1
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Heffernan DS, Chun TT, Monaghan SF, Chung CS, Ayala A. invariant Natural Killer T Cells Modulate the Peritoneal Macrophage Response to Polymicrobial Sepsis. J Surg Res 2024; 300:211-220. [PMID: 38824851 PMCID: PMC11246799 DOI: 10.1016/j.jss.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION A dysregulated immune system is a major driver of the mortality and long-term morbidity from sepsis. With respect to macrophages, it has been shown that phenotypic changes are critical to effector function in response to acute infections, including intra-abdominal sepsis. Invariant natural killer T cells (iNKT cells) have emerged as potential central regulators of the immune response to a variety of infectious insults. Specifically, various iNKT cell:macrophage interactions have been noted across a spectrum of diseases, including acute events such as sepsis. However, the potential for iNKT cells to affect peritoneal macrophages during an abdominal septic event is as yet unknown. METHODS Cecal ligation and puncture (CLP) was performed in both wild type (WT) and invariant natural killer T cell knockout (iNKT-/-) mice. 24 h following CLP or sham operation, peritoneal macrophages were collected for analysis. Analysis of macrophage phenotype and function was undertaken to include analysis of bactericidal activity and cytokine or superoxide production. RESULTS Within iNKT-/- mice, a greater degree of intraperitoneal macrophages in response to the sepsis was noted. Compared to WT mice, within iNKT-/- mice, CLP did induce an increase in CD86+ and CD206+, but no difference in CD11b+. Unlike WT mice, intra-abdominal sepsis within iNKT-/- mice induced an increase in Ly6C-int (5.2% versus 14.9%; P < 0.05) and a decrease in Ly6C-high on peritoneal macrophages. Unlike phagocytosis, iNKT cells did not affect macrophage bactericidal activity. Although iNKT cells did not affect interleukin-6 production, iNKT cells did affect IL-10 production and both nitrite and superoxide production from peritoneal macrophages. CONCLUSIONS The observations indicate that iNKT cells affect specific phenotypic and functional aspects of peritoneal macrophages during polymicrobial sepsis. Given that pharmacologic agents that affect iNKT cell functioning are currently in clinical trial, these findings may have the potential for translation to critically ill surgical patients with abdominal sepsis.
Collapse
Affiliation(s)
- Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island.
| | - Tristen T Chun
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
3
|
Isiaku AI, Zhang Z, Pazhakh V, Lieschke GJ. A nox2/cybb zebrafish mutant with defective myeloid cell reactive oxygen species production displays normal initial neutrophil recruitment to sterile tail injuries. G3 (BETHESDA, MD.) 2024; 14:jkae079. [PMID: 38696730 PMCID: PMC11152067 DOI: 10.1093/g3journal/jkae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Reactive oxygen species are important effectors and modifiers of the acute inflammatory response, recruiting phagocytes including neutrophils to sites of tissue injury. In turn, phagocytes such as neutrophils are both consumers and producers of reactive oxygen species. Phagocytes including neutrophils generate reactive oxygen species in an oxidative burst through the activity of a multimeric phagocytic nicotinamide adenine dinucleotide phosphate oxidase complex. Mutations in the NOX2/CYBB (previously gp91phox) nicotinamide adenine dinucleotide phosphate oxidase subunit are the commonest cause of chronic granulomatous disease, a disease characterized by infection susceptibility and an inflammatory phenotype. To model chronic granulomatous disease, we made a nox2/cybb zebrafish (Danio rerio) mutant and demonstrated it to have severely impaired myeloid cell reactive oxygen species production. Reduced early survival of nox2 mutant embryos indicated an essential requirement for nox2 during early development. In nox2/cybb zebrafish mutants, the dynamics of initial neutrophil recruitment to both mild and severe surgical tailfin wounds was normal, suggesting that excessive neutrophil recruitment at the initiation of inflammation is not the primary cause of the "sterile" inflammatory phenotype of chronic granulomatous disease patients. This nox2 zebrafish mutant adds to existing in vivo models for studying reactive oxygen species function in myeloid cells including neutrophils in development and disease.
Collapse
Affiliation(s)
- Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zuobing Zhang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Center and The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
4
|
Jin Y, Huang Y, Zeng G, Hu J, Li M, Tian M, Lei T, Huang R. Advanced glycation end products regulate macrophage apoptosis and influence the healing of diabetic foot wound through miR-361-3p/CSF1R and PI3K/AKT pathway. Heliyon 2024; 10:e24598. [PMID: 38312602 PMCID: PMC10835292 DOI: 10.1016/j.heliyon.2024.e24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Background Diabetic foot ulcers (DFUs) are a severe complication of diabetes. Persistent inflammation and impaired vascularization present considerable challenges in tissue wound healing. The aim of this study was to identify the crucial regulators of DFU wound healing and investigate their specific mechanisms in DFU. Methods DFU RNA sequencing data were obtained to identify crucial feature genes. The expression levels of the feature genes and their corresponding microRNAs (miRNAs) were verified in clinical samples. Subsequently, the expression of CD68 was determined in DFU and non-diabetic foot skin samples. RAW 264.7 cells were treated with advanced glycation end products (AGEs) to determine their viability and apoptosis. Finally, the roles of the selected crucial genes and their corresponding miRNAs were investigated using in vitro experiments and a mouse model of diabetes. Results Bioinformatic analysis showed that five crucial feature genes (CORO1A, CSF1R, CTSH, NFE2L3, and SLC16A10) were associated with DFU wound healing. The expression validation showed that miR-361-3p-CSF1R had a significant negative correlation and was thus selected for further experiments. AGEs significantly inhibited the viability of RAW 264.7 cells and enhanced their apoptosis; furthermore, the AGEs significantly downregulated CSF1R and increased miR-361-3p levels compared with the control cells. Additionally, inhibition of miR-361-3p decreased the cell apoptosis caused by AGEs and increased the levels of p-AKT/AKT and p-PI3K/PI3K, whereas CSF1R knockdown reversed the effects of miR-361-3p. In vivo experiments showed that miR-361-3p inhibition promoted wound healing in diabetic mice and regulated PI3K/AKT levels. Conclusions AGEs may regulate macrophage apoptosis via the miR-361-3p/CSF1R axis and PI3K/AKT pathway, thereby influencing DFU wound healing.
Collapse
Affiliation(s)
- Yongzhi Jin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yi Huang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Guang Zeng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Junsheng Hu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Mengfan Li
- Department of General Surgery, LiQun Hospital, Shanghai, 200333, China
| | - Ming Tian
- Shanghai Burn Institute, Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Rong Huang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
5
|
Qiu H, Shao Z, Wen X, Liu Z, Chen Z, Qu D, Ding X, Zhang L. Efferocytosis: An accomplice of cancer immune escape. Biomed Pharmacother 2023; 167:115540. [PMID: 37741255 DOI: 10.1016/j.biopha.2023.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
The clearance of apoptotic cells by efferocytes such as macrophages and dendritic cells is termed as "efferocytosis", it plays critical roles in maintaining tissue homeostasis in multicellular organisms. Currently, available studies indicate that efferocytosis-related molecules and pathways are tightly associated with cancer development, metastasis and treatment resistance, efferocytosis also induces an immunosuppressive tumor microenvironment and assists cancer cells escape from immune surveillance. In this study, we reviewed the underlying mechanisms of efferocytosis in mediating the occurrence of cancer immune escape, and then emphatically summarized the strategies of using efferocytosis as therapeutic target to enhance the anti-tumor efficacies of immune checkpoint inhibitors, hoping to provide powerful evidences for more effective therapeutic regimens of malignant tumors.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhengyang Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziqin Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Wei D, Qi J, Wang Y, Li L, Yang G, He X, Zhang Z. NR4A2 may be a potential diagnostic biomarker for myocardial infarction: A comprehensive bioinformatics analysis and experimental validation. Front Immunol 2022; 13:1061800. [PMID: 36618351 PMCID: PMC9815548 DOI: 10.3389/fimmu.2022.1061800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Myocardial infarction is a well-established severe consequence of coronary artery disease. However, the lack of effective early biomarkers accounts for the lag time before clinical diagnosis of myocardial infarction. The present study aimed to predict critical genes for the diagnosis of MI by immune infiltration analysis and establish a nomogram. Methods Gene microarray data were downloaded from Gene Expression Omnibus (GEO). Differential expression analysis, single-cell sequencing, and disease ontology (DO) enrichment analysis were performed to determine the distribution of Differentially Expressed Genes (DEGs) in cell subpopulations and their correlation with MI. Next, the level of infiltration of 16 immune cells and immune functions and their hub genes were analyzed using a Single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, the accuracy of critical markers for the diagnosis of MI was subsequently assessed using receiver operating characteristic curves (ROC). One datasets were used to test the accuracy of the model. Finally, the genes with the most diagnostic value for MI were screened and experimentally validated. Results 335 DEGs were identified in GSE66360, including 280 upregulated and 55 downregulated genes. Single-cell sequencing results demonstrated that DEGs were mainly distributed in endothelial cells. DO enrichment analysis suggested that DEGs were highly correlated with MI. In the MI population, macrophages, neutrophils, CCR, and Parainflammation were significantly upregulated compared to the average population. NR4A2 was identified as the gene with the most significant diagnostic value in the immune scoring and diagnostic model. 191 possible drugs for the treatment of myocardial infarction were identified by drug prediction analysis. Finally, our results were validated by Real-time Quantitativepolymerase chain reaction and Western Blot of animal samples. Conclusion Our comprehensive in silico analysis revealed that NR4A2 has huge prospects for application in diagnosing patients with MI.
Collapse
Affiliation(s)
- Dongsheng Wei
- Graduate Academy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Jiajie Qi
- Graduate Academy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yuxuan Wang
- Graduate Academy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Luzhen Li
- Graduate Academy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Guanlin Yang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Xinyong He
- College of Medical Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Zhe Zhang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China,*Correspondence: Zhe Zhang,
| |
Collapse
|
7
|
Fu SP, Chen SY, Pang QM, Zhang M, Wu XC, Wan X, Wan WH, Ao J, Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front Immunol 2022; 13:1014013. [PMID: 36532022 PMCID: PMC9751019 DOI: 10.3389/fimmu.2022.1014013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
It is often difficult to regain neurological function following spinal cord injury (SCI). Neuroinflammation is thought to be responsible for this failure. Regulating the inflammatory response post-SCI may contribute to the recovery of neurological function. Over the past few decades, studies have found that macrophages/microglia are one of the primary effector cells in the inflammatory response following SCI. Growing evidence has documented that macrophages/microglia are plastic cells that can polarize in response to microenvironmental signals into M1 and M2 macrophages/microglia. M1 produces pro-inflammatory cytokines to induce inflammation and worsen tissue damage, while M2 has anti-inflammatory activities in wound healing and tissue regeneration. Recent studies have indicated that the transition from the M1 to the M2 phenotype of macrophage/microglia supports the regression of inflammation and tissue repair. Here, we will review the role of the inflammatory response and macrophages/microglia in SCI and repair. In addition, we will discuss potential molecular mechanisms that induce macrophage/microglia polarization, with emphasis on neuroprotective therapies that modulate macrophage/microglia polarization, which will provide new insights into therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ming Pang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Tao Zhang,
| |
Collapse
|
8
|
Cruz MS, Loureiro JP, Oliveira MJ, Macedo MF. The iNKT Cell-Macrophage Axis in Homeostasis and Disease. Int J Mol Sci 2022; 23:ijms23031640. [PMID: 35163561 PMCID: PMC8835952 DOI: 10.3390/ijms23031640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted, lipid-reactive T cells that exhibit preponderant immunomodulatory properties. The ultimate protective or deleterious functions displayed by iNKT cells in tissues are known to be partially shaped by the interactions they establish with other immune cells. In particular, the iNKT cell–macrophage crosstalk has gained growing interest over the past two decades. Accumulating evidence has highlighted that this immune axis plays central roles not only in maintaining homeostasis but also during the development of several pathologies. Hence, this review summarizes the reported features of the iNKT cell–macrophage axis in health and disease. We discuss the pathophysiological significance of this interplay and provide an overview of how both cells communicate with each other to regulate disease onset and progression in the context of infection, obesity, sterile inflammation, cancer and autoimmunity.
Collapse
Affiliation(s)
- Mariana S. Cruz
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - José Pedro Loureiro
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Instituto Nacional de Engenharia Biomédica (INEB), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Department of Molecular Biology, ICBAS-Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Fatima Macedo
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
9
|
Wei W, Ning C, Huang J, Wang G, Lai J, Han J, He J, Zhang H, Liang B, Liao Y, Le T, Luo Q, Li Z, Jiang J, Ye L, Liang H. Talaromyces marneffei promotes M2-like polarization of human macrophages by downregulating SOCS3 expression and activating the TLR9 pathway. Virulence 2021; 12:1997-2012. [PMID: 34339354 PMCID: PMC8331029 DOI: 10.1080/21505594.2021.1958470] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Little is known about how Talaromyces marneffei, a thermally dimorphic fungus that causes substantial morbidity and mortality in Southeast Asia, evades the human immune system. Polarization of macrophages into fungal-inhibiting M1-like and fungal-promoting M2-like types has been shown to play an important role in the innate immune response against fungal pathogens. This mechanism has not been defined for T. marneffei. Here, we demonstrated that T. marneffei promotes its survival in human macrophages by inducing them toward M2-like polarization. Our investigations of the mechanism revealed that T. marneffei infection led to SOCS3 protein degradation by inducing tyrosine phosphorylation, thereby relieving the inhibitory effect of SOCS3 on p-STAT6, a key factor for M2-like polarization. Our SOCS3-overexpression experiments showed that SOCS3 is a positive regulator of M1-like polarization and plays an important role in limiting M2-like polarization. Furthermore, we found that inhibition of the TLR9 pathway partially blocked T. marneffei-induced M2-like polarization and significantly enhanced the killing activity of macrophages against T. marneffei. Collectively, these results reveal a novel mechanism by which T. marneffei evades the immune response of human macrophages.
Collapse
Affiliation(s)
- Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
- Nursing College, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Han
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinhao He
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Zhang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanyan Liao
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Thuy Le
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Division of Infectious Diseases and International Health, Duke University, Durham, North Carolina, USA
| | - Qiang Luo
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Li
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Pellefigues C, Naidoo K, Mehta P, Schmidt AJ, Jagot F, Roussel E, Cait A, Yumnam B, Chappell S, Meijlink K, Camberis M, Jiang JX, Painter G, Filbey K, Uluçkan Ö, Gasser O, Le Gros G. Basophils promote barrier dysfunction and resolution in the atopic skin. J Allergy Clin Immunol 2021; 148:799-812.e10. [PMID: 33662369 PMCID: PMC8410897 DOI: 10.1016/j.jaci.2021.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.
Collapse
Affiliation(s)
- Christophe Pellefigues
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand; INSERM UMR1149, CNRS ERL8252, Centre de recherche sur l'inflammation, Inflamex, Université de Paris, Paris, France.
| | - Karmella Naidoo
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Palak Mehta
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Alfonso J Schmidt
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Ferdinand Jagot
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Elsa Roussel
- Novartis Institutes for Biomedical Research (NIBR), Novartis, Basel, Switzerland
| | - Alissa Cait
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Sally Chappell
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Kimberley Meijlink
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Tex
| | - Gavin Painter
- Ferrier Research Institute, Victoria University, Wellington, New Zealand
| | - Kara Filbey
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Özge Uluçkan
- Novartis Institutes for Biomedical Research (NIBR), Novartis, Basel, Switzerland
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| |
Collapse
|
11
|
Lin W, Shen P, Song Y, Huang Y, Tu S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol 2021; 12:635021. [PMID: 33717180 PMCID: PMC7946999 DOI: 10.3389/fimmu.2021.635021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulated reactive oxygen species (ROS) directly contribute to biomacromolecule damage and influence various inflammatory responses. Reactive oxygen species act as mediator between innate and adaptive immune cells, thereby influencing the antigen-presenting process that results in T cell activation. Evidence from patients with chronic granulomatous disease and mouse models support the function of ROS in preventing abnormal autoimmunity; for example, by supporting maintenance of macrophage efferocytosis and T helper 1/T helper 2 and T helper 17/ regulatory T cell balance. The failure of many anti-oxidation treatments indicates that ROS cannot be considered entirely harmful. Indeed, enhancement of ROS may sometimes be required. In a mouse model of rheumatoid arthritis (RA), absence of NOX2-derived ROS led to higher prevalence and more severe symptoms. In patients with RA, naïve CD4+ T cells exhibit inhibited glycolysis and enhanced pentose phosphate pathway (PPP) activity, leading to ROS exhaustion. In this "reductive" state, CD4+ T cell immune homeostasis is disrupted, triggering joint destruction, together with oxidative stress in the synovium.
Collapse
Affiliation(s)
- Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, Desind S, Davra V, Birge RB. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells 2020; 9:cells9102207. [PMID: 33003477 PMCID: PMC7599747 DOI: 10.3390/cells9102207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological fate of cells that die by apoptosis is their prompt and efficient removal by efferocytosis. During these processes, apoptotic cells release intracellular constituents that include purine nucleotides, lysophosphatidylcholine (LPC), and Sphingosine-1-phosphate (S1P) that induce migration and chemo-attraction of phagocytes as well as mitogens and extracellular membrane-bound vesicles that contribute to apoptosis-induced compensatory proliferation and alteration of the extracellular matrix and the vascular network. Additionally, during efferocytosis, phagocytic cells produce a number of anti-inflammatory and resolving factors, and, together with apoptotic cells, efferocytic events have a homeostatic function that regulates tissue repair. These homeostatic functions are dysregulated in cancers, where, aforementioned events, if not properly controlled, can lead to cancer progression and immune escape. Here, we summarize evidence that apoptosis and efferocytosis are exploited in cancer, as well as discuss current translation and clinical efforts to harness signals from dying cells into therapeutic strategies.
Collapse
|
13
|
Bhosle VK, Mukherjee T, Huang YW, Patel S, Pang BWF, Liu GY, Glogauer M, Wu JY, Philpott DJ, Grinstein S, Robinson LA. SLIT2/ROBO1-signaling inhibits macropinocytosis by opposing cortical cytoskeletal remodeling. Nat Commun 2020; 11:4112. [PMID: 32807784 PMCID: PMC7431850 DOI: 10.1038/s41467-020-17651-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Macropinocytosis is essential for myeloid cells to survey their environment and for growth of RAS-transformed cancer cells. Several growth factors and inflammatory stimuli are known to induce macropinocytosis, but its endogenous inhibitors have remained elusive. Stimulation of Roundabout receptors by Slit ligands inhibits directional migration of many cell types, including immune cells and cancer cells. We report that SLIT2 inhibits macropinocytosis in vitro and in vivo by inducing cytoskeletal changes in macrophages. In mice, SLIT2 attenuates the uptake of muramyl dipeptide, thereby preventing NOD2-dependent activation of NF-κB and consequent secretion of pro-inflammatory chemokine, CXCL1. Conversely, blocking the action of endogenous SLIT2 enhances CXCL1 secretion. SLIT2 also inhibits macropinocytosis in RAS-transformed cancer cells, thereby decreasing their survival in nutrient-deficient conditions which resemble tumor microenvironment. Our results identify SLIT2 as a physiological inhibitor of macropinocytosis and challenge the conventional notion that signals that enhance macropinocytosis negatively regulate cell migration, and vice versa.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Bo Wen Frank Pang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- BenchSci, Suite 201, 559 College Street, Toronto, ON, M6G 1A9, Canada
| | - Guang-Ying Liu
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON, M5G 2L3, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
14
|
Nagala M, Crocker PR. Towards understanding the cell surface phenotype, metabolic properties and immune functions of resident macrophages of the peritoneal cavity and splenic red pulp using high resolution quantitative proteomics. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16061.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:Resident macrophages (Mϕs) are distributed throughout the body and are important for maintaining tissue homeostasis and for defence against infections. Tissue Mϕs are highly adapted to their microenvironment and thought to mediate tissue-specific functions involving metabolism and immune defence that are not fully elucidated. Methods:We have used high resolution quantitative proteomics to gain insights into the functions of two types of resident tissue Mϕs: peritoneal cavity Mϕs and splenic red pulp Mϕs. The cellular expression levels of many proteins were validated by flow cytometry and were consistently in agreement with the proteomics data.Results:Peritoneal and splenic red pulp macrophages displayed major differences in cell surface phenotype reflecting their adaptation to different tissue microenvironments and tissue-specific functions. Peritoneal Mϕs were shown to be enriched in a number of key enzymes and metabolic pathways normally associated with the liver, such as metabolism of fructose, detoxification, nitrogen homeostasis and the urea cycle. Supporting these observations, we show that peritoneal Mϕs are able to utilise glutamine and glutamate which are rich in peritoneum for urea generation. In comparison, splenic red pulp Mϕs were enriched in proteins important for adaptive immunity such as antigen presenting MHC molecules, in addition to proteins required for erythrocyte homeostasis and iron turnover. We also show that these tissue Mϕs may utilise carbon and nitrogen substrates for different metabolic fates to support distinct tissue-specific roles.Conclusions:This study provides new insights into the functions of tissue Mϕs in immunity and homeostasis. The comprehensive proteomics data sets are a valuable resource for biologists and immunologists.
Collapse
|
15
|
Zlatanova I, Pinto C, Bonnin P, Mathieu JRR, Bakker W, Vilar J, Lemitre M, Voehringer D, Vaulont S, Peyssonnaux C, Silvestre JS. Iron Regulator Hepcidin Impairs Macrophage-Dependent Cardiac Repair After Injury. Circulation 2019; 139:1530-1547. [PMID: 30586758 DOI: 10.1161/circulationaha.118.034545] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Defective systemic and local iron metabolism correlates with cardiac disorders. Hepcidin, a master iron sensor, actively tunes iron trafficking. We hypothesized that hepcidin could play a key role to locally regulate cardiac homeostasis after acute myocardial infarction. METHODS Cardiac repair was analyzed in mice harboring specific cardiomyocyte or myeloid cell deficiency of hepcidin and challenged with acute myocardial infarction. RESULTS We found that the expression of hepcidin was elevated after acute myocardial infarction and the specific deletion of hepcidin in cardiomyocytes failed to improve cardiac repair and function. However, transplantation of bone marrow-derived cells from hepcidin-deficient mice ( Hamp-/-) or from mice with specific deletion of hepcidin in myeloid cells (LysMCRE/+/ Hampf/f) improved cardiac function. This effect was associated with a robust reduction in the infarct size and tissue fibrosis in addition to favoring cardiomyocyte renewal. Macrophages lacking hepcidin promoted cardiomyocyte proliferation in a prototypic model of apical resection-induced cardiac regeneration in neonatal mice. Interleukin (IL)-6 increased hepcidin levels in inflammatory macrophages. Hepcidin deficiency enhanced the number of CD45+/CD11b+/F4/80+/CD64+/MHCIILow/chemokine (C-C motif) receptor 2 (CCR2)+ inflammatory macrophages and fostered signal transducer and activator of transcription factor-3 (STAT3) phosphorylation, an instrumental step in the release of IL-4 and IL-13. The combined genetic suppression of hepcidin and IL-4/IL-13 in macrophages failed to improve cardiac function in both adult and neonatal injured hearts. CONCLUSIONS Hepcidin refrains macrophage-induced cardiac repair and regeneration through modulation of IL-4/IL-13 pathways.
Collapse
Affiliation(s)
- Ivana Zlatanova
- Institut National de la Santé et de la Recherche Médicale, UMRS-970, Paris Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, France (I.Z., C.P., W.B., J.V., M.L., J.-S-.S.)
| | - Cristina Pinto
- Institut National de la Santé et de la Recherche Médicale, UMRS-970, Paris Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, France (I.Z., C.P., W.B., J.V., M.L., J.-S-.S.)
| | - Philippe Bonnin
- Institut National de la Santé et de la Recherche Médicale, Unit 965, Départment de physiologie Clinique, Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière, France (P.B.)
| | - Jacques R R Mathieu
- Institut National de la Santé et de la Recherche Médicale U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, France (J.R.R.M., S.V., C.P.)
| | - Wineke Bakker
- Institut National de la Santé et de la Recherche Médicale, UMRS-970, Paris Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, France (I.Z., C.P., W.B., J.V., M.L., J.-S-.S.)
| | - Jose Vilar
- Institut National de la Santé et de la Recherche Médicale, UMRS-970, Paris Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, France (I.Z., C.P., W.B., J.V., M.L., J.-S-.S.)
| | - Mathilde Lemitre
- Institut National de la Santé et de la Recherche Médicale, UMRS-970, Paris Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, France (I.Z., C.P., W.B., J.V., M.L., J.-S-.S.)
| | - David Voehringer
- University Hospital Erlangen, Wasserturmstrasse 3/5, Germany (D.V.)
| | - Sophie Vaulont
- Institut National de la Santé et de la Recherche Médicale U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, France (J.R.R.M., S.V., C.P.)
| | - Carole Peyssonnaux
- Institut National de la Santé et de la Recherche Médicale U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, France (J.R.R.M., S.V., C.P.)
| | - Jean-Sébastien Silvestre
- Institut National de la Santé et de la Recherche Médicale, UMRS-970, Paris Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, France (I.Z., C.P., W.B., J.V., M.L., J.-S-.S.)
| |
Collapse
|
16
|
Meda Spaccamela V, Valencia RG, Pastukhov O, Duppenthaler A, Dettmer MS, Erb J, Steiner UC, Hillinger S, Speckmann C, Ehl S, Reichenbach J, Siler U. High Levels of IL-18 and IFN-γ in Chronically Inflamed Tissue in Chronic Granulomatous Disease. Front Immunol 2019; 10:2236. [PMID: 31681257 PMCID: PMC6813411 DOI: 10.3389/fimmu.2019.02236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Chronic granulomatous disease (CGD) is caused by a malfunctioning nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex in phagocytes, leading to impaired bacterial and fungal killing and hyperinflammation. Objective: To characterize macrophage subsets and cytokine/chemokine signaling loops involved in CGD tissue hyperinflammation. Methods: Cytokine/chemokine production and surface marker expression were analyzed in inflamed tissue of four CGD patients and compared to cytokine/chemokine released by CGD macrophages upon priming to different macrophage subpopulations. Furthermore, the re-priming capacity of CGD pro-inflammatory M1 to M2a anti-inflammatory macrophages was evaluated. Results: In human CGD inflammatory tissue, IL-18 and IFN-γ were detected in significant quantity. Immunofluorescence analysis identified macrophages as one source of IL-18 in inflamed tissue. In vitro, CGD macrophages could be primed and re-primed into all inflammatory/anti-inflammatory macrophage subpopulations. IL-18 was also released by M1 CGD and control macrophages. Conclusion: CGD pro-inflammatory M1 macrophages remain M1 primed in vivo. As CGD M1 macrophages can be re-primed to anti-inflammatory M2a phenotype in vitro, macrophages are kept in M1 state in vivo by a persistent pro-inflammatory environment. Our results suggest a paracrine signaling loop between M1 macrophage derived IL-18 and non-macrophage derived IFN-γ maintaining macrophage pro-inflammatory activity in CGD tissue.
Collapse
Affiliation(s)
- Virginia Meda Spaccamela
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Rocio G Valencia
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland
| | - Oleksandr Pastukhov
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea Duppenthaler
- Unit of Pediatric Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland
| | | | - Juliane Erb
- Center for Dentistry, University of Zurich, Zurich, Switzerland
| | - Urs C Steiner
- Department of Clinical Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Sven Hillinger
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Carsten Speckmann
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Janine Reichenbach
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Unit of Pediatric Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, University Zurich, Zurich, Switzerland
| | - Ulrich Siler
- Division of Immunology, University Children's Hospital and Children's Research Center, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Pellefigues C, Mehta P, Prout MS, Naidoo K, Yumnam B, Chandler J, Chappell S, Filbey K, Camberis M, Le Gros G. The Basoph8 Mice Enable an Unbiased Detection and a Conditional Depletion of Basophils. Front Immunol 2019; 10:2143. [PMID: 31552058 PMCID: PMC6746837 DOI: 10.3389/fimmu.2019.02143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Basophils are granulocytes involved in parasite immunity and allergic diseases, known for their potent secretion of type 2 cytokines. Identifying their functions has proven to be controversial due to their relative rarity and their complex lineage phenotype. Here, we show that the expression of basophils lineage markers CD200R3 and FcεRIα is highly variable in inflammatory settings and hinders basophils identification by flow cytometry across multiple disease states or tissues. Fluorophore-conjugated antibody staining of these lineage markers strongly activates basophil type 2 cytokine expression, and represents a potential bias for coculture or in vivo transfer experiments. The Basoph8 is a mouse model where basophils specifically express a strong fluorescent reporter and the Cre recombinase. Basophils can be identified and FACS sorted unambiguously by their expression of the enhanced yellow fluorescent protein (eYFP) in these mice. We show that the expression of the eYFP is robust in vivo during inflammation, and in vitro on living basophils for at least 72 h, including during the induction of anaphylactoid degranulation. We bred and characterized the Basoph8xiDTR mice, in which basophils specifically express eYFP and the simian diphtheria toxin receptor (DTR). This model enables basophils conditional depletion relatively specifically ex vivo and in vivo during allergic inflammation and their detection as eYFP+ cells. In conclusion, we report underappreciated benefits of the commercially available Basoph8 mice to study basophils function.
Collapse
Affiliation(s)
- Christophe Pellefigues
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Palak Mehta
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Melanie Sarah Prout
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Karmella Naidoo
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Bibek Yumnam
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Jodie Chandler
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Sally Chappell
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Kara Filbey
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Mali Camberis
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Graham Le Gros
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| |
Collapse
|
18
|
van der Kraan PM. The Interaction between Joint Inflammation and Cartilage Repair. Tissue Eng Regen Med 2019; 16:327-334. [PMID: 31413937 PMCID: PMC6675839 DOI: 10.1007/s13770-019-00204-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/01/2022] Open
Abstract
Background Articular cartilage lesions occur frequently but unfortunately damaged cartilage has a very limited intrinsic repair capacity. Therefore, there is a high need to develop technology that makes cartilage repair possible. Since joint damage will lead to (sterile) inflammation, development of this technology has to take into account the effects of inflammation on cartilage repair. Methods A literature search has been performed including combinations of the following keywords; cartilage repair, fracture repair, chondrogenesis, (sterile) inflammation, inflammatory factors, macrophage, innate immunity, and a number of individual cytokines. Papers were selected that described how inflammation or inflammatory factors affect chondrogenesis and tissue repair. A narrative review is written based on these papers focusing on the role of inflammation in cartilage repair and what we can learn from findings in other organs, especially fracture repair. Results The relationship between inflammation and tissue repair is not straightforward. Acute, local inflammation stimulates fracture repair but appears to be deleterious for chondrogenesis and cartilage repair. Systemic inflammation has a negative effect on all sorts of tissue repair. Conclusion Findings on the role of inflammation in fracture repair and cartilage repair are not in line. The currently widely used models of chondrogenesis, using high differentiation factor concentrations and corticosteroid levels, are not optimal. To make it possible to draw more valid conclusions about the role of inflammation and inflammatory factors on cartilage repair, model systems must be developed that better mimic the real conditions in a joint with damaged cartilage.
Collapse
Affiliation(s)
- Peter M. van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
19
|
Dinauer MC. Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 2019; 133:2130-2139. [PMID: 30898864 PMCID: PMC6524563 DOI: 10.1182/blood-2018-11-844563] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies affecting the function of neutrophils and other phagocytic leukocytes are notable for an increased susceptibility to bacterial and fungal infections as a result of impaired leukocyte recruitment, ingestion, and/or killing of microbes. The underlying molecular defects can also impact other innate immune responses to infectious and inflammatory stimuli, leading to inflammatory and autoimmune complications that are not always directly related to infection. This review will provide an update on congenital disorders affecting neutrophil function in which a combination of host defense and inflammatory complications are prominent, including nicotinamide dinucleotide phosphate oxidase defects in chronic granulomatous disease and β2 integrin defects in leukocyte adhesion deficiency.
Collapse
Affiliation(s)
- Mary C Dinauer
- Department of Pediatrics and Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
20
|
Zeng MY, Miralda I, Armstrong CL, Uriarte SM, Bagaitkar J. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol Oral Microbiol 2019; 34:27-38. [PMID: 30632295 DOI: 10.1111/omi.12252] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Neutrophils are phagocytic innate immune cells essential for killing bacteria via activation of a wide variety of effector responses and generation of large amounts of reactive oxygen species (ROS). Majority of the ROS in neutrophils is generated by activation of the superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Independent of their anti-microbial function, NADPH oxidase-derived ROS have emerged as key regulators of host immune responses and neutrophilic inflammation. Data from patients with inherited defects in the NADPH oxidase subunit alleles that ablate its enzyme function as well as mouse models demonstrate profound dysregulation of host inflammatory responses, neutrophil hyper-activation and tissue damage in response to microbial ligands or tissue trauma. A large body of literature now demonstrates how oxidants function as essential signaling molecules that are essential for the regulation of neutrophil responses during priming, degranulation, neutrophil extracellular trap formation, and apoptosis, independent of their role in microbial killing. In this review we summarize how NADPH oxidase-derived oxidants modulate neutrophil function in a cell intrinsic manner and regulate host inflammatory responses. In addition, we summarize studies that have elucidated possible roles of oxidants in neutrophilic responses within the oral mucosa and periodontal disease.
Collapse
Affiliation(s)
- Melody Y Zeng
- Department of Pediatrics and Drukier Institute for Children's Health, Weill Cornell Medical College, New York City, New York
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Cortney L Armstrong
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Silvia M Uriarte
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.,Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Juhi Bagaitkar
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.,Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky
| |
Collapse
|
21
|
Ferhat MH, Robin A, Barbier L, Thierry A, Gombert JM, Barbarin A, Herbelin A. The Impact of Invariant NKT Cells in Sterile Inflammation: The Possible Contribution of the Alarmin/Cytokine IL-33. Front Immunol 2018; 9:2308. [PMID: 30374349 PMCID: PMC6197076 DOI: 10.3389/fimmu.2018.02308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/17/2018] [Indexed: 01/13/2023] Open
Abstract
Although the contribution of iNKT cells to induction of sterile inflammation is now well-established, the nature of the endogenous compounds released early after cellular stress or damage that drive their activation and recruitment remains poorly understood. More precisely, iNKT cells have not been described as being reactive to endogenous non-protein damage-associated molecular-pattern molecules (DAMPs). A second subset of DAMPs, called alarmins, are tissue-derived nuclear proteins, constitutively expressed at high levels in epithelial barrier tissues and endothelial barriers. These potent immunostimulants, immediately released after tissue damage, include the alarmin IL-33. This factor has aroused interest due to its singular action as an alarmin during infectious, allergic responses and acute tissue injury, and as a cytokine, contributing to the latter resolutive/repair phase of sterile inflammation. IL-33 targets iNKT cells, inducing their recruitment in an inflammatory state, and amplifying their regulatory and effector functions. In the present review, we introduce the new concept of a biological axis of iNKT cells and IL-33, involved in alerting and controlling the immune cells in experimental models of sterile inflammation. This review will focus on acute organ injury models, especially ischemia-reperfusion injury, in the kidneys, liver and lungs, where iNKT cells and IL-33 have been presumed to mediate and/or control the injury mechanisms, and their potential relevance in human pathophysiology.
Collapse
Affiliation(s)
| | | | - Louise Barbier
- Service de Chirurgie Digestive, Oncologique, Endocrinienne et Transplantation Hépatique, CHU Trousseau, Université de Tours, Tours, France
| | - Antoine Thierry
- INSERM U1082 - IRATI Group, Poitiers, France.,Service de Néphrologie, Hémodialyse et Transplantation Rénale, CHU de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- INSERM U1082 - IRATI Group, Poitiers, France.,Service d'Immunologie et d'Inflammation, CHU de Poitiers, Poitiers, France
| | | | | |
Collapse
|
22
|
Cortesi F, Delfanti G, Casorati G, Dellabona P. The Pathophysiological Relevance of the iNKT Cell/Mononuclear Phagocyte Crosstalk in Tissues. Front Immunol 2018; 9:2375. [PMID: 30369933 PMCID: PMC6194905 DOI: 10.3389/fimmu.2018.02375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted lipid antigens, generated by stress-related metabolic changes, and stimulation by inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol parenchymatous organs and mucosae to maintain tissue homeostasis and immune surveillance. In this review, we discuss critical examples of this crosstalk, presenting the known underlying mechanisms and their effects on both cell types and the environment, and suggest that the interaction with CD1d-expressing mononuclear phagocytes in tissues is the fundamental job of NKT cells.
Collapse
Affiliation(s)
- Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
23
|
NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 2018; 131:2367-2378. [PMID: 29618478 DOI: 10.1182/blood-2017-09-809004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood. Here, we demonstrate that phagocytosis of AC (efferocytosis) potently activated NADPH oxidase in mouse peritoneal exudate macrophages (PEMs). ROS generation was dependent on macrophage CD11b, Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response 88 (MyD88), and was also regulated by phosphatidylinositol 3-phosphate binding to the p40 phox oxidase subunit. Maturation of efferosomes containing apoptotic neutrophils was significantly delayed in CGD PEMs, including acidification and acquisition of proteolytic activity, and was associated with slower digestion of apoptotic neutrophil proteins. Treatment of wild-type macrophages with the vacuolar-type H+ ATPase inhibitor bafilomycin also delayed proteolysis within efferosomes, showing that luminal acidification was essential for efficient digestion of efferosome proteins. Finally, cross-presentation of AC-associated antigens by CGD PEMs to CD8 T cells was increased. These studies unravel a key role for the NADPH oxidase in the disposal of ACs by inflammatory macrophages. The oxidants generated promote efferosome maturation and acidification that facilitate the degradation of ingested ACs.
Collapse
|
24
|
Truchetet ME, Pradeu T. Re-thinking our understanding of immunity: Robustness in the tissue reconstruction system. Semin Immunol 2018; 36:45-55. [PMID: 29550156 DOI: 10.1016/j.smim.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022]
Abstract
Robustness, understood as the maintenance of specific functionalities of a given system against internal and external perturbations, is pervasive in today's biology. Yet precise applications of this notion to the immune system have been scarce. Here we show that the concept of robustness sheds light on tissue repair, and particularly on the crucial role the immune system plays in this process. We describe the specific mechanisms, including plasticity and redundancy, by which robustness is achieved in the tissue reconstruction system (TRS). In turn, tissue repair offers a very important test case for assessing the usefulness of the concept of robustness, and identifying different varieties of robustness.
Collapse
Affiliation(s)
- Marie-Elise Truchetet
- Department of Rheumatology, CHU Bordeaux Hospital, Bordeaux, France; ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
25
|
Pang P, Zheng K, Wu S, Xu H, Deng L, Shi Y, Chen X. Baicalin Downregulates RLRs Signaling Pathway to Control Influenza A Virus Infection and Improve the Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4923062. [PMID: 29681974 PMCID: PMC5846362 DOI: 10.1155/2018/4923062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
The objective of this study is to investigate the effects of baicalin on controlling the pulmonary infection and improving the prognosis in influenza A virus (IAV) infection. PCR and western blot were used to measure the changes of some key factors in RLRs signaling pathway. MSD electrochemiluminescence was used to measure the expression of pulmonary inflammatory cytokines including IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, and KC/GRO. Flow cytometry was used to detect the proportion of Th1, Th2, Th17, and Treg. The results showed that IAV infection led to low body weight and high viral load and high expression of RIG-I, IRF3, IRF7, and NF-κB mRNA, as well as RIG-I and NF-κB p65 protein. However, baicalin reduced the rate of body weight loss, inhibited virus replication, and downregulated the key factors of the RLRs signaling pathway. Besides, baicalin reduced the high expression inflammatory cytokines in lung and decreased the ratios of Th1/Th2 and Th17/Treg to arouse a brief but not overviolent inflammatory response. Therefore, baicalin activated a balanced host inflammatory response to limit immunopathologic injury, which was helpful to the improvement of clinical and survival outcomes.
Collapse
Affiliation(s)
- Peng Pang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ke Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Disease Control and Prevention, No. 371 Central Hospital of the People's Liberation Army, Xinxiang, Henan 453000, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
26
|
Human iNKT Cells Promote Protective Inflammation by Inducing Oscillating Purinergic Signaling in Monocyte-Derived DCs. Cell Rep 2018; 16:3273-3285. [PMID: 27653689 DOI: 10.1016/j.celrep.2016.08.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/19/2016] [Accepted: 08/18/2016] [Indexed: 01/18/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are innate T lymphocytes that promote host defense against a variety of microbial pathogens. Whether microbial ligands are required for their protective effects remains unclear. Here, we show that iNKT cells stimulate human-monocyte-derived dendritic cells (DCs) to produce inflammatory mediators in a manner that does not require the presence of microbial compounds. Interleukin 2 (IL-2)-exposed iNKT cells selectively induced repeated cytoplasmic Ca(2+) fluxes in DCs that were dependent on signaling by the P2X7 purinergic receptor and mediated by ATP released during iNKT-DC interactions. Exposure to iNKT cells led to DC cyclooxygenase 2 (PTGS2) gene transcription, and release of PGE2 that was associated with vascular permeabilization in vivo. Additionally, soluble factors were released that induced neutrophil recruitment and activation and enhanced control of Candida albicans. These results suggest that sterile interactions between iNKT cells and monocyte-derived DCs lead to the production of non-redundant inflammatory mediators that promote neutrophil responses.
Collapse
|
27
|
Wang M, Frasch SC, Li G, Feng D, Gao B, Xu L, Ir D, Frank DN, Bratton DL, Ju C. Role of gp91 phox in hepatic macrophage programming and alcoholic liver disease. Hepatol Commun 2017; 1:765-779. [PMID: 29404493 PMCID: PMC5678917 DOI: 10.1002/hep4.1078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatic macrophages (MΦs) are important in the development and progression of alcoholic liver disease (ALD). This study investigates the role of gp91phox (nicotinamide adenine dinucleotide phosphate oxidase 2) in the severity of ALD and specifically in regulating hepatic MΦ efferocytic capability and the subsequent reprogramming associated with resolution of inflammation. After 4 weeks of ethanol feeding, more severe ALD developed in gp91phox-/- mice than in wild-type (WT) C57Bl/6J mice, evidenced by increased liver injury and inflammation. This phenomenon was not sex dependent, and thus the majority of experiments were performed with female mice. While total hepatic MΦ numbers did not differ between genotypes, hepatic infiltrating MΦs (IMs) were slightly more numerous in gp91phox-/- mice, and both IMs and resident Kupffer cells displayed enhanced proinflammatory and reduced tissue-restorative programming compared with these cells from WT mice. The ratio of proinflammatory IMs with higher expression of Ly6C (Ly6Chi) to anti-inflammatory IMs with lower expression of Ly6C (Ly6Clow) was significantly higher in gp91phox-/- mice compared to WT mice. Greater numbers of apoptotic cells accumulated in the liver of gp91phox-/- mice compared to WT mice, and receptors for binding and engulfing apoptotic cells were expressed at much lower levels on both Kupffer cells and IMs of gp91phox-/- mice. Interactions with apoptotic cells (binding and engulfment) in vitro were significantly fewer for gp91phox-/- MΦs than for WT MΦs, resulting in diminished expression of tissue restorative mediators by hepatic MΦs of gp91phox-/- mice. Conclusion: gp91phox plays a critical role in the differentiation of proinflammatory hepatic MΦs to a tissue-restorative phenotype, likely through programming for efferocytosis, and thereby lessens the severity of ALD. These findings enhance our understanding of the tissue environmental cues that regulate MΦ phenotypes. This knowledge could help in designing MΦ-targeting strategies to prevent and treat ALD. (Hepatology Communications 2017;1:765-779).
Collapse
Affiliation(s)
- Meng Wang
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO
| | | | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationCollege of Life Science, Jilin UniversityChangchunChina
| | - Dechun Feng
- Laboratory of Liver DiseaseNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMD
| | - Bin Gao
- Laboratory of Liver DiseaseNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMD
| | - Liangguo Xu
- School of Life ScienceJiangxi Normal UniversityNanchangChina
| | - Diana Ir
- Division of Infectious DiseasesUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Daniel N. Frank
- Division of Infectious DiseasesUniversity of Colorado Anschutz Medical CampusAuroraCO
| | | | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
28
|
Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR. LC3-Associated Phagocytosis and Inflammation. J Mol Biol 2017; 429:3561-3576. [PMID: 28847720 DOI: 10.1016/j.jmb.2017.08.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
LC3-associated phagocytosis (LAP) is a novel form of non-canonical autophagy where LC3 (microtubule-associated protein 1A/1B-light chain 3) is conjugated to phagosome membranes using a portion of the canonical autophagy machinery. The impact of LAP to immune regulation is best characterized in professional phagocytes, in particular macrophages, where LAP has instrumental roles in the clearance of extracellular particles including apoptotic cells and pathogens. Binding of dead cells via receptors present on the macrophage surface results in the translocation of the autophagy machinery to the phagosome and ultimately LC3 conjugation. These events promote a rapid form of phagocytosis that produces an "immunologically silent" clearance of the apoptotic cells. Consequences of LAP deficiency include a decreased capacity to clear dying cells and the establishment of a lupus-like autoimmune disease in mice. The ability of LAP to attenuate autoimmunity likely occurs through the dampening of pro-inflammatory signals upon engulfment of dying cells and prevention of autoantigen presentation to other immune cells. However, it remains unclear how LAP shapes both the activation and outcome of the immune response at the molecular level. Herein, we provide a detailed review of LAP and its known roles in the immune response and provide further speculation on the putative mechanisms by which LAP may regulate immune function, perhaps through the metabolic reprogramming and polarization of macrophages.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Larissa D Cunha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Joelle Magne
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
29
|
Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat Commun 2016; 7:12177. [PMID: 27397585 PMCID: PMC4942576 DOI: 10.1038/ncomms12177] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions.
Collapse
|
30
|
Felley L, Gumperz JE. Are human iNKT cells keeping tabs on lipidome perturbations triggered by oxidative stress in the blood? Immunogenetics 2016; 68:611-22. [PMID: 27393663 DOI: 10.1007/s00251-016-0936-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 01/26/2023]
Abstract
The central paradigm of conventional MHC-restricted T cells is that they respond specifically to foreign peptides, while displaying tolerance to self-antigens. In contrast, it is now becoming clear that a number of innate-like T cell subsets-CD1-restricted T cells, Vγ9Vδ2 T cells, and MAIT cells-may operate by different rules: rather than focusing on the recognition of specific foreign antigens, these T cells all appear to respond to alterations to lipid-related pathways. By monitoring perturbations to the "lipidome," these T cells may be able to spring into action to deal with physiological situations that are of self as well as microbial origin. iNKT cells are a prime example of this type of lipidome-reactive T cell. As a result of their activation by self lyso-phospholipid species that are generated downstream of blood lipid oxidation, human iNKT cells in the vasculature may respond sensitively to a variety of oxidative stresses. Some of the cytokines produced by activated iNKT cells have angiogenic effects (e.g., GM-CSF, IL-8), whereas others (e.g., IFN-γ) are pro-inflammatory factors that can propagate vascular pathology by influencing the functions of macrophages and dendritic cells. Consistent with this, evidence is accumulating that iNKT cells contribute to atherosclerosis, which is one of the most common inflammatory pathologies, and one that is integrally related to characteristics of the lipidome.
Collapse
Affiliation(s)
- Laura Felley
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| |
Collapse
|
31
|
Abstract
NADPH oxidase (NOX) isoforms together have multiple functions that are important for normal physiology and have been implicated in the pathogenesis of a broad range of diseases, including atherosclerosis, cancer and neurodegenerative diseases. The phagocyte NADPH oxidase (NOX2) is critical for antimicrobial host defence. Chronic granulomatous disease (CGD) is an inherited disorder of NOX2 characterized by severe life-threatening bacterial and fungal infections and by excessive inflammation, including Crohn's-like inflammatory bowel disease (IBD). NOX2 defends against microbes through the direct antimicrobial activity of reactive oxidants and through activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the breakdown of cell membranes and extracellular release of chromatin and neutrophil granular constituents that target extracellular pathogens. Although the immediate effects of oxidant generation and NETosis are predicted to be injurious, NOX2, in several contexts, limits inflammation and injury by modulation of key signalling pathways that affect neutrophil accumulation and clearance. NOX2 also plays a role in antigen presentation and regulation of adaptive immunity. Specific NOX2-activated pathways such as nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that induces antioxidative and cytoprotective responses, may be important therapeutic targets for CGD and, more broadly, diseases associated with excessive inflammation and injury.
Collapse
|
32
|
Abstract
The adipose tissue (AT) is multifunctional, acting as an endocrine tissue and participating in the regulation of the organism's homeostasis. Metabolic, endocrine and inflammatory mechanisms are tightly intertwined within the AT, regulating its function. Disruption of the equilibrium among these mechanisms leads to pathologies, the most common being obesity-related insulin resistance. Two types of AT exist, the white and the brown AT. Traditionally the white AT (WAT) was thought to store energy in the form of lipids, while the brown AT (BAT) was known to mediate heat generation. Recently, the 'brite' or 'beige' AT was identified, which is localized predominantly in subcutaneous WAT, but shares functional features with the BAT and is capable of heat production. The major stimulus triggering beige and brown adipogenesis is cold exposure and catecholamine signalling. However, several further signals and mechanisms exist, which can orchestrate and fine-tune beige and brown AT function. Immune cells and inflammation have emerged as regulators of beige and brown AT function. The present review will focus on the recently identified crosstalk between innate immunity and the regulation of beige and brown adipogenesis.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
33
|
Weisser M, Demel UM, Stein S, Chen-Wichmann L, Touzot F, Santilli G, Sujer S, Brendel C, Siler U, Cavazzana M, Thrasher AJ, Reichenbach J, Essers MAG, Schwäble J, Grez M. Hyperinflammation in patients with chronic granulomatous disease leads to impairment of hematopoietic stem cell functions. J Allergy Clin Immunol 2016; 138:219-228.e9. [PMID: 26853280 DOI: 10.1016/j.jaci.2015.11.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Defects in phagocytic nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) function cause chronic granulomatous disease (CGD), a primary immunodeficiency characterized by dysfunctional microbicidal activity and chronic inflammation. OBJECTIVE We sought to study the effect of chronic inflammation on the hematopoietic compartment in patients and mice with X-linked chronic granulomatous disease (X-CGD). METHODS We used immunostaining and functional analyses to study the hematopoietic compartment in patients with CGD. RESULTS An analysis of bone marrow cells from patients and mice with X-CGD revealed a dysregulated hematopoiesis characterized by increased numbers of hematopoietic progenitor cells (HPCs) at the expense of repopulating hematopoietic stem cells (HSCs). In patients with X-CGD, there was a clear reduction in the proportion of HSCs in bone marrow and peripheral blood, and they were also more rapidly exhausted after in vitro culture. In mice with X-CGD, increased cycling of HSCs, expansion of HPCs, and impaired long-term engraftment capacity were found to be associated with high concentrations of proinflammatory cytokines, including IL-1β. Treatment of wild-type mice with IL-1β induced enhanced cell-cycle entry of HSCs, expansion of HPCs, and defects in long-term engraftment, mimicking the effects observed in mice with X-CGD. Inhibition of cytokine signaling in mice with X-CGD reduced HPC numbers but had only minor effects on the repopulating ability of HSCs. CONCLUSIONS Persistent chronic inflammation in patients with CGD is associated with hematopoietic proliferative stress, leading to a decrease in the functional activity of HSCs. Our observations have clinical implications for the development of successful autologous cell therapy approaches.
Collapse
Affiliation(s)
- Maren Weisser
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Uta M Demel
- Junior Research Group "Hematopoietic Stem Cells and Stress," German Cancer Research Center (DKFZ), INF280, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), INF280, Heidelberg, Germany
| | - Stefan Stein
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Linping Chen-Wichmann
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Fabien Touzot
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Giorgia Santilli
- Section of Molecular and Cellular Immunology, UCL Institute of Child Health, London, United Kingdom
| | - Stefanie Sujer
- Junior Research Group "Hematopoietic Stem Cells and Stress," German Cancer Research Center (DKFZ), INF280, Heidelberg, Germany
| | - Christian Brendel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Ulrich Siler
- Division of Immunology, University Children's Hospital, and Children's Research Centre Zürich, Zurich, Switzerland
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Adrian J Thrasher
- Section of Molecular and Cellular Immunology, UCL Institute of Child Health, London, United Kingdom
| | - Janine Reichenbach
- Division of Immunology, University Children's Hospital, and Children's Research Centre Zürich, Zurich, Switzerland
| | - Marieke A G Essers
- Junior Research Group "Hematopoietic Stem Cells and Stress," German Cancer Research Center (DKFZ), INF280, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), INF280, Heidelberg, Germany
| | - Joachim Schwäble
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany; Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany.
| |
Collapse
|
34
|
NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis. Blood 2015; 126:2724-33. [PMID: 26443623 DOI: 10.1182/blood-2015-05-644773] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1α (IL-1α) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1α and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1α, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1β played little role. Thus, we identified an excessive IL-1α/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response.
Collapse
|
35
|
Fernandez-Boyanapalli RF, Falcone EL, Zerbe CS, Marciano BE, Frasch SC, Henson PM, Holland SM, Bratton DL. Impaired efferocytosis in human chronic granulomatous disease is reversed by pioglitazone treatment. J Allergy Clin Immunol 2015; 136:1399-1401.e3. [PMID: 26386811 DOI: 10.1016/j.jaci.2015.07.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/06/2015] [Accepted: 07/17/2015] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Christa S Zerbe
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD
| | | | | | - Peter M Henson
- Department of Pediatrics, National Jewish Health, Denver, CO
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, CO
| |
Collapse
|
36
|
Abstract
The phagocyte NADPH oxidase NOX2 produces reactive oxygen species (ROS) and is a well-known player in host defence. However, there is also increasing evidence for a regulatory role of NOX2 in adaptive immunity. Deficiency in phagocyte NADPH oxidase causes chronic granulomatous disease (CGD) in humans, a condition that can also be studied in CGD mice. Clinical observations in CGD patients suggest a higher susceptibility to autoimmune diseases, in particular lupus, idiopathic thrombocytopenic purpura and rheumatoid arthritis. In mice, a strong correlation exists between a polymorphism in a NOX2 subunit and the development of autoimmune arthritis. NOX2 deficiency in mice also favours lupus development. Both CGD patients and CGD mice exhibit increased levels of immunoglobulins, including autoantibodies. Despite these phenotypes suggesting a role for NOX2 in specific immunity, mechanistic explanations for the typical increase of CGD in autoimmune disease and antibody levels are still preliminary. NOX2-dependent ROS generation is well documented for dendritic cells and B-lymphocytes. It is unclear whether T-lymphocytes produce ROS themselves or whether they are exposed to ROS derived from dendritic cells during the process of antigen presentation. ROS are signalling molecules in virtually any cell type, including T- and B-lymphocytes. However, knowledge about the impact of ROS-dependent signalling on T- and B-lymphocyte phenotype and response is still limited. ROS might contribute to Th1/Th2/Th17 cell fate decisions during T-lymphocyte activation and might enhance immunoglobulin production by B-lymphocytes. In dendritic cells, NOX2-derived ROS might be important for antigen processing and cell activation.
Collapse
|
37
|
Tyler CJ, Doherty DG, Moser B, Eberl M. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cell Immunol 2015; 296:10-21. [PMID: 25659480 DOI: 10.1016/j.cellimm.2015.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Unconventional T cells are gaining center stage as important effector and regulatory cells that orchestrate innate and adaptive immune responses. Human Vγ9/Vδ2 T cells are amongst the best understood unconventional T cells, as they are easily accessible in peripheral blood, can readily be expanded and manipulated in vitro, respond to microbial infections in vivo and can be exploited for novel tumor immunotherapies. We here review findings that suggest that Vγ9/Vδ2 T cells, and possibly other unconventional human T cells, play an important role in bridging innate and adaptive immunity by promoting the activation and differentiation of various types of antigen-presenting cells (APCs) and even turning into APCs themselves, and thereby pave the way for antigen-specific effector responses and long-term immunological memory. Although the direct physiological relevance for most of these mechanisms still needs to be demonstrated in vivo, these findings may have implications for novel therapies, diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Christopher J Tyler
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Moser
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
38
|
Li XJ, Goodwin CB, Nabinger SC, Richine BM, Yang Z, Hanenberg H, Ohnishi H, Matozaki T, Feng GS, Chan RJ. Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst. J Biol Chem 2014; 290:3894-909. [PMID: 25538234 DOI: 10.1074/jbc.m114.614057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2(flox/flox);Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation.
Collapse
Affiliation(s)
- Xing Jun Li
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and
| | - Charles B Goodwin
- the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sarah C Nabinger
- the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Briana M Richine
- the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhenyun Yang
- West Coast University, Los Angeles, California 91606
| | - Helmut Hanenberg
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, the Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Hiroshi Ohnishi
- the Gunma University Graduate School of Health Sciences, Maebashi, Gunma 371-8514, Japan
| | - Takashi Matozaki
- the Kobe University Graduate School of Medicine, Chuo-Ku, Kobe 650-0017, Japan, and
| | - Gen-Sheng Feng
- the Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | - Rebecca J Chan
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
39
|
Trocme C, Deffert C, Cachat J, Donati Y, Tissot C, Papacatzis S, Braunersreuther V, Pache JC, Krause KH, Holmdahl R, Barazzone-Argiroffo C, Carnesecchi S. Macrophage-specific NOX2 contributes to the development of lung emphysema through modulation of SIRT1/MMP-9 pathways. J Pathol 2014; 235:65-78. [PMID: 25116588 PMCID: PMC4280678 DOI: 10.1002/path.4423] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) participate in the pathogenesis of emphysema. Among ROS-producing enzymes, NOX NADPH oxidases are thought to be responsible for tissue injury associated with several lung pathologies. To determine whether NOX2 and/or NOX1 participate in the development of emphysema, their expression patterns were first studied by immunohistochemistry in the lungs of emphysematous patients. Subsequently, we investigated their contribution to elastase-induced emphysema using NOX2- and NOX1-deficient mice. In human lung, NOX2 was mainly detected in macrophages of control and emphysematous lungs, while NOX1 was expressed in alveolar epithelium and bronchial cells. We observed an elevated number of NOX2-positive cells in human emphysematous lungs, as well as increased NOX2 and NOX1 mRNA expression in mouse lungs following elastase exposure. Elastase-induced alveolar airspace enlargement and elastin degradation were prevented in NOX2-deficient mice, but not in NOX1-deficient mice. This protection was independent of inflammation and correlated with reduced ROS production. Concomitantly, an elevation of sirtuin 1 (SIRT1) level and a decrease of matrix metalloproteinase-9 (MMP-9) expression and activity were observed in alveolar macrophages and neutrophils. We addressed the specific role of macrophage-restricted functional NOX2 in elastase-induced lung emphysema using Ncf1 mutant mice and Ncf1 macrophage rescue mice (Ncf1 mutant mice with transgenic expression of Ncf1 only in CD68-positive mononuclear phagocytes; the MN mouse). Compared to WT mice, the lack of functional NOX2 led to decreased elastase-induced ROS production and protected against emphysema. In contrast, ROS production was restored specifically in macrophages from Ncf1 rescue mice and contributes to emphysema. Taken together, our results demonstrate that NOX2 is involved in the pathogenesis of human emphysema and macrophage-specific NOX2 participates in elastase-induced emphysema through the involvement of SIRT1/MMP-9 pathways in mice.
Collapse
Affiliation(s)
- Candice Trocme
- Laboratory of Protein and Enzyme Biochemistry, University Hospital, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Balce DR, Allan ERO, McKenna N, Yates RM. γ-Interferon-inducible lysosomal thiol reductase (GILT) maintains phagosomal proteolysis in alternatively activated macrophages. J Biol Chem 2014; 289:31891-31904. [PMID: 25253686 DOI: 10.1074/jbc.m114.584391] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although it is known that lysosomal cysteine cathepsins require a reducing environment for optimal activity, it is not firmly established how these enzymes are maintained in their reduced-active state in the acidic and occasionally oxidative environment within phagosomes and lysosomes. γ-Interferon-inducible lysosomal thiol reductase (GILT) has been the only enzyme described in the endosomes, lysosomes, and phagosomes with the potential to catalyze the reduction of cysteine cathepsins. Our goal in the current study was to assess the effect of GILT on major phagosomal functions with an emphasis on proteolytic efficiency in murine bone marrow-derived macrophages. Assessment of phagosomal disulfide reduction upon internalization of IgG-opsonized experimental particles confirmed a major role for GILT in phagosomal disulfide reduction in both resting and interferon-γ-activated macrophages. Furthermore we observed a decrease in early phagosomal proteolytic efficiency in GILT-deficient macrophages, specifically in the absence of an NADPH oxidase-mediated respiratory burst. This deficiency was more prominent in IL-4-activated macrophages that inherently possess lower levels of NADPH oxidase activity. Finally, we provide evidence that GILT is required for optimal activity of the lysosomal cysteine protease, cathepsin S. In summary, our results suggest a role for GILT in maintaining cysteine cathepsin proteolytic efficiency in phagosomes, particularly in the absence of high NADPH oxidase activity, which is characteristic of alternatively activated macrophages.
Collapse
Affiliation(s)
- Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine and University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Euan R O Allan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine and University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Neil McKenna
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine and University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine and University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
41
|
Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat Rev Immunol 2013; 13:607-14. [PMID: 23827958 DOI: 10.1038/nri3476] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance.
Collapse
|