matched HCT. Multivariate analyses confirmed the adverse impact of PBSCs in FtoM HCT (hazard ratio [HR] for OS, 1.91; P = .025; HR for NRM, 3.70; P = .0065). In FtoM HCT, patients with PBSCs frequently experienced fatal GVHD and organ failure. In conclusion, the use of PBSCs in FtoM HCT was associated with an increased risk of NRM in the early phase, resulting in inferior survival. This suggests that, when we use female-related donors for male patients in HCT, BM may result in better outcomes than PBSCs.
Collapse
|
18
|
Plasil M, Wijkmark S, Elbers JP, Oppelt J, Burger PA, Horin P. The major histocompatibility complex of Old World camelids: Class I and class I-related genes. HLA 2020; 93:203-215. [PMID: 30828986 DOI: 10.1111/tan.13510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
The genomic structure of the Major Histocompatibility Complex (MHC) region and variation in selected MHC class I related genes in Old World camels, Camelus bactrianus and Camelus dromedaries were studied. The overall genomic organization of the camel MHC region follows a general pattern observed in other mammalian species and individual MHC loci appear to be well conserved. Selected MHC class I genes B-67 and BL3-7 exhibited unexpectedly low variability, even when compared to other camel MHC class I related genes MR1 and MICA. Interspecific SNP and allele sharing are relatively common, and frequencies of heterozygotes are usually low. Such a low variation in a genomic region generally considered as one of the most polymorphic in vertebrate genomes is unusual. Evolutionary relationships between MHC class I related genes and their counterparts from other species seem to be rather complex. Often, they do not follow the general evolutionary history of the species concerned. Close evolutionary relationships of individual MHC class I loci between camels, humans and dogs were observed. Based on the results of this study and on our data on MHC class II genes, the extent and the pattern of polymorphism of the MHC region of Old World camelids differed from most mammalian groups studied so far. Camels thus seem to be an important model for our understanding of the role of genetic diversity in immune functions, especially in the context of unique features of their immunoglobulin and T-cell receptor genes.
Collapse
Affiliation(s)
- Martin Plasil
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic
| | - Sofia Wijkmark
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic
| | - Jean P Elbers
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, Vienna, Austria
| | - Jan Oppelt
- Ceitec MU, Masaryk University, Brno, Czech Republic.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, Vienna, Austria
| | - Petr Horin
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic
| |
Collapse
|
19
|
Carapito R, Aouadi I, Pichot A, Spinnhirny P, Morlon A, Kotova I, Macquin C, Rolli V, Cesbron A, Gagne K, Oudshoorn M, van der Holt B, Labalette M, Spierings E, Picard C, Loiseau P, Tamouza R, Toubert A, Parissiadis A, Dubois V, Paillard C, Maumy-Bertrand M, Bertrand F, von dem Borne PA, Kuball JHE, Michallet M, Lioure B, Peffault de Latour R, Blaise D, Cornelissen JJ, Yakoub-Agha I, Claas F, Moreau P, Charron D, Mohty M, Morishima Y, Socié G, Bahram S. Compatibility at amino acid position 98 of MICB reduces the incidence of graft-versus-host disease in conjunction with the CMV status. Bone Marrow Transplant 2020; 55:1367-1378. [PMID: 32286503 DOI: 10.1038/s41409-020-0886-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 11/10/2022]
Abstract
Graft-versus-host disease (GVHD) and cytomegalovirus (CMV)-related complications are leading causes of mortality after unrelated-donor hematopoietic cell transplantation (UD-HCT). The non-conventional MHC class I gene MICB, alike MICA, encodes a stress-induced polymorphic NKG2D ligand. However, unlike MICA, MICB interacts with the CMV-encoded UL16, which sequestrates MICB intracellularly, leading to immune evasion. Here, we retrospectively analyzed the impact of mismatches in MICB amino acid position 98 (MICB98), a key polymorphic residue involved in UL16 binding, in 943 UD-HCT pairs who were allele-matched at HLA-A, -B, -C, -DRB1, -DQB1 and MICA loci. HLA-DP typing was further available. MICB98 mismatches were significantly associated with an increased incidence of acute (grade II-IV: HR, 1.20; 95% CI, 1.15 to 1.24; P < 0.001; grade III-IV: HR, 2.28; 95% CI, 1.56 to 3.34; P < 0.001) and chronic GVHD (HR, 1.21; 95% CI, 1.10 to 1.33; P < 0.001). MICB98 matching significantly reduced the effect of CMV status on overall mortality from a hazard ratio of 1.77 to 1.16. MICB98 mismatches showed a GVHD-independent association with a higher incidence of CMV infection/reactivation (HR, 1.84; 95% CI, 1.34 to 2.51; P < 0.001). Hence selecting a MICB98-matched donor significantly reduces the GVHD incidence and lowers the impact of CMV status on overall survival.
Collapse
Affiliation(s)
- Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. .,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France. .,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.
| | - Ismail Aouadi
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Angélique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Perrine Spinnhirny
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Aurore Morlon
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,BIOMICA SAS, Strasbourg, France
| | - Irina Kotova
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,BIOMICA SAS, Strasbourg, France
| | - Cécile Macquin
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Véronique Rolli
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Anne Cesbron
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Etablissement Français du Sang (EFS) Centre-Pays de la Loire, Laboratoire HLA, Nantes, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Société Francophone d'Histocompatibilité et d'Immunogénétique (SFHI), Paris, France
| | - Katia Gagne
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Etablissement Français du Sang (EFS) Centre-Pays de la Loire, Laboratoire HLA, Nantes, France.,INSERM 1232, CRCINA, Université Nantes-Angers, Nantes, France
| | - Machteld Oudshoorn
- Europdonor operated by Matchis Foundation, Leiden, The Netherlands.,Department of Immunohematology and Blood transfusion, LUMC, Leiden, The Netherlands
| | - Bronno van der Holt
- HOVON Data Center, Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Myriam Labalette
- Laboratoire d'Immunologie, CHRU de Lille, Lille, France.,LIRIC INSERM U995, Université Lille 2, Lille, France
| | - Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christophe Picard
- CNRS, EFS-PACA, ADES UMR 7268, Aix-Marseille Université, Marseille, France
| | - Pascale Loiseau
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France
| | - Ryad Tamouza
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France
| | - Antoine Toubert
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France
| | - Anne Parissiadis
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Etablissement Français du Sang (EFS) Grand-Est, Laboratoire HLA, Strasbourg, France
| | - Valérie Dubois
- Etablissement Français du Sang (EFS) Rhône-Alpes, Laboratoire HLA, Lyon, France
| | - Catherine Paillard
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie et d'Oncologie pédiatrique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Myriam Maumy-Bertrand
- Institut de Recherche Mathématique Avancée, CNRS UMR 7501, LabEx Institut de Recherche en Mathématiques, ses Interactions et Applications, Université de Strasbourg, Strasbourg, France
| | - Frédéric Bertrand
- Institut de Recherche Mathématique Avancée, CNRS UMR 7501, LabEx Institut de Recherche en Mathématiques, ses Interactions et Applications, Université de Strasbourg, Strasbourg, France
| | | | - Jürgen H E Kuball
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauricette Michallet
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Centre Hospitalier Lyon Sud, Hématologie 1G, Hospices Civils de Lyon, Pierre Bénite, Lyon, France
| | - Bruno Lioure
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie Adulte, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Régis Peffault de Latour
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie - Greffe, Hôpital Saint-Louis, APHP, Paris, France
| | - Didier Blaise
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Institut Paoli Calmettes, Marseille, France
| | - Jan J Cornelissen
- Department of Hematology and ErasmusMC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ibrahim Yakoub-Agha
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,LIRIC INSERM U995, Université Lille 2, Lille, France
| | - Frans Claas
- Department of Immunohematology and Blood transfusion, LUMC, Leiden, The Netherlands
| | - Philippe Moreau
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie Clinique, CHU Hôtel Dieu, Nantes, France
| | - Dominique Charron
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France
| | - Mohamad Mohty
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Département d'Hématologie, Hôpital Saint Antoine, Paris, France.,Université Pierre & Marie Curie, Paris, France.,Centre de Recherche Saint-Antoine, INSERM UMR_S 938, Paris, France
| | - Yasuo Morishima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Japan
| | - Gérard Socié
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie Adulte, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. .,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France. .,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.
| |
Collapse
|
20
|
Hyvärinen K, Koskela S, Niittyvuopio R, Nihtinen A, Volin L, Salmenniemi U, Putkonen M, Buño I, Gallardo D, Itälä-Remes M, Partanen J, Ritari J. Meta-Analysis of Genome-Wide Association and Gene Expression Studies Implicates Donor T Cell Function and Cytokine Pathways in Acute GvHD. Front Immunol 2020; 11:19. [PMID: 32117222 PMCID: PMC7008714 DOI: 10.3389/fimmu.2020.00019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Graft-vs.-host disease (GvHD) is a major complication after allogeneic hematopoietic stem cell transplantation that causes mortality and severe morbidity. Genetic disparities in human leukocyte antigens between the recipient and donor are known contributors to the risk of the disease. However, the overall impact of genetic component is complex, and consistent findings across different populations and studies remain sparse. To gain a comprehensive understanding of the genes responsible for GvHD, we combined genome-wide association studies (GWAS) from two distinct populations with previously published gene expression studies on GvHD in a single gene-level meta-analysis. We hypothesized that genes driving GvHD should be associated in both data modalities and therefore could be detected more readily through their combined effects in the integrated analysis rather than in separate analyses. The meta-analysis yielded a total of 51 acute GvHD-associated genes (false detection rate [FDR] <0.1). In support of our hypothesis, this number was significantly higher than that in a permutation meta-analysis involving the whole data set, as well as in separate meta-analyses on the GWAS and gene expression data sets. The genes indicated by the meta-analysis were significantly enriched in 277 Gene Ontology terms (FDR < 0.05), such as T cell function and cytokine-mediated signaling pathways, and the results highlighted several established immune mediators, such as interleukins and JAK-STAT signaling, and presented TRAF6 and TERT as potential effector candidates. Altogether, the results support the chosen methodological approach, implicate a role of gene-level variation in donors' key immunological regulators predisposing patients to acute GVHD, and present potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Satu Koskela
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Riitta Niittyvuopio
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne Nihtinen
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Volin
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | | | | | - Ismael Buño
- Department of Hematology, Genomics Unit, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - David Gallardo
- Department of Hematology, Institut Català d'Oncologia, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | | | | | - Jarmo Ritari
- Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
21
|
Janelle V, Rulleau C, Del Testa S, Carli C, Delisle JS. T-Cell Immunotherapies Targeting Histocompatibility and Tumor Antigens in Hematological Malignancies. Front Immunol 2020; 11:276. [PMID: 32153583 PMCID: PMC7046834 DOI: 10.3389/fimmu.2020.00276] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decades, T-cell immunotherapy has revealed itself as a powerful, and often curative, strategy to treat blood cancers. In hematopoietic cell transplantation, most of the so-called graft-vs.-leukemia (GVL) effect hinges on the recognition of histocompatibility antigens that reflect immunologically relevant genetic variants between donors and recipients. Whether other variants acquired during the neoplastic transformation, or the aberrant expression of gene products can yield antigenic targets of similar relevance as the minor histocompatibility antigens is actively being pursued. Modern genomics and proteomics have enabled the high throughput identification of candidate antigens for immunotherapy in both autologous and allogeneic settings. As such, these major histocompatibility complex-associated tumor-specific (TSA) and tumor-associated antigens (TAA) can allow for the targeting of multiple blood neoplasms, which is a limitation for other immunotherapeutic approaches, such as chimeric antigen receptor (CAR)-modified T cells. We review the current strategies taken to translate these discoveries into T-cell therapies and propose how these could be introduced in clinical practice. Specifically, we discuss the criteria that are used to select the antigens with the greatest therapeutic value and we review the various T-cell manufacturing approaches in place to either expand antigen-specific T cells from the native repertoire or genetically engineer T cells with minor histocompatibility antigen or TSA/TAA-specific recombinant T-cell receptors. Finally, we elaborate on the current and future incorporation of these therapeutic T-cell products into the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Valérie Janelle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Caroline Rulleau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Simon Del Testa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Cédric Carli
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Jean-Sébastien Delisle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,Division Hématologie et Oncologie, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| |
Collapse
|
22
|
Morata-Tarifa C, Macías-Sánchez MDM, Gutiérrez-Pizarraya A, Sanchez-Pernaute R. Mesenchymal stromal cells for the prophylaxis and treatment of graft-versus-host disease-a meta-analysis. Stem Cell Res Ther 2020; 11:64. [PMID: 32070420 PMCID: PMC7027118 DOI: 10.1186/s13287-020-01592-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background Graft-versus-host disease (GvHD) is the main life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Thirty to 80% of GvHD patients do not respond to first-line treatment and a second-line treatment is not universally established. Based on their immunomodulatory properties, mesenchymal stromal cells (MSC) have been proposed for the prevention and the treatment of GvHD in patients undergoing HSCT. Unfortunately, previous studies reported conflicting results regarding the prophylactic and therapeutic effects of MSC for GvHD. Consequently, we carried out a meta-analysis to clarify whether MSC administration can improve the dismal outcome of these patients. Methods We carried out a systematic review and selected studies (2004–2019) reporting data about the administration of allogeneic MSC for the prevention (n = 654 patients) or treatment of acute (n = 943 patients) or chronic (n = 76 patients) GvHD after HSCT. Our primary outcome was overall survival at the last follow-up. The secondary outcomes were the response and development of GvHD. Subgroup analyses included age, MSC dose, first infusion day after HSCT, number of organs and organ-specific involvement, acute GvHD grade (I–IV), and chronic GvHD grade (limited or extensive). Results Patients infused with MSC for GvHD prophylaxis showed a 17% increased overall survival (95% CI, 1.02–1.33) and a reduced incidence of acute GvHD grade IV (RR = 0.22; 95% CI, 0.06–0.81) and chronic GvHD (RR = 0.64; 95% CI, 0.47–0.88) compared with controls. Overall survival of acute GvHD patients (0.50; 95% CI, 0.41–0.59) was positively correlated with MSC dose (P = 0.0214). The overall response was achieved in 67% (95% CI, 0.61–0.74) and was complete in 39% (95% CI, 0.31–0.48) of acute patients. Organ-specific response was higher for the skin. Twenty-two percent (95% CI, 0.16–0.29) of acute patients infused with MSC developed chronic GvHD. Sixty-four percent (95% CI, 0.47–0.80) of chronic patients infused with MSC survived; the overall response was 66% (95% CI, 0.55–0.76) and was complete in 23% (95% CI 0.12–0.34) of patients. Conclusions Our meta-analysis indicates that allogeneic MSC could be instrumental for the prophylaxis and treatment of GvHD. Future trials should investigate the effect of the administration of MSC as an adjuvant therapy for the treatment of patients with GvHD from the onset of the disease.
Collapse
Affiliation(s)
- Cynthia Morata-Tarifa
- Andalusian Network for the Design and Translation of Advanced Therapies, Américo Vespucio 15 S2, 41092, Seville, Spain
| | - María Del Mar Macías-Sánchez
- Andalusian Network for the Design and Translation of Advanced Therapies, Américo Vespucio 15 S2, 41092, Seville, Spain
| | - Antonio Gutiérrez-Pizarraya
- Andalusian Network for the Design and Translation of Advanced Therapies, Américo Vespucio 15 S2, 41092, Seville, Spain
| | - Rosario Sanchez-Pernaute
- Andalusian Network for the Design and Translation of Advanced Therapies, Américo Vespucio 15 S2, 41092, Seville, Spain.
| |
Collapse
|
23
|
Hardy MP, Vincent K, Perreault C. The Genomic Landscape of Antigenic Targets for T Cell-Based Leukemia Immunotherapy. Front Immunol 2019; 10:2934. [PMID: 31921187 PMCID: PMC6933603 DOI: 10.3389/fimmu.2019.02934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
Intensive fundamental and clinical research in cancer immunotherapy has led to the emergence and evolution of two parallel universes with surprisingly little interactions: the realm of hematologic malignancies and that of solid tumors. Treatment of hematologic cancers using allogeneic hematopoietic cell transplantation (AHCT) serendipitously led to the discovery that T cells specific for minor histocompatibility antigens (MiHAs) could cure hematopoietic cancers. Besides, studies based on treatment of solid tumor with ex vivo-expanded tumor infiltrating lymphocytes or immune checkpoint therapy demonstrated that anti-tumor responses could be achieved by targeting tumor-specific antigens (TSAs). It is our contention that much insight can be gained by sharing the tremendous amount of data generated in the two-abovementioned universes. Our perspective article has two specific goals. First, to discuss the value of methods currently used for MiHA and TSA discovery and to explain the key role of mass spectrometry analyses in this process. Second, to demonstrate the importance of broadening the scope of TSA discovery efforts beyond classic annotated protein-coding genomic sequences.
Collapse
Affiliation(s)
- Marie-Pierre Hardy
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Krystel Vincent
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Claude Perreault
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| |
Collapse
|
24
|
Engineering universal cells that evade immune detection. Nat Rev Immunol 2019; 19:723-733. [DOI: 10.1038/s41577-019-0200-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
|
25
|
Romaniuk DS, Khmelevskaya AA, Drokov MY, Popova NN, Vasilieva VA, Kuzmina LA, Efimov GA, Parovichnikova EN, Savchenko VG. Effect of CTLA4 gene polymorphism on relapse probability among patients with acute leukemias after allogenic hematopoietic stem cells transplantation. ACTA ACUST UNITED AC 2019. [DOI: 10.17650/1818-8346-2019-14-1-76-82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background.Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is being widely applied as a therapy for hematological malignancies. The long-term outcome of allo-HSCT depends directly on the ability of cytotoxic T-lymphocytes to recognize and eliminate the residual tumor. CTLA-4 is one of the regulatory proteins that provide control over the development of the immune response. Polymorphisms in the CTLA4 gene can affect its function and the efficiency of the antitumor response.The objective:to study the effect of non-synonymous single nucleotide polymorphism (nsSNP) c.49A>G in the donor CTLA4 gene on tumor control in the recipient of allogeneic hematopoietic stem cells (HSC).Materials and methods.Donors of HSC were genotyped for nsSNP c.49A>G in the CTLA4 gene by the real-time polymerase chain reaction using the allele-specific primers. Genotyping data was validated by Sanger’s sequencing of 22 randomly selected samples. The overall survival, the event-free survival and relapse probability were calculated using the Kaplan–Mayer method. A log-rank test was used to assess the statistical significance of group disparities. A p-value of 0.05 was considered as significant.Results.The frequencies of the CTLA4 gene c.49A>G polymorphism alleles in the observed population (102 healthy donors of HSC) correspond to the frequencies obtained by the “1000 genomes” project for the European population. The effect of the donor CTLA4 polymorphism on the tumor control was evaluated on the cohort of patients with acute leukemia after human leukocyte antigen (HLA) matched HSCT from an unrelated donor. It was shown, the three-year relapse-free survival was significantly lower for those patients who received grafts from a donor with the homozygous A/A state of nsSNP c.49A>G (p = 0.01), it was 12.7 % versus 62,8 % in group with c.49A>G G/G and A/G donor genotypes. The incidence of relapse was also significantly different for the group with A/A genotype and for the group with G/G or A/G genotypes of the nsSNP and equaled to 83.7 and 29.3 % respectively (p = 0.03).Conclusion.Patients with acute leukemia, who underwent allo-HSCT from unrelated completely HLA-matched donors with c.49A>G G/G or A/G genotypes have the significantly lower risk of relapse than patients whose donors had the A/A genotype. These results suggest practicability of the nsSNP genotyping for the optimal donor selection.
Collapse
Affiliation(s)
- D. S. Romaniuk
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| | - A. A. Khmelevskaya
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| | - M. Yu. Drokov
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| | - N. N. Popova
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| | - V. A. Vasilieva
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| | - L. A. Kuzmina
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| | - G. A. Efimov
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| | - E. N. Parovichnikova
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| | - V. G. Savchenko
- National Research Center for Hematology, Ministry of Health of Russia; 4 Novyy Zykovskiy Proezd, Moscow 125167
| |
Collapse
|
26
|
Ito R, Inamoto Y, Inoue Y, Ito A, Tanaka T, Fuji S, Okinaka K, Kurosawa S, Kim SW, Yamashita T, Fukuda T. Characterization of Late Acute and Chronic Graft-Versus-Host Disease according to the 2014 National Institutes of Health Consensus Criteria in Japanese Patients. Biol Blood Marrow Transplant 2019; 25:293-300. [DOI: 10.1016/j.bbmt.2018.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
|
27
|
Lanoix J, Durette C, Courcelles M, Cossette É, Comtois-Marotte S, Hardy MP, Côté C, Perreault C, Thibault P. Comparison of the MHC I Immunopeptidome Repertoire of B-Cell Lymphoblasts Using Two Isolation Methods. Proteomics 2018; 18:e1700251. [PMID: 29508533 DOI: 10.1002/pmic.201700251] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/19/2018] [Indexed: 11/10/2022]
Abstract
Significant technological advances in both affinity chromatography and mass spectrometry have facilitated the identification of peptides associated with the major histocompatibility complex class I (MHC I) molecules, and enabled a greater understanding of the dynamic nature of the immunopeptidome of normal and neoplastic cells. While the isolation of MHC I-associated peptides (MIPs) typically used mild acid elution (MAE) or immunoprecipitation (IP), limited information currently exists regarding their respective analytical merits. Here, a comparison of these approaches for the isolation of two different B-cell lymphoblast cell models is presented, and it is reported on the recovery, reproducibility, scalability, and complementarity of identification from each method. Both approaches yielded reproducible datasets for peptide extracts obtained from 2 to 100 million cells, with 2016 to 5093 MIPs, respectively. The IP typically provides up to 6.4-fold increase in MIPs compared to the MAE. The comprehensiveness of these immunopeptidome analyses is extended using personalized genomic database of B-cell lymphoblasts, and it is discovered that 0.4% of their respective MIP repertoire harbored nonsynonymous single nucleotide variations (also known as minor histocompatibility antigens, MiHAs).
Collapse
Affiliation(s)
- Joël Lanoix
- Institute for Research in Immunology and Cancer
| | | | | | | | | | | | | | - Claude Perreault
- Institute for Research in Immunology and Cancer.,Department of Medicine.,Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer.,Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
28
|
Tie R, Zhang T, Yang B, Fu H, Han B, Yu J, Tan Y, Huang H. Clinical implications of HLA locus mismatching in unrelated donor hematopoietic cell transplantation: a meta-analysis. Oncotarget 2018; 8:27645-27660. [PMID: 28206973 PMCID: PMC5432365 DOI: 10.18632/oncotarget.15291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/26/2017] [Indexed: 01/10/2023] Open
Abstract
It remains controversial that the impacts of individual HLA locus mismatches on clinical outcomes of patients receiving unrelated-donor hematopoietic cell transplantation (HCT), as compared to HLA allele matched controls. We conducted a meta-analysis to address these issues. Four databases (PubMed, Embase, Web of Science and the Cochrane Library) were searched to select eligible studies. All donor-recipient pairs were high-resolution typing for HLA-A, -B, -C, -DRB1, DQB1 and DPB1 loci. Multivariate-adjusted hazard ratios (HRs) were extracted and pooled using a random-effects model. A total of 36 studies were included, with 100,072 patients receiving HCT. Surprisingly, we found that HLA-DQB1 locus mismatches had no significantly increased risk of multiple outcomes including acute and chronic graft-versus-host disease (GVHD), overall mortality and disease relapse (HR, 1.07; P = .153; HR, 1.07; P = .271; HR, 1.09; P = .230; HR, 1.07; P = .142 and HR, 1.02; P = .806, respectively). Mismatched HLA-DPB1 was significantly associated with a reduced risk of disease relapse (HR, 0.74; P < .001) but not with increased risks of transplant-related mortality (TRM) and overall mortality (HR, 1.09; P = .591; I2 = 74.2% and HR, 1.03; P = .460, respectively). In conclusion, HLA-DQB1 locus mismatches is a permissive mismatching. HLA-DPB1 locus mismatches significantly protect against leukemia relapse. Refining effects of individual HLA locus mismatches contributes to predicting prognosis of patients receiving unrelated donor HCT.
Collapse
Affiliation(s)
- Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tiansong Zhang
- Department of Traditional Chinese Medicine, Jing'an District Central Hospital, Shanghai, China
| | - Bo Yang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Biqing Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Overview and Choice of Donor of Hematopoietic Stem Cell Transplantation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Hyvärinen K, Ritari J, Koskela S, Niittyvuopio R, Nihtinen A, Volin L, Gallardo D, Partanen J. Genetic polymorphism related to monocyte-macrophage function is associated with graft-versus-host disease. Sci Rep 2017; 7:15666. [PMID: 29142307 PMCID: PMC5688060 DOI: 10.1038/s41598-017-15915-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/03/2017] [Indexed: 12/01/2022] Open
Abstract
Despite detailed human leukocyte antigen (HLA) matching and modern immunosuppressive therapy, severe graft-versus-host disease (GvHD) remains a major hurdle for successful allogeneic hematopoietic stem cell transplantation (HSCT). As the genetic diversity in GvHD complicates the systematic discovery of associated variants across populations, we studied 122 GvHD-associated single nucleotide polymorphisms (SNPs) in 492 HLA-matched sibling HSCT donor-recipient pairs from Finland and Spain. The association between these candidate SNPs and grade III–IV acute GvHD and extensive chronic GvHD was assessed. The functional effects of the variants were determined using expression and cytokine quantitative trait loci (QTL) database analyses. Clear heterogeneity was observed in the associated markers between the two populations. Interestingly, the majority of markers, such as those annotated to IL1, IL23R, TLR9, TNF, and NOD2 genes, are related to the immunological response by monocytes-macrophages to microbes, a step that precedes GvHD as a result of intestinal lesions. Furthermore, cytokine QTL analysis showed that the GvHD-associated markers regulate IL1β, IFNγ, and IL6 responses. These results support a crucial role for the anti-microbial response in GvHD risk. Furthermore, despite apparent heterogeneity in the genetic markers associated with GvHD, it was possible to identify a biological pathway shared by most markers in both populations.
Collapse
Affiliation(s)
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Satu Koskela
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Riitta Niittyvuopio
- Helsinki University Hospital, Comprehensive Cancer Center, Stem Cell Transplantation Unit, Helsinki, Finland
| | - Anne Nihtinen
- Helsinki University Hospital, Comprehensive Cancer Center, Stem Cell Transplantation Unit, Helsinki, Finland
| | - Liisa Volin
- Helsinki University Hospital, Comprehensive Cancer Center, Stem Cell Transplantation Unit, Helsinki, Finland
| | - David Gallardo
- Department of Hematology, Institut Català d'Oncologia, Hospital Dr. Josep Trueta, Girona, Spain
| | | |
Collapse
|
31
|
Hernandez-Valladares M, Vaudel M, Selheim F, Berven F, Bruserud Ø. Proteogenomics approaches for studying cancer biology and their potential in the identification of acute myeloid leukemia biomarkers. Expert Rev Proteomics 2017; 14:649-663. [DOI: 10.1080/14789450.2017.1352474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Proteomics Unit, Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Frode Selheim
- Proteomics Unit, Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Frode Berven
- Proteomics Unit, Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
32
|
Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic Association of Hematopoietic Stem Cell Transplantation Outcome beyond Histocompatibility Genes. Front Immunol 2017; 8:380. [PMID: 28421078 PMCID: PMC5377073 DOI: 10.3389/fimmu.2017.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP–mRNA–miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
Collapse
Affiliation(s)
- Rihab Gam
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jean Norden
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Kolb HJ. Hematopoietic stem cell transplantation and cellular therapy. HLA 2017; 89:267-277. [DOI: 10.1111/tan.13005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- H.-J. Kolb
- Helmholtz Zentrum Muenchen; Muenchen Germany
- Ludwig Maximilians Universitaet Muenchen; Muenchen Germany
- Klinikum Muenchen Schwabing Muenchen; Muenchen Germany
- Department PediatricsTechnische Unoiversitaet Muenchen; Muenchen Germany
| |
Collapse
|
34
|
Genome-wide minor histocompatibility matching as related to the risk of graft-versus-host disease. Blood 2016; 129:791-798. [PMID: 27872059 DOI: 10.1182/blood-2016-09-737700] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/15/2016] [Indexed: 01/27/2023] Open
Abstract
The risk of acute graft-versus-host disease (GVHD) is higher after allogeneic hematopoietic cell transplantation (HCT) from unrelated donors as compared with related donors. This difference has been explained by increased recipient mismatching for major histocompatibility antigens or minor histocompatibility antigens. In the current study, we used genome-wide arrays to enumerate single nucleotide polymorphisms (SNPs) that produce graft-versus-host (GVH) amino acid coding differences between recipients and donors. We then tested the hypothesis that higher degrees of genome-wide recipient GVH mismatching correlate with higher risks of GVHD after allogeneic HCT. In HLA-genotypically matched sibling recipients, the average recipient mismatching of coding SNPs was 9.35%. Each 1% increase in genome-wide recipient mismatching was associated with an estimated 20% increase in the hazard of grades III-IV GVHD (hazard ratio [HR], 1.20; 95% confidence interval [CI], 1.05-1.37; P = .007) and an estimated 22% increase in the hazard of stage 2-4 acute gut GVHD (HR, 1.22; 95% CI, 1.02-1.45; P = .03). In HLA-A, B, C, DRB1, DQA1, DQB1, DPA1, DPB1-phenotypically matched unrelated recipients, the average recipient mismatching of coding SNPs was 17.3%. The estimated risks of GVHD-related outcomes in HLA-phenotypically matched unrelated recipients were low, relative to the large difference in genome-wide mismatching between the 2 groups. In contrast, the risks of GVHD-related outcomes were higher in HLA-DP GVH-mismatched unrelated recipients than in HLA-matched sibling recipients. Taken together, these results suggest that the increased GVHD risk after unrelated HCT is predominantly an effect of HLA-mismatching.
Collapse
|
35
|
Miyagawa S, Fukushima S, Imanishi Y, Kawamura T, Mochizuki-Oda N, Masuda S, Sawa Y. Building A New Treatment For Heart Failure-Transplantation of Induced Pluripotent Stem Cell-derived Cells into the Heart. Curr Gene Ther 2016; 16:5-13. [PMID: 26785736 PMCID: PMC4997929 DOI: 10.2174/1566523216666160119094143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 02/08/2023]
Abstract
Advanced cardiac failure is a progressive intractable disease and is the main cause of mortality and morbidity worldwide. Since this pathology is represented by a definite decrease in cardiomyocyte number, supplementation of functional cardiomyocytes into the heart would hypothetically be an ideal therapeutic option. Recently, unlimited in vitro production of human functional cardiomyocytes was established by using induced pluripotent stem cell (iPSC) technology, which avoids the use of human embryos. A number of basic studies including ours have shown that transplantation of iPSC-derived cardiomyocytes (iPSC-CMs) into the damaged heart leads to recovery of cardiac function, thereby establishing “proof-of-concept” of this iPSC-transplantation therapy. However, considering clinical application of this therapy, its feasibility, safety, and therapeutic efficacy need to be further investigated in the pre-clinical stage. This review summarizes up-to-date important topics related to safety and efficacy of iPSC-CMs transplantation therapy for cardiac disease and discusses the prospects for this treatment in clinical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
36
|
van der Lee DI, Pont MJ, Falkenburg JHF, Griffioen M. The Value of Online Algorithms to Predict T-Cell Ligands Created by Genetic Variants. PLoS One 2016; 11:e0162808. [PMID: 27618304 PMCID: PMC5019413 DOI: 10.1371/journal.pone.0162808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Allogeneic stem cell transplantation can be a curative treatment for hematological malignancies. After HLA-matched allogeneic stem cell transplantation, beneficial anti-tumor immunity as well as detrimental side-effects can develop due to donor-derived T-cells recognizing polymorphic peptides that are presented by HLA on patient cells. Polymorphic peptides on patient cells that are recognized by specific T-cells are called minor histocompatibility antigens (MiHA), while the respective peptides in donor cells are allelic variants. MiHA can be identified by reverse strategies in which large sets of peptides are screened for T-cell recognition. In these strategies, selection of peptides by prediction algorithms may be relevant to increase the efficiency of MiHA discovery. We investigated the value of online prediction algorithms for MiHA discovery and determined the in silico characteristics of 68 autosomal HLA class I-restricted MiHA that have been identified as natural ligands by forward strategies in which T-cells from in vivo immune responses after allogeneic stem cell transplantation are used to identify the antigen. Our analysis showed that HLA class I binding was accurately predicted for 87% of MiHA of which a relatively large proportion of peptides had strong binding affinity (56%). Weak binding affinity was also predicted for a considerable number of antigens (31%) and the remaining 13% of MiHA were not predicted as HLA class I binding peptides. Besides prediction for HLA class I binding, none of the other online algorithms significantly contributed to MiHA characterization. Furthermore, we demonstrated that the majority of MiHA do not differ from their allelic variants in in silico characteristics, suggesting that allelic variants can potentially be processed and presented on the cell surface. In conclusion, our analyses revealed the in silico characteristics of 68 HLA class I-restricted MiHA and explored the value of online algorithms to predict T-cell ligands that are created by genetic variants.
Collapse
Affiliation(s)
- Dyantha I. van der Lee
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Margot J. Pont
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Riquelme SA, Carreño LJ, Espinoza JA, Mackern-Oberti JP, Alvarez-Lobos MM, Riedel CA, Bueno SM, Kalergis AM. Modulation of antigen processing by haem-oxygenase 1. Implications on inflammation and tolerance. Immunology 2016; 149:1-12. [PMID: 26938875 PMCID: PMC4981612 DOI: 10.1111/imm.12605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
Haem-oxygenase-1 (HO-1) is an enzyme responsible for the degradation of haem that can suppress inflammation, through the production of carbon monoxide (CO). It has been shown in several experimental models that genetic and pharmacological induction of HO-1, as well as non-toxic administration of CO, can reduce inflammatory diseases, such as endotoxic shock, type 1 diabetes and graft rejection. Recently, it was shown that the HO-1/CO system can alter the function of antigen-presenting cells (APCs) and reduce T-cell priming, which can be beneficial during immune-driven inflammatory diseases. The molecular mechanisms by which the HO-1 and CO reduce both APC- and T-cell-driven immunity are just beginning to be elucidated. In this article we discuss recent findings related to the immune regulatory capacity of HO-1 and CO at the level of recognition of pathogen-associated molecular patterns and T-cell priming by APCs. Finally, we propose a possible regulatory role for HO-1 and CO over the recently described mitochondria-dependent immunity. These concepts could contribute to the design of new therapeutic tools for inflammation-based diseases.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
| | - Leandro J Carreño
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Janyra A Espinoza
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Mackern-Oberti
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina
- Institute of Physiology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM, UMR 1064, CHU Nantes, ITUN, Nantes, France
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
38
|
PD-1/PD-L1 Interaction Maintains Allogeneic Immune Tolerance Induced by Administration of Ultraviolet B-Irradiated Immature Dendritic Cells. J Immunol Res 2016; 2016:2419621. [PMID: 27556047 PMCID: PMC4983366 DOI: 10.1155/2016/2419621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/05/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
Our previous study demonstrated that transfusion of ultraviolet B-irradiated immature dendritic cells (UVB-iDCs) induced alloantigen-specific tolerance between two different strains of mice. Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have been suggested to play an important role in maintaining immune tolerance. In the present study, we seek to address whether PD-1/PD-L1 plays a role in the maintenance of UVB-iDC-induced tolerance. We first observe that the UVB-iDC-induced alloantigen-specific tolerance can be maintained for over 6 weeks. Supporting this, at 6 weeks after tolerance induction completion, alloantigen-specific tolerance is still able to be transferred to syngeneic naïve mice through adoptive transfer of CD4+ T cells. Furthermore, skin transplantation study shows that the survival of allogeneic grafts is prolonged in those tolerant recipients. Further studies show that PD-1/PD-L1 interaction is essential for maintaining the induced tolerance as blockade of PD-1/PD-L1 by anti-PD-L1 antibodies largely breaks the tolerance at both cellular and humoral immunological levels. Importantly, we show that PD-1/PD-L1 interaction in tolerant mice is also essential for controlling alloantigen-responding T cells, which have never experienced alloantigens. The above findings suggest that PD-1/PD-L1 plays a crucial role in maintaining immune tolerance induced by UVB-iDCs, as well as in actively controlling effector T cells specific to alloantigens.
Collapse
|
39
|
Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD. Blood 2016; 128:1979-1986. [PMID: 27549307 DOI: 10.1182/blood-2016-05-719070] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/14/2016] [Indexed: 01/12/2023] Open
Abstract
Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain-related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the invariant activating receptor NKG2D, expressed by cytotoxic lymphocytes, and is located in the MHC, next to HLA-B Hence, MICA has the requisite attributes of a bona fide transplantation antigen. Using high-resolution sequence-based genotyping of MICA, we retrospectively analyzed the clinical effect of MICA mismatches in a multicenter cohort of 922 unrelated donor HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 10/10 allele-matched HCT pairs. Among the 922 pairs, 113 (12.3%) were mismatched in MICA MICA mismatches were significantly associated with an increased incidence of grade III-IV acute GVHD (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.50-2.23; P < .001), chronic GVHD (HR, 1.50; 95% CI, 1.45-1.55; P < .001), and nonelapse mortality (HR, 1.35; 95% CI, 1.24-1.46; P < .001). The increased risk for GVHD was mirrored by a lower risk for relapse (HR, 0.50; 95% CI, 0.43-0.59; P < .001), indicating a possible graft-versus-leukemia effect. In conclusion, when possible, selecting a MICA-matched donor significantly influences key clinical outcomes of HCT in which a marked reduction of GVHD is paramount. The tight linkage disequilibrium between MICA and HLA-B renders identifying a MICA-matched donor readily feasible in clinical practice.
Collapse
|
40
|
Isernhagen A, Malzahn D, Viktorova E, Elsner L, Monecke S, von Bonin F, Kilisch M, Wermuth JM, Walther N, Balavarca Y, Stahl-Hennig C, Engelke M, Walter L, Bickeböller H, Kube D, Wulf G, Dressel R. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Mol Med 2016; 7:1480-502. [PMID: 26483398 PMCID: PMC4644379 DOI: 10.15252/emmm.201505246] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8+ T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8+ T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD.
Collapse
Affiliation(s)
- Antje Isernhagen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe Malzahn
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Elena Viktorova
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Frederike von Bonin
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Kilisch
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Janne Marieke Wermuth
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Neele Walther
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Yesilda Balavarca
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Engelke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Heike Bickeböller
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dieter Kube
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerald Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
Murphy NM, Burton M, Powell DR, Rossello FJ, Cooper D, Chopra A, Hsieh MJ, Sayer DC, Gordon L, Pertile MD, Tait BD, Irving HR, Pouton CW. Haplotyping the human leukocyte antigen system from single chromosomes. Sci Rep 2016; 6:30381. [PMID: 27461731 PMCID: PMC4961964 DOI: 10.1038/srep30381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022] Open
Abstract
We describe a method for determining the parental HLA haplotypes of a single individual without recourse to conventional segregation genetics. Blood samples were cultured to identify and sort chromosome 6 by bivariate flow cytometry. Single chromosome 6 amplification products were confirmed with a single nucleotide polymorphism (SNP) array and verified by deep sequencing to enable assignment of both alleles at the HLA loci, defining the two haplotypes. This study exemplifies a rapid and efficient method of haplotyping that can be applied to any chromosome pair, or indeed all chromosome pairs, using a single sorting operation. The method represents a cost-effective approach to complete phasing of SNPs, which will facilitate a deeper understanding of the links between SNPs, gene regulation and protein function.
Collapse
Affiliation(s)
- Nicholas M Murphy
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Preimplantation Genetic Diagnosis, Melbourne IVF, Melbourne, VIC, Australia
| | - Matthew Burton
- Flow Cytometry &Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Don Cooper
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Ming Je Hsieh
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Lavinia Gordon
- Australian Genome Research Facility, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, VIC, Australia
| | - Mark D Pertile
- Victorian Clinical Genetics Services, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Brian D Tait
- Transplant Services, Australian Red Cross Blood Service, Parkville, VIC, Australia
| | - Helen R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
42
|
Pont MJ, Honders MW, Kremer AN, van Kooten C, Out C, Hiemstra PS, de Boer HC, Jager MJ, Schmelzer E, Vries RG, Al Hinai AS, Kroes WG, Monajemi R, Goeman JJ, Böhringer S, Marijt WAF, Falkenburg JHF, Griffioen M. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies. PLoS One 2016; 11:e0155165. [PMID: 27171398 PMCID: PMC4865094 DOI: 10.1371/journal.pone.0155165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers.
Collapse
Affiliation(s)
- M. J. Pont
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. W. Honders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - A. N. Kremer
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - C. van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - C. Out
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - P. S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - H. C. de Boer
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - M. J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - E. Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - R. G. Vries
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - A. S. Al Hinai
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - W. G. Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - R. Monajemi
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - J. J. Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
- Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S. Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - W. A. F. Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - J. H. F. Falkenburg
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
43
|
Griffioen M, van Bergen CAM, Falkenburg JHF. Autosomal Minor Histocompatibility Antigens: How Genetic Variants Create Diversity in Immune Targets. Front Immunol 2016; 7:100. [PMID: 27014279 PMCID: PMC4791598 DOI: 10.3389/fimmu.2016.00100] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/01/2016] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) can be a curative treatment for hematological malignancies. Unfortunately, the desired anti-tumor or graft-versus-leukemia (GvL) effect is often accompanied with undesired side effects against healthy tissues known as graft-versus-host disease (GvHD). After HLA-matched alloSCT, GvL and GvHD are both mediated by donor-derived T-cells recognizing polymorphic peptides presented by HLA surface molecules on patient cells. These polymorphic peptides or minor histocompatibility antigens (MiHA) are produced by genetic differences between patient and donor. Since polymorphic peptides may be useful targets to manipulate the balance between GvL and GvHD, the dominant repertoire of MiHA needs to be discovered. In this review, the diversity of autosomal MiHA characterized thus far as well as the various molecular mechanisms by which genetic variants create immune targets and the role of cryptic transcripts and proteins as antigen sources are described. The tissue distribution of MiHA as important factor in GvL and GvHD is considered as well as possibilities how hematopoietic MiHA can be used for immunotherapy to augment GvL after alloSCT. Although more MiHA are still needed for comprehensive understanding of the biology of GvL and GvHD and manipulation by immunotherapy, this review shows insight into the composition and kinetics of in vivo immune responses with respect to specificity, diversity, and frequency of specific T-cells and surface expression of HLA-peptide complexes and other (accessory) molecules on the target cell. A complex interplay between these factors and their environment ultimately determines the spectrum of clinical manifestations caused by immune responses after alloSCT.
Collapse
Affiliation(s)
- Marieke Griffioen
- Department of Hematology, Leiden University Medical Center , Leiden , Netherlands
| | | | | |
Collapse
|
44
|
Proteogenomic-based discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers. Leukemia 2016; 30:1344-54. [PMID: 26857467 DOI: 10.1038/leu.2016.22] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/02/2016] [Accepted: 01/10/2016] [Indexed: 12/19/2022]
Abstract
Pre-clinical studies have shown that injection of allogeneic T cells primed against a single minor histocompatibility antigen (MiHA) could cure hematologic cancers (HC) without causing any toxicity to the host. However, translation of this approach in humans has been hampered by the paucity of molecularly defined human MiHAs. Using a novel proteogenomic approach, we have analyzed cells from 13 volunteers and discovered a vast repertoire of MiHAs presented by the most common HLA haplotype in European Americans: HLA-A*02:01;B*44:03. Notably, out of >6000 MiHAs, we have identified a set of 39 MiHAs that share optimal features for immunotherapy of HCs. These 'optimal MiHAs' are coded by common alleles of genes that are preferentially expressed in hematopoietic cells. Bioinformatic modeling based on MiHA allelic frequencies showed that the 39 optimal MiHAs would enable MiHA-targeted immunotherapy of practically all HLA-A*02:01;B*44:03 patients. Further extension of this strategy to a few additional HLA haplotypes would allow treatment of almost all patients.
Collapse
|
45
|
Thus KA, de Weger RA, de Hoop TA, Boers Trilles VE, Kuball J, Spierings E. Complete donor chimerism is a prerequisite for the effect of Predicted Indirectly ReCognizable HLA Epitopes (PIRCHE) on acute graft-versus-host disease. CHIMERISM 2015; 5:94-8. [PMID: 26669207 DOI: 10.1080/19381956.2015.1097025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Predicted indirectly recognizable HLA epitopes (PIRCHE) computationally predict donor T-cell recognition of mismatched-HLA derived peptides following allogeneic haematopoietic stem-cell transplantation (allo-HSCT), as is evidenced by the correlation between presence of HLA-DPB1-derived PIRCHE and the occurrence of graft-vs.-host disease (GVHD). Complete donor T-cell chimerism associates with an increased GVHD risk compared to mixed patient and donor chimerism. If the correlation between the presence of PIRCHE and GVHD occurrence is indeed mediated by donor T cells, the presence of donor T cells should be required to observe such a correlation. This study was initiated to investigate whether the effect of PIRCHE is different in patients with complete chimerism compared to those with mixed chimerism. Indeed, the correlation between PIRCHE and GVHD is present in patients with complete chimerism, whereas it is absent in those with mixed chimerism. The data presented here suggest that chimerism status is important for the detection of potential GVHD epitopes.
Collapse
Affiliation(s)
- Kirsten A Thus
- a Laboratory of Translational Immunology; University Medical Center Utrecht ; Utrecht , the Netherlands
| | - Roel A de Weger
- b Department of Pathology ; University Medical Center Utrecht ; Utrecht , the Netherlands
| | - Talitha A de Hoop
- a Laboratory of Translational Immunology; University Medical Center Utrecht ; Utrecht , the Netherlands
| | - Valeria E Boers Trilles
- a Laboratory of Translational Immunology; University Medical Center Utrecht ; Utrecht , the Netherlands
| | - Jürgen Kuball
- a Laboratory of Translational Immunology; University Medical Center Utrecht ; Utrecht , the Netherlands.,c Department of Hematology ; University Medical Center Utrecht ; Utrecht , the Netherlands
| | - Eric Spierings
- a Laboratory of Translational Immunology; University Medical Center Utrecht ; Utrecht , the Netherlands
| |
Collapse
|
46
|
Park Y, Cheong JW, Park MH, Kim MS, Kim JS, Kim HS. Effect of major histocompatibility complex haplotype matching by C4 and MICA genotyping on acute graft versus host disease in unrelated hematopoietic stem cell transplantation. Hum Immunol 2015; 77:176-83. [PMID: 26602146 DOI: 10.1016/j.humimm.2015.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
We explored whether matching of human leukocyte antigen (HLA) haplotypes between the recipient and donor of hematopoietic stem cell transplantation (HSCT) predicted by C4 and MICA typing is associated with the incidence of acute graft versus host disease (aGVHD). DNA preparations collected from a total of 81 recipient and donor pairs were used for PCR-based C4 subtyping and/or MICA sequence-based typing. Incidences of aGVHD were compared according to C4 and MICA matching. The six most common MICA alleles were MICA*008:01, *010:01, *002:01, *004, *009:01/049, and *012:01. Among the 59 unrelated pairs, HLA alleles were matched in 34 (57.6%). C4 subtypes were identical between the recipient and donor in 28 (82.4%) HLA-matched unrelated pairs, while MICA genotypes were matched in all HLA-matched unrelated pairs. In the 22 HLA-matched related pairs, all recipients showed identical C4 subtypes with their respective donors. In multivariate analysis, C4 mismatch was a significant risk factor associated with the development of aGVHD in unrelated HSCT (hazard ratio=3.24, P=0.006). PCR-based C4 subtyping is a simple method for assessing the genetic identity of the HLA region between a recipient and unrelated donor. This test would be also useful for prediction of aGVHD in HSCT.
Collapse
Affiliation(s)
- Yongjung Park
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Korea Organ Donation Agency Laboratory, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Division of Transplantation Surgery, Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Sun Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome. Stem Cells Int 2015; 2015:346714. [PMID: 26366178 PMCID: PMC4549550 DOI: 10.1155/2015/346714] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023] Open
Abstract
The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire.
To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection.
Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.
Collapse
|
48
|
Nakasone H, Remberger M, Tian L, Brodin P, Sahaf B, Wu F, Mattsson J, Lowsky R, Negrin R, Miklos DB, Meyer E. Risks and benefits of sex-mismatched hematopoietic cell transplantation differ according to conditioning strategy. Haematologica 2015; 100:1477-85. [PMID: 26250581 DOI: 10.3324/haematol.2015.125294] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/06/2015] [Indexed: 12/24/2022] Open
Abstract
Sex-mismatched hematopoietic cell transplantation is linked to increased graft-versus-host disease and mortality in myeloablative conditioning. Here we evaluated outcomes of 1,041 adult transplant recipients at two centers between 2006 and 2013 and investigated how the effect of sex-mismatching differed in myeloablative, reduced-intensity, and non-myeloablative total lymphoid irradiation with anti-thymocyte globulin conditioning. Among patients who underwent myeloablative conditioning, male recipients with female donors had increased chronic graft-versus-host disease (hazard ratio 1.83, P<0.01), increased non-relapse mortality (hazard ratio 1.84, P=0.022) and inferior overall survival (hazard ratio 1.59, P=0.018). In contrast, among patients who received reduced-intensity conditioning, male recipients with female donors had increased acute graft-versus-host disease (hazard ratio 1.96, P<0.01) but no difference in non-relapse mortality or overall survival. Among the patients who underwent total lymphoid irradiation with anti-thymocyte globulin, male recipients with female donors showed no increase in graft-versus-host disease or non-relapse mortality. Notably, only in the cohort receiving total lymphoid irradiation with anti-thymocyte globulin were male recipients with female donors significantly associated with reduced relapse (hazard ratio 0.64, P<0.01), and allo-antibody responses against H-Y antigens were predictive of reduced relapse. In the cohort given total lymphoid irradiation with anti-thymocyte globulin, the graft-versus-leukemia effect resulted in superior overall survival in recipients of sex-mismatched grafts (HR 0.69, P=0.037). In addition, only in the cohort treated with total lymphoid irradiation with anti-thymocyte globulin were female recipients with male donors associated with reduced relapse (hazard ratio 0.59, P<0.01) and superior survival (hazard ratio 0.61, P=0.014) compared with sex-matched pairs. We conclude that the risks and benefits of sex-mismatched transplants appear to differ according to conditioning strategy and this could affect donor selection.
Collapse
Affiliation(s)
- Hideki Nakasone
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Mats Remberger
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Lu Tian
- Department of Health Research and Policy, Stanford University School of Medicine, CA, USA
| | - Petter Brodin
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bita Sahaf
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Fang Wu
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas Mattsson
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Robert Lowsky
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Negrin
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Everett Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
49
|
Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the california population: evaluating matching in a multiethnic and admixed population. Stem Cells Transl Med 2015; 4:413-8. [PMID: 25926330 DOI: 10.5966/sctm.2015-0052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of a California-based induced pluripotent stem cell (iPSC) bank based on human leukocyte antigen (HLA) haplotype matching represents a significant challenge and a valuable opportunity for the advancement of regenerative medicine. However, previously published models of iPSC banks have neither addressed the admixed nature of populations like that of California nor evaluated the benefit to the population as a whole. We developed a new model for evaluating an iPSC haplobank based on demographic and immunogenetic characteristics reflecting California. The model evaluates haplolines or cell lines from donors homozygous for a single HLA-A, HLA-B, HLA-DRB1 haplotype. We generated estimates of the percentage of the population matched under various combinations of haplolines derived from six ancestries (black/African American, American Indian, Asian/Pacific Islander, Hispanic, and white/not Hispanic) and data available from the U.S. Census Bureau, the California Institute for Regenerative Medicine, and the National Marrow Donor Program. The model included both cis (haplotype-level) and trans (genotype-level) matching between a modeled iPSC haplobank and the recipient population following resampling simulations. We showed that serving a majority (>50%) of a simulated California population through cis matching would require the creation, redundant storage, and maintenance of almost 207 different haplolines representing the top 60 most frequent haplotypes from each ancestry group. Allowances for trans matching reduced the haplobank to fewer than 141 haplolines found among the top 40 most frequent haplotypes. Finally, we showed that a model optimized, custom haplobank was able to serve a majority of the California population with fewer than 80 haplolines.
Collapse
|
50
|
Genome-wide single-nucleotide polymorphism analysis revealed SUFU suppression of acute graft-versus-host disease through downregulation of HLA-DR expression in recipient dendritic cells. Sci Rep 2015; 5:11098. [PMID: 26067905 PMCID: PMC4464079 DOI: 10.1038/srep11098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). To identify recipient risk factors, a genome-wide study was performed including 481,820 single-nucleotide polymorphisms (SNPs). Two GVHD susceptibility loci (rs17114803 and rs17114808) within the SUFU gene were identified in the discovery cohort (p = 2.85 × 10−5). The incidence of acute GVHD among patients homozygous for CC at SUFU rs17114808 was 69%, which was significantly higher than the 8% rate observed in CT heterozygous patients (p = 0.0002). In an independent validation cohort of 100 patients, 50% of the patients with the CC genotype developed GVHD compared to 8% of the patients with either CT or TT genotype (p = 0.01). In comparison to CC dendritic cells, those from CT expressed higher levels of SUFU mRNA and protein, had lower levels of surface HLA-DR, and induced less allogeneic mixed leukocyte response (MLR). Ectopic expression of SUFU in THP-1 derived DCs reduced HLA-DR expression and suppressed MLR, whereas silencing of SUFU enhanced HLA-DR expression and increased MLR. Thus our findings provide novel evidence that recipient SUFU germline polymorphism is associated with acute GVHD and is a novel molecular target for GVHD prevention and treatment.
Collapse
|