1
|
Wu X, Huang Q, Chen X, Zhang B, Liang J, Zhang B. B cells and tertiary lymphoid structures in tumors: immunity cycle, clinical impact, and therapeutic applications. Theranostics 2025; 15:605-631. [PMID: 39744696 PMCID: PMC11671382 DOI: 10.7150/thno.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Tumorigenesis involves a multifaceted and heterogeneous interplay characterized by perturbations in individual immune surveillance. Tumor-infiltrating lymphocytes, as orchestrators of adaptive immune responses, constitute the principal component of tumor immunity. Over the past decade, the functions of tumor-specific T cells have been extensively elucidated, whereas current understanding and research regarding intratumoral B cells remain inadequate and underexplored. The delineation of B cell subsets is contingent upon distinct surface proteins and the specific transcription factors that define these subsets have yet to be fully described. Consequently, there is a pressing need for extensive and comprehensive exploration into tumor-infiltrating B cells and their cancer biology. Notably, B cells and other cellular entities assemble within the tumor milieu to establish tertiary lymphoid structures that facilitate localized immune activation and furnish novel insights for tumor research. It is of great significance to develop therapeutic strategies based on B cells, antibodies, and tertiary lymphoid structures. In this review, we address the role of B cells and tertiary lymphoid structures in tumor microenvironment, with the highlight on their spatiotemporal effect, prognostic value and therapeutic applications in tumor immunity.
Collapse
Affiliation(s)
- Xing Wu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Qibo Huang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Binhao Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Junnan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
2
|
Sousa NS, Bica M, Brás MF, Sousa AC, Antunes IB, Encarnação IA, Costa TM, Martins IB, Barbosa-Morais NL, Sousa-Victor P, Neves J. The immune landscape of murine skeletal muscle regeneration and aging. Cell Rep 2024; 43:114975. [PMID: 39541212 DOI: 10.1016/j.celrep.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Age-related alterations in the immune system are starting to emerge as key contributors to impairments found in aged organs. A decline in regenerative capacity is a hallmark of tissue aging; however, the contribution of immune aging to regenerative failure is just starting to be explored. Here, we apply a strategy combining single-cell RNA sequencing with flow cytometry, histological analysis, and functional assays to perform a complete analysis of the immune environment of the aged regenerating skeletal muscle on a time course following injury with single-cell resolution. Our results reveal an unanticipated complexity and functional heterogeneity in immune populations within the skeletal muscle that have been regarded as homogeneous. Furthermore, we uncover a profound remodeling of both myeloid and lymphoid compartments in aging. These discoveries challenge established notions on immune regulation of skeletal muscle regeneration, providing a set of potential targets to improve skeletal muscle health and regenerative capacity in aging.
Collapse
Affiliation(s)
- Neuza S Sousa
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta Bica
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Margarida F Brás
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal
| | - Ana C Sousa
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal
| | - Inês B Antunes
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal
| | - Isabel A Encarnação
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal
| | - Tiago M Costa
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Inês B Martins
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | - Pedro Sousa-Victor
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal.
| | - Joana Neves
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal.
| |
Collapse
|
3
|
Schwartz M, Colaiuta SP. Boosting peripheral immunity to fight neurodegeneration in the brain. Trends Immunol 2024; 45:760-767. [PMID: 39358094 DOI: 10.1016/j.it.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Abstract
Reciprocal communication between the brain and the immune system is essential for maintaining lifelong brain function. This interaction is mediated, at least in part, by immune cells recruited from both the circulation and niches at the borders of the brain. Here, we describe how immune exhaustion and senescence, even if not primary causative factors, can accelerate neurodegenerative diseases. We emphasize the role of a compromised peripheral immune system in driving neurodegeneration and discuss strategies for harnessing peripheral immunity to effectively treat neurodegenerative diseases, including the underlying mechanisms and opportunities for clinical translation. Specifically, we highlight the potential of boosting the immune system by blocking inhibitory checkpoint molecules to harness reparative immune cells in helping the brain to fight against neurodegeneration.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
4
|
Tan S, Pan S, Wei L, Chen W, Pan B, Kong G, Chen J, Xie Y. Association of peripheral B cells and delirium: combined single-cell sequencing and Mendelian randomization analysis. Front Neurol 2024; 15:1343726. [PMID: 38379709 PMCID: PMC10876872 DOI: 10.3389/fneur.2024.1343726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Background Delirium seriously affects the prognosis of patients and greatly reduces the ability to work and live. Peripheral inflammatory events may contribute to the development of delirium, the mechanism of which is still unclear. There is a lack of effective diagnostic and treatments for delirium in clinical practice. The study aims to investigate alterations in peripheral immune cell subsets under inflammatory stress and to explore causal associations with delirium. Methods Single-cell transcriptional sequencing data of human peripheral blood mononuclear cells (PBMC) before and after lipopolysaccharide (LPS) intervention were processed by the Seurat package in R software. PBMC subsets and cellular markers were defined after downscaling and clustering by the Harmony algorithm to identify characteristic subsets in the context of inflammatory stress. Subsequently, a two-sample Mendelian randomization (MR) study was used to explore the causal associations of these inflammation-related PBMC subsets and their molecular phenotypes with delirium. Based on publicly available genetic data, the study incorporated 70 PBMC-associated immune traits, including 8 types of circulating immune cells, 33 B cell subsets and molecular phenotypes, 13 T cell subsets, and 16 B cell-associated cytokines. The results were also validated for robustness, heterogeneity, and horizontal pleiotropy. Results Under LPS-induced inflammatory stress, B cells, T cells, monocytes, and dendritic cells in human PBMC showed significant activation and quantitative changes. Of these, only lymphocyte and B cell counts were causally associated with delirium risk. This risk link is also seen in the TNF pathway. Further studies of B cells and their subsets revealed that this association may be related to unswitched memory B cells and CD27 expressed on memory B cells. Annotation of the screened SNPs revealed significant polymorphisms in CD27 and CD40 annotated by rs25680 and rs9883798, respectively. The functions of the key annotated genes may be related to the regulation of immune responses, cell differentiation, proliferation, and intercellular interactions. Conclusion The present study revealed the potential possibility that B cell, memory B cell subset, and TNF-related molecules may be involved in the development of delirium due to peripheral inflammation, which can provide clues for further investigation of delirium prevention and treatment strategies.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sining Pan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bingbing Pan
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Rafii S, Kandoussi S, Ghouzlani A, Naji O, Reddy KP, Ullah Sadiqi R, Badou A. Deciphering immune microenvironment and cell evasion mechanisms in human gliomas. Front Oncol 2023; 13:1135430. [PMID: 37274252 PMCID: PMC10235598 DOI: 10.3389/fonc.2023.1135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are considered one of the most malignant cancers in the body. Despite current therapies, including surgery, chemotherapy, and radiotherapy, these tumors usually recur with more aggressive and resistant phenotypes. Indeed, the survival following these conventional therapies is very poor, which makes immunotherapy the subject of active research at present. The anti-tumor immune response could also be considered a prognostic factor since each stage of cancer development is regulated by immune cells. However, glioma microenvironment contains malignant cells that secrete numerous chemokines, cytokines and growth factors, promoting the infiltration of immunosuppressive cells into the tumor, which limit the functioning of the immune system against glioma cells. Recently, researchers have been able to reverse the immune resistance of cancer cells and thus activate the anti-tumor immune response through different immunotherapy strategies. Here, we review the general concept of glioma's immune microenvironment and report the impact of its distinct components on the anti-tumor immune response. We also discuss the mechanisms of glioma cell evasion from the immune response and pinpoint some potential therapeutic pathways, which could alleviate such resistance.
Collapse
Affiliation(s)
- Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | | | - Rizwan Ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
6
|
Hou D, Katz JL, Lee-Chang C. Generation of B-cell-based cellular vaccine for cancer in murine models. STAR Protoc 2023; 4:102219. [PMID: 37083319 PMCID: PMC10322876 DOI: 10.1016/j.xpro.2023.102219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
A B-cell-based cellular vaccine (BVax), produced from 4-1BBL+ B cells, can select tumor-specific B cells that, upon ex vivo culture, can generate tumor-specific antibodies and activate T cells. Here, we present a protocol to generate a B-cell-based vaccine in a CT2A orthotopic glioma murine model. We describe steps for BVax production involving glioma cell implantation, tissue harvesting, 4-1BBL+ B cell isolation, and activation. We also describe assessing BVax phenotype in vitro and in vivo functional status. For complete details on the use and execution of this protocol, please refer to Lee-Chang et al. (2021).1.
Collapse
Affiliation(s)
- David Hou
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, USA
| | - Joshua L Katz
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, USA.
| |
Collapse
|
7
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
8
|
Single-cell genomics identifies distinct B1 cell developmental pathways and reveals aging-related changes in the B-cell receptor repertoire. Cell Biosci 2022; 12:57. [PMID: 35526067 PMCID: PMC9080186 DOI: 10.1186/s13578-022-00795-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background B1 cells are self-renewing innate-like B lymphocytes that provide the first line of defense against pathogens. B1 cells primarily reside in the peritoneal cavity and are known to originate from various fetal tissues, yet their developmental pathways and the mechanisms underlying maintenance of B1 cells throughout adulthood remain unclear. Results We performed high-throughput single-cell analysis of the transcriptomes and B-cell receptor repertoires of peritoneal B cells of neonates, young adults, and elderly mice. Gene expression analysis of 31,718 peritoneal B cells showed that the neonate peritoneal cavity contained many B1 progenitors, and neonate B cell specific clustering revealed two trajectories of peritoneal B1 cell development, including pre-BCR dependent and pre-BCR independent pathways. We also detected profound age-related changes in B1 cell transcriptomes: clear difference in senescence genetic program was evident in differentially aged B1 cells, and we found an example that a B1 subset only present in the oldest mice was marked by expression of the fatty-acid receptor CD36. We also performed antibody gene sequencing of 15,967 peritoneal B cells from the three age groups and discovered that B1 cell aging was associated with clonal expansion and two B1 cell clones expanded in the aged mice had the same CDR-H3 sequence (AGDYDGYWYFDV) as a pathogenically linked cell type from a recent study of an atherosclerosis mouse model. Conclusions Beyond offering an unprecedent data resource to explore the cell-to-cell variation in B cells, our study has revealed that B1 precursor subsets are present in the neonate peritoneal cavity and dissected the developmental pathway of the precursor cells. Besides, this study has found the expression of CD36 on the B1 cells in the aged mice. And the single-cell B-cell receptor sequencing reveals B1 cell aging is associated with clonal expansion. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00795-6.
Collapse
|
9
|
Cao TQ, Wainwright DA, Lee-Chang C, Miska J, Sonabend AM, Heimberger AB, Lukas RV. Next Steps for Immunotherapy in Glioblastoma. Cancers (Basel) 2022; 14:4023. [PMID: 36011015 PMCID: PMC9406905 DOI: 10.3390/cancers14164023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Outcomes for glioblastoma (GBM) patients undergoing standard of care treatment remain poor. Here we discuss the portfolio of previously investigated immunotherapies for glioblastoma, including vaccine therapy and checkpoint inhibitors, as well as novel emerging therapeutic approaches. In addition, we explore the factors that potentially influence response to immunotherapy, which should be considered in future research aimed at improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Toni Q. Cao
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Abstract
Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
11
|
Medler J, Kucka K, Wajant H. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14112603. [PMID: 35681583 PMCID: PMC9179537 DOI: 10.3390/cancers14112603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the great success of TNF blockers in the treatment of autoimmune diseases and the identification of TNF as a factor that influences the development of tumors in many ways, the role of TNFR2 in tumor biology and its potential suitability as a therapeutic target in cancer therapy have long been underestimated. This has been fundamentally changed with the identification of TNFR2 as a regulatory T-cell (Treg)-stimulating factor and the general clinical breakthrough of immunotherapeutic approaches. However, considering TNFR2 as a sole immunosuppressive factor in the tumor microenvironment does not go far enough. TNFR2 can also co-stimulate CD8+ T-cells, sensitize some immune and tumor cells to the cytotoxic effects of TNFR1 and/or acts as an oncogene. In view of the wide range of cancer-associated TNFR2 activities, it is not surprising that both antagonists and agonists of TNFR2 are considered for tumor therapy and have indeed shown overwhelming anti-tumor activity in preclinical studies. Based on a brief summary of TNFR2 signaling and the immunoregulatory functions of TNFR2, we discuss here the main preclinical findings and insights gained with TNFR2 agonists and antagonists. In particular, we address the question of which TNFR2-associated molecular and cellular mechanisms underlie the observed anti-tumoral activities of TNFR2 agonists and antagonists.
Collapse
|
12
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|
13
|
Dahlquist KJ, Camell CD. Aging Leukocytes and the Inflammatory Microenvironment of the Adipose Tissue. Diabetes 2022; 71:23-30. [PMID: 34995348 PMCID: PMC8763870 DOI: 10.2337/dbi21-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Age-related immunosenescence, defined as an increase in inflammaging and the decline of the immune system, leads to tissue dysfunction and increased risk for metabolic disease. The elderly population is expanding, leading to a heightened need for therapeutics to improve health span. With age, many alterations of the immune system are observed, including shifts in the tissue-resident immune cells, increased expression of inflammatory factors, and the accumulation of senescent cells, all of which are responsible for a chronic inflammatory loop. Adipose tissue and the immune cell activation within are of particular interest for their well-known roles in metabolic disease. Recent literature reveals that adipose tissue is an organ in which signs of initial aging occur, including immune cell activation. Aged adipose tissue reveals changes in many innate and adaptive immune cell subsets, revealing a complex interaction that contributes to inflammation, increased senescence, impaired catecholamine-induced lipolysis, and impaired insulin sensitivity. Here, we will describe current knowledge surrounding age-related changes in immune cells while relating those findings to recent discoveries regarding immune cells in aged adipose tissue.
Collapse
Affiliation(s)
| | - Christina D. Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
14
|
Zhang C, Lei L, Yang X, Ma K, Zheng H, Su Y, Jiao A, Wang X, Liu H, Zou Y, Shi L, Zhou X, Sun C, Hou Y, Xiao Z, Zhang L, Zhang B. Single-cell sequencing reveals antitumor characteristics of intratumoral immune cells in old mice. J Immunother Cancer 2021; 9:jitc-2021-002809. [PMID: 34642245 PMCID: PMC8513495 DOI: 10.1136/jitc-2021-002809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Aging has long been thought to be a major risk factor for various types of cancers. However, accumulating evidence indicates increased resistance of old animals to tumor growth. An in-depth understanding of how old individuals defend against tumor invasion requires further investigations. Methods We revealed age-associated alterations in tumor-infiltrating immune cells between young and old mice using single-cell RNA and coupled T cell receptor (TCR) sequencing analysis. Multiple bioinformatics methods were adopted to analyze the characteristics of the transcriptome between two groups. To explore the impacts of young and old CD8+ T cells on tumor growth, mice were treated with anti-CD8 antibody every 3 days starting 7 days after tumor inoculation. Flow cytometry was used to validate the differences indicated by sequencing analysis between young and old mice. Results We found a higher proportion of cytotoxic CD8+ T cells, naturally occurring Tregs, conventional dendritic cell (DC), and M1-like macrophages in tumors of old mice compared with a higher percentage of exhausted CD8+ T cells, induced Tregs, plasmacytoid DC, and M2-like macrophages in young mice. Importantly, TCR diversity analysis showed that top 10 TCR clones consisted primarily of exhausted CD8+ T cells in young mice whereas top clones were predominantly cytotoxic CD8+ T cells in old mice. Old mice had more CD8+ T cells with a ‘progenitor’ and less ‘terminally’ exhausted phenotypes than young mice. Consistently, trajectory inference demonstrated that CD8+ T cells preferentially differentiated into cytotoxic cells in old mice in contrast to exhausted cells in young mice. Importantly, elimination of CD8+ T cells in old mice during tumor growth significantly accelerated tumor development. Moreover, senescent features were demonstrated in exhausted but not cytotoxic CD8+ T cells regardless of young and old mice. Conclusions Our data revealed that a significantly higher proportion of effector immune cells in old mice defends against tumor progression, providing insights into understanding the altered kinetics of cancer development and the differential response to immunotherapeutic modulation in elderly patients.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Kaili Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhengtao Xiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China .,Suzhou Institute of Systems Medicine, Suzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China .,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| |
Collapse
|
15
|
de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The Dynamics of B Cell Aging in Health and Disease. Front Immunol 2021; 12:733566. [PMID: 34675924 PMCID: PMC8524000 DOI: 10.3389/fimmu.2021.733566] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Aging is considered to be an important risk factor for several inflammatory diseases. B cells play a major role in chronic inflammatory diseases by antibody secretion, antigen presentation and T cell regulation. Different B cell subsets have been implicated in infections and multiple autoimmune diseases. Since aging decreases B cell numbers, affects B cell subsets and impairs antibody responses, the aged B cell is expected to have major impacts on the development and progression of these diseases. In this review, we summarize the role of B cells in health and disease settings, such as atherosclerotic disease. Furthermore, we provide an overview of age-related changes in B cell development and function with respect to their impact in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
16
|
Dapash M, Hou D, Castro B, Lee-Chang C, Lesniak MS. The Interplay between Glioblastoma and Its Microenvironment. Cells 2021; 10:2257. [PMID: 34571905 PMCID: PMC8469987 DOI: 10.3390/cells10092257] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
GBM is the most common primary brain tumor in adults, and the aggressive nature of this tumor contributes to its extremely poor prognosis. Over the years, the heterogeneous and adaptive nature of GBM has been highlighted as a major contributor to the poor efficacy of many treatments including various immunotherapies. The major challenge lies in understanding and manipulating the complex interplay among the different components within the tumor microenvironment (TME). This interplay varies not only by the type of cells interacting but also by their spatial distribution with the TME. This review highlights the various immune and non-immune components of the tumor microenvironment and their consequences of the efficacy of immunotherapies. Understanding the independent and interdependent aspects of the various sub-populations encapsulated by the immune and non-immune components will allow for more targeted therapies. Meanwhile, understanding how the TME creates and responds to different environmental pressures such as hypoxia may allow for other multimodal approaches in the treatment of GBM. Ultimately, a better understanding of the GBM TME will aid in the development and advancement of more effective treatments and in improving patient outcomes.
Collapse
Affiliation(s)
- Mark Dapash
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
- Department of Neurosurgery, University of Chicago, Chicago, IL 60637, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.D.); (D.H.); (B.C.)
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Lee-Chang C, Miska J, Hou D, Rashidi A, Zhang P, Burga RA, Jusué-Torres I, Xiao T, Arrieta VA, Zhang DY, Lopez-Rosas A, Han Y, Sonabend AM, Horbinski CM, Stupp R, Balyasnikova IV, Lesniak MS. Activation of 4-1BBL+ B cells with CD40 agonism and IFNγ elicits potent immunity against glioblastoma. J Exp Med 2021; 218:152130. [PMID: 32991668 PMCID: PMC7527974 DOI: 10.1084/jem.20200913] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of many tumors. However, most glioblastoma (GBM) patients have not, so far, benefited from such successes. With the goal of exploring ways to boost anti-GBM immunity, we developed a B cell-based vaccine (BVax) that consists of 4-1BBL+ B cells activated with CD40 agonism and IFNγ stimulation. BVax migrates to key secondary lymphoid organs and is proficient at antigen cross-presentation, which promotes both the survival and the functionality of CD8+ T cells. A combination of radiation, BVax, and PD-L1 blockade conferred tumor eradication in 80% of treated tumor-bearing animals. This treatment elicited immunological memory that prevented the growth of new tumors upon subsequent reinjection in cured mice. GBM patient-derived BVax was successful in activating autologous CD8+ T cells; these T cells showed a strong ability to kill autologous glioma cells. Our study provides an efficient alternative to current immunotherapeutic approaches that can be readily translated to the clinic.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rachel A Burga
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ignacio Jusué-Torres
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Neurological Surgery, Loyola University Chicago Stritch School of Medicine, Chicago, IL
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Victor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Plan de Estudios Combinados en Medicina, National Autonomous University of Mexico, Mexico City, Mexico
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
18
|
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192:114723. [PMID: 34364887 DOI: 10.1016/j.bcp.2021.114723] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Both obesity and aging are associated with the development of metabolic diseases such as type 2 diabetes and cardiovascular disease. Chronic low-grade inflammation of adipose tissue is one of the mechanisms implicated in the progression of these diseases. Obesity and aging trigger adipose tissue alterations that ultimately lead to a pro-inflammatory phenotype of the adipose tissue-resident immune cells. Obesity and aging also share other features such as a higher visceral vs. subcutaneous adipose tissue ratio and a decreased lifespan. Here, we review the common characteristics of obesity and aging and the alterations in white adipose tissue and resident immune cells. We focus on the adipose tissue metabolic derangements in obesity and aging such as inflammation and adipose tissue remodeling.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Julia Fos-Domenech
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain; Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), E-28922 Madrid, Spain.
| |
Collapse
|
19
|
Dziegielewska-Gesiak S. Metabolic Syndrome in an Aging Society - Role of Oxidant-Antioxidant Imbalance and Inflammation Markers in Disentangling Atherosclerosis. Clin Interv Aging 2021; 16:1057-1070. [PMID: 34135578 PMCID: PMC8200137 DOI: 10.2147/cia.s306982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The prevalence of metabolic syndrome among the elderly population is growing. The elements of metabolic syndrome in an aging society are currently being researched. Atherosclerosis is a slow process in which the first symptoms may be observed after many years. The mechanisms underlying the progression of atherosclerosis are oxidative stress and inflammation. Inflammation and oxidative stress are associated with the increased incidence of metabolic syndrome. Taking the above into consideration, metabolic syndrome is thought to be a clinical equivalent of atherosclerosis. AIM The aim of this paper is to review the impact of the interplay of oxidant-antioxidant and inflammation markers in metabolic syndrome in general as well as its components in the pathophysiology which underlies development of atherosclerosis in elderly individuals. METHODS A systematic scan of online resources designed for elderly (≥65 years) published from 2005 to the end of 2020 were reviewed. This was supplemented with grey literature and then all resources were narratively analyzed. The analysis included the following terms: "atherosclerosis or metabolic syndrome" and "oxidative stress or inflammation" and "elderly" to find reports of atherosclerotic disease from asymptomatic to life-threatening among the elderly population with metabolic syndrome . RESULTS The work summarizes articles that were applicable to this study, including systematic reviews, qualitative studies and opinion pieces. Current knowledge focuses on monitoring the inflammation and oxidant-antioxidant imbalance in disentangling atherosclerosis in patients diagnosed with metabolic syndrome. The population-based studies described inflammation, increased oxidative stress and weak antioxidant defense systems as the mechanisms underlying atherosclerosis development. Moreover, there are discussions that these targets could potentially be a point of intervention to reduce the development of atherosclerosis in the elderly, especially those with altered glucose and lipid metabolism. Specific markers may be used as an approach for the prevention and lifestyle modification of atherosclerotic disease in such population. CONCLUSION Metabolic syndrome and its components are important contributors in the progression of atherosclerotic disease in the elderly population but constant efforts should be made to broaden our knowledge of elderly groups who are the most susceptible for the development of atherosclerosis complications.
Collapse
|
20
|
Kim K, Wang X, Ragonnaud E, Bodogai M, Illouz T, DeLuca M, McDevitt RA, Gusev F, Okun E, Rogaev E, Biragyn A. Therapeutic B-cell depletion reverses progression of Alzheimer's disease. Nat Commun 2021; 12:2185. [PMID: 33846335 PMCID: PMC8042032 DOI: 10.1038/s41467-021-22479-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2021] [Indexed: 01/16/2023] Open
Abstract
The function of B cells in Alzheimer's disease (AD) is not fully understood. While immunoglobulins that target amyloid beta (Aβ) may interfere with plaque formation and hence progression of the disease, B cells may contribute beyond merely producing immunoglobulins. Here we show that AD is associated with accumulation of activated B cells in circulation, and with infiltration of B cells into the brain parenchyma, resulting in immunoglobulin deposits around Aβ plaques. Using three different murine transgenic models, we provide counterintuitive evidence that the AD progression requires B cells. Despite expression of the AD-fostering transgenes, the loss of B cells alone is sufficient to reduce Aβ plaque burden and disease-associated microglia. It reverses behavioral and memory deficits and restores TGFβ+ microglia, respectively. Moreover, therapeutic depletion of B cells at the onset of the disease retards AD progression in mice, suggesting that targeting B cells may also benefit AD patients.
Collapse
Affiliation(s)
- Ki Kim
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Xin Wang
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Emeline Ragonnaud
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Tomer Illouz
- The Mina and Everard Goodman faculty of Life Sciences, Ramat Gan, Israel
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar Ilan University, Ramat Gan, Israel
| | - Marisa DeLuca
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Ross A McDevitt
- Mouse Phenotyping Unit, Comparative Medicine Section, National Institute on Aging, Baltimore, MD, USA
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Eitan Okun
- The Mina and Everard Goodman faculty of Life Sciences, Ramat Gan, Israel
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar Ilan University, Ramat Gan, Israel
| | - Evgeny Rogaev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
- Sirius University of Science and Technology, Sochi, Russia
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
21
|
Ragonnaud E, Biragyn A. Gut microbiota as the key controllers of "healthy" aging of elderly people. IMMUNITY & AGEING 2021; 18:2. [PMID: 33397404 PMCID: PMC7784378 DOI: 10.1186/s12979-020-00213-w] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Extrinsic factors, such as lifestyle and diet, are shown to be essential in the control of human healthy aging, and thus, longevity. They do so by targeting at least in part the gut microbiome, a collection of commensal microorganisms (microbiota), which colonize the intestinal tract starting after birth, and is established by the age of three. The composition and abundance of individual microbiota appears to continue to change until adulthood, presumably reflecting lifestyle and geographic, racial, and individual differences. Although most of these changes appear to be harmless, a major shift in their composition in the gut (dysbiosis) can trigger harmful local and systemic inflammation. Recent reports indicate that dysbiosis is increased in aging and that the gut microbiota of elderly people is enriched in pro-inflammatory commensals at the expense of beneficial microbes. The clinical consequence of this change remains confusing due to contradictory reports and a high degree of variability of human microbiota and methodologies used. Here, we present the authors’ thoughts that underscore dysbiosis as a primary cause of aging-associated morbidities, and thus, premature death of elderly people. We provide evidence that the dysbiosis triggers a chain of pathological and inflammatory events. Examples include alteration of levels of microbiota-affected metabolites, impaired function and integrity of the gastrointestinal tract, and increased gut leakiness. All of these enhance systemic inflammation, which when associated with aging is termed inflammaging, and result in consequent aging-associated pathologies.
Collapse
Affiliation(s)
- Emeline Ragonnaud
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| |
Collapse
|
22
|
Michaud E, Mastrandrea C, Rochereau N, Paul S. Human Secretory IgM: An Elusive Player in Mucosal Immunity. Trends Immunol 2020; 41:141-156. [PMID: 31928913 DOI: 10.1016/j.it.2019.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
Secretory IgMs (SIgMs) were amongst the first identified immunoglobulins. However, their importance was not fully understood and recent advances have shown they play a key role in establishing and promoting commensal gut tolerance in mice and humans. The true interactions between SIgMs and the microbiota remain controversial and we aim to consolidate current knowledge in this review. Through comprehensive examination of SIgMs and their corresponding B cell secretors in several different pathological immunological contexts, we review the presumed role of these molecules in gut tolerance, inflammatory bowel diseases, and lung immunity. As SIgMs harbor a mostly tolerogenic function, we posit that their inclusion in further immunological research is paramount.
Collapse
Affiliation(s)
- Eva Michaud
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | | | - Nicolas Rochereau
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Stéphane Paul
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France.
| |
Collapse
|
23
|
Bodogai M, O'Connell J, Kim K, Kim Y, Moritoh K, Chen C, Gusev F, Vaughan K, Shulzhenko N, Mattison JA, Lee-Chang C, Chen W, Carlson O, Becker KG, Gurung M, Morgun A, White J, Meade T, Perdue K, Mack M, Ferrucci L, Trinchieri G, de Cabo R, Rogaev E, Egan J, Wu J, Biragyn A. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci Transl Med 2019; 10:10/467/eaat4271. [PMID: 30429354 DOI: 10.1126/scitranslmed.aat4271] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
Abstract
Aging in humans is associated with increased hyperglycemia and insulin resistance (collectively termed IR) and dysregulation of the immune system. However, the causative factors underlying their association remain unknown. Here, using "healthy" aged mice and macaques, we found that IR was induced by activated innate 4-1BBL+ B1a cells. These cells (also known as 4BL cells) accumulated in aging in response to changes in gut commensals and a decrease in beneficial metabolites such as butyrate. We found evidence suggesting that loss of the commensal bacterium Akkermansia muciniphila impaired intestinal integrity, causing leakage of bacterial products such as endotoxin, which activated CCR2+ monocytes when butyrate was decreased. Upon infiltration into the omentum, CCR2+ monocytes converted B1a cells into 4BL cells, which, in turn, induced IR by expressing 4-1BBL, presumably to trigger 4-1BB receptor signaling as in obesity-induced metabolic disorders. This pathway and IR were reversible, as supplementation with either A. muciniphila or the antibiotic enrofloxacin, which increased the abundance of A. muciniphila, restored normal insulin response in aged mice and macaques. In addition, treatment with butyrate or antibodies that depleted CCR2+ monocytes or 4BL cells had the same effect on IR. These results underscore the pathological function of B1a cells and suggest that the microbiome-monocyte-B cell axis could potentially be targeted to reverse age-associated IR.
Collapse
Affiliation(s)
- Monica Bodogai
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jennifer O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ki Kim
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yoo Kim
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kanako Moritoh
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Chen Chen
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kelli Vaughan
- Nonhuman Primate Core Facility, National Institute on Aging, Baltimore, MD 21224, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Julie A Mattison
- Nonhuman Primate Core Facility, National Institute on Aging, Baltimore, MD 21224, USA
| | - Catalina Lee-Chang
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Weixuan Chen
- Janssen Research & Development, San Diego, CA 92121, USA
| | - Olga Carlson
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Manoj Gurung
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - James White
- Resphera Biosciences, Baltimore, MD 21231, USA
| | - Theresa Meade
- Comparative Medicine Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kathy Perdue
- Comparative Medicine Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Matthias Mack
- Department of Nephrology, Universitätsklinikum Regensburg, Regensburg 93001-93059, Germany
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Giorgio Trinchieri
- Cancer Inflammation Program, National Cancer Institute, Frederick, MD 21701, USA
| | - Rafael de Cabo
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Evgeny Rogaev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jiejun Wu
- Janssen Research & Development, San Diego, CA 92121, USA
| | - Arya Biragyn
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
24
|
Wu J, Li K, Peng W, Li H, Li Q, Wang X, Peng Y, Tang X, Fu X. Autoinducer-2 of Fusobacterium nucleatum promotes macrophage M1 polarization via TNFSF9/IL-1β signaling. Int Immunopharmacol 2019; 74:105724. [PMID: 31272064 DOI: 10.1016/j.intimp.2019.105724] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/11/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
The effect of Fusobacterium nucleatum (F. nucleatum) autoinducer-2 (AI-2) on the polarization of macrophages and the underlying mechanism is not known. We investigated the effect of F. nucleatum AI-2 on the migration and polarization of cultured macrophages. We further screened AI-2-interacting proteins in macrophages using a quantitative proteomics strategy, and evaluated the expression of TNFSF9/TRAF1/p-AKT/IL-1β signaling in cultured macrophages and human colorectal cancer (CRC). The data showed that F. nucleatum AI-2 enhanced the mobility and M1 polarization of macrophages, possibly through TNFSF9/TRAF1/p-AKT/IL-1β signaling. Moreover, TNFSF9 and IL-1β expression was significantly increased in human CRCs when compared to normal colon (P < 0.05), and was associated with AI-2 concentration and increased survival. Together, our data suggested that AI-2 induced macrophage M1 polarization by activating the TNFSF9/IL-1β pathway. Thus, AI-2 may serve as a promising novel target for immunotherapy of gut microbiota-related diseases.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, China
| | - Kang Li
- High Altitude Medical Research Institute, People's Hospital of Tibet Autonomous Region, Lhasa 850000, China
| | - Wei Peng
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, China
| | - Huan Li
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, China
| | - Qing Li
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, China
| | - Xianfei Wang
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Sichuan 637000, China
| | - Yan Peng
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, China
| | - Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, China
| | - Xiangsheng Fu
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Sichuan 637000, China.
| |
Collapse
|
25
|
Older Human B Cells and Antibodies. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121151 DOI: 10.1007/978-3-319-99375-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
B cells have a number of different roles in the immune response. Their excellent antigen presentation potential can contribute to the activation of other cells of the immune system, and evidence is emerging that specialized subsets of these cells, that may be increased with age, can influence the cell-mediated immune system in antitumor responses. They can also regulate immune responses, to avoid autoreactivity and excessive inflammation. Deficiencies in regulatory B cells may be beneficial in cancer but will only exacerbate the inflammatory environment that is a hallmark of aging. The B cell role as antibody producers is particularly important, since antibodies perform numerous different functions in different environments. Although studying tissue responses in humans is not as easy as in mice, we do know that certain classes of antibodies are more suited to protecting the mucosal tissues (IgA) or responding to T-independent bacterial polysaccharide antigens (IgG2) so we can make some inference with respect to tissue-specific immunity from a study of peripheral blood. We can also make inferences about changes in B cell development with age by looking at the repertoire of different B cell populations to see how age affects the selection events that would normally occur to avoid autoreactivity, or increase specificity, to antigen.
Collapse
|
26
|
Bishop GA, Stunz LL, Hostager BS. TRAF3 as a Multifaceted Regulator of B Lymphocyte Survival and Activation. Front Immunol 2018; 9:2161. [PMID: 30319624 PMCID: PMC6165887 DOI: 10.3389/fimmu.2018.02161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The adaptor protein TNF receptor-associated factor 3 (TRAF3) serves as a powerful negative regulator in multiple aspects of B cell biology. Early in vitro studies in transformed cell lines suggested the potential of TRAF3 to inhibit signaling by its first identified binding receptor, CD40. However, because the canonical TRAF3 binding site on many receptors also mediates binding of other TRAFs, and whole-mouse TRAF3 deficiency is neonatally lethal, an accurate understanding of TRAF3's specific functions was delayed until conditional TRAF3-deficient mice were produced. Studies of B cell-specific TRAF3-deficient mice, complemented by investigations in normal and malignant mouse and human B cells, reveal that TRAF3 has powerful regulatory roles that are unique to this TRAF, as well as functions context-specific to the B cell. This review summarizes the current state of knowledge of these roles and functions. These include inhibition of signaling by plasma membrane receptors, negative regulation of intracellular receptors, and restraint of cytoplasmic NF- κB pathways. TRAF3 is also now known to function as a resident nuclear protein, and to impact B cell metabolism. Through these and additional mechanisms TRAF3 exerts powerful restraint upon B cell survival and activation. It is thus perhaps not surprising that TRAF3 has been revealed as an important tumor suppressor in B cells. The many and varied functions of TRAF3 in B cells, and new directions to pursue in future studies, are summarized and discussed here.
Collapse
Affiliation(s)
- Gail A. Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, Iowa City, IA, United States
| | - Laura L. Stunz
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| | - Bruce S. Hostager
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
27
|
Abstract
Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty - which affect clinical manifestations, prognosis, and response to treatment - and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Elisa Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9:1269. [PMID: 29915601 PMCID: PMC5994698 DOI: 10.3389/fimmu.2018.01269] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Collapse
Affiliation(s)
| | - Tanvi Potluri
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
29
|
Biragyn A, Aliseychik M, Rogaev E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin Immunopathol 2017; 39:283-294. [PMID: 28083646 DOI: 10.1007/s00281-016-0615-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.
Collapse
Affiliation(s)
- Arya Biragyn
- Immunoregulation section, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| | - Maria Aliseychik
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evgeny Rogaev
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Genomics and Human Genetics, Russian Academy of Sciences, Institute of General Genetics, Moscow, Russia.,Center for Brain Neurobiology and Neurogenetics, Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russia
| |
Collapse
|
30
|
Arosa FA, Esgalhado AJ, Padrão CA, Cardoso EM. Divide, Conquer, and Sense: CD8 +CD28 - T Cells in Perspective. Front Immunol 2017; 7:665. [PMID: 28096804 PMCID: PMC5206803 DOI: 10.3389/fimmu.2016.00665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Carolina A Padrão
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
31
|
Punt S, Corver WE, van der Zeeuw SAJ, Kielbasa SM, Osse EM, Buermans HPJ, de Kroon CD, Jordanova ES, Gorter A. Whole-transcriptome analysis of flow-sorted cervical cancer samples reveals that B cell expressed TCL1A is correlated with improved survival. Oncotarget 2016; 6:38681-94. [PMID: 26299617 PMCID: PMC4770729 DOI: 10.18632/oncotarget.4526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 06/05/2015] [Indexed: 11/25/2022] Open
Abstract
Cervical cancer is typically well infiltrated by immune cells. Because of the intricate relationship between cancer cells and immune cells, we aimed to identify both cancer cell and immune cell expressed biomarkers. Using a novel approach, we isolated RNA from flow-sorted viable EpCAM+ tumor epithelial cells and CD45+ tumor-infiltrating immune cells obtained from squamous cell cervical cancer samples (n = 24). Total RNA was sequenced and differential gene expression analysis of the CD45+ immune cell fractions identified TCL1A as a novel marker for predicting improved survival (p = 0.007). This finding was validated using qRT-PCR (p = 0.005) and partially validated using immunohistochemistry (p = 0.083). Importantly, TCL1A was found to be expressed in a subpopulation of B cells (CD3−/CD19+/CD10+/CD34−) using multicolor immunofluorescence. A high TCL1A/CD20 (B cell) ratio, determined in total tumor samples from a separate patient cohort using qRT-PCR (n = 52), was also correlated with improved survival (p = 0.027). This is the first study demonstrating the prognostic value of separating tumor epithelial cells from tumor-infiltrating immune cells and determining their RNA expression profile for identifying putative cancer biomarkers. Our results suggest that intratumoral TCL1A+ B cells are important for controlling cervical cancer development.
Collapse
Affiliation(s)
- Simone Punt
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Sander A J van der Zeeuw
- Department of Sequencing Analysis Support Core, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Bioinformatics Center of Expertise, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Elisabeth M Osse
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Henk P J Buermans
- Department of Leiden Genome Technology Center, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Cornelis D de Kroon
- Department of Gynaecology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| | - Ekaterina S Jordanova
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands.,Center for Gynecological Oncology Amsterdam, VUMC, De Boelelaan, Amsterdam, The Netherlands
| | - Arko Gorter
- Department of Pathology, Leiden University Medical Center, Albinusdreef, Leiden, The Netherlands
| |
Collapse
|
32
|
Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Semeraro M, Jégou S, Flores C, Chen L, Kwon BS, Borg C, Weide B, Aubin F, Dalle S, Kohrt H, Ayyoub M, Kroemer G, Marabelle A, Cavalcanti A, Eggermont A, Zitvogel L. Immunophenotyping of Stage III Melanoma Reveals Parameters Associated with Patient Prognosis. J Invest Dermatol 2016; 136:994-1001. [PMID: 26829031 PMCID: PMC6156792 DOI: 10.1016/j.jid.2015.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022]
Abstract
Stage III metastatic melanomas require adequate adjuvant immunotherapy to prevent relapses. Prognostic factors are awaited to optimize the clinical management of these patients. The magnitude of metastatic lymph node invasion and the BRAF(V600) activating mutation have clinical significance. Based on a comprehensive immunophenotyping of 252 parameters per patient in paired blood and metastatic lymph nodes performed in 39 metastatic melanomas, we found that blood markers were as contributive as tumor-infiltrated lymphocyte immunotypes, and parameters associated with lymphocyte exhaustion/suppression showed higher clinical significance than those related to activation or lineage. High frequencies of CD45RA(+)CD4(+) and CD3(-)CD56(-) tumor-infiltrated lymphocytes appear to be independent prognostic factors of short progression-free survival. High NKG2D expression on CD8(+)tumor-infiltrated lymphocytes, low level of regulatory T-cell tumor-infiltrated lymphocytes, and low PD-L1 expression on circulating T cells were retained in the multivariate Cox analysis model to predict prolonged overall survival. Prospective studies are needed to determine whether such immunological markers may guide adjuvant therapies in stage III metastatic melanomas.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- INSERM U1015, Gustave Roussy Cancer Center, Villejuif, France; University Paris Saclay, Kremlin Bicêtre, France; Gustave Roussy Cancer Center, Villejuif, France
| | - María Paula Roberti
- INSERM U1015, Gustave Roussy Cancer Center, Villejuif, France; Gustave Roussy Cancer Center, Villejuif, France; CIC Biothérapie IGR Curie CIC1428, Gustave Roussy Cancer Center, Villejuif, France
| | - David P Enot
- Gustave Roussy Cancer Center, Villejuif, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Sylvie Rusakiewicz
- INSERM U1015, Gustave Roussy Cancer Center, Villejuif, France; Gustave Roussy Cancer Center, Villejuif, France; CIC Biothérapie IGR Curie CIC1428, Gustave Roussy Cancer Center, Villejuif, France
| | - Michaela Semeraro
- INSERM U1015, Gustave Roussy Cancer Center, Villejuif, France; Gustave Roussy Cancer Center, Villejuif, France; Center of Clinical Investigation, Hôpital Necker Enfants Malades, Paris, France
| | - Sarah Jégou
- Saint Antoine Hospital, INSERM ERL 1157-CNRS UMR 7203, Paris, France
| | | | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Byoung S Kwon
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea; Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besancon, Besancon, France; Clinical Investigational Centre, CIC-1431, University Hospital of Besançon, Besançon, France; INSERM U1098, University of Franche-Comté, Besançon, France
| | - Benjamin Weide
- Division of Dermatooncology, Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | - François Aubin
- Université de Franche Comté, Service de Dermatologie, Centre Hospitalier Universitaire (CHU), Besançon, France
| | - Stéphane Dalle
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| | - Holbrook Kohrt
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Maha Ayyoub
- INSERM U1015, Gustave Roussy Cancer Center, Villejuif, France; University Paris Saclay, Kremlin Bicêtre, France; Gustave Roussy Cancer Center, Villejuif, France; CIC Biothérapie IGR Curie CIC1428, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Cancer Center, Villejuif, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France; INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Aurélien Marabelle
- INSERM U1015, Gustave Roussy Cancer Center, Villejuif, France; Gustave Roussy Cancer Center, Villejuif, France; CIC Biothérapie IGR Curie CIC1428, Gustave Roussy Cancer Center, Villejuif, France
| | - Andréa Cavalcanti
- Gustave Roussy Cancer Center, Villejuif, France; Department of Surgery, Gustave Roussy Cancer Center, Villejuif, France; Department of Dermatology, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Laurence Zitvogel
- INSERM U1015, Gustave Roussy Cancer Center, Villejuif, France; University Paris Saclay, Kremlin Bicêtre, France; Gustave Roussy Cancer Center, Villejuif, France; CIC Biothérapie IGR Curie CIC1428, Gustave Roussy Cancer Center, Villejuif, France.
| |
Collapse
|
33
|
Lee-Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, Young HA, Croft M, Ferrucci L, Biragyn A. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3385-97. [PMID: 26983789 PMCID: PMC4821757 DOI: 10.4049/jimmunol.1502034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
Abstract
B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224; INSERM UMR995, Lille Inflammation Research International Center, F-59000 Lille, France; University of Lille, F-59000 Lille, France
| | - Monica Bodogai
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224
| | - Kanako Moritoh
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, People's Republic of China; Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Robert Wersto
- Flow Cytometry Unit, National Institute on Aging, Baltimore, MD 21244
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224
| | - Howard A Young
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224
| | - Arya Biragyn
- Immunoregulation Section, National Institute on Aging, Baltimore, MD 21224;
| |
Collapse
|
34
|
CD20+ B-cell depletion therapy suppresses murine CD8+ T-cell–mediated immune thrombocytopenia. Blood 2016; 127:735-8. [DOI: 10.1182/blood-2015-06-655126] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/08/2015] [Indexed: 11/20/2022] Open
Abstract
Key Points
CD20 Bdep therapy inhibits CD8+ T-cell proliferation in vitro. CD20 Bdep therapy prevents CD8+ T-cell–mediated ITP in vivo.
Collapse
|
35
|
Radaelli E, Hermans E, Omodho L, Francis A, Vander Borght S, Marine JC, van den Oord J, Amant F. Spontaneous Post-Transplant Disorders in NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) Mice Engrafted with Patient-Derived Metastatic Melanomas. PLoS One 2015; 10:e0124974. [PMID: 25996609 PMCID: PMC4440639 DOI: 10.1371/journal.pone.0124974] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/20/2015] [Indexed: 12/18/2022] Open
Abstract
Patient-derived tumor xenograft (PDTX) approach is nowadays considered a reliable preclinical model to study in vivo cancer biology and therapeutic response. NOD scid and Il2rg-deficient mice represent the "gold standard" host for the generation of PDTXs. Compared to other immunocompromised murine lines, these mice offers several advantages including higher engraftment rate, longer lifespan and improved morphological and molecular preservation of patient-derived neoplasms. Here we describe a spectrum of previously uncharacterized post-transplant disorders affecting 14/116 (12%) NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) mice subcutaneously engrafted with patient-derived metastatic melanomas. Affected mice exhibited extensive scaling/crusting dermatitis (13/14) associated with emaciation (13/14) and poor/unsuccessful tumor engraftment (14/14). In this context, the following pathological conditions have been recognized and characterized in details: (i) immunoinflammatory disorders with features of graft versus host disease (14/14); (ii) reactive lymphoid infiltrates effacing xenografted tumors (8/14); (iii) post-transplant B cell lymphomas associated with Epstein-Barr virus reactivation (2/14). We demonstrate that all these entities are driven by co-transplanted human immune cells populating patient-derived tumor samples. Since the exploding interest in the utilization of NOD scid and Il2rg-deficient mice for the establishment of PDTX platforms, it is of uppermost importance to raise the awareness of the limitations associated with this model. The disorders here described adversely impact tumor engraftment rate and animal lifespan, potentially representing a major confounding factor in the context of efficacy and personalized therapy studies. The occurrence of these conditions in the NOG model reflects the ability of this mouse line to promote efficient engraftment of human immune cells. Co-transplanted human lymphoid cells have indeed the potential to colonize the recipient mouse initiating the post-transplant conditions here reported. On the other hand, the evidence of an immune response of human origin against the xenotransplanted melanoma opens intriguing perspectives for the establishment of suitable preclinical models of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Enrico Radaelli
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
- InfraMouse, KU Leuven-VIB, Leuven, Belgium
| | - Els Hermans
- Gynaecological Oncology, UZ Leuven—Department of Oncology, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Lorna Omodho
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Annick Francis
- VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
- InfraMouse, KU Leuven-VIB, Leuven, Belgium
| | - Sara Vander Borght
- Department of Pathology, Laboratory of Morphology and Molecular Pathology, University Hospitals of Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB11 Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Joost van den Oord
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Gynaecological Oncology, UZ Leuven—Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|