1
|
Kojima Y, Kawashima F, Yasuda T, Odaira K, Inagaki Y, Yamada C, Muraki A, Noura M, Okamoto S, Tamura S, Iwamoto E, Sanada M, Matsumura I, Miyazaki Y, Kojima T, Kiyoi H, Tsuzuki S, Hayakawa F. EBF1-JAK2 inhibits the PAX5 function through physical interaction with PAX5 and kinase activity. Int J Hematol 2023:10.1007/s12185-023-03585-z. [PMID: 37149540 DOI: 10.1007/s12185-023-03585-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
Gene aberrations of B-cell regulators and growth signal components such as the JAK-STAT pathway are frequently found in B-cell acute lymphoblastic leukemia (B-ALL). EBF1 is a B-cell regulator that regulates the expression of PAX5 and co-operates with PAX5 to regulate B-cell differentiation. Here, we analyzed the function of the fusion protein of EBF1 and JAK2, EBF1-JAK2 (E-J). E-J caused constitutive activation of JAK-STAT and MAPK pathways and induced autonomous cell growth in a cytokine-dependent cell line. E-J did not affect the transcriptional activity of EBF1 but inhibited that of PAX5. Both the physical interaction of E-J with PAX5 and kinase activity of E-J were required for E-J to inhibit PAX5 function, although the detailed mechanism of inhibition remains unclear. Importantly, gene set enrichment analysis using the results of our previous RNA-seq data of 323 primary BCR-ABL1-negative ALL samples demonstrated repression of the transcriptional target genes of PAX5 in E-J-positive ALL cells, which suggests that E-J also inhibited PAX5 function in ALL cells. Our results shed new light on the mechanisms of differentiation block by kinase fusion proteins.
Collapse
Affiliation(s)
- Yukino Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Fumika Kawashima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Yuichiro Inagaki
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Chiharu Yamada
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Ami Muraki
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Shuichi Okamoto
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Shogo Tamura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Eisuke Iwamoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University School of Medicine, Osaka, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tetsuhito Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
- Aichi Health Promotion Foundation, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan.
| |
Collapse
|
2
|
Zhou Y, Ji M, Xia Y, Han X, Li M, Li W, Sun T, Zhang J, Lu F, Sun Y, Liu N, Li J, Ma D, Ye J, Ji C. Silencing of IRF8 Mediated by m6A Modification Promotes the Progression of T-Cell Acute Lymphoblastic Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201724. [PMID: 36478193 PMCID: PMC9839875 DOI: 10.1002/advs.202201724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/11/2022] [Indexed: 06/17/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis, urging for novel therapeutic targets and treatment strategies. N6-methyladenosine (m6A) is a crucial methylation modification that affects the pathogenesis of leukemia by regulating the mRNA of key genes. Interferon regulatory factor 8 (IRF8) is a crucial transcription factor for hematological lineage commitment, but its role in T-ALL is unclear. Here, IRF8 is shown to suppress T-ALL. The expression of IRF8 is abnormally silenced in patients with T-ALL. Knockout of Irf8 significantly hastens the progression of Notch1-induced T-ALL in vivo. Overexpression of IRF8 suppresses the proliferation and invasion of T-ALL cells by inhibiting the phosphatidylinositol 3-kinase/AKT signaling pathway. The fat mass- and obesity-associated protein (FTO), an m6A demethylase, is responsible for directly binding to m6A sites in 3' untranslated region of IRF8 messenger RNA (mRNA) and inducing mRNA degradation via m6A modification. Targeting the FTO-IRF8 axis is used as a proof of concept therapy; inhibition of FTO's demethylase activity drastically alleviates the proliferation of leukemic cells and prolongs the survival of T-ALL mice by restoring IRF8 expression. This study elucidates the pathogenesis of T-ALL from the perspective of epitranscriptomics and provides new insight into the genetic mechanisms and targeted therapy of T-ALL.
Collapse
Affiliation(s)
- Ying Zhou
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Min Ji
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Yuan Xia
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Xiaoyu Han
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Mingying Li
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Wei Li
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Tao Sun
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- Key Laboratory of ImmunohematologyQilu HospitalShandong UniversityJinan250012P. R. China
| | - Jingru Zhang
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Fei Lu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Yanping Sun
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Na Liu
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Jingxin Li
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Daoxin Ma
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
- Key Laboratory of ImmunohematologyQilu HospitalShandong UniversityJinan250012P. R. China
| | - Jingjing Ye
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Chunyan Ji
- Department of HematologyQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| |
Collapse
|
3
|
Mamgain G, Naithani M, Patra P, Mamgain M, Morang S, Nayak J, Kumar K, Singh S, Bakliwal A, Rajoreya A, Vaniyath S, Chattopadhyay D, Chetia R, Gupta A, Dhingra G, Sundriyal D, Nath UK. Next-Generation Sequencing Highlights of Diffuse Large B-cell Lymphoma in a Tertiary Care Hospital in North India. Cureus 2022; 14:e28241. [PMID: 36158348 PMCID: PMC9489829 DOI: 10.7759/cureus.28241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: Next-generation sequencing (NGS) elucidates the diffuse large B-cell lymphoma (DLBCL) genetic characteristics by finding recurrent and novel somatic mutations. This observational study attempted to create an NGS panel with a focus on identifying novel somatic mutations which could have potential clinical and therapeutic implications. This panel was created to look for mutations in 133 genes chosen on basis of a literature review and it was used to sequence the tumor DNA of 20 DLBCL patients after a centralized histopathologic review. Methods: The study included 20 patients having DLBCL. The quality and quantity of tumor cells were accessed by H&E staining and correlated with histopathology and Immunohistochemistry (IHC) status. Patients were grouped as ABC (activated B-cell), PMBL (primary mediastinal large B-cell lymphoma), and other or unclassified subtypes. The lymphoma panel of 133 was designed on targeted sequencing of multiple genes for the coding regions through NGS. The libraries were prepared and sequenced using the Illumina platform. The alignment of obtained sequences was performed using Burrows-Wheeler Aligner and identification of somatic mutations was done using LoFreq (version 2) variant caller. The mutations were annotated using an annotation pipeline (VariMAT). Previously published literature and databases were used for the annotation of clinically relevant mutations. The common variants were filtered for reporting based on the presence in various population databases (1000G, ExAC, EVS, 1000Japanese, dbSNP, UK10K, MedVarDb). A custom read-depth-based algorithm was used to determine CNV (Copy Number Variants) from targeted sequencing experiments. Rare CNVs were detected using a comparison of the test data read-depths with the matched reference dataset. Reportable mutations were prioritized and prepared based on AMP-ASCO-CAP (Association for Molecular Pathology-American Society of Clinical Oncology-College of American Pathologists), WHO guidelines, and also based on annotation metrics from OncoMD (a knowledge base of genomic alterations). Results: The informativity of the panel was 95 percent. NOTCH 1 was the most frequently mutated gene in 16.1% of patients followed by 12.9% who had ARID1A mutations. MYD88 and TP53 mutations were detected in 9.6% of the patient while 6.4% of patients had CSF3R mutations. NOTCH 1 and TP 53 are the most frequently reported gene in the middle age group (40-60). Mutation in MYD88 is reported in every age group. MYD88 (51%) is the most common mutation in ABC subtypes of DLBCL, followed by NOTCH 1 (44%) and SOCS 1 (33%) according to our findings. NOTCH 1 mutations are frequent in ABC and PMBL subtypes. Closer investigation reveals missense mutation is the most frequent mutation observed in the total cohort targeting 68.4% followed by frameshift deletion reported in 26.3%. Six novel variants have been discovered in this study. Conclusions: This study demonstrates the high yield of information in DLBCL using the NGS Lymphoma panel. Results also highlight the molecular heterogeneity of DLBCL subtypes which indicates the need for further studies to make the results of the NGS more clinically relevant.
Collapse
|
4
|
Vicente-Garcés C, Esperanza-Cebollada E, Montesdeoca S, Torrebadell M, Rives S, Dapena JL, Català A, Conde N, Camós M, Vega-García N. Technical Validation and Clinical Utility of an NGS Targeted Panel to Improve Molecular Characterization of Pediatric Acute Leukemia. Front Mol Biosci 2022; 9:854098. [PMID: 35463953 PMCID: PMC9021638 DOI: 10.3389/fmolb.2022.854098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Development of next-generation sequencing (NGS) has provided useful genetic information to redefine diagnostic, prognostic, and therapeutic strategies for the management of acute leukemia (AL). However, the application in the clinical setting is still challenging. Our aim was to validate the AmpliSeq™ for Illumina® Childhood Cancer Panel, a pediatric pan-cancer targeted NGS panel that includes the most common genes associated with childhood cancer, and assess its utility in the daily routine of AL diagnostics. In terms of sequencing metrics, the assay reached all the expected values. We obtained a mean read depth greater than 1000×. The panel demonstrated a high sensitivity for DNA (98.5% for variants with 5% variant allele frequency (VAF)) and RNA (94.4%), 100% of specificity and reproducibility for DNA and 89% of reproducibility for RNA. Regarding clinical utility, 49% of mutations and 97% of the fusions identified were demonstrated to have clinical impact. Forty-one percent of mutations refined diagnosis, while 49% of them were considered targetable. Regarding RNA, fusion genes were more clinically impactful in terms of refining diagnostic (97%). Overall, the panel found clinically relevant results in the 43% of patients tested in this cohort. To sum up, we validated a reliable and reproducible method to refine pediatric AL diagnosis, prognosis, and treatment, and demonstrated the feasibility of incorporating a targeted NGS panel into pediatric hematology practice.
Collapse
Affiliation(s)
- Clara Vicente-Garcés
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Elena Esperanza-Cebollada
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Sara Montesdeoca
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Montserrat Torrebadell
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Rives
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu Barcelona, University of Barcelona, Barcelona, Spain
| | - José Luis Dapena
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu Barcelona, University of Barcelona, Barcelona, Spain
| | - Albert Català
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu Barcelona, University of Barcelona, Barcelona, Spain
| | - Nuria Conde
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu Barcelona, University of Barcelona, Barcelona, Spain
| | - Mireia Camós
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Nerea Vega-García
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- *Correspondence: Nerea Vega-García,
| |
Collapse
|
5
|
Castiglioni S, Di Fede E, Bernardelli C, Lettieri A, Parodi C, Grazioli P, Colombo EA, Ancona S, Milani D, Ottaviano E, Borghi E, Massa V, Ghelma F, Vignoli A, Lesma E, Gervasini C. KMT2A: Umbrella Gene for Multiple Diseases. Genes (Basel) 2022; 13:genes13030514. [PMID: 35328068 PMCID: PMC8949091 DOI: 10.3390/genes13030514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A (Lysine methyltransferase 2A) is a member of the epigenetic machinery, encoding a lysine methyltransferase responsible for the transcriptional activation through lysine 4 of histone 3 (H3K4) methylation. KMT2A has a crucial role in gene expression, thus it is associated to pathological conditions when found mutated. KMT2A germinal mutations are associated to Wiedemann–Steiner syndrome and also in patients with initial clinical diagnosis of several other chromatinopathies (i.e., Coffin–Siris syndromes, Kabuki syndrome, Cornelia De Lange syndrome, Rubinstein–Taybi syndrome), sharing an overlapping phenotype. On the other hand, KMT2A somatic mutations have been reported in several tumors, mainly blood malignancies. Due to its evolutionary conservation, the role of KMT2A in embryonic development, hematopoiesis and neurodevelopment has been explored in different animal models, and in recent decades, epigenetic treatments for disorders linked to KMT2A dysfunction have been extensively investigated. To note, pharmaceutical compounds acting on tumors characterized by KMT2A mutations have been formulated, and even nutritional interventions for chromatinopathies have become the object of study due to the role of microbiota in epigenetic regulation.
Collapse
Affiliation(s)
- Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Clara Bernardelli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Borghi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Filippo Ghelma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Aglaia Vignoli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- Child NeuroPsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Elena Lesma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-0250-3230-28
| |
Collapse
|
6
|
Chen Y, Zheng Y, Hong Y, Wen J, Li J, Huang Y, Chen Y, Zheng X, Yang T, Xu Y, Zheng J, Hu J. Genomic heterogeneity contributed to different prognosis between adult and pediatric acute lymphoblastic. J Leukoc Biol 2022; 112:513-522. [PMID: 35172382 DOI: 10.1002/jlb.5a0721-361r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The prognosis of acute lymphoblastic leukemia (ALL) in adults is inferior to that in children. Hence, ALL remains challenging to cure in the adult population. Aberrant genetic alterations have been observed in ALL, although the patterns of differential gene alterations in adult and pediatric ALL have not been comprehensively determined on a genome-wide scale. We investigated the biologic differences in genomic profiles between adults (n = 64) and children (n = 54) with ALL and relationship between genomic heterogeneity and prognosis. The 2 populations showed similar common mutation types but an increased prevalence of genetic alterations in adult ALL. The median numbers of gene mutations were 17 (range: 1-53) and 4.5 (range: 1-19) per sample in adult and pediatric ALL, respectively (p < 0.001). An increased number of gene mutations and age were significantly correlated (R2 = 0.5853, p < 0.001). We identified 122 and 53 driver genes in adult and pediatric ALL samples, respectively. IKZF1, IDH1, and TTN mutations were significantly enriched in adult patients with ALL. KRAS, ARID1A, and CREBBP mutations were significantly enriched in pediatric patients with ALL (p < 0.05). The incidence of relapse was 40.0% and 9.6% in adult and pediatric patients with ALL, respectively (p = 0.003). The overall survival and relapse-free survival of adult patients with ALL were poorer than those of pediatric patients with ALL (p = 0.002 and p < 0.001, respectively). This genomic landscape enhances the understanding of the biologic differences in ALL between the 2 populations and provides insight for developing therapeutic approaches.
Collapse
Affiliation(s)
- Yanxin Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yongzhi Zheng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yunda Hong
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jingjing Wen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiazheng Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yan Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yi Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaoyun Zheng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ting Yang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yangqi Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jing Zheng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Zheng YZ, Zheng H, Chen ZS, Hua XL, Le SH, Li J, Hu JD. [Mutational spectrum and its prognostic significance in childhood acute lymphoblastic leukemia based on next-generation sequencing technology]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:19-25. [PMID: 35231988 PMCID: PMC8980667 DOI: 10.3760/cma.j.issn.0253-2727.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/05/2022]
Abstract
Objective: This study analyzed the correlation between genetic mutation and prognostic significance in childhood acute lymphoblastic leukemia (ALL) . Methods: Targeted exome by next-generation sequencing (NGS) technology was used to carry out molecular profiling of untreated 141 children with ALL in Fujian Medical University Union Hospital from November 2016 to December 2019. Correlation of genetic features and clinical features and outcomes was analyzed. Results: Among the 141 pediatric patients with ALL, 160 somatic mutations were detected in 83 patients (58.9% ) , including 37 grade Ⅰ mutations and 123 grade Ⅱ mutations. Single nucleotide variation was the most common type of mutation. KRAS was the most common mutant gene (12.5% ) , followed by NOTCH1 (11.9% ) , and NRAS (10.6% ) . RAS pathway (KRAS, FLT3, PTPN11) , PAX5 and TP53 mutations were only detected, and NRAS mutations was mainly found in B-ALL while FBXW7 and PTEN mutations were only found, and NOTCH1 mutation was mainly detected in T-ALL. The average number of mutations detected in each child with T-ALL was significantly higher than in children with B-ALL (4.16±1.33 vs 2.04±0.92, P=0.004) . The children were divided into mutation and non-mutation groups according to the presence or absence of genetic variation. There were no statistically significant differences in sex, age, newly diagnosed white blood cell count, minimal or measurable residual disease monitoring results, expected 3-year event-free survival (EFS) and overall survival (OS) between the two groups (P>0.05) . On the other hand, the proportion of T-ALL and fusion gene negative children in the mutant group was significantly higher than the non-mutation group (P=0.021 and 0.000, respectively) . Among the patients without fusion gene, the EFS of children with grade I mutation was significantly lower than children without grade I mutation (85.5% vs 100.0% , P=0.039) . Among children with B-ALL, the EFS of those with TP53 mutation was significantly lower than those without TP53 mutation (37.5% vs 91.2% , P<0.001) . Conclusion: Genetic variation is more common in childhood ALL and has a certain correlation with clinical phenotype and prognosis. Therefore, targeted exome by NGS can be used as an important supplement to the traditional morphology, immunology, cytogenetics, and molecular biology classification.
Collapse
Affiliation(s)
- Y Z Zheng
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - H Zheng
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Z S Chen
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - X L Hua
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - S H Le
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - J Li
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - J D Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
8
|
Loss of synergistic transcriptional feedback loops drives diverse B-cell cancers. EBioMedicine 2021; 71:103559. [PMID: 34461601 PMCID: PMC8403728 DOI: 10.1016/j.ebiom.2021.103559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
Background The most common B-cell cancers, chronic lymphocytic leukemia/lymphoma (CLL), follicular and diffuse large B-cell (FL, DLBCL) lymphomas, have distinct clinical courses, yet overlapping “cell-of-origin”. Dynamic changes to the epigenome are essential regulators of B-cell differentiation. Therefore, we reasoned that these distinct cancers may be driven by shared mechanisms of disruption in transcriptional circuitry. Methods We compared purified malignant B-cells from 52 patients with normal B-cell subsets (germinal center centrocytes and centroblasts, naïve and memory B-cells) from 36 donor tonsils using >325 high-resolution molecular profiling assays for histone modifications, open chromatin (ChIP-, FAIRE-seq), transcriptome (RNA-seq), transcription factor (TF) binding, and genome copy number (microarrays). Findings From the resulting data, we identified gains in active chromatin in enhancers/super-enhancers that likely promote unchecked B-cell receptor signaling, including one we validated near the immunoglobulin superfamily receptors FCMR and PIGR. More striking and pervasive was the profound loss of key B-cell identity TFs, tumor suppressors and their super-enhancers, including EBF1, OCT2(POU2F2), and RUNX3. Using a novel approach to identify transcriptional feedback, we showed that these core transcriptional circuitries are self-regulating. Their selective gain and loss form a complex, iterative, and interactive process that likely curbs B-cell maturation and spurs proliferation. Interpretation Our study is the first to map the transcriptional circuitry of the most common blood cancers. We demonstrate that a critical subset of B-cell TFs and their cognate enhancers form self-regulatory transcriptional feedback loops whose disruption is a shared mechanism underlying these diverse subtypes of B-cell lymphoma. Funding National Institute of Health, Siteman Cancer Center, Barnes-Jewish Hospital Foundation, Doris Duke Foundation.
Collapse
|
9
|
Scientific Advances and the Evolution of Diagnosis, Subclassification and Treatment of Lymphoma. Arch Med Res 2020; 51:749-764. [PMID: 32553461 DOI: 10.1016/j.arcmed.2020.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
The diagnosis of lymphoma has evolved tremendously over time. Initially, diagnosis of lymphoma was largely based on morphology alone. Over time, immunophenotyping using flow cytometry and immunohistochemistry, and then in situ hybridization, have contributed dramatically to the pathologist's ability to recognize, diagnose and subclassify lymphomas more precisely. In recent years, cytogenetic and molecular genetic techniques have developed that allow evaluation of abnormalities in lymphomas, leading to an understanding of their pathogenesis and opening the door to targeted therapies that will lead to better outcomes for lymphoma patients.
Collapse
|
10
|
Dubois S, Tesson B, Mareschal S, Viailly PJ, Bohers E, Ruminy P, Etancelin P, Peyrouze P, Copie-Bergman C, Fabiani B, Petrella T, Jais JP, Haioun C, Salles G, Molina TJ, Leroy K, Tilly H, Jardin F. Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles. EBioMedicine 2019; 48:58-69. [PMID: 31648986 PMCID: PMC6838437 DOI: 10.1016/j.ebiom.2019.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression profiles to refine DLBCL subtypes. A comparison of our model with two recently published integrative DLBCL classifiers was carried out, in order to best reflect the current state of genomic subtypes. Methods 223 patients with de novo DLBCL from the prospective, multicenter and randomized LNH-03B LYSA clinical trials were included. GEP data was obtained using Affymetrix GeneChip arrays, mutational profiles were established by Lymphopanel NGS targeting 34 key genes, CNV analysis was obtained by array CGH, and FISH and IHC were performed. Unsupervised independent component analysis (ICA) was applied to GEP data and integrated analysis of multi-level molecular data associated with each component (gene signature) was performed. Findings ICA identified 38 components reflecting transcriptomic variability across our DLBCL cohort. Many of the components were closely related to well-known DLBCL features such as cell-of-origin, stromal and MYC signatures. A component linked to gain of 19q13 locus, among other genomic alterations, was significantly correlated with poor OS and PFS. Through this integrated analysis, a high degree of heterogeneity was highlighted among previously described DLBCL subtypes. Interpretation The results of this integrated analysis enable a global and multi-level view of DLBCL, as well as improve our understanding of DLBCL subgroups.
Collapse
Affiliation(s)
- Sydney Dubois
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Sylvain Mareschal
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Lyon, France
| | - Pierre-Julien Viailly
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France; Normandie Univ, EdN BISE 497, Normandy, France
| | - Elodie Bohers
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Ruminy
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Pascaline Etancelin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Christiane Copie-Bergman
- Department of Pathology, Henri Mondor Hospital, APHP, INSERM U955, Université Paris-Est, Créteil, France
| | - Bettina Fabiani
- Laboratoire de Pathologie, AP-HP Hôpital Saint Antoine, Paris, France
| | - Tony Petrella
- Department of Pathology, Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada
| | - Jean-Philippe Jais
- Institut Imagine HGID, Inserm U1163, AP-HP Hôpital Necker, Université Paris Descartes, Paris, France
| | - Corinne Haioun
- Unité Hémopathies Lymphoïdes, AP-HP Hôpital Henri Mondor, Créteil, France
| | - Gilles Salles
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Lyon, France
| | - Thierry Jo Molina
- Pathology, AP-HP, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Karen Leroy
- Inserm U1016 - CNRS UMR8104 - Université Paris Descartes Groupe Hospitalier Cochin, Paris, France
| | - Hervé Tilly
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Fabrice Jardin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France.
| | | |
Collapse
|
11
|
Gao J, Van Meter M, Hernandez Lopez S, Chen G, Huang Y, Ren S, Zhao Q, Rojas J, Gurer C, Thurston G, Kuhnert F. Therapeutic targeting of Notch signaling and immune checkpoint blockade in a spontaneous, genetically heterogeneous mouse model of T-cell acute lymphoblastic leukemia. Dis Model Mech 2019; 12:dmm.040931. [PMID: 31399482 PMCID: PMC6765191 DOI: 10.1242/dmm.040931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer derived from the malignant transformation of T-cell progenitors. Outcomes remain poor for T-ALL patients who have either primary resistance to standard-of-care chemotherapy or disease relapse. Notably, there are currently no targeted therapies available in T-ALL. This lack of next-generation therapies highlights the need for relevant preclinical disease modeling to identify and validate new targets and treatment approaches. Here, we adapted a spontaneously arising, genetically heterogeneous, thymic transplantation-based murine model of T-ALL, recapitulating key histopathological and genetic features of the human disease, to the preclinical testing of targeted and immune-directed therapies. Genetic engineering of the murine Notch1 locus aligned the spectrum of Notch1 mutations in the mouse model to that of human T-ALL and confirmed aberrant, recombination-activating gene (RAG)-mediated 5′ Notch1 recombination events as the preferred pathway in murine T-ALL development. Testing of Notch1-targeting therapeutic antibodies demonstrated T-ALL sensitivity to different classes of Notch1 blockers based on Notch1 mutational status. In contrast, genetic ablation of Notch3 did not impact T-ALL development. The T-ALL model was further applied to the testing of immunotherapeutic agents in fully immunocompetent, syngeneic mice. In line with recent clinical experience in T-cell malignancies, programmed cell death 1 (PD-1) blockade alone lacked anti-tumor activity against murine T-ALL tumors. Overall, the unique features of the spontaneous T-ALL model coupled with genetic manipulations and the application to therapeutic testing in immunocompetent backgrounds will be of great utility for the preclinical evaluation of novel therapies against T-ALL. Summary: Adapting a spontaneous, genetically heterogenous T-ALL model to preclinical testing demonstrated that response to therapeutic anti-Notch1 antibodies was determined by Notch1 mutational status and that PD-1 immune checkpoint blockade alone lacked anti-tumor activity.
Collapse
Affiliation(s)
- Jie Gao
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | | | | | - Guoying Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Ying Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Shumei Ren
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Qi Zhao
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Jose Rojas
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Cagan Gurer
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Frank Kuhnert
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| |
Collapse
|
12
|
Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 2019; 71:88-96. [PMID: 30249539 PMCID: PMC6386770 DOI: 10.1016/j.jbior.2018.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
13
|
Nakagaki T, Tamura M, Kobashi K, Omori A, Koyama R, Idogawa M, Ogi K, Hiratsuka H, Tokino T, Sasaki Y. Targeted next-generation sequencing of 50 cancer-related genes in Japanese patients with oral squamous cell carcinoma. Tumour Biol 2018; 40:1010428318800180. [PMID: 30226113 DOI: 10.1177/1010428318800180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Somatic mutation analysis is a standard of practice for human cancers to identify therapeutic sensitization and resistance mutations. We performed a multigene sequencing screen to explore mutational hotspots in cancer-related genes using a semiconductor-based sequencer. DNA from oral squamous cell carcinoma samples was used as a template to amplify 207 regions from 50 cancer-related genes. Of the 80 oral squamous cell carcinoma specimens from Japanese patients, including formalin-fixed paraffin-embedded samples, 56 specimens presented at least one somatic mutation among the 50 investigated genes, and 17 of these samples showed multiple gene somatic mutations. TP53 was the most commonly mutated gene (50.0%), followed by CDKN2A (16.3%), PIK3CA (7.5%), HRAS (5.0%), MET (2.5%), and STK11 (2.5%). In total, 32 cases (40.0%) were human papillomavirus positive and they were significantly less likely to have a TP53, mutation than human papillomavirus-negative oral squamous cell carcinomas (8/32, 25.0% vs 32/48, 66.7%, p = 0.00026). We also detected copy number variations, in which segments of the genome could be duplicated or deleted from the sequencing data. We detected the tumor-specific TP53 mutation in the plasma cell-free DNA from two oral squamous cell carcinoma patients, and after surgery, the test for these mutations became negative. Our approach facilitates the simultaneous high-throughput detection of somatic mutations and copy number variations in oral squamous cell carcinoma samples.
Collapse
Affiliation(s)
- Takafumi Nakagaki
- 1 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan.,2 Department of Oral Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Miyuki Tamura
- 1 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenta Kobashi
- 1 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Akina Omori
- 1 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Ryota Koyama
- 1 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masashi Idogawa
- 1 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kazuhiro Ogi
- 2 Department of Oral Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hiroyoshi Hiratsuka
- 2 Department of Oral Surgery, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takashi Tokino
- 1 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yasushi Sasaki
- 1 Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan.,3 Biology Division, Department of Liberal Arts and Sciences, Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
14
|
An activating mutation of the NSD2 histone methyltransferase drives oncogenic reprogramming in acute lymphocytic leukemia. Oncogene 2018; 38:671-686. [PMID: 30171259 PMCID: PMC6358490 DOI: 10.1038/s41388-018-0474-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/07/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
Abstract
NSD2, a histone methyltransferase specific for methylation of histone 3 lysine 36 (H3K36), exhibits a glutamic acid to lysine mutation at residue 1099 (E1099K) in childhood acute lymphocytic leukemia (ALL), and cells harboring this mutation can become the predominant clone in relapsing disease. We studied the effects of this mutant enzyme in silico, in vitro, and in vivo using gene edited cell lines. The E1099K mutation altered enzyme/substrate binding and enhanced the rate of H3K36 methylation. As a result, cell lines harboring E1099K exhibit increased H3K36 dimethylation and reduced H3K27 trimethylation, particularly on nucleosomes containing histone H3.1. Mutant NSD2 cells exhibit reduced apoptosis and enhanced proliferation, clonogenicity, adhesion, and migration. In mouse xenografts, mutant NSD2 cells are more lethal and brain invasive than wildtype cells. Transcriptional profiling demonstrates that mutant NSD2 aberrantly activates factors commonly associated with neural and stromal lineages in addition to signaling and adhesion genes. Identification of these pathways provides new avenues for therapeutic interventions in NSD2 dysregulated malignancies.
Collapse
|
15
|
Montaño A, Forero-Castro M, Marchena-Mendoza D, Benito R, Hernández-Rivas JM. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update. Cancers (Basel) 2018; 10:cancers10040110. [PMID: 29642462 PMCID: PMC5923365 DOI: 10.3390/cancers10040110] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.
Collapse
Affiliation(s)
- Adrián Montaño
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
| | - Maribel Forero-Castro
- Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150001, Colombia.
| | - Darnel Marchena-Mendoza
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
- Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150001, Colombia.
| | - Rocío Benito
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
| | | |
Collapse
|
16
|
Inamdar AA, Goy A, Ayoub NM, Attia C, Oton L, Taruvai V, Costales M, Lin YT, Pecora A, Suh KS. Mantle cell lymphoma in the era of precision medicine-diagnosis, biomarkers and therapeutic agents. Oncotarget 2018; 7:48692-48731. [PMID: 27119356 PMCID: PMC5217048 DOI: 10.18632/oncotarget.8961] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/10/2016] [Indexed: 12/15/2022] Open
Abstract
Despite advances in the development of clinical agents for treating Mantle Cell Lymphoma (MCL), treatment of MCL remains a challenge due to complexity and frequent relapse associated with MCL. The incorporation of conventional and novel diagnostic approaches such as genomic sequencing have helped improve understanding of the pathogenesis of MCL, and have led to development of specific agents targeting signaling pathways that have recently been shown to be involved in MCL. In this review, we first provide a general overview of MCL and then discuss about the role of biomarkers in the pathogenesis, diagnosis, prognosis, and treatment for MCL. We attempt to discuss major biomarkers for MCL and highlight published and ongoing clinical trials in an effort to evaluate the dominant signaling pathways as drugable targets for treating MCL so as to determine the potential combination of drugs for both untreated and relapse/refractory cases. Our analysis indicates that incorporation of biomarkers is crucial for patient stratification and improve diagnosis and predictability of disease outcome thus help us in designing future precision therapies. The evidence indicates that a combination of conventional chemotherapeutic agents and novel drugs designed to target specific dysregulated signaling pathways can provide the effective therapeutic options for both untreated and relapse/refractory MCL.
Collapse
Affiliation(s)
- Arati A Inamdar
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Christen Attia
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Lucia Oton
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Varun Taruvai
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Mark Costales
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yu-Ting Lin
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andrew Pecora
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
17
|
An Unsuspected Finding of t(9;22): A Rare Case of Philadelphia Chromosome-Positive B-Lymphoblastic Lymphoma. Case Rep Hematol 2017; 2017:2413587. [PMID: 29075538 PMCID: PMC5624137 DOI: 10.1155/2017/2413587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
While rare, cases of isolated extramedullary disease of B-cell Lymphoblastic Lymphoma (B-LBL) without morphologic bone marrow involvement have been described. In this report, we illustrate the case of an elderly gentleman who presented with isolated testicular and vertebral LBL involvement but had no morphologic bone marrow involvement. The initial plan of treatment was to treat along the lines of Philadelphia negative B-ALL/LBL. During this time, fluorescence in situ hybridization (FISH) and PCR testing for BCR-ABL1 rearrangements were being performed on the marrow specimens as a part of routine diagnostic workup. While the FISH returned negative, PCR testing unexpectedly detected BCR-ABL1 fusion transcripts at a low level of 0.48%. Given their presence, we performed FISH for BCR/ABL1 rearrangement in both testicular and L5 vertebral specimens which were 80–90% positive. He subsequently received rituximab, hyper-CVAD, and dasatinib, along with prophylactic intrathecal prophylactic chemotherapy. The patient achieved a prolonged remission but eventually relapsed, 4 years later. Had it not been for this fortuitous discovery, the patient would not have been treated with tyrosine kinase inhibitors. We emphasize that FISH and PCR testing for BCR-ABL1 rearrangement are integral to arriving at an accurate diagnosis and should be routinely tested on B-LBL biopsy specimens.
Collapse
|
18
|
Alexander PM, Caudell DL, Kucera GL, Pladna KM, Pardee TS. The novel phospholipid mimetic KPC34 is highly active against preclinical models of Philadelphia chromosome positive acute lymphoblastic leukemia. PLoS One 2017; 12:e0179798. [PMID: 28644853 PMCID: PMC5482463 DOI: 10.1371/journal.pone.0179798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022] Open
Abstract
Philadelphia chromosome positive B cell acute lymphoblastic leukemia (Ph+ ALL) is an aggressive cancer of the bone marrow. The addition of tyrosine kinase inhibitors (TKIs) has improved outcomes but many patients still suffer relapse and novel therapeutic agents are needed. KPC34 is an orally available, novel phospholipid conjugate of gemcitabine, rationally designed to overcome multiple mechanisms of resistance, inhibit the classical and novel isoforms of protein kinase C, is able to cross the blood brain barrier and is orally bioavailable. KPC34 had an IC50 in the nanomolar range against multiple ALL cell lines tested but was lowest for Ph+ lines. In mice bearing either naïve or resistant Ph+ ALL, KPC34 treatment resulted in significantly improved survival compared to cytarabine and gemcitabine. Treatment with KPC34 and doxorubicin was more effective than doxorubicin and cytarabine. Mice with recurrence of their ALL after initial treatment with cytarabine and doxorubicin saw dramatic improvements in hind limb paralysis after treatment with KPC34 demonstrating activity against established CNS disease. Consistent with this KPC34 was better than gemcitabine at reducing CNS leukemic burden. These promising pre-clinical results justify the continued development of KPC34 for the treatment of Ph+ALL.
Collapse
Affiliation(s)
- Peter M. Alexander
- Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - David L. Caudell
- Pathology-Comparative Medicine, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Gregory L. Kucera
- Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
- Cancer Biology, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Kristin M. Pladna
- Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Timothy S. Pardee
- Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
- Cancer Biology, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
19
|
Role of MYC in B Cell Lymphomagenesis. Genes (Basel) 2017; 8:genes8040115. [PMID: 28375188 PMCID: PMC5406862 DOI: 10.3390/genes8040115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022] Open
Abstract
B cell lymphomas mainly arise from different developmental stages of B cells in germinal centers of secondary lymphoid tissue. There are a number of signaling pathways that affect the initiation and development of B cell lymphomagenesis. The functions of several key proteins that represent branching points of signaling networks are changed because of their aberrant expression, degradation, and/or accumulation, and those events determine the fate of the affected B cells. One of the most influential transcription factors, commonly associated with unfavorable prognosis for patients with B cell lymphoma, is nuclear phosphoprotein MYC. During B cell lymphomagenesis, oncogenic MYC variant is deregulated through various mechanisms, such as gene translocation, gene amplification, and epigenetic deregulation of its expression. Owing to alterations of downstream signaling cascades, MYC-overexpressing neoplastic B cells proliferate rapidly, avoid apoptosis, and become unresponsive to most conventional treatments. This review will summarize the roles of MYC in B cell development and oncogenesis, as well as its significance for current B cell lymphoma classification. We compared communication networks within transformed B cells in different lymphomas affected by overexpressed MYC and conducted a meta-analysis concerning the association of MYC with tumor prognosis in different patient populations.
Collapse
|
20
|
Li Y, Buijs-Gladdines JGCAM, Canté-Barrett K, Stubbs AP, Vroegindeweij EM, Smits WK, van Marion R, Dinjens WNM, Horstmann M, Kuiper RP, Buijsman RC, Zaman GJR, van der Spek PJ, Pieters R, Meijerink JPP. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med 2016; 13:e1002200. [PMID: 27997540 PMCID: PMC5172551 DOI: 10.1371/journal.pmed.1002200] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. METHODS AND FINDINGS We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor's ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. CONCLUSIONS Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome.
Collapse
Affiliation(s)
- Yunlei Li
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Jessica G. C. A. M. Buijs-Gladdines
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Andrew P. Stubbs
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric M. Vroegindeweij
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Willem K. Smits
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald van Marion
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Co-operative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Rob Pieters
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jules P. P. Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Chen Z, Gowan K, Leach SM, Viboolsittiseri SS, Mishra AK, Kadoishi T, Diener K, Gao B, Jones K, Wang JH. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing. BMC Genomics 2016; 17:823. [PMID: 27769169 PMCID: PMC5075209 DOI: 10.1186/s12864-016-3153-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023] Open
Abstract
Background Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Results Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. Conclusions We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3153-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA.,Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Sawanee S Viboolsittiseri
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Ameet K Mishra
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Tanya Kadoishi
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Katrina Diener
- Genomic and Microarray Core, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bifeng Gao
- Genomic and Microarray Core, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kenneth Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA. .,Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA.
| |
Collapse
|
22
|
Ung MH, Varn FS, Cheng C. In silico frameworks for systematic pre-clinical screening of potential anti-leukemia therapeutics. Expert Opin Drug Discov 2016; 11:1213-1222. [PMID: 27689915 DOI: 10.1080/17460441.2016.1243524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Leukemia is a collection of highly heterogeneous cancers that arise from neoplastic transformation and clonal expansion of immature hematopoietic cells. Post-treatment recurrence is high, especially among elderly patients, thus necessitating more effective treatment modalities. Development of novel anti-leukemic compounds relies heavily on traditional in vitro screens which require extensive resources and time. Therefore, integration of in silico screens prior to experimental validation can improve the efficiency of pre-clinical drug development. Areas covered: This article reviews different methods and frameworks used to computationally screen for anti-leukemic agents. In particular, three approaches are discussed including molecular docking, transcriptomic integration, and network analysis. Expert opinion: Today's data deluge presents novel opportunities to develop computational tools and pipelines to screen for likely therapeutic candidates in the treatment of leukemia. Formal integration of these methodologies can accelerate and improve the efficiency of modern day anti-leukemic drug discovery and ease the economic and healthcare burden associated with it.
Collapse
Affiliation(s)
- Matthew H Ung
- a Department of Molecular and Systems Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA
| | - Frederick S Varn
- a Department of Molecular and Systems Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA
| | - Chao Cheng
- a Department of Molecular and Systems Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA.,b Department of Biomedical Data Science , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA.,c Norris Cotton Cancer Center , Lebanon , NH , USA
| |
Collapse
|
23
|
García-Sanz R, Jiménez C, Puig N, Paiva B, Gutiérrez NC, Rodríguez-Otero P, Almeida J, San Miguel J, Orfão A, González M, Pérez-Andrés M. Origin of Waldenstrom's macroglobulinaemia. Best Pract Res Clin Haematol 2016; 29:136-147. [PMID: 27825459 DOI: 10.1016/j.beha.2016.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/23/2016] [Indexed: 11/27/2022]
Abstract
Waldenstrom's macroglobulinaemia (WM) is an MYD88L265P-mutated lymphoplasmacytic lymphoma that invades bone marrow and secretes monoclonal immunoglobulin M (IgM). WM cells are usually unable to undergo class switch recombination, and have mutated IGHV, with a typical immunophenotype CD19+/CD22low+/CD23-/CD25+/CD27+/CD45+/CD38low+/SmIgM+ (negative for CD5, CD10, CD11c, CD103). This immunophenotype matches memory B cells (smIgM-/+/CD10-/CD19+/CD20+/CD27+/CD38low+/CD45+), representing 30% of B cells in the blood. Fifty percent of them have not undergone class switch recombination and are IgM+. These cells have suffered somatic hypermutation as WM cells. Genetic abnormalities do not abrogate the capacity to progress to plasma cells that usually belong to the clonal WM compartment, with a normal immunophenotype and functional characteristics. However, some WM cells are CD27-, MYD88WT, without somatic hypermutation, or with class switch recombination capable of reactivation. Thus, most data support a B-memory-cell origin for WM, but a small fraction of cases may have a different origin.
Collapse
Affiliation(s)
- Ramón García-Sanz
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain.
| | - Cristina Jiménez
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | - Noemí Puig
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | - Bruno Paiva
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto De Investigación Sanitaria De Navarra, Pamplona, Spain
| | - Norma C Gutiérrez
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | - Paula Rodríguez-Otero
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto De Investigación Sanitaria De Navarra, Pamplona, Spain
| | - Julia Almeida
- Servicio General de Citometría de la Universidad de Salamanca, Salamanca, Spain
| | - Jesús San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto De Investigación Sanitaria De Navarra, Pamplona, Spain
| | - Alberto Orfão
- Servicio General de Citometría de la Universidad de Salamanca, Salamanca, Spain
| | - Marcos González
- Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer de Salamanca, Salamanca, Spain
| | - Martín Pérez-Andrés
- Servicio General de Citometría de la Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
24
|
Dubois S, Viailly PJ, Mareschal S, Bohers E, Bertrand P, Ruminy P, Maingonnat C, Jais JP, Peyrouze P, Figeac M, Molina TJ, Desmots F, Fest T, Haioun C, Lamy T, Copie-Bergman C, Brière J, Petrella T, Canioni D, Fabiani B, Coiffier B, Delarue R, Peyrade F, Bosly A, André M, Ketterer N, Salles G, Tilly H, Leroy K, Jardin F. Next-Generation Sequencing in Diffuse Large B-Cell Lymphoma Highlights Molecular Divergence and Therapeutic Opportunities: a LYSA Study. Clin Cancer Res 2016; 22:2919-28. [PMID: 26819451 DOI: 10.1158/1078-0432.ccr-15-2305] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/11/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Next-generation sequencing (NGS) has detailed the genomic characterization of diffuse large B-cell lymphoma (DLBCL) by identifying recurrent somatic mutations. We set out to design a clinically feasible NGS panel focusing on genes whose mutations hold potential therapeutic impact. Furthermore, for the first time, we evaluated the prognostic value of these mutations in prospective clinical trials. EXPERIMENTAL DESIGN A Lymphopanel was designed to identify mutations in 34 genes, selected according to literature and a whole exome sequencing study of relapsed/refractory DLBCL patients. The tumor DNA of 215 patients with CD20(+)de novo DLBCL in the prospective, multicenter, and randomized LNH-03B LYSA clinical trials was sequenced to deep, uniform coverage with the Lymphopanel. Cell-of-origin molecular classification was obtained through gene expression profiling with HGU133+2.0 Affymetrix GeneChip arrays. RESULTS The Lymphopanel was informative for 96% of patients. A clear depiction of DLBCL subtype molecular heterogeneity was uncovered with the Lymphopanel, confirming that activated B-cell-like (ABC), germinal center B-cell like (GCB), and primary mediastinal B-cell lymphoma (PMBL) are frequently affected by mutations in NF-κB, epigenetic, and JAK-STAT pathways, respectively. Novel truncating immunity pathway, ITPKB, MFHAS1, and XPO1 mutations were identified as highly enriched in PMBL. Notably, TNFAIP3 and GNA13 mutations in ABC patients treated with R-CHOP were associated with significantly less favorable prognoses. CONCLUSIONS This study demonstrates the contribution of NGS with a consensus gene panel to personalized therapy in DLBCL, highlighting the molecular heterogeneity of subtypes and identifying somatic mutations with therapeutic and prognostic impact. Clin Cancer Res; 22(12); 2919-28. ©2016 AACRSee related commentary by Lim and Elenitoba-Johnson, p. 2829.
Collapse
Affiliation(s)
- Sydney Dubois
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Pierre-Julien Viailly
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France. LITIS EA 4108, Normandie Université, Rouen, France
| | - Sylvain Mareschal
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Elodie Bohers
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Bertrand
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Ruminy
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | | | | | | | - Thierry J Molina
- Pathology, AP-HP, Hôpital Necker, Université Paris Descartes, Paris, France
| | | | | | - Corinne Haioun
- Unité Hémopathies Lymphoïdes, AP-HP Hôpital Henri Mondor, Créteil, France
| | | | | | - Josette Brière
- Inserm U728, Université Paris Diderot, Sorbonne Paris Cité, Paris, France. Department of Pathology, AP-HP Hôpital Saint-Louis, Paris, France
| | - Tony Petrella
- Department of Pathology, Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada
| | | | - Bettina Fabiani
- Laboratoire de Pathologie, AP-HP Hôpital Saint Antoine, Paris, France
| | | | - Richard Delarue
- Department of Hematology, AP-HP Hôpital Necker, Paris, France
| | | | - André Bosly
- CHU Dinant Godinne, UcL Namur, Yvoir, Belgium
| | - Marc André
- CHU Dinant Godinne, UcL Namur, Yvoir, Belgium
| | - Nicolas Ketterer
- Department of Oncology, Lausanne Hospital, Lausanne, Switzerland
| | | | - Hervé Tilly
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Karen Leroy
- Inserm U955 Team 09, AP-HP Hôpital Henri Mondor, Créteil, France
| | - Fabrice Jardin
- Inserm U918, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France.
| |
Collapse
|
25
|
Zhao MY, Yu Y, Xie M, Yang MH, Zhu S, Yang LC, Kang R, Tang DL, Zhao LL, Cao LZ. Digital gene expression profiling analysis of childhood acute lymphoblastic leukemia. Mol Med Rep 2016; 13:4321-8. [PMID: 27053012 DOI: 10.3892/mmr.2016.5089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most commonly diagnosed malignancy in children. It is a heterogeneous disease, and is determined by multiple gene alterations and chromosomal rearrangements. To improve current understanding of the underlying molecular mechanisms of ALL, the present study profiled genome‑wide digital gene expression (DGE) in a population of children with ALL in China. Using second‑generation sequencing technology, the profiling revealed that 2,825 genes were upregulated and 1,952 were downregulated in the ALL group. Based on the DGE profiling data, the present study further investigated seven genes (WT1, RPS26, MSX1, CD70, HOXC4, HOXA5 and HOXC6) using reverse transcription‑quantitative polymerase chain reaction analysis. Gene Ontology analysis suggested that the differentially expressed genes were predominantly involved in immune cell differentiation, metabolic processes and programmed cell death. The results of the present study provided novel insights into the gene expression patterns in children with ALL.
Collapse
Affiliation(s)
- Ming-Yi Zhao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming-Hua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Liang-Chun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rui Kang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dao-Lin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling-Ling Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Li-Zhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
26
|
Olsson L, Zettermark S, Biloglav A, Castor A, Behrendtz M, Forestier E, Paulsson K, Johansson B. The genetic landscape of paediatric de novo acute myeloid leukaemia as defined by single nucleotide polymorphism array and exon sequencing of 100 candidate genes. Br J Haematol 2016; 174:292-301. [PMID: 27022003 DOI: 10.1111/bjh.14056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 01/07/2023]
Abstract
Cytogenetic analyses of a consecutive series of 67 paediatric (median age 8 years; range 0-17) de novo acute myeloid leukaemia (AML) patients revealed aberrations in 55 (82%) cases. The most common subgroups were KMT2A rearrangement (29%), normal karyotype (15%), RUNX1-RUNX1T1 (10%), deletions of 5q, 7q and/or 17p (9%), myeloid leukaemia associated with Down syndrome (7%), PML-RARA (7%) and CBFB-MYH11 (5%). Single nucleotide polymorphism array (SNP-A) analysis and exon sequencing of 100 genes, performed in 52 and 40 cases, respectively (39 overlapping), revealed ≥1 aberration in 89%; when adding cytogenetic data, this frequency increased to 98%. Uniparental isodisomies (UPIDs) were detected in 13% and copy number aberrations (CNAs) in 63% (median 2/case); three UPIDs and 22 CNAs were recurrent. Twenty-two genes were targeted by focal CNAs, including AEBP2 and PHF6 deletions and genes involved in AML-associated gene fusions. Deep sequencing identified mutations in 65% of cases (median 1/case). In total, 60 mutations were found in 30 genes, primarily those encoding signalling proteins (47%), transcription factors (25%), or epigenetic modifiers (13%). Twelve genes (BCOR, CEBPA, FLT3, GATA1, KIT, KRAS, NOTCH1, NPM1, NRAS, PTPN11, SMC3 and TP53) were recurrently mutated. We conclude that SNP-A and deep sequencing analyses complement the cytogenetic diagnosis of paediatric AML.
Collapse
Affiliation(s)
- Linda Olsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Sofia Zettermark
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Andrea Biloglav
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Castor
- Department of Paediatrics, Skåne University Hospital, Lund, Sweden
| | - Mikael Behrendtz
- Department of Paediatrics, Linköping University Hospital, Linköping, Sweden
| | - Erik Forestier
- Department of Medical Bioscience, University of Umeå, Umeå, Sweden
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| |
Collapse
|
27
|
Hussaini M. Biomarkers in Hematological Malignancies: A Review of Molecular Testing in Hematopathology. Cancer Control 2016; 22:158-66. [PMID: 26068760 DOI: 10.1177/107327481502200206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Molecular interrogation of genetic information has transformed our understanding of disease and is now routinely integrated into the workup and monitoring of hematological malignancies. In this article, a brief but comprehensive review is presented of state-of-the-art testing in hematological disease. METHODS The primary medical literature and standard textbooks in the field were queried and reviewed to assess current practices and trends for molecular testing in hematopathology by disease. RESULTS Pertinent materials were summarized under appropriate disease categories. CONCLUSION Molecular testing is well entrenched in the diagnostic and therapeutic pathways for hematological malignancies, with rapid growth and insights emerging following the integration of next-generation sequencing into the clinical workflow.
Collapse
Affiliation(s)
- Mohammad Hussaini
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Vermaat JS, Pals ST, Younes A, Dreyling M, Federico M, Aurer I, Radford J, Kersten MJ. Precision medicine in diffuse large B-cell lymphoma: hitting the target. Haematologica 2016; 100:989-93. [PMID: 26314080 DOI: 10.3324/haematol.2015.128371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Joost S Vermaat
- Department of Haematology, Academic Medical Center, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Anas Younes
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Martin Dreyling
- Department of Medicine III, LMU University of Munich, Germany
| | | | - Igor Aurer
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb and Medical School, University of Zagreb, Croatia
| | - John Radford
- Institute of Cancer Sciences, the University of Manchester, and the Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Marie José Kersten
- Department of Haematology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Weston-Bell NJ, Tapper W, Gibson J, Bryant D, Moreno Y, John M, Ennis S, Kluin-Nelemans HC, Collins AR, Sahota SS. Exome Sequencing in Classic Hairy Cell Leukaemia Reveals Widespread Variation in Acquired Somatic Mutations between Individual Tumours Apart from the Signature BRAF V(600)E Lesion. PLoS One 2016; 11:e0149162. [PMID: 26871591 PMCID: PMC4752330 DOI: 10.1371/journal.pone.0149162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/28/2016] [Indexed: 11/19/2022] Open
Abstract
In classic Hairy cell leukaemia (HCLc), a single case has thus far been interrogated by whole exome sequencing (WES) in a treatment naive patient, in which BRAF V(600)E was identified as an acquired somatic mutation and confirmed as occurring near-universally in this form of disease by conventional PCR-based cohort screens. It left open however the question whether other genome-wide mutations may also commonly occur at high frequency in presentation HCLc disease. To address this, we have carried out WES of 5 such typical HCLc cases, using highly purified splenic tumour cells paired with autologous T cells for germline. Apart from BRAF V(600)E, no other recurrent somatic mutation was identified in these HCLc exomes, thereby excluding additional acquired mutations as also prevalent at a near-universal frequency in this form of the disease. These data then place mutant BRAF at the centre of the neoplastic drive in HCLc. A comparison of our exome data with emerging genetic findings in HCL indicates that additional somatic mutations may however occur recurrently in smaller subsets of disease. As mutant BRAF alone is insufficient to drive malignant transformation in other histological cancers, it suggests that individual tumours utilise largely differing patterns of genetic somatic mutations to coalesce with BRAF V(600)E to drive pathogenesis of malignant HCLc disease.
Collapse
Affiliation(s)
- Nicola J. Weston-Bell
- Tumour Immunogenetics Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Will Tapper
- Genetic Epidemiology and Genomic Informatics Group, Human Genetics, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jane Gibson
- Centre for Biological Sciences, Faculty of Natural and Environmental Studies, University of Southampton, Southampton, United Kingdom
| | - Dean Bryant
- Tumour Immunogenetics Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yurany Moreno
- Tumour Immunogenetics Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Melford John
- Department of Preclinical Sciences, Faculty of Medical Sciences, University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Sarah Ennis
- Genetic Epidemiology and Genomic Informatics Group, Human Genetics, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Hanneke C. Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andrew R. Collins
- Genetic Epidemiology and Genomic Informatics Group, Human Genetics, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Surinder S. Sahota
- Tumour Immunogenetics Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies. Cytokine 2016; 82:52-7. [PMID: 26817397 DOI: 10.1016/j.cyto.2015.12.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies.
Collapse
|
31
|
Dubois S, Jardin F. The role of next-generation sequencing in understanding the genomic basis of diffuse large B cell lymphoma and advancing targeted therapies. Expert Rev Hematol 2016; 9:255-69. [PMID: 26652775 DOI: 10.1586/17474086.2016.1130616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Next Generation Sequencing (NGS) has redefined the genetic landscape of Diffuse Large B-Cell Lymphoma (DLBCL) by identifying recurrent somatic mutations. Importantly, in some cases these mutations impact potentially actionable targets, thus affording novel personalized therapy opportunities. At the forefront of today's precision therapy era, how to best incorporate NGS into daily clinical practice is of primordial concern, in order to tailor patient's treatment regimens according to their individual mutational profiles. With the advent of cell-free DNA sequencing, which provides a sensitive and less invasive means of monitoring DLBCL patients, the clinical feasibility of NGS has been greatly improved. This article reviews the current landscape of DLBCL mutations, as well as the targeted therapies developed to counter their effects, and discusses how best to utilize NGS data for treatment decision-making.
Collapse
Affiliation(s)
- Sydney Dubois
- a Inserm U918, Centre Henri Becquerel , Université de Rouen, IRIB , Rouen , France
| | - Fabrice Jardin
- a Inserm U918, Centre Henri Becquerel , Université de Rouen, IRIB , Rouen , France.,b Department of Hematology , Centre Henri Becquerel , Rouen , France
| |
Collapse
|
32
|
How I treat T-cell acute lymphoblastic leukemia in adults. Blood 2015; 126:833-41. [PMID: 25966987 DOI: 10.1182/blood-2014-10-551895] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 04/25/2015] [Indexed: 01/13/2023] Open
Abstract
T-cell immunophenotype of acute lymphoblastic leukemia (T-ALL) is an uncommon aggressive leukemia that can present with leukemic and/or lymphomatous manifestations. Molecular studies are enhancing our understanding of the pathogenesis of T-ALL, and the discovery of activating mutations of NOTCH1 and FBXW7 in a majority of patients has been a seminal observation. The use of pediatric intensive combination chemotherapy regimens in adolescents and young adults has significantly improved the outcome of patients with T-ALL. The use of nelarabine for relapsed and refractory T-ALL results in responses in a substantial minority of patients. Allogeneic hematopoietic cell transplantation (HCT) still plays a key role in patients with high-risk or relapsed/refractory disease. γ-Secretase inhibitors hold promise for the treatment of patients with NOTCH1 mutations, and the results of clinical trials with these agents are eagerly awaited. It is recommended that younger patients receive a pediatric-intensive regimen. Older and unfit patients can receive suitable multiagent chemotherapy and be allocated to HCT based on their response, risk factors, and comorbidities. Although advances in the treatment of T-ALL have lagged behind those of B-cell ALL, it is hoped that the molecular revolution will enhance our understanding of the pathogenesis and treatment of this aggressive lymphoid malignancy.
Collapse
|
33
|
Cerón-Maldonado R, Martínez-Tovar A, Ramos-Peñafiel C, Miranda-Peralta E, Mendoza-Salas I, Mendoza-García E, Rozen-Fuller E, Kassack-Ipiña J, Collazo-Jaloma J, Martínez-Herrera A, Olarte-Carrillo I. Detection and analysis of tumour biomarkers to strengthen the diagnosis of acute and chronic leukaemias. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2015. [DOI: 10.1016/j.hgmx.2015.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Harder L, Puller AC, Horstmann MA. ZNF423: Transcriptional modulation in development and cancer. Mol Cell Oncol 2014; 1:e969655. [PMID: 27308357 DOI: 10.4161/23723548.2014.969655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
Krüppel-like zinc finger proteins are versatile players in biology that have been implicated in mammalian development and disease. Among these proteins, ZNF423 and its mouse ortholog Zfp423 were initially implicated in midline patterning of the central nervous system but have emerged as critical transcriptional modulators in cancer. Epigenetically uncurbed ZNF423 interferes with lymphopoiesis by sequestration of the essential early B-cell factor 1 (EBF1) causing B-cell maturation arrest, a hallmark of acute lymphoblastic leukemia. Conversely, its presence in neuroblastoma, a primitive neuroectodermal tumor of childhood, allows retinoic acid-induced differentiation and is associated with a favorable outcome of neuroblastoma patients. Such opposing effects may be explained by the cellular context, but also by the multifunctionality of ZNF423 that is mediated by 30 zinc fingers forming various functional domains. This review summarizes current knowledge of ZNF423, focusing on its role in development and cancer.
Collapse
Affiliation(s)
- Lena Harder
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| | - Ann-Christin Puller
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| | - Martin A Horstmann
- Research Institute Children's Cancer Center Hamburg and Clinic of Pediatric Hematology and Oncology; University Medical Center Hamburg-Eppendorf ; Hamburg, Germany
| |
Collapse
|
35
|
Pui CH. Genomic and pharmacogenetic studies of childhood acute lymphoblastic leukemia. Front Med 2014; 9:1-9. [DOI: 10.1007/s11684-015-0381-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022]
|
36
|
Karpova MA, Karpov DS, Ivanov MV, Pyatnitskiy MA, Chernobrovkin AL, Lobas AA, Lisitsa AV, Archakov AI, Gorshkov MV, Moshkovskii SA. Exome-driven characterization of the cancer cell lines at the proteome level: the NCI-60 case study. J Proteome Res 2014; 13:5551-60. [PMID: 25333775 DOI: 10.1021/pr500531x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer genome deviates significantly from the reference human genome, and thus a search against standard genome databases in cancer cell proteomics fails to identify cancer-specific protein variants. The goal of this Article is to combine high-throughput exome data [Abaan et al. Cancer Res. 2013] and shotgun proteomics analysis [Modhaddas Gholami et al. Cell Rep. 2013] for cancer cell lines from NCI-60 panel to demonstrate further that the cell lines can be effectively recognized using identified variant peptides. To achieve this goal, we generated a database containing mutant protein sequences of NCI-60 panel of cell lines. The proteome data were searched using Mascot and X!Tandem search engines against databases of both reference and mutant protein sequences. The identification quality was further controlled by calculating a fraction of variant peptides encoded by the own exome sequence for each cell line. We found that up to 92.2% peptides identified by both search engines are encoded by the own exome. Further, we used the identified variant peptides for cell line recognition. The results of the study demonstrate that proteome data supported by exome sequence information can be effectively used for distinguishing between different types of cancer cell lines.
Collapse
Affiliation(s)
- Maria A Karpova
- Orekhovich Institute of Biomedical Chemistry , 119121, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bohers E, Mareschal S, Bertrand P, Viailly PJ, Dubois S, Maingonnat C, Ruminy P, Tilly H, Jardin F. Activating somatic mutations in diffuse large B-cell lymphomas: lessons from next generation sequencing and key elements in the precision medicine era. Leuk Lymphoma 2014; 56:1213-22. [DOI: 10.3109/10428194.2014.941836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 2014; 111:E4513-22. [PMID: 25288773 DOI: 10.1073/pnas.1406985111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulated transcription factor (TF) activities are commonly observed in hematopoietic malignancies. Understanding tumorigenesis therefore requires determining the function and hierarchical role of individual TFs. To identify TFs central to lymphomagenesis, we identified lymphoma type-specific accessible chromatin by global mapping of DNaseI hypersensitive sites and analyzed enriched TF-binding motifs in these regions. Applying this unbiased approach to classical Hodgkin lymphoma (HL), a common B-cell-derived lymphoma with a complex pattern of deregulated TFs, we discovered interferon regulatory factor (IRF) sites among the top enriched motifs. High-level expression of the proinflammatory TF IRF5 was specific to HL cells and crucial for their survival. Furthermore, IRF5 initiated a regulatory cascade in human non-Hodgkin B-cell lines and primary murine B cells by inducing the TF AP-1 and cooperating with NF-κB to activate essential characteristic features of HL. Our strategy efficiently identified a lymphoma type-specific key regulator and uncovered a tumor promoting role of IRF5.
Collapse
|
39
|
Atallah E, Carlson KS, Schiffer CA. Should all adults with acute lymphocytic leukemia receive allogeneic stem cell transplantation in first remission? Int J Hematol Oncol 2014. [DOI: 10.2217/ijh.14.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The role of allogeneic hematopoietic stem cell transplantation (AHCT) in patients with Philadelphia-chromosome negative acute lymphocytic leukemia (Ph- ALL) in first remission is controversial. Some studies suggest that AHCT in first remission yields a statistically significant small improvement in overall survival. However, novel therapies and monitoring strategies may tip the balance away from immediate consolidation with AHCT for a majority of adults with Ph- ALL. Here we compare data for AHCT with recent therapeutic and diagnostic advances for patients with newly diagnosed and with relapsed and refractory Ph- ALL. We conclude that AHCT remains appropriate for a specific group of these patients, but that a majority will do as well if not better with an initial nontransplant-based consolidation strategy.
Collapse
Affiliation(s)
- Ehab Atallah
- Division of Hematology/Oncology, Medical College of Wisconsin & Froedtert Hospital, 9200 Wisconsin Avenue, Milwuakee, WI 53226, USA
| | - Karen Sue Carlson
- Division of Hematology/Oncology, Medical College of Wisconsin & Froedtert Hospital, 9200 Wisconsin Avenue, Milwuakee, WI 53226, USA
| | - Charles A Schiffer
- Division of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, HWCRC-4th Floor, 4100 John R Street, Detroit, MI 48201, USA
| |
Collapse
|
40
|
Abstract
In this issue of Blood, Mallampati et al provide mechanistic insight into the functions of the transcription factor Sox4 in pro-B lymphocytes using both gain-of-function and loss-of-function approaches combined with global gene expression and genome-wide transcription factor binding analysis.
Collapse
|
41
|
Zuckerman T, Rowe JM. Pathogenesis and prognostication in acute lymphoblastic leukemia. F1000PRIME REPORTS 2014; 6:59. [PMID: 25184049 PMCID: PMC4108947 DOI: 10.12703/p6-59] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The process of lymphoid maturation is tightly controlled by the hierarchical activation of transcription factors and selection through functional signal transduction. Acute lymphoblastic leukemia (ALL) represents a group of B/T-precursor-stage lymphoid cell malignancies arising from genetic alterations that block lymphoid differentiation and drive aberrant cell proliferation and survival. With recent advances in next-generation sequencing, we are discovering new mutations affecting normal lymphopoiesis and the significance of cooperating mutations, as well as epigenetic alterations. The data obtained in this way aids in the evaluation of prognosis in the individual patient but, importantly, also in incorporating targeted therapy appropriate for the mutational abnormality.
Collapse
Affiliation(s)
- Tsila Zuckerman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus8 Ha'Aliya Street, Haifa 31096Israel
- Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of TechnologyEfron Street, Haifa 31096Israel
| | - Jacob M. Rowe
- Department of Hematology, Shaare Zedek Medical Center12 Bayit Street, Jerusalem 91031Israel
- Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of TechnologyEfron Street, Haifa 31096Israel
| |
Collapse
|
42
|
Squiban B, Frazer JK. Danio rerio: Small Fish Making a Big Splash in Leukemia. CURRENT PATHOBIOLOGY REPORTS 2014; 2:61-73. [PMID: 26269780 DOI: 10.1007/s40139-014-0041-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zebrafish (Danio rerio) are widely used for developmental biology studies. In the past decade, D. rerio have become an important oncology model as well. Leukemia is one type of cancer where zebrafish are particularly valuable. As vertebrates, fish have great anatomic and biologic similarity to humans, including their hematopoietic and immune systems. As an experimental platform, D. rerio offer many advantages that mammalian models lack. These include their ease of genetic manipulation, capacity for imaging, and suitability for large-scale phenotypic and drug screens. In this review, we present examples of these strategies and others to illustrate how zebrafish have been and can be used to study leukemia. Besides appraising the techniques researchers apply and introducing the leukemia models they have created, we also highlight recent and exciting discoveries made using D. rerio with an eye to where the field is likely headed.
Collapse
Affiliation(s)
- Barbara Squiban
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 229, Oklahoma City, OK 73104, USA
| | - J Kimble Frazer
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 224, Oklahoma City, OK 73104, USA
| |
Collapse
|
43
|
Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet 2014; 46:329-35. [PMID: 24531327 DOI: 10.1038/ng.2900] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
Classical Hodgkin lymphoma and primary mediastinal B cell lymphoma (PMBCL) are related lymphomas sharing pathological, molecular and clinical characteristics. Here we discovered by whole-genome and whole-transcriptome sequencing recurrent somatic coding-sequence mutations in the PTPN1 gene. Mutations were found in 6 of 30 (20%) Hodgkin lymphoma cases, in 6 of 9 (67%) Hodgkin lymphoma-derived cell lines, in 17 of 77 (22%) PMBCL cases and in 1 of 3 (33%) PMBCL-derived cell lines, consisting of nonsense, missense and frameshift mutations. We demonstrate that PTPN1 mutations lead to reduced phosphatase activity and increased phosphorylation of JAK-STAT pathway members. Moreover, silencing of PTPN1 by RNA interference in Hodgkin lymphoma cell line KM-H2 resulted in hyperphosphorylation and overexpression of downstream oncogenic targets. Our data establish PTPN1 mutations as new drivers in lymphomagenesis.
Collapse
|