1
|
Ong KOK, Mok MMH, Niibori-Nambu A, Du L, Yanagida M, Wang CQ, Bahirvani AG, Chin DWL, Koh CP, Ng KP, Yamashita N, Jacob B, Yokomizo T, Takizawa H, Matsumura T, Suda T, Lau JYA, Tan TZ, Mori S, Yang H, Iwasaki M, Minami T, Asou N, Sun QY, Ding LW, Koeffler HP, Tenen DG, Shimizu R, Yamamoto M, Ito Y, Kham SKY, Yeoh AEJ, Chng WJ, Osato M. Activation of NOTCH signaling impedes cell proliferation and survival in acute megakaryoblastic leukemia. Exp Hematol 2024; 137:104255. [PMID: 38876252 DOI: 10.1016/j.exphem.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.
Collapse
Affiliation(s)
- Kelly Ooi Kee Ong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Michelle Meng Huang Mok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Linsen Du
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Masatoshi Yanagida
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Bioprocessing Technology Institute, A*STAR, Singapore
| | | | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Cai Ping Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - King Pan Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Namiko Yamashita
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bindya Jacob
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tomomasa Yokomizo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Takayoshi Matsumura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie-Ying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Seiichi Mori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Masayuki Iwasaki
- Institute of Laboratory Animals, Tokyo Women's Medical University, Japan
| | - Takashi Minami
- Center for Animal Resources and Development, Kumamoto University, Japan
| | - Norio Asou
- International Medical Center, Saitama Medical University, Japan
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shirley Kow Yin Kham
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Allen Eng-Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Paediatrics, National University of Singapore, Singapore, Singapore.
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan; Department of Paediatrics, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
3
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Satty A, Stieglitz E, Kucine N. Too many white cells-TAM, JMML, or something else? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:37-42. [PMID: 38066851 PMCID: PMC10727065 DOI: 10.1182/hematology.2023000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Leukocytosis is a common finding in pediatric patients, and the differential diagnosis can be broad, including benign reactive leukocytosis and malignant myeloproliferative disorders. Transient abnormal myelopoiesis is a myeloproliferative disorder that occurs in young infants with constitutional trisomy 21 and somatic GATA1 mutations. Most patients are observed, but outcomes span the spectrum from spontaneous resolution to life-threatening complications. Juvenile myelomonocytic leukemia is a highly aggressive myeloproliferative disorder associated with altered RAS-pathway signaling that occurs in infants and young children. Treatment typically involves hematopoietic stem cell transplantation, but certain patients can be observed. Early recognition of these and other myeloproliferative disorders is important and requires a clinician to be aware of these diagnoses and have a clear understanding of their presentations. This paper discusses the presentation and evaluation of leukocytosis when myeloproliferative disorders are part of the differential and reviews different concepts regarding treatment strategies.
Collapse
Affiliation(s)
- Alexandra Satty
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospitals, University of California San Francisco, San Francisco, CA
| | - Nicole Kucine
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
5
|
Sit YT, Takasaki K, An HH, Xiao Y, Hurtz C, Gearhart PA, Zhang Z, Gadue P, French DL, Chou ST. Synergistic roles of DYRK1A and GATA1 in trisomy 21 megakaryopoiesis. JCI Insight 2023; 8:e172851. [PMID: 37906251 PMCID: PMC10895998 DOI: 10.1172/jci.insight.172851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Patients with Down syndrome (DS), or trisomy 21 (T21), are at increased risk of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia (ML-DS). Both TAM and ML-DS require prenatal somatic mutations in GATA1, resulting in the truncated isoform GATA1s. The mechanism by which individual chromosome 21 (HSA21) genes synergize with GATA1s for leukemic transformation is challenging to study, in part due to limited human cell models with wild-type GATA1 (wtGATA1) or GATA1s. HSA21-encoded DYRK1A is overexpressed in ML-DS and may be a therapeutic target. To determine how DYRK1A influences hematopoiesis in concert with GATA1s, we used gene editing to disrupt all 3 alleles of DYRK1A in isogenic T21 induced pluripotent stem cells (iPSCs) with and without the GATA1s mutation. Unexpectedly, hematopoietic differentiation revealed that DYRK1A loss combined with GATA1s leads to increased megakaryocyte proliferation and decreased maturation. This proliferative phenotype was associated with upregulation of D-type cyclins and hyperphosphorylation of Rb to allow E2F release and derepression of its downstream targets. Notably, DYRK1A loss had no effect in T21 iPSCs or megakaryocytes with wtGATA1. These surprising results suggest that DYRK1A and GATA1 may synergistically restrain megakaryocyte proliferation in T21 and that DYRK1A inhibition may not be a therapeutic option for GATA1s-associated leukemias.
Collapse
Affiliation(s)
- Ying Ting Sit
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaoru Takasaki
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hyun Hyung An
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yan Xiao
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christian Hurtz
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter A. Gearhart
- Deparment of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Zhe Zhang
- Department of Biomedical Informatics and
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Yang CX, Yang Y, Zhang FL, Wang DH, Bian QH, Zhou M, Zhou MX, Yang XY. Congenital leukemia: A case report and review of literature. World J Clin Cases 2023; 11:7227-7233. [PMID: 37946786 PMCID: PMC10631425 DOI: 10.12998/wjcc.v11.i29.7227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Acute leukemia in newborns is also known as neonatal or congenital leukemia (CL) and is a rare disease with an incidence rate of 1-5 per 1000000 live births. After birth, infants with CL exhibit infiltrative cutaneous nodules, hepatosplenomegaly, thrombocytopenia, and immature leukocytes in the peripheral blood. These symptoms are frequently accompanied by congenital abnormalities including trisomy 21, trisomy 9, trisomy 13, or Turner syndrome. Despite significant advances in disease management, the survival rate is approximately 25% at 2 years. CASE SUMMARY Here, we document a case of trisomy 21-related acute myeloid leukemia (AML) in a female neonate. The baby was sent to the neonatal intensive care unit because of anorexia, poor responsiveness, and respiratory distress. She was diagnosed with AML based on bone marrow aspiration and immunophenotyping. Genetic sequencing identified a mutation in the GATA1 gene. After receiving the diagnosis, the parents decided against medical care for their child, and the baby died at home on day 9 after birth. CONCLUSIONS The newborn infant was diagnosed with trisomy 21-related AML. Genetic sequencing identified a mutation in the GATA1 gene. The parents abandoned medical treatment for their infant after receiving the diagnosis, and the infant died at home on the 9th day after birth.
Collapse
Affiliation(s)
- Chun-Xia Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
- Clinical Medicine, Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Ying Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Fen-Li Zhang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Ding-Huan Wang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Qiu-Han Bian
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Man Zhou
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Ming-Xiang Zhou
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Xiao-Yan Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
7
|
Verma A, Lupo PJ, Shah NN, Hitzler J, Rabin KR. Management of Down Syndrome-Associated Leukemias: A Review. JAMA Oncol 2023; 9:1283-1290. [PMID: 37440251 DOI: 10.1001/jamaoncol.2023.2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Importance Down syndrome (DS), caused by an extra copy of material from chromosome 21, is one of the most common genetic conditions. The increased risk of acute leukemia in DS (DS-AL) has been recognized for decades, consisting of an approximately 150-fold higher risk of acute myeloid leukemia (AML) before age 4 years, and a 10- to 20-fold higher risk of acute lymphoblastic leukemia (ALL), compared with children without DS. Observations A recent National Institutes of Health-sponsored conference, ImpacT21, reviewed research and clinical trials in children, adolescents, and young adults (AYAs) with DS-AL and are presented herein, including presentation and treatment, clinical trial design, and ethical considerations for this unique population. Between 10% to 30% of infants with DS are diagnosed with transient abnormal myelopoiesis (TAM), which spontaneously regresses. After a latency period of up to 4 years, 20% to 30% develop myeloid leukemia associated with DS (ML-DS). Recent studies have characterized somatic mutations associated with progression from TAM to ML-DS, but predicting which patients will progress to ML-DS remains elusive. Clinical trials for DS-AL have aimed to reduce treatment-related mortality (TRM) and improve survival. Children with ML-DS have better outcomes compared with non-DS AML, but outcomes remain dismal in relapse. In contrast, patients with DS-ALL have inferior outcomes compared with those without DS, due to both higher TRM and relapse. Management of relapsed leukemia poses unique challenges owing to disease biology and increased vulnerability to toxic effects. Late effects in survivors of DS-AL are an important area in need of further study because they may demonstrate unique patterns in the setting of chronic medical conditions associated with DS. Conclusions and Relevance Optimal management of DS-AL requires specific molecular testing, meticulous supportive care, and tailored therapy to reduce TRM while optimizing survival. There is no standard approach to treatment of relapsed disease. Future work should include identification of biomarkers predictive of toxic effects; enhanced clinical and scientific collaborations; promotion of access to novel agents through innovative clinical trial design; and dedicated studies of late effects of treatment.
Collapse
Affiliation(s)
- Anupam Verma
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Johann Hitzler
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Karen R Rabin
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|
9
|
Gupte A, Al-Antary ET, Edwards H, Ravindranath Y, Ge Y, Taub JW. The Paradox of Myeloid Leukemia Associated with Down Syndrome. Biochem Pharmacol 2022; 201:115046. [PMID: 35483417 DOI: 10.1016/j.bcp.2022.115046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023]
Abstract
Children with Down syndrome constitute a distinct genetic population who has a greater risk of developing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) compared to their non-Down syndrome counterparts. The risk for developing solid tumors is also distinct from the non-Down syndrome population. In the case of myeloid leukemias, the process of leukemogenesis in Trisomy 21 begins in early fetal life where genetic drivers including GATA1 mutations lead to the development of the preleukemic condition, transient abnormal myelopoiesis (TAM). Various other mutations in genes encoding cohesin, epigenetic regulators and RAS pathway can result in subsequent progression to Myeloid Leukemia associated with Down Syndrome (ML-DS). The striking paradoxical feature in the Down syndrome population is that even though there is a higher predisposition to developing AML, they are also very sensitive to chemotherapy agents, particularly cytarabine, thus accounting for the very high cure rates for ML-DS compared to AML in children without Down syndrome. Current clinical trials for ML-DS attempt to balance effective curative therapies while trying to reduce treatment-associated toxicities including infections by de-intensifying chemotherapy doses, if possible. The small proportion of patients with relapsed ML-DS have an extremely poor prognosis and require the development of new therapies.
Collapse
Affiliation(s)
- Avanti Gupte
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA; Discipline of Pediatrics, Central Michigan University, Saginaw, Michigan, USA.
| |
Collapse
|
10
|
Modeling Down Syndrome Myeloid Leukemia by Sequential Introduction of GATA1 and STAG2 Mutations in Induced Pluripotent Stem Cells with Trisomy 21. Cells 2022; 11:cells11040628. [PMID: 35203280 PMCID: PMC8870267 DOI: 10.3390/cells11040628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
Children with Down syndrome (DS) have a high risk for acute myeloid leukemia (DS-ML). Genomic characterization of DS-ML blasts showed the presence of unique mutations in GATA1, an essential hematopoietic transcription factor, leading to the production of a truncated from of GATA1 (GATA1s). GATA1s, together with trisomy 21, is sufficient to develop a pre-leukemic condition called transient abnormal myelopoiesis (TAM). Approximately 30% of these cases progress into DS-ML by acquisition of additional somatic mutations in a stepwise manner. We previously developed a model for TAM by introducing disease-specific GATA1 mutation in trisomy 21-induced pluripotent stem cells (iPSCs), leading to the production of N-terminally truncated short form of GATA1 (GATA1s). In this model, we used CRISPR/Cas9 to introduce a co-operating mutation in STAG2, a member of the cohesin complex recurrently mutated in DS-ML but not in TAM. Hematopoietic differentiation of GATA1 STAG2 double-mutant iPSC lines confirmed GATA1s expression and the loss of functional STAG2 protein, leading to enhanced production of immature megakaryocytic population compared to GATA1 mutant alone. Megakaryocyte-specific lineage expansion of the double-mutant HSPCs exhibited close resemblance to the DS-ML immunophenotype. Transcriptome analysis showed that GATA1 mutation resulted in downregulation of megakaryocytic and erythrocytic differentiation pathways and interferon α/β signaling, along with an upregulation of pathways promoting myeloid differentiation such as toll-like receptor cascade. The co-occurrence of STAG2 knockout partially reverted the expression of genes involved in myeloid differentiation, likely leading to enhanced self-renewal and promoting leukemogenesis. In conclusion, we developed a DS-ML model via hematopoietic differentiation of gene-targeted iPSCs bearing trisomy 21.
Collapse
|
11
|
Sidhu I, Barwe SP, Pillai RK, Gopalakrishnapillai A. Harnessing the Power of Induced Pluripotent Stem Cells and Gene Editing Technology: Therapeutic Implications in Hematological Malignancies. Cells 2021; 10:2698. [PMID: 34685678 PMCID: PMC8534597 DOI: 10.3390/cells10102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
In vitro modeling of hematological malignancies not only provides insights into the influence of genetic aberrations on cellular and molecular mechanisms involved in disease progression but also aids development and evaluation of therapeutic agents. Owing to their self-renewal and differentiation capacity, induced pluripotent stem cells (iPSCs) have emerged as a potential source of short in supply disease-specific human cells of the hematopoietic lineage. Patient-derived iPSCs can recapitulate the disease severity and spectrum of prognosis dictated by the genetic variation among patients and can be used for drug screening and studying clonal evolution. However, this approach lacks the ability to model the early phases of the disease leading to cancer. The advent of genetic editing technology has promoted the generation of precise isogenic iPSC disease models to address questions regarding the underlying genetic mechanism of disease initiation and progression. In this review, we discuss the use of iPSC disease modeling in hematological diseases, where there is lack of patient sample availability and/or difficulty of engraftment to generate animal models. Furthermore, we describe the power of combining iPSC and precise gene editing to elucidate the underlying mechanism of initiation and progression of various hematological malignancies. Finally, we discuss the power of iPSC disease modeling in developing and testing novel therapies in a high throughput setting.
Collapse
Affiliation(s)
- Ishnoor Sidhu
- Nemours Centers for Childhood Cancer Research and Cancer & Blood Disorders, Nemours Children’s Health, Wilmington, DE 19803, USA; (I.S.); (S.P.B.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Sonali P. Barwe
- Nemours Centers for Childhood Cancer Research and Cancer & Blood Disorders, Nemours Children’s Health, Wilmington, DE 19803, USA; (I.S.); (S.P.B.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Raju K. Pillai
- National Medical Center, Department of Pathology, City of Hope, Duarte, CA 91105, USA;
| | - Anilkumar Gopalakrishnapillai
- Nemours Centers for Childhood Cancer Research and Cancer & Blood Disorders, Nemours Children’s Health, Wilmington, DE 19803, USA; (I.S.); (S.P.B.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
12
|
Al-Kershi S, Golnik R, Flasinski M, Waack K, Rasche M, Creutzig U, Dworzak M, Reinhardt D, Klusmann JH. Recommendations for Diagnosis and Treatment of Children with Transient Abnormal Myelopoiesis (TAM) and Myeloid Leukemia in Down Syndrome (ML-DS). KLINISCHE PADIATRIE 2021; 233:267-277. [PMID: 34407551 DOI: 10.1055/a-1532-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Children with Down syndrome are at a high risk of developing transient abnormal myelopoiesis (TAM; synonym: TMD) or myeloid leukemia (ML-DS). While most patients with TAM are asymptomatic and go into spontaneous remission without a need for therapy, around 20% of patients die within the first six months due to TAM-related complications. Another 20-30% of patients progress from TAM to ML-DS. ML-DS patients are particularly vulnerable to therapy-associated toxicity, but the prognosis of relapsed ML-DS is extremely poor - thus, ML-DS therapy schemata must strive for a balance between appropriate efficacy (to avoid relapses) and treatment-related toxicity. This guideline presents diagnostic and therapeutic strategies for TAM and ML-DS based on the experience and results of previous clinical studies from the BFM working group, which have helped reduce the risk of early death in symptomatic TAM patients using low-dose cytarabine, and which have achieved excellent cure rates for ML-DS using intensity-reduced treatment protocols.
Collapse
Affiliation(s)
- Sina Al-Kershi
- Clinic for Pediatrics, University Hospital Frankfurt, Frankfurt, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Golnik
- Clinic for Pediatrics, University Hospital Frankfurt, Frankfurt, Germany
| | - Marius Flasinski
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Hospital Tauberbischofsheim, Tauberbischofsheim, Germany
| | - Katharina Waack
- Pediatrics III, Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Mareike Rasche
- Pediatrics III, Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Ursula Creutzig
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Michael Dworzak
- Department of Pediatrics, St. Anna Children's Hospital and Children's Cancer Research Institute, Wien, Austria
| | - Dirk Reinhardt
- Pediatrics III, Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
13
|
de Castro CPM, Cadefau M, Cuartero S. The Mutational Landscape of Myeloid Leukaemia in Down Syndrome. Cancers (Basel) 2021; 13:4144. [PMID: 34439298 PMCID: PMC8394284 DOI: 10.3390/cancers13164144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators-such as cohesin, CTCF or EZH2-and in signalling mediators of the JAK/STAT and RAS pathways. Most of them are also found in non-DS myeloid malignancies, albeit at extremely different frequencies. Intriguingly, mutations in proteins involved in the three-dimensional organization of the genome are found in nearly 50% of cases. How the resulting mutant proteins cooperate with trisomy 21 and mutant GATA1 to promote ML-DS is not fully understood. In this review, we summarize and discuss current knowledge about the sequential acquisition of genomic alterations in ML-DS.
Collapse
Affiliation(s)
| | - Maria Cadefau
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
14
|
Shimada A. Profile of down syndrome–associated malignancies: Epidemiology, clinical features and therapeutic aspects. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Abstract
Children show a higher incidence of leukaemia compared with young adolescents, yet their cells are less damaged because of their young age. Children with Down syndrome (DS) have an even higher risk of developing leukaemia during the first years of life. The presence of a constitutive trisomy of chromosome 21 (T21) in DS acts as a genetic driver for leukaemia development, however, additional oncogenic mutations are required. Therefore, T21 provides the opportunity to better understand leukaemogenesis in children. Here, we describe the increased risk of leukaemia in DS during childhood from a somatic evolutionary view. According to this idea, cancer is caused by a variation in inheritable phenotypes within cell populations that are subjected to selective forces within the tissue context. We propose a model in which the increased risk of leukaemia in DS children derives from higher rates of mutation accumulation, already present during fetal development, which is further enhanced by changes in selection dynamics within the fetal liver niche. This model could possibly be used to understand the rate-limiting steps of leukaemogenesis early in life.
Collapse
|
16
|
Lalonde E, Rentas S, Wertheim G, Cao K, Surrey LF, Lin F, Zhao X, Obstfeld A, Aplenc R, Luo M, Li MM. Clinical impact of genomic characterization of 15 patients with acute megakaryoblastic leukemia-related malignancies. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a005975. [PMID: 33832921 PMCID: PMC8040732 DOI: 10.1101/mcs.a005975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/26/2021] [Indexed: 01/30/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia but is approximately 500 times more likely to develop in children with Down syndrome (DS) through transformation of transient abnormal myelopoiesis (TAM). This study investigates the clinical significance of genomic heterogeneity of AMKL in children with and without DS and in children with TAM. Genomic evaluation of nine patients with DS-related TAM or AMKL, and six patients with non-DS AMKL, included conventional cytogenetics and a comprehensive next-generation sequencing panel for single-nucleotide variants/indels and copy-number variants in 118 genes and fusions involving 110 genes. Recurrent gene fusions were found in all patients with non-DS, including two individuals with complex genomes and either a NUP98–KDM5A or a KMT2A–MLLT6 fusion, and the remaining harbored a CBFA2T3–GLIS2 fusion, which arose from both typical and atypical cytogenetic mechanisms. These fusions guided treatment protocols and resulted in a change in diagnosis in two patients. The nine patients with DS had constitutional trisomy 21 and somatic GATA1 mutations, and those with DS-AMKL had two to four additional clinically significant somatic mutations. Comprehensive genomic characterization provides critical information for diagnosis, risk stratification, and treatment decisions for patients with AMKL. Continued genetic and clinical characterization of these rare cancers will aid in improving patient management.
Collapse
Affiliation(s)
- Emilie Lalonde
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Stefan Rentas
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Gerald Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kajia Cao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Xiaonan Zhao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Amrom Obstfeld
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Richard Aplenc
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Minjie Luo
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
17
|
Bonometti A, Lobascio G, Boveri E, Cesari S, Lecca M, Arossa A, Spinillo A, Errichiello E, Paulli M. Acute megakaryoblastic leukemia with a novel GATA1 mutation in a second trimester stillborn fetus with trisomy 21. Leuk Lymphoma 2021; 62:2276-2279. [PMID: 33783296 DOI: 10.1080/10428194.2021.1907377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Arturo Bonometti
- Unit of Anatomic Pathology, Department of Molecular Medicine, IRCCS San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Gessica Lobascio
- Unit of Anatomic Pathology, Department of Molecular Medicine, IRCCS San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Emanuela Boveri
- Unit of Anatomic Pathology, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Stefania Cesari
- Unit of Anatomic Pathology, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessia Arossa
- Unit of Obstetrics and Gynecology, IRCCS S. Matteo Foundation, University of Pavia, Pavia, Italy
| | - Arsenio Spinillo
- Unit of Obstetrics and Gynecology, IRCCS S. Matteo Foundation, University of Pavia, Pavia, Italy
| | - Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, Department of Molecular Medicine, IRCCS San Matteo Foundation, University of Pavia, Pavia, Italy.,Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Grimm J, Heckl D, Klusmann JH. Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Front Oncol 2021; 11:636633. [PMID: 33777792 PMCID: PMC7992977 DOI: 10.3389/fonc.2021.636633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023] Open
Abstract
Individuals with Down syndrome are genetically predisposed to developing acute megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome (ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed hematopoiesis already presenting in utero, facilitating the acquisition of additional driver mutations such as truncating GATA1 variants, which are pathognomonic to the disease. Consequently, the affected individuals suffer from a transient abnormal myelopoiesis (TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we focus on the molecular mechanisms of the different steps of clonal evolution in Down syndrome leukemogenesis, and aim to provide a comprehensive view on the complex interplay between gene dosage imbalances, GATA1 mutations and somatic mutations affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.
Collapse
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
19
|
Abstract
Neonates are at risk for 3 major forms of leukemia in the first year of life: acute leukemia, juvenile myelomonocytic leukemia, and transient abnormal myelopoiesis associated with Down syndrome. These disorders are rare but generate interest due to aggressive clinical presentation, suboptimal response to current therapies, and fascinating biology. Each can arise as a result of unique constitutional and acquired genetic events. Genetic insights are pointing the way toward novel therapeutic approaches. This article reviews key epidemiologic, clinical, and molecular features of neonatal leukemias, focusing on risk stratification, treatment, and strategies for developing novel molecularly targeted approaches to improve future outcomes.
Collapse
Affiliation(s)
- Patrick A Brown
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
20
|
Sangiorgio VFI, Nam A, Chen Z, Orazi A, Tam W. GATA1 downregulation in prefibrotic and fibrotic stages of primary myelofibrosis and in the myelofibrotic progression of other myeloproliferative neoplasms. Leuk Res 2020; 100:106495. [PMID: 33360878 DOI: 10.1016/j.leukres.2020.106495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
GATA binding protein 1 (GATA1) is a transcription factor essential for effective erythropoiesis and megakaryopoiesis. Two isoforms of GATA1 exist, derived from alternative splicing. "GATA1" is the full length and functionally active protein; "GATA1s" is the truncated isoform devoid of the activation domain, the function of which has not been fully elucidated. Reduced megakaryocytic expression of GATA1 has been linked to impaired hematopoiesis and bone marrow fibrosis in murine models and in vivo in patients affected by primary myelofibrosis (PMF). However, data is limited regarding GATA1 expression in other myeloproliferative neoplasms (MPN) such as pre-fibrotic PMF (pre-PMF), polycythemia vera (PV) and essential thrombocythemia (ET) and in their respective fibrotic progression. To assess whether an immunohistologic approach can be of help in separating different MPN, we have performed a comprehensive immunohistochemical evaluation of GATA1 expression in megakaryocytes within a cohort of BCR-ABL1 negative MPN. In order to highlight any potential differences between the two isoforms we tested two clones, one staining the sum of GATA1 and GATA1s ("clone 1"), the other staining GATA1 full length alone ("clone 2"). At the chronic phase, a significant reduction preferentially of GATA1 full length was seen in pre-fibrotic PMF, particularly compared to ET and PV; no significant differences were observed between PV and ET. The fibrotic progression of both PV and ET was associated with a significant reduction in GATA1, particularly affecting the GATA1 full length isoform. The fibrotic progression of pre-PMF to PMF was associated with a significant reduction of the overall GATA1 protein and a trend in reduction of GATA1s. Our findings support a role of GATA1 in the pathogenesis of BCR-ABL1 negative MPN, particularly in their fibrotic progression and suggest that the immunohistochemical evaluation of GATA1 may be of use in the differential diagnosis of these neoplasms.
Collapse
Affiliation(s)
- Valentina Fabiola Ilenia Sangiorgio
- Department of Cellular Pathology, the Royal London Hospital, London, UK; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NY, USA.
| | - Anna Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NY, USA.
| | - Zhengming Chen
- Department of Population Health Sciences, Weill Cornell Medicine, NY, USA.
| | - Attilio Orazi
- Department of Pathology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NY, USA.
| |
Collapse
|
21
|
RAS-protein activation but not mutation status is an outcome predictor and unifying therapeutic target for high-risk acute lymphoblastic leukemia. Oncogene 2020; 40:746-762. [PMID: 33247204 PMCID: PMC7843419 DOI: 10.1038/s41388-020-01567-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Leukemias are routinely sub-typed for risk/outcome prediction and therapy choice using acquired mutations and chromosomal rearrangements. Down syndrome acute lymphoblastic leukemia (DS-ALL) is characterized by high frequency of CRLF2-rearrangements, JAK2-mutations, or RAS-pathway mutations. Intriguingly, JAK2 and RAS-mutations are mutually exclusive in leukemic sub-clones, causing dichotomy in therapeutic target choices. We prove in a cell model that elevated CRLF2 in combination with constitutionally active JAK2 is sufficient to activate wtRAS. On primary clinical DS-ALL samples, we show that wtRAS-activation is an obligatory consequence of mutated/hyperphosphorylated JAK2. We further prove that CRLF2-ligand TSLP boosts the direct binding of active PTPN11 to wtRAS, providing the molecular mechanism for the wtRAS activation. Pre-inhibition of RAS or PTPN11, but not of PI3K or JAK-signaling, prevented TSLP-induced RAS-GTP boost. Cytotoxicity assays on primary clinical DS-ALL samples demonstrated that, regardless of mutation status, high-risk leukemic cells could only be killed using RAS-inhibitor or PTPN11-inhibitor, but not PI3K/JAK-inhibitors, suggesting a unified treatment target for up to 80% of DS-ALL. Importantly, protein activities-based principal-component-analysis multivariate clusters analyzed for independent outcome prediction using Cox proportional-hazards model showed that protein-activity (but not mutation-status) was independently predictive of outcome, demanding a paradigm-shift in patient-stratification strategy for precision therapy in high-risk ALL.
Collapse
|
22
|
Barwe SP, Sidhu I, Kolb EA, Gopalakrishnapillai A. Modeling Transient Abnormal Myelopoiesis Using Induced Pluripotent Stem Cells and CRISPR/Cas9 Technology. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:201-209. [PMID: 33102613 PMCID: PMC7558799 DOI: 10.1016/j.omtm.2020.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023]
Abstract
Approximately 1%–2% of children with Down syndrome (DS) develop acute myeloid leukemia (AML) prior to age 5 years. AML in DS children (ML-DS) is characterized by the pathognomonic mutation in the gene encoding the essential hematopoietic transcription factor GATA1, resulting in N-terminally truncated short form of GATA1 (GATA1s). Trisomy 21 and GATA1s together are sufficient to induce transient abnormal myelopoiesis (TAM) exhibiting pre-leukemic characteristics. Approximately 30% of these cases progress into ML-DS by acquisition of additional somatic mutations. We employed disease modeling in vitro by the use of customizable induced pluripotent stem cells (iPSCs) to generate a TAM model. Isogenic iPSC lines derived from the fibroblasts of DS individuals with trisomy 21 and with disomy 21 were used. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system was used to introduce GATA1 mutation in disomic and trisomic iPSC lines. The hematopoietic stem and progenitor cells (HSPCs) derived from GATA1 mutant iPSC lines expressed GATA1s. The expression of GATA1s concomitant with loss of full-length GATA1 reduced the erythroid population, whereas it augmented megakaryoid and myeloid populations, characteristic of TAM. In conclusion, we have developed a model system representing TAM, which can be used for modeling ML-DS by stepwise introduction of additional mutations.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| | - Ishnoor Sidhu
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| | - E Anders Kolb
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
23
|
Laurent AP, Kotecha RS, Malinge S. Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia 2020; 34:1984-1999. [PMID: 32433508 PMCID: PMC7387246 DOI: 10.1038/s41375-020-0854-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Structural and numerical alterations of chromosome 21 are extremely common in hematological malignancies. While the functional impact of chimeric transcripts from fused chromosome 21 genes such as TEL-AML1, AML1-ETO, or FUS-ERG have been extensively studied, the role of gain of chromosome 21 remains largely unknown. Gain of chromosome 21 is a frequently occurring aberration in several types of acute leukemia and can be found in up to 35% of cases. Children with Down syndrome (DS), who harbor constitutive trisomy 21, highlight the link between gain of chromosome 21 and leukemogenesis, with an increased risk of developing acute leukemia compared with other children. Clinical outcomes for DS-associated leukemia have improved over the years through the development of uniform treatment protocols facilitated by international cooperative groups. The genetic landscape has also recently been characterized, providing an insight into the molecular pathogenesis underlying DS-associated leukemia. These studies emphasize the key role of trisomy 21 in priming a developmental stage and cellular context susceptible to transformation, and have unveiled its cooperative function with additional genetic events that occur during leukemia progression. Here, using DS-leukemia as a paradigm, we aim to integrate our current understanding of the role of trisomy 21, of critical dosage-sensitive chromosome 21 genes, and of associated mechanisms underlying the development of hematological malignancies. This review will pave the way for future investigations on the broad impact of gain of chromosome 21 in hematological cancer, with a view to discovering new vulnerabilities and develop novel targeted therapies to improve long term outcomes for DS and non-DS patients.
Collapse
Affiliation(s)
- Anouchka P Laurent
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
- Université Paris Diderot, Paris, France
| | - Rishi S Kotecha
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
24
|
Bache I, Wadt K, Mehrjouy MM, Rossing M, Østrup O, Byrjalsen A, Tommerup N, Metzner M, Vyas P, Schmiegelow K, Lausen B, Andersen MK. A shared somatic translocation involving CUX1 in monozygotic twins as an early driver of AMKL in Down syndrome. Blood Cancer J 2020; 10:27. [PMID: 32127516 PMCID: PMC7054393 DOI: 10.1038/s41408-020-0293-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Iben Bache
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark. .,Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Karin Wadt
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mana M Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maria Rossing
- Centre for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Olga Østrup
- Centre for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anna Byrjalsen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marlen Metzner
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette K Andersen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
Dempsey E, Homfray T, Simpson JM, Jeffery S, Mansour S, Ostergaard P. Fetal hydrops – a review and a clinical approach to identifying the cause. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1719827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esther Dempsey
- Molecular and Clinical Sciences, St George’s University of London, London, UK
| | - Tessa Homfray
- SW Thames Regional Genetics Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - John M Simpson
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Steve Jeffery
- Molecular and Clinical Sciences, St George’s University of London, London, UK
| | - Sahar Mansour
- Molecular and Clinical Sciences, St George’s University of London, London, UK
- SW Thames Regional Genetics Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Pia Ostergaard
- Molecular and Clinical Sciences, St George’s University of London, London, UK
| |
Collapse
|
26
|
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare malignancy affecting megakaryocytes, platelet-producing cells that reside in the bone marrow. Children with Down syndrome (DS) are particularly prone to developing the disease and have a different age of onset, distinct genetic mutations, and better prognosis as compared with individuals without DS who develop the disease. Here, we discuss the contributions of chromosome 21 genes and other genetic mutations to AMKL, the clinical features of the disease, and the differing features of DS- and non-DS-AMKL. Further studies elucidating the role of chromosome 21 genes in this disease may aid our understanding of how they function in other types of leukemia, in which they are frequently mutated or differentially expressed. Although researchers have made many insights into understanding AMKL, much more remains to be learned about its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maureen McNulty
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| | - John D Crispino
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| |
Collapse
|
27
|
Acute Myeloid Neoplasms. Genomic Med 2020. [DOI: 10.1007/978-3-030-22922-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
28
|
Garnett C, Cruz Hernandez D, Vyas P. GATA1 and cooperating mutations in myeloid leukaemia of Down syndrome. IUBMB Life 2019; 72:119-130. [PMID: 31769932 DOI: 10.1002/iub.2197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022]
Abstract
Myeloid leukaemia of Down syndrome (ML-DS) is an acute megakaryoblastic/erythroid leukaemia uniquely found in children with Down syndrome (constitutive trisomy 21). It has a unique clinical course, being preceded by a pre-leukaemic condition known as transient abnormal myelopoiesis (TAM), and provides an excellent model to study multistep leukaemogenesis. Both TAM and ML-DS blasts carry acquired N-terminal truncating mutations in the erythro-megakaryocytic transcription factor GATA1. These result in exclusive production of a shorter isoform (GATA1s). The majority of TAM cases resolve spontaneously without the need for treatment; however, around 10% acquire additional cooperating mutations and transform to leukaemia, with differentiation block and clinically significant cytopenias. Transformation is driven by the acquisition of additional mutation(s), which cooperate with GATA1s to perturb normal haematopoiesis.
Collapse
Affiliation(s)
- Catherine Garnett
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom of Great Britain and Northern Ireland
| | - David Cruz Hernandez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Paresh Vyas
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
29
|
Hansen MC, Haferlach T, Nyvold CG. A decade with whole exome sequencing in haematology. Br J Haematol 2019; 188:367-382. [DOI: 10.1111/bjh.16249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marcus C. Hansen
- Hematology Pathology Research Laboratory Research Unit for Hematology and Research Unit for Pathology Odense University Hospital University of Southern Denmark Odense Denmark
| | | | - Charlotte G. Nyvold
- Hematology Pathology Research Laboratory Research Unit for Hematology and Research Unit for Pathology Odense University Hospital University of Southern Denmark Odense Denmark
| |
Collapse
|
30
|
Labuhn M, Perkins K, Matzk S, Varghese L, Garnett C, Papaemmanuil E, Metzner M, Kennedy A, Amstislavskiy V, Risch T, Bhayadia R, Samulowski D, Hernandez DC, Stoilova B, Iotchkova V, Oppermann U, Scheer C, Yoshida K, Schwarzer A, Taub JW, Crispino JD, Weiss MJ, Hayashi Y, Taga T, Ito E, Ogawa S, Reinhardt D, Yaspo ML, Campbell PJ, Roberts I, Constantinescu SN, Vyas P, Heckl D, Klusmann JH. Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid Leukemia in Children with Down Syndrome. Cancer Cell 2019; 36:123-138.e10. [PMID: 31303423 PMCID: PMC6863161 DOI: 10.1016/j.ccell.2019.06.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/07/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Myeloid leukemia in Down syndrome (ML-DS) clonally evolves from transient abnormal myelopoiesis (TAM), a preleukemic condition in DS newborns. To define mechanisms of leukemic transformation, we combined exome and targeted resequencing of 111 TAM and 141 ML-DS samples with functional analyses. TAM requires trisomy 21 and truncating mutations in GATA1; additional TAM variants are usually not pathogenic. By contrast, in ML-DS, clonal and subclonal variants are functionally required. We identified a recurrent and oncogenic hotspot gain-of-function mutation in myeloid cytokine receptor CSF2RB. By a multiplex CRISPR/Cas9 screen in an in vivo murine TAM model, we tested loss-of-function of 22 recurrently mutated ML-DS genes. Loss of 18 different genes produced leukemias that phenotypically, genetically, and transcriptionally mirrored ML-DS.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 21
- Cytokine Receptor Common beta Subunit/genetics
- Disease Models, Animal
- Disease Progression
- Down Syndrome/diagnosis
- Down Syndrome/genetics
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/metabolism
- Gene Expression Regulation, Leukemic
- Genetic Predisposition to Disease
- HEK293 Cells
- Humans
- Leukemia, Myeloid/diagnosis
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemoid Reaction/diagnosis
- Leukemoid Reaction/genetics
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Mutation
- Phenotype
- Transcription, Genetic
Collapse
Affiliation(s)
- Maurice Labuhn
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Kelly Perkins
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sören Matzk
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Leila Varghese
- Ludwig Institute for Cancer Research Brussels Branch, 1200 Brussels, Belgium
| | - Catherine Garnett
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Elli Papaemmanuil
- Departments of Epidemiology and Biostatistics and Cancer Biology, MSKCC, New York, NY 10065, USA
| | - Marlen Metzner
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Alison Kennedy
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | | | - Thomas Risch
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Raj Bhayadia
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - David Samulowski
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - David Cruz Hernandez
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Bilyana Stoilova
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Valentina Iotchkova
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Udo Oppermann
- Botnar Research Centre, NDORMS, Oxford NIHR BRC and Structural Genomics Consortium, UK University of Oxford, Oxford OX3 7LD, UK
| | - Carina Scheer
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8315 Japan
| | - Adrian Schwarzer
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Mitchell J Weiss
- Hematology Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki-shi, Gunma 370-0033, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8315 Japan; Center for Hematology and Regenerative Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, 45122 Essen, Germany
| | | | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Irene Roberts
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; Department of Paediatrics, University of Oxford, Oxford OX3 9DS, UK
| | | | - Paresh Vyas
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; Department of Haematology, Oxford University Hospitals NHS Trust, Oxford OX3 7LE, UK.
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
31
|
Abstract
Acute myeloid leukemia (AML) associated with Down syndrome (DS-AML) is a unique entity of AML with superior treatment response and overall survival compared with children with non-DS-AML. Despite good outcomes in DS-AML, those who relapse or have refractory disease have poor survival. Successful treatment of these patients is challenged by increased incidence of treatment-related toxicities often encountered with high-dose chemotherapy. Here we report the experience of epigenetic modifying agents (decitabine and vorinostat) followed by fludarabine, cytarabine, and granulocyte colony stimulating growth factor for a child with refractory DS-AML. This combination was well tolerated and resulted in a brief clinical response.
Collapse
|
32
|
Lee WY, Weinberg OK, Evans AG, Pinkus GS. Loss of Full-Length GATA1 Expression in Megakaryocytes Is a Sensitive and Specific Immunohistochemical Marker for the Diagnosis of Myeloid Proliferative Disorder Related to Down Syndrome. Am J Clin Pathol 2018; 149:300-309. [PMID: 29481579 PMCID: PMC5848381 DOI: 10.1093/ajcp/aqy001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Myeloid proliferative disorders associated with Down syndrome (MPD-DS), including transient abnormal myelopoiesis and myeloid leukemia associated with Down syndrome (DS), harbor mutations of GATA1, a transcription factor essential for erythroid and megakaryocytic development. These mutations result in a N-terminally truncated GATA1 (GATA1s) and prohibit the production of the full-length GATA1 (GATA1f). Here, we demonstrate the utility of immunohistochemical GATA1f reactivity in diagnosing MPD-DS. METHODS Immunohistochemical studies for GATA1f expression were performed on bone marrow biopsy specimens. RESULTS In all cases of MPD-DS, megakaryocytes lacked GATA1f expression. In contrast, GATA1f expression was detected in megakaryocytes in all specimen types from patients without DS (normal bone marrows, pediatric myelodysplastic syndrome, juvenile myelomonocytic leukemia, adult acute megakaryocytic leukemia [pediatric and adult; without trisomy 2]), as well as normal bone marrows from patients with DS. CONCLUSIONS The lack of GATA1f expression is a sensitive and specific immunohistochemical marker for MPD-DS.
Collapse
Affiliation(s)
- Winston Y Lee
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Olga K Weinberg
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Andrew G Evans
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Geraldine S Pinkus
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Megakaryocyte ontogeny: Clinical and molecular significance. Exp Hematol 2018; 61:1-9. [PMID: 29501467 DOI: 10.1016/j.exphem.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
Fetal megakaryocytes (Mks) differ from adult Mks in key parameters that affect their capacity for platelet production. However, despite being smaller, more proliferative, and less polyploid, fetal Mks generally mature in the same manner as adult Mks. The phenotypic features unique to fetal Mks predispose patients to several disease conditions, including infantile thrombocytopenia, infantile megakaryoblastic leukemias, and poor platelet recovery after umbilical cord blood stem cell transplantations. Ontogenic Mk differences also affect new strategies being developed to address global shortages of platelet transfusion units. These donor-independent, ex vivo production platforms are hampered by the limited proliferative capacity of adult-type Mks and the inferior platelet production by fetal-type Mks. Understanding the molecular programs that distinguish fetal versus adult megakaryopoiesis will help in improving approaches to these clinical problems. This review summarizes the phenotypic differences between fetal and adult Mks, the disease states associated with fetal megakaryopoiesis, and recent advances in the understanding of mechanisms that determine ontogenic Mk transitions.
Collapse
|
34
|
Vial Y, Lachenaud J, Verloes A, Besnard M, Fenneteau O, Lainey E, Marceau-Renaut A, Preudhomme C, Baruchel A, Cavé H, Drunat S. Down syndrome-like acute megakaryoblastic leukemia in a patient with Cornelia de Lange syndrome. Haematologica 2017; 103:e274-e276. [PMID: 29217785 DOI: 10.3324/haematol.2017.178590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yoann Vial
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, France.,Université Paris Diderot, Paris Sorbonne Cité, France.,INSERM UMR 1131, Institut Universitaire d'Hématologie, Paris, France
| | - Julie Lachenaud
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Service d'Hématologie Pédiatrique, France
| | - Alain Verloes
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, France.,Université Paris Diderot, Paris Sorbonne Cité, France.,INSERM UMR 1141, Hôpital Robert Debré, Paris, France
| | - Marianne Besnard
- Centre Hospitalier de Polynésie Française (CHPF), Service de Réanimation néonatale et Néonatologie, Papeete, Tahiti
| | - Odile Fenneteau
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Service d'Hématologie Biologique, France
| | - Elodie Lainey
- Université Paris Diderot, Paris Sorbonne Cité, France.,INSERM UMR 1131, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Service d'Hématologie Biologique, France
| | | | - Claude Preudhomme
- CHU Lille, Laboratoire d'hématologie, France.,INSERM, UMR-S 1172, France
| | - André Baruchel
- Université Paris Diderot, Paris Sorbonne Cité, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Service d'Hématologie Pédiatrique, France
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, France.,Université Paris Diderot, Paris Sorbonne Cité, France.,INSERM UMR 1131, Institut Universitaire d'Hématologie, Paris, France
| | - Séverine Drunat
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, France .,INSERM UMR 1141, Hôpital Robert Debré, Paris, France
| |
Collapse
|
35
|
Hiramoto N, Takeda J, Yoshida K, Ono Y, Yoshioka S, Yamauchi N, Fujimoto A, Maruoka H, Shiraishi Y, Tanaka H, Chiba K, Imai Y, Miyano S, Ogawa S, Ishikawa T. Donor cell-derived transient abnormal myelopoiesis as a specific complication of umbilical cord blood transplantation. Bone Marrow Transplant 2017; 53:225-227. [PMID: 28991249 DOI: 10.1038/bmt.2017.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N Hiramoto
- Department of Cell Therapy, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - J Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Ono
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - S Yoshioka
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - N Yamauchi
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - A Fujimoto
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - H Maruoka
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Y Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - H Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - K Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Y Imai
- Department of Clinical Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - S Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
36
|
Predispositions to Leukemia in Down Syndrome and Other Hereditary Disorders. Curr Treat Options Oncol 2017; 18:41. [DOI: 10.1007/s11864-017-0485-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Bertrums EJM, Buijs A, van Grotel M, Dors N, de Rooij JDE, de Haas V, Hopman S, Jongmans MCJ, Zwaan CM, van den Heuvel-Eibrink MM. A neonate with a unique non-Down syndrome transient proliferative megakaryoblastic disease. Pediatr Blood Cancer 2017; 64. [PMID: 27667142 DOI: 10.1002/pbc.26230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/08/2022]
Abstract
Transient myeloproliferative disorder (TMD) is a leukemia type that occurs typically in newborns. In Down syndrome, TMD is referred to as transient abnormal myelopoiesis (TAM).32 Recently, transientness has also been reported in acute myeloid leukemia patients with germline trisomy 21 mosaicism, and even in cases with somatic trisomy 21, with or without GATA1 mutations. TMD cases without trisomy 21 are rare, and recurrent genetic aberrations that aid in clinical decision-making are scarcely described. We describe here a TMD patient without trisomy 21 or GATA1 mutation in whom single-nucleotide polymorphism analysis of leukemic blasts revealed a novel combined submicroscopic deletion (5q31.1-5q31.3 and 8q23.2q24).
Collapse
Affiliation(s)
- Eline J M Bertrums
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,University of Utrecht, Utrecht, The Netherlands
| | - Arjan Buijs
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | | | - Natasja Dors
- Department of Pediatrics, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Valerie de Haas
- Dutch Childhood Oncology Group (SKION), The Hague, The Netherlands
| | - Sanne Hopman
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | | | - C M Zwaan
- Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatrics, Catharina Hospital, Eindhoven, The Netherlands.,University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
38
|
Abstract
Down syndrome (also known as trisomy 21) is the model human phenotype for all genomic gain dosage imbalances, including microduplications. The functional genomic exploration of the post-sequencing years of chromosome 21, and the generation of numerous cellular and mouse models, have provided an unprecedented opportunity to decipher the molecular consequences of genome dosage imbalance. Studies of Down syndrome could provide knowledge far beyond the well-known characteristics of intellectual disability and dysmorphic features, as several other important features, including congenital heart defects, early ageing, Alzheimer disease and childhood leukaemia, are also part of the Down syndrome phenotypic spectrum. The elucidation of the molecular mechanisms that cause or modify the risk for different Down syndrome phenotypes could lead to the introduction of previously unimaginable therapeutic options.
Collapse
|
39
|
Bhatnagar N, Nizery L, Tunstall O, Vyas P, Roberts I. Transient Abnormal Myelopoiesis and AML in Down Syndrome: an Update. Curr Hematol Malig Rep 2016; 11:333-41. [PMID: 27510823 PMCID: PMC5031718 DOI: 10.1007/s11899-016-0338-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Children with constitutional trisomy 21 (Down syndrome (DS)) have a unique predisposition to develop myeloid leukaemia of Down syndrome (ML-DS). This disorder is preceded by a transient neonatal preleukaemic syndrome, transient abnormal myelopoiesis (TAM). TAM and ML-DS are caused by co-operation between trisomy 21, which itself perturbs fetal haematopoiesis and acquired mutations in the key haematopoietic transcription factor gene GATA1. These mutations are found in almost one third of DS neonates and are frequently clinically and haematologcially 'silent'. While the majority of cases of TAM undergo spontaneous remission, ∼10 % will progress to ML-DS by acquiring transforming mutations in additional oncogenes. Recent advances in the unique biological, cytogenetic and molecular characteristics of TAM and ML-DS are reviewed here.
Collapse
Affiliation(s)
- Neha Bhatnagar
- Children’s Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU UK
| | - Laure Nizery
- Paediatric Intensive Care Unit, Robert Debré Hospital, 48 Boulevard Sérurier, 75019 Paris, France
| | - Oliver Tunstall
- Bristol Royal Hospital for Children, Paul O’Gorman Building, Upper Maudlin St, Bristol, BS2 8B UK
| | - Paresh Vyas
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Irene Roberts
- Department of Paediatrics, Children’s Hospital, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| |
Collapse
|
40
|
Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome. Blood 2016; 127:3387-97. [PMID: 27121473 DOI: 10.1182/blood-2016-02-699843] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.
Collapse
|
41
|
Abstract
The GATA family of transcription factors consists of six proteins (GATA1-6) which are
involved in a variety of physiological and pathological processes. GATA1/2/3 are required
for differentiation of mesoderm and ectoderm-derived tissues, including the haematopoietic
and central nervous system. GATA4/5/6 are implicated in development and differentiation of
endoderm- and mesoderm-derived tissues such as induction of differentiation of embryonic
stem cells, cardiovascular embryogenesis and guidance of epithelial cell differentiation
in the adult.
Collapse
|
42
|
Evolution of myeloid leukemia in children with Down syndrome. Int J Hematol 2016; 103:365-72. [PMID: 26910243 DOI: 10.1007/s12185-016-1959-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Children with Down syndrome (DS) have a markedly increased risk of leukemia. They are at particular risk of acute megakaryoblastic leukemia, known as myeloid leukemia associated with DS (ML-DS), the development of which is closely linked to a preceding temporary form of neonatal leukemia called transient abnormal myelopoiesis (TAM). Findings from recent clinical and laboratory studies suggest that constitutional trisomy 21 and GATA1 mutation(s) cause TAM, and that additional genetic alteration(s) including those in epigenetic regulators and signaling molecules are involved in the progression from TAM to ML-DS. Thus, this disease progression represents an important model of multi-step leukemogenesis. The present review focuses on the evolutionary process of TAM to ML-DS, and advances in the understanding of perturbed hematopoiesis in DS with respect to GATA1 mutation and recent findings, including cooperating genetic events, are discussed.
Collapse
|
43
|
Danis E, Yamauchi T, Echanique K, Zhang X, Haladyna JN, Riedel SS, Zhu N, Xie H, Orkin SH, Armstrong SA, Bernt KM, Neff T. Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia. Cell Rep 2016; 14:1953-65. [PMID: 26904942 PMCID: PMC4790111 DOI: 10.1016/j.celrep.2016.01.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/25/2015] [Accepted: 01/20/2016] [Indexed: 01/08/2023] Open
Abstract
Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients.
Collapse
Affiliation(s)
- Etienne Danis
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Taylor Yamauchi
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kristen Echanique
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Xi Zhang
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jessica N Haladyna
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Simone S Riedel
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nan Zhu
- Stem Cell Biology and Hematopoiesis Program, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - Huafeng Xie
- Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Stuart H Orkin
- Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Scott A Armstrong
- Cancer Biology and Genetics Program, Departments of Medicine and Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathrin M Bernt
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Tobias Neff
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
44
|
Mullenders J, Aranda-Orgilles B, Lhoumaud P, Keller M, Pae J, Wang K, Kayembe C, Rocha PP, Raviram R, Gong Y, Premsrirut PK, Tsirigos A, Bonneau R, Skok JA, Cimmino L, Hoehn D, Aifantis I. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. J Exp Med 2015; 212:1833-50. [PMID: 26438359 PMCID: PMC4612095 DOI: 10.1084/jem.20151323] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
The cohesin complex (consisting of Rad21, Smc1a, Smc3, and Stag2 proteins) is critically important for proper sister chromatid separation during mitosis. Mutations in the cohesin complex were recently identified in a variety of human malignancies including acute myeloid leukemia (AML). To address the potential tumor-suppressive function of cohesin in vivo, we generated a series of shRNA mouse models in which endogenous cohesin can be silenced inducibly. Notably, silencing of cohesin complex members did not have a deleterious effect on cell viability. Furthermore, knockdown of cohesin led to gain of replating capacity of mouse hematopoietic progenitor cells. However, cohesin silencing in vivo rapidly altered stem cells homeostasis and myelopoiesis. Likewise, we found widespread changes in chromatin accessibility and expression of genes involved in myelomonocytic maturation and differentiation. Finally, aged cohesin knockdown mice developed a clinical picture closely resembling myeloproliferative disorders/neoplasms (MPNs), including varying degrees of extramedullary hematopoiesis (myeloid metaplasia) and splenomegaly. Our results represent the first successful demonstration of a tumor suppressor function for the cohesin complex, while also confirming that cohesin mutations occur as an early event in leukemogenesis, facilitating the potential development of a myeloid malignancy.
Collapse
Affiliation(s)
- Jasper Mullenders
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Beatriz Aranda-Orgilles
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Priscillia Lhoumaud
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Matthew Keller
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Juhee Pae
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Kun Wang
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Clarisse Kayembe
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Pedro P Rocha
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Ramya Raviram
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Yixiao Gong
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | | | - Aristotelis Tsirigos
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Richard Bonneau
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Jane A Skok
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Luisa Cimmino
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Daniela Hoehn
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Iannis Aifantis
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| |
Collapse
|
45
|
Clonal dynamics in a single AML case tracked for 9 years reveals the complexity of leukemia progression. Leukemia 2015; 30:295-302. [PMID: 26424407 DOI: 10.1038/leu.2015.264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/30/2022]
Abstract
Most types of cancers are made up of heterogeneous mixtures of genetically distinct subclones. In particular, acute myeloid leukemia (AML) has been shown to undergo substantial clonal evolution over the course of the disease. AML tends to harbor fewer mutations than solid tumors, making it challenging to infer clonal structure. Here, we present a 9-year, whole-exome sequencing study of a single case at 12 time points, from the initial diagnosis until a fourth relapse, including 6 remission samples in between. To the best of our knowledge, it covers the longest time span of any data set of its kind. We used these time series data to track the hierarchy and order of variant acquisition, and subsequently analyzed the evolution of somatic variants to infer clonal structure. From this, we postulate the development and extinction of subclones, as well as their anticorrelated expansion via varying drug responses. In particular, we show that new subclones started appearing after the first complete remission. The presence and absence of different subclones during remission and relapses implies differing drug responses among subclones. Our study shows that time series analysis contrasting remission and relapse periods provides a much more comprehensive view of clonal structure and evolution.
Collapse
|
46
|
Ng AP, Hu Y, Metcalf D, Hyland CD, Ierino H, Phipson B, Wu D, Baldwin TM, Kauppi M, Kiu H, Di Rago L, Hilton DJ, Smyth GK, Alexander WS. Early lineage priming by trisomy of Erg leads to myeloproliferation in a Down syndrome model. PLoS Genet 2015; 11:e1005211. [PMID: 25973911 PMCID: PMC4431731 DOI: 10.1371/journal.pgen.1005211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/13/2015] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS), with trisomy of chromosome 21 (HSA21), is the commonest human aneuploidy. Pre-leukemic myeloproliferative changes in DS foetal livers precede the acquisition of GATA1 mutations, transient myeloproliferative disorder (DS-TMD) and acute megakaryocytic leukemia (DS-AMKL). Trisomy of the Erg gene is required for myeloproliferation in the Ts(1716)65Dn DS mouse model. We demonstrate here that genetic changes specifically attributable to trisomy of Erg lead to lineage priming of primitive and early multipotential progenitor cells in Ts(1716)65Dn mice, excess megakaryocyte-erythroid progenitors, and malignant myeloproliferation. Gene expression changes dependent on trisomy of Erg in Ts(1716)65Dn multilineage progenitor cells were correlated with those associated with trisomy of HSA21 in human DS hematopoietic stem and primitive progenitor cells. These data suggest a role for ERG as a regulator of hematopoietic lineage potential, and that trisomy of ERG in the context of DS foetal liver hemopoiesis drives the pre-leukemic changes that predispose to subsequent DS-TMD and DS-AMKL. An excess number of genes in trisomy on human chromosome 21 leads to the development of specific diseases in human Down syndrome. An excess copy of the gene, ERG, an ETS family transcription factor, has been implicated in abnormal blood system development in Down syndrome. In this study we show how trisomy of Erg in a murine Down syndrome model perturbs hematopoietic progenitor cells in a manner similar to that observed in human Down syndrome by inducing gene expression changes and lineage priming in early multi-potential progenitors. We show that the gene expression signature specifically attributable to trisomy of Erg in the murine model is strongly correlated with gene expression changes in human Down syndrome hematopoietic cells. The data suggest that Erg is an important regulator of megakaryocyte-erythroid lineage specification in multipotential hematopoietic cells and that trisomy of Erg in the context of DS prediposes to a transient myeloproliferative disorder and acute megakaryocyte leukaemia in a multi-step model of leukemogenesis.
Collapse
Affiliation(s)
- Ashley P. Ng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Donald Metcalf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Craig D. Hyland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Helen Ierino
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Belinda Phipson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Di Wu
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Department of Statistics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tracey M. Baldwin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Maria Kauppi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Hiu Kiu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Douglas J. Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Warren S. Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
47
|
Mateos MK, Barbaric D, Byatt SA, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr 2015; 4:76-92. [PMID: 26835364 PMCID: PMC4729084 DOI: 10.3978/j.issn.2224-4336.2015.03.03] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Children with Down syndrome (DS) have a significantly increased risk of childhood leukemia, in particular acute megakaryoblastic leukemia (AMKL) and acute lymphoblastic leukemia (DS-ALL). A pre-leukemia, called transient myeloproliferative disorder (TMD), characterised by a GATA binding protein 1 (GATA1) mutation, affects up to 30% of newborns with DS. In most cases, the pre-leukemia regresses spontaneously, however one-quarter of these children will go on to develop AMKL or myelodysplastic syndrome (MDS) . AMKL and MDS occurring in young children with DS and a GATA1 somatic mutation are collectively termed myeloid leukemia of Down syndrome (ML-DS). This model represents an important multi-step process of leukemogenesis, and further study is required to identify therapeutic targets to potentially prevent development of leukemia. DS-ALL is a high-risk leukemia and mutations in the JAK-STAT pathway are frequently observed. JAK inhibitors may improve outcome for this type of leukemia. Genetic and epigenetic studies have revealed likely candidate drivers involved in development of ML-DS and DS-ALL. Overall this review aims to identify potential impacts of new research on how we manage children with DS, pre-leukemia and leukemia.
Collapse
Affiliation(s)
- Marion K Mateos
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| | - Draga Barbaric
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| | - Sally-Anne Byatt
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| | - Rosemary Sutton
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| | - Glenn M Marshall
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| |
Collapse
|
48
|
Chlon TM, McNulty M, Goldenson B, Rosinski A, Crispino JD. Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression. Haematologica 2015; 100:575-84. [PMID: 25682601 DOI: 10.3324/haematol.2014.112714] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
GATA1 is a master transcriptional regulator of the differentiation of several related myeloid blood cell types, including erythrocytes and megakaryocytes. Germ-line mutations that cause loss of full length GATA1, but allow for expression of the short isoform (GATA1s), are associated with defective erythropoiesis in a subset of patients with Diamond Blackfan Anemia. Despite extensive studies of GATA1s in megakaryopoiesis, the mechanism by which GATA1s fails to support normal erythropoiesis is not understood. In this study, we used global gene expression and chromatin occupancy analysis to compare the transcriptional activity of GATA1s to GATA1. We discovered that compared to GATA1, GATA1s is less able to activate the erythroid gene expression program and terminal differentiation in cells with dual erythroid-megakaryocytic differentiation potential. Moreover, we found that GATA1s bound to many of its erythroid-specific target genes less efficiently than full length GATA1. These results suggest that the impaired ability of GATA1s to promote erythropoiesis in DBA may be caused by failure to occupy erythroid-specific gene regulatory elements.
Collapse
Affiliation(s)
- Timothy M Chlon
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA Present address Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Maureen McNulty
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Benjamin Goldenson
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Alexander Rosinski
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
49
|
Abstract
Children with Down syndrome (DS) and acute leukemias acute have unique biological, cytogenetic, and intrinsic factors that affect their treatment and outcome. Myeloid leukemia of Down syndrome (ML-DS) is associated with high event-free survival (EFS) rates and frequently preceded by a preleukemia condition, the transient abnormal hematopoiesis (TAM) present at birth. For acute lymphoblastic leukemia (ALL), their EFS and overall survival are poorer than non-DS ALL, it is important to enroll them on therapeutic trials, including relapse trials; investigate new agents that could potentially improve their leukemia-free survival; and strive to maximize the supportive care these patients need.
Collapse
Affiliation(s)
- Kelly W Maloney
- Center for Cancer & Blood Disorders, Children's Hospital Colorado, 13123 East 16th Avenue, B115, Aurora, CO 80045, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Wayne State University School of Medicine, 3901 Beaubien Boulevard, Detroit, MI 48201, USA.
| | - Yaddanapudi Ravindranath
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Wayne State University School of Medicine, 3901 Beaubien Boulevard, Detroit, MI 48201, USA
| | - Irene Roberts
- Department of Paediatrics and Molecular Haematology Unit, University of Oxford and Oxford University Hospitals NHS Trust, Oxford, OX3 9DS, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Department of Haematology, Weatherall Institute of Molecular Medicine, Oxford University Hospitals NHS Trust, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
50
|
Liu B, Filippi S, Roy A, Roberts I. Stem and progenitor cell dysfunction in human trisomies. EMBO Rep 2014; 16:44-62. [PMID: 25520324 DOI: 10.15252/embr.201439583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trisomy 21, the commonest constitutional aneuploidy in humans, causes profound perturbation of stem and progenitor cell growth, which is both cell context dependent and developmental stage specific and mediated by complex genetic mechanisms beyond increased Hsa21 gene dosage. While proliferation of fetal hematopoietic and testicular stem/progenitors is increased and may underlie increased susceptibility to childhood leukemia and testicular cancer, fetal stem/progenitor proliferation in other tissues is markedly impaired leading to the characteristic craniofacial, neurocognitive and cardiac features in individuals with Down syndrome. After birth, trisomy 21-mediated premature aging of stem/progenitor cells may contribute to the progressive multi-system deterioration, including development of Alzheimer's disease.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Sarah Filippi
- Department of Statistics, University of Oxford, Oxford, UK
| | - Anindita Roy
- Centre for Haematology, Imperial College London, London, UK
| | - Irene Roberts
- Department of Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| |
Collapse
|