1
|
Huang L, Zhang M, Bai D, Qu Y. Deciphering the impact of TERT/telomerase on immunosenescence and T cell revitalization. Front Immunol 2024; 15:1465006. [PMID: 39376566 PMCID: PMC11456497 DOI: 10.3389/fimmu.2024.1465006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Immunosenescence impacts both the innate and adaptive immune systems, predominantly affecting certain immune cell types. A notable manifestation of immunosenescence is the diminished efficacy of adaptive immunity. The excessive senescence of immune cells, particularly T cells, leads to marked immune deficiency, consequently escalating the risk of infections, tumors, and age-associated disorders. Lymphocytes, especially T cells, are subject to both replicative and premature senescence. Telomerase reverse transcriptase (TERT) and telomerase have multifaceted roles in regulating cellular behavior, possessing the ability to counteract both replicative and premature senescence in lymphocytes. This review encapsulates recent advancements in understanding immunosenescence, with a focus on T cell senescence, and the regulatory mechanisms involving TERT/telomerase. Additionally, it comprehensively discusses strategies aimed at inhibiting immunosenescence by augmenting TERT/telomerase activity.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingfu Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ding Bai
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
El Kettani A, Ouair H, Marnissi F, El Bakkouri J, Chevalier R, Lorenzo L, Kholaiq H, Béziat V, Jouanguy E, Casanova JL, Bousfiha AA. Case Report of Two Independent Moroccan Families with Syndromic Epidermodysplasia Verruciformis and STK4 Deficiency. Viruses 2024; 16:1415. [PMID: 39339890 PMCID: PMC11437448 DOI: 10.3390/v16091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genodermatosis caused by β-human papillomaviruses (HPV) in immunodeficient patients. EV is characterized by flat warts and pityriasis-like lesions and might be isolated or syndromic, associated with some other infectious manifestations. We report here three patients from two independent families, with syndromic EV for both of them. By whole exome sequencing, we found that the patients carry new homozygous variants in STK4, both leading to a premature stop codon. STK4 deficiency causes a combined immunodeficiency characterized by a broad infectious susceptibility to bacteria, viruses, and fungi. Auto-immune manifestations were also reported. Deep immunophenotyping revealed multiple cytopenia in the three affected patients, in particular deep CD4+ T cells deficiency. We report here the fourth and the fifth cases of the syndromic EV due to STK4 deficiency.
Collapse
Affiliation(s)
- Assiya El Kettani
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Laboratory of Bacteriology, Virology and Hospital Hygiene, Ibn Rochd University Hospital, Casablanca 20250, Morocco
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco;
| | - Hind Ouair
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco;
| | - Farida Marnissi
- Laboratory of Pathological Anatomy, Ibn Rochd University Hospital, Hassan II University, Casablanca 20250, Morocco;
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca 20250, Morocco
| | - Rémi Chevalier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Halima Kholaiq
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital-Ibn Rochd University Hospital, Casablanca 20250, Morocco
| |
Collapse
|
3
|
Jeanpierre M, Cognard J, Tusseau M, Riller Q, Bui LC, Berthelet J, Laurent A, Crickx E, Parlato M, Stolzenberg MC, Suarez F, Leverger G, Aladjidi N, Collardeau-Frachon S, Pietrement C, Malphettes M, Froissart A, Bole-Feysot C, Cagnard N, Rodrigues Lima F, Walzer T, Rieux-Laucat F, Belot A, Mathieu AL. Haploinsufficiency in PTPN2 leads to early-onset systemic autoimmunity from Evans syndrome to lupus. J Exp Med 2024; 221:e20232337. [PMID: 39028869 PMCID: PMC11259789 DOI: 10.1084/jem.20232337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
An exome sequencing strategy employed to identify pathogenic variants in patients with pediatric-onset systemic lupus or Evans syndrome resulted in the discovery of six novel monoallelic mutations in PTPN2. PTPN2 is a phosphatase that acts as an essential negative regulator of the JAK/STAT pathways. All mutations led to a loss of PTPN2 regulatory function as evidenced by in vitro assays and by hyperproliferation of patients' T cells. Furthermore, patients exhibited high serum levels of inflammatory cytokines, mimicking the profile observed in individuals with gain-of-function mutations in STAT factors. Flow cytometry analysis of patients' blood cells revealed typical alterations associated with autoimmunity and all patients presented with autoantibodies. These findings further supported the notion that a loss of function in negative regulators of cytokine pathways can lead to a broad spectrum of autoimmune manifestations and that PTPN2 along with SOCS1 haploinsufficiency constitute a new group of monogenic autoimmune diseases that can benefit from targeted therapy.
Collapse
Affiliation(s)
- Marie Jeanpierre
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Jade Cognard
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- Department of Medical Genetics, Hospices Civils de Lyon, Bron, France
| | - Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Linh-Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Audrey Laurent
- National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases, Hospices Civils de Lyon, Pediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital; Lyon, France
| | - Etienne Crickx
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
- Service de Médecine Interne, Centre National de Référence des Cytopénies Auto-immunes de L’adulte, Hôpital Henri Mondor, Fédération Hospitalo-Universitaire TRUE InnovaTive TheRapy for ImmUne disordErs, Assistance Publique Hôpitaux de Paris, Université Paris Est Créteil, Créteil, France
| | - Marianna Parlato
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Felipe Suarez
- Department of Adult Hematology, Necker-Enfants Malades University Hospital and Centre de Référence des déficits Immunitaires Héréditaires, Assistance Publique Hôpitaux de Paris, INSERM U1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Guy Leverger
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, UMR_S938, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l’Enfant, Bordeaux, France
- Pediatric Oncology Hemato-Immunology Unit, University Hospital, Plurithématique Centre d’Investigation Clinique, 1401, INSERM, Bordeaux, France
| | - Sophie Collardeau-Frachon
- Institute of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Société Française de Foetopathologie Paris, Paris, France
| | - Christine Pietrement
- Centre Hospitalier Universitaire de Reims, Service de Pédiatrie Spécialisée et Généralisée, Université Reims Champagne Ardenne, Reims, France
| | - Marion Malphettes
- Service d’Immunopathologie Clinique, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Antoine Froissart
- Service Médecine Interne, Hôpital Intercommunal de Créteil, Créteil, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | | | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases, Hospices Civils de Lyon, Pediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital; Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
4
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
5
|
Zhao J, He C, Fan X, Wang L, Zhao L, Liu H, Shen W, Jiang S, Pei K, Gao J, Qi Y, Liu Y, Zhao J, Zhang R, Lu C, Tong J, Huai J. Tripeptidyl peptidase II coordinates the homeostasis of calcium and lipids in the central nervous system and its depletion causes presenile dementia in female mice through calcium/lipid dyshomeostasis-induced autophagic degradation of CYP19A1. Theranostics 2024; 14:1390-1429. [PMID: 38389851 PMCID: PMC10879859 DOI: 10.7150/thno.92571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Tripeptidyl peptidase II (TPP2) has been proven to be related to human immune and neurological diseases. It is generally considered as a cytosolic protein which forms the largest known protease complex in eukaryotic cells to operate mostly downstream of proteasomes for degradation of longer peptides. However, this canonical function of TPP2 cannot explain its role in a wide variety of biological and pathogenic processes. The mechanistic interrelationships and hierarchical order of these processes have yet to be clarified. Methods: Animals, cells, plasmids, and viruses established and/or used in this study include: TPP2 knockout mouse line, TPP2 conditional knockout mouse lines (different neural cell type oriented), TRE-TPP2 knockin mouse line on the C57BL/6 background; 293T cells with depletion of TPP2, ATF6, IRE1, PERK, SYVN1, UCHL1, ATG5, CEPT1, or CCTα, respectively; 293T cells stably expressing TPP2, TPP2 S449A, TPP2 S449T, or CCTα-KDEL proteins on the TPP2-depleted background; Plasmids for eukaryotic transient expression of rat CYP19A1-Flag, CYP19A1 S118A-Flag, CYP19A1 S118D-Flag, Sac I ML GFP Strand 11 Long, OMMGFP 1-10, G-CEPIA1er, GCAMP2, CEPIA3mt, ACC-GFP, or SERCA1-GFP; AAV2 carrying the expression cassette of mouse CYP19A1-3 X Flag-T2A-ZsGreen. Techniques used in this study include: Flow cytometry, Immunofluorescence (IF) staining, Immunohistochemical (IHC) staining, Luxol fast blue (LFB) staining, β-galactosidase staining, Lipid droplet (LD) staining, Calcium (Ca2+) staining, Stimulated emission depletion (STED) imaging, Transmission electron microscopic imaging, Two-photon imaging, Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end Labeling (TUNEL) assay, Bromodeoxyuridine (BrdU) assay, Enzymatic activity assay, Proximity ligation assay (PLA), In vivo electrophysiological recording, Long-term potentiation (LTP) recording, Split-GFP-based mitochondria-associated membrane (MAM) detection, Immunoprecipitation (IP), Cellular fractionation, In situ hybridization, Semi-quantitative RT-PCR, Immunoblot, Mass spectrometry-based lipidomics, metabolomics, proteomics, Primary hippocampal neuron culture and Morris water maze (MWM) test. Results: We found that TPP2, independent of its enzymatic activity, plays a crucial role in maintaining the homeostasis of intracellular Ca2+ and phosphatidylcholine (PC) in the central nervous system (CNS) of mice. In consistence with the critical importance of Ca2+ and PC in the CNS, TPP2 gene ablation causes presenile dementia in female mice, which is closely associated with Ca2+/PC dysregulation-induced endoplasmic reticulum (ER) stress, abnormal autophagic degradation of CYP19A1 (aromatase), and estrogen depletion. This work therefore uncovers a new role of TPP2 in lipogenesis and neurosteroidogenesis which is tightly related to cognitive function of adult female mice. Conclusion: Our study reveals a crucial role of TPP2 in controlling homeostasis of Ca2+ and lipids in CNS, and its deficiency causes sexual dimorphism in dementia. Thus, this study is not only of great significance for elucidating the pathogenesis of dementia and its futural treatment, but also for interpreting the role of TPP2 in other systems and their related disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Chengtong He
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Lin Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Liao Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Hui Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Wujun Shen
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Sanwei Jiang
- Henan International Key Laboratory for Noninvasive Neuromodulation, Department of Physiology & Pathology, Xinxiang Medical University, Xinxiang, PR China
| | - Kaixuan Pei
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jingjing Gao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yawei Qi
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yang Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Junqiang Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
| | - Ruiling Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
| | - Chengbiao Lu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
- Henan International Key Laboratory for Noninvasive Neuromodulation, Department of Physiology & Pathology, Xinxiang Medical University, Xinxiang, PR China
- Senior author for electrophysiological experiments and related analysis
| | - Jia Tong
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| |
Collapse
|
6
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
7
|
Hultberg J, Blixt E, Göransson R, Adolfsson J, Govender M, Larsson M, Nilsdotter-Augustinsson Å, Ernerudh J, Nyström S. In-depth immune profiling reveals advanced B- and T-cell differentiation to be associated with Th1-driven immune dysregulation in common variable immunodeficiency. Clin Immunol 2023; 257:109816. [PMID: 37918468 DOI: 10.1016/j.clim.2023.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Common variable immunodeficiency (CVID) is an inborn error of immunity characterized by low levels of antibodies. In addition to infections, many patients also suffer from T-helper 1-driven immune dysregulation, which is associated with increased mortality. The aim of this study was to perform in-depth characterization of the T and the B cell compartments in a well-defined cohort of patients affected by CVID and correlate the findings to the level of clinical immune dysregulation. We used mass cytometry, targeted proteomics, flow cytometry and functional assays to delineate the immunological phenotype of 15 CVID-affected patients with different levels of immune dysregulation. Unbiased clustering of T cell mass cytometry data correlated with CVID-related immune dysregulation and plasma protein profiles. Expanded CXCR3+ T-bet-expressing B cells correlated with effector memory CD4+ T cell clusters, and increased plasma levels of CXCR3-ligands. Our findings indicate an interplay between B cells and T cells in CVID-related immune dysregulation and provide a better understanding of the underlying pathological mechanisms.
Collapse
Affiliation(s)
- Jonas Hultberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Emelie Blixt
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Robin Göransson
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Jörgen Adolfsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Sofia Nyström
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden.
| |
Collapse
|
8
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
9
|
Shimizu A, Yamaguchi R, Kuriyama Y. Recent advances in cutaneous HPV infection. J Dermatol 2023; 50:290-298. [PMID: 36601717 DOI: 10.1111/1346-8138.16697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
More than 200 types of human papillomavirus (HPV) have been reported to date and have been associated with various dermatological diseases. Among dermatological diseases, viral verrucae are the most commonly reported to be associated with HPV. Epidermodysplasia verruciformis (EV) consists of three types: typical EV is an autosomal recessive genetic disorder with TMC6/TMC8 gene mutations, atypical EV develops due to various gene mutations that cause immunodeficiency, and acquired EV develops due to acquired immunodeficiency. Generalized verrucosis differs from EV in that it involves numerous verrucous nodules (mainly on the limbs), histopathologically no blue cells as seen in EV, and infection with cutaneous α-HPVs as well as β-HPVs. HPV-induced skin malignancies include squamous cell carcinoma (SCC) caused by β-HPV (especially HPV types 5 and 8) in EV patients, organ transplant recipients, and healthy individuals, and SCC of the vulva and nail unit caused by mucosal high-risk HPV infection. Carcinogenesis of β-HPV is associated with sunlight. Mucosal high-risk HPV-associated carcinomas may also be sexually transmitted. We focused on Bowen's disease of the nail, which has been the subject of our research for a long time and has recently come to the fore in the field of dermatology.
Collapse
Affiliation(s)
- Akira Shimizu
- Department of Dermatology, Kanazawa Medical University, Uchinada, Japan
| | - Reimon Yamaguchi
- Department of Dermatology, Kanazawa Medical University, Uchinada, Japan
| | - Yuko Kuriyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi City, Japan
| |
Collapse
|
10
|
Hu B, Wang J, Li Y, Ge J, Pan J, Li G, He Y, Zhong H, Wang B, Huang Y, Han S, Xing Y, He H. Gut microbiota facilitates adaptation of the plateau zokor ( Myospalax baileyi) to the plateau living environment. Front Microbiol 2023; 14:1136845. [PMID: 36910168 PMCID: PMC9998695 DOI: 10.3389/fmicb.2023.1136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota not only helps the hosts to perform many key physiological functions such as food digestion, energy harvesting and immune regulation, but also influences host ecology and facilitates adaptation of the host to extreme environments. Plateau zokors epitomize successful physiological adaptation to their living environment in the face of the harsh environment characterized by low temperature, low pressure and hypoxia in the Tibetan plateau region and high concentrations of CO2 in their burrows. Therefore, here we used a metagenomic sequencing approach to explore how gut microbiota contributed to the adaptive evolution of the plateau zokor on the Qinghai-Tibet Plateau. Our metagenomic results show that the gut microbiota of plateau zokors on the Tibetan plateau is not only enriched in a large number of species related to energy metabolism and production of short-chain fatty acids (SCFAs), but also significantly enriched the KO terms that involve carbohydrate uptake pathways, which well address energy uptake in plateau zokors while also reducing inflammatory responses due to low pressure, hypoxia and high CO2 concentrations. There was also a significant enrichment of tripeptidyl-peptidase II (TPPII) associated with antigen processing, apoptosis, DNA damage repair and cell division, which may facilitate the immune response and tissue damage repair in plateau zokors under extreme conditions. These results suggest that these gut microbiota and their metabolites together contribute to the physiological adaptation of plateau zokors, providing new insights into the contribution of the microbiome to the evolution of mammalian adaptation.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jin Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinchao Pan
- College of Animal Sciences, Anhui University of Science and Technology, Huainan, China
| | - Gaojian Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Haishun Zhong
- Animal Husbandry and Veterinary Station of Xunhua, Xining, Qinghai, China
| | - Bo Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xing
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The development of cancer in patients with genetically determined inborn errors of immunity (IEI) is much higher than in the general population. The hallmarks of cancer are a conceptualization tool that can refine the complexities of cancer development and pathophysiology. Each genetic defect may impose a different pathological tumor predisposition, which needs to be identified and linked with known hallmarks of cancer. RECENT FINDINGS Four new hallmarks of cancer have been suggested, recently, including unlocking phenotypic plasticity, senescent cells, nonmutational epigenetic reprogramming, and polymorphic microbiomes. Moreover, more than 50 new IEI genes have been discovered during the last 2 years from which 15 monogenic defects perturb tumor immune surveillance in patients. SUMMARY This review provides a more comprehensive and updated overview of all 14 cancer hallmarks in IEI patients and covers aspects of cancer predisposition in novel genes in the ever-increasing field of IEI.
Collapse
|
12
|
Campos JS, Henrickson SE. Defining and targeting patterns of T cell dysfunction in inborn errors of immunity. Front Immunol 2022; 13:932715. [PMID: 36189259 PMCID: PMC9516113 DOI: 10.3389/fimmu.2022.932715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Inborn errors of immunity (IEIs) are a group of more than 450 monogenic disorders that impair immune development and function. A subset of IEIs blend increased susceptibility to infection, autoimmunity, and malignancy and are known collectively as primary immune regulatory disorders (PIRDs). While many aspects of immune function are altered in PIRDs, one key impact is on T-cell function. By their nature, PIRDs provide unique insights into human T-cell signaling; alterations in individual signaling molecules tune downstream signaling pathways and effector function. Quantifying T-cell dysfunction in PIRDs and the underlying causative mechanisms is critical to identifying existing therapies and potential novel therapeutic targets to treat our rare patients and gain deeper insight into the basic mechanisms of T-cell function. Though there are many types of T-cell dysfunction, here we will focus on T-cell exhaustion, a key pathophysiological state. Exhaustion has been described in both human and mouse models of disease, where the chronic presence of antigen and inflammation (e.g., chronic infection or malignancy) induces a state of altered immune profile, transcriptional and epigenetic states, as well as impaired T-cell function. Since a subset of PIRDs amplify T-cell receptor (TCR) signaling and/or inflammatory cytokine signaling cascades, it is possible that they could induce T-cell exhaustion by genetically mimicking chronic infection. Here, we review the fundamentals of T-cell exhaustion and its possible role in IEIs in which genetic mutations mimic prolonged or amplified T-cell receptor and/or cytokine signaling. Given the potential insight from the many forms of PIRDs in understanding T-cell function and the challenges in obtaining primary cells from these rare disorders, we also discuss advances in CRISPR-Cas9 genome-editing technologies and potential applications to edit healthy donor T cells that could facilitate further study of mechanisms of immune dysfunctions in PIRDs. Editing T cells to match PIRD patient genetic variants will allow investigations into the mechanisms underpinning states of dysregulated T-cell function, including T-cell exhaustion.
Collapse
Affiliation(s)
- Jose S. Campos
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
13
|
Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun 2022; 13:3882. [PMID: 35794100 PMCID: PMC9259736 DOI: 10.1038/s41467-022-31417-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMitochondrial dynamics can regulate Major Histocompatibility Complex (MHC)-I antigen expression by cancer cells and their immunogenicity in mice and in patients with malignancies. A crucial role in the mitochondrial fragmentation connection with immunogenicity is played by the IRE1α-XBP-1s axis. XBP-1s is a transcription factor for aminopeptidase TPP2, which inhibits MHC-I complex cell surface expression likely by degrading tumor antigen peptides. Mitochondrial fission inhibition with Mdivi-1 upregulates MHC-I expression on cancer cells and enhances the efficacy of adoptive T cell therapy in patient-derived tumor models. Therefore mitochondrial fission inhibition might provide an approach to enhance the efficacy of T cell-based immunotherapy.
Collapse
|
14
|
Liao CL, Hu RC, Liao MS, Chen YJ, Chen YP, Hsieh HH, Tai CH, Chou TC, Chu CY, Chen YJ, Lo LC, Lin JJ. Unveiling a novel serpinB2/tripeptidyl peptidase II signaling axis during senescence. J Cell Sci 2022; 135:275508. [PMID: 35466366 DOI: 10.1242/jcs.259513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Tripeptidyl peptidase II (TPPII) degrades N-terminal tripeptides from proteins and peptides. Studies in both human and mice have shown that TPPII deficiency is linked to cellular immune-senescence, lifespan regulation, and the aging process. However, the mechanism of how TPPII participates in these processes is less clear. In this study, we established a chemical probe-based assay and found that while the mRNA and protein levels of TPPII were not altered during senescence, its enzymatic activity was reduced in senescent human fibroblasts. We also showed that elevation of serine protease inhibitor serpinB2 reduced TPPII activity in senescent cells. Moreover, suppression of TPPII led to elevation of lysosomal contents as well as TPPI and -galactosidase activities, suggesting that the lysosome biogenesis is induced to compensate for the reduction of TPPII activity in senescent cells. Together this study discloses a critical role of the serpinB2/TPPII signaling pathway in proteostasis during senescence. Since serpinB2 level can be increased by a variety of cellular stresses, reduction of TPPII activity through activation of serpinB2 might represent a common pathway for cells to respond to different stress conditions.
Collapse
Affiliation(s)
- Chia-Li Liao
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Rong-Chi Hu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Min-Shiang Liao
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Ping Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsi-Hsien Hsieh
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chih-Hsuan Tai
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Tzyy-Chao Chou
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Yuan Chu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Lee-Chiang Lo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| |
Collapse
|
15
|
Corrente F, Terreri S, Palomba P, Capponi C, Mirabella M, Perno CF, Carsetti R. CD21 - CD27 - Atypical B Cells in a Pediatric Cohort Study: An Extensive Single Center Flow Cytometric Analysis. Front Pediatr 2022; 10:822400. [PMID: 35722474 PMCID: PMC9204099 DOI: 10.3389/fped.2022.822400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Atypical B cells (atBCs) are a distinct B-cell population and represent approximately 5% of B cells in peripheral blood (PB) of healthy adult individuals. However, in adults these cells are expanded in conditions of chronic infections, inflammation, primary immunodeficiencies, autoimmune diseases, and aging. Their immunophenotype is characterized by the lack of CD21 expression and the hallmark human memory B-cell marker CD27. In this study, we investigated the immunophenotype of atBCs in different pediatric pathological conditions and correlated their expansion with the children's clinical diagnosis. We were able to retrospectively evaluate 1,571 consecutive PB samples, corresponding to 1,180 pediatric patients, by using a 9-color flow-cytometric panel. The results, compared with a pediatric healthy cohort, confirmed an expansion of atBCs in patient samples with percentages greater than 5% of total B cells. Four subpopulations with different expressions of IgM and IgD were discriminated: IgM+IgD+, IgM+-only, IgD+-only, and IgM-IgD-. IgG+ atBCs were predominant in the IgM- IgD- subpopulation. Moreover, the study highlighted some features of atBCs, such as a low CD38 expression, a heterogeneity of CD24, a high expression of CD19 and a large cell size. We also demonstrated that an increase of atBCs in a pediatric cohort is correlated with immunodeficiencies, autoimmune, inflammatory, and hematological disorders, consistent with previous studies mainly performed in adults. Furthermore, our flow cytometric clustering analysis corroborated the recent hypothesis of an alternative B origin for atBCs.
Collapse
Affiliation(s)
- Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Patrizia Palomba
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mattia Mirabella
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
16
|
Autoimmune lymphoproliferative syndrome identified through reverse phenotyping. Cent Eur J Immunol 2022; 47:179-182. [PMID: 36751388 PMCID: PMC9894091 DOI: 10.5114/ceji.2022.118079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a chronic non-malignant lymphoproliferative disorder caused by mutations in the genes involved in programmed cell death. It is inherited as an autosomal dominant pattern with variable penetrance. In this paper we present the first report of a Macedonian family with ALPS, caused by a novel heterozygous variant in the FAS gene. The next generation sequencing (NGS) analysis in a patient with splenomegaly, suspected for hereditary spherocytosis, showed presence of the FAS c.913dupA, p.Thr305AsnfsTer16 variant. The same variant was present in the patient's mother, but not in the mother's parents (proband's grandparents). Thus, the pathogenic FAS variant has arisen as a de novo event in the proband's mother. Later, analysis of the newborn affected sister showed presence of the same FAS variant. Additional clinical and laboratory investigations in the proband and her sister confirmed the presence of specific biomarkers for ALPS. A first-line NGS analysis allows identification of the genetic defect and initiation of appropriate clinical examinations to promptly establish the clinical diagnosis in patients with rare diseases. Reverse phenotyping in our case provided a prompt and accurate diagnosis and early initiation of specific therapy.
Collapse
|
17
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I. González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children’s Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M. Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
18
|
Wang R, Liu J, Yang X, Habulieti X, Yu X, Sun L, Zhang H, Sun Y, Ma D, Zhang X. Identification and Splicing Characterization of Novel TMC6 and TMC8 Variants Associated With Epidermodysplasia Verruciformis in Three Chinese Families. Front Genet 2021; 12:712275. [PMID: 34386043 PMCID: PMC8353250 DOI: 10.3389/fgene.2021.712275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by abnormal susceptibility to human beta papillomavirus infections and a particular propensity to develop non-melanoma skin cancers (NMSCs). The majority of EV cases are caused by biallelic null variants in TMC6, TMC8, and CIB1. This study aimed to identify disease-causing variants in three Chinese families with EV and to elucidate their molecular pathogenesis. Methods: Genomic DNA from the probands of three EV families was analyzed by whole-exome sequencing (WES). cDNA sequencing was performed to investigate abnormal splicing of the variants. Quantitative RT-PCR (qRT-PCR) was conducted to quantify the mRNA expression of mutant TMC6 and TMC8. Results: Whole-exome sequencing identified two novel homozygous variants (c.2278-2A > G in TMC6 and c.559G > A in TMC8) in families 1 and 2, respectively. In family 3, WES revealed a recurrent and a novel compound heterozygous variant, c.559G > A and c.1389G > A, in TMC8. The c.2278-2A > G TMC6 variant led to the skipping of exon 19 and resulted in premature termination at codon 776. Subsequent qRT-PCR revealed that the aberrantly spliced transcript was partly degraded. Notably, the TMC8 c.559G > A variant created a novel acceptor splice site at c.561 and yielded three different aberrant transcripts. qRT-PCR revealed that most of the mutant transcripts were degraded via nonsense-mediated mRNA decay (NMD). Conclusion: We identified three novel disease-causing variants in TMC6 or TMC8 in three Chinese families with EV. The EV phenotypes of the three patients were due to a reduction in TMC6 or TMC8. Our findings expand the genetic causes of EV in the Chinese population.
Collapse
Affiliation(s)
- Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiawei Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueting Yang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaerbati Habulieti
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xue Yu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liwei Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Han Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yang Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Donglai Ma
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol 2021; 22:687-698. [PMID: 33986548 DOI: 10.1038/s41590-021-00927-z] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Westermann-Clark E, Meehan CA, Meyer AK, Dasso JF, Amre D, Ellison M, Patel B, Betensky M, Hauk CI, Mayer J, Metts J, Leiding JW, Sriaroon P, Kumar A, Ayala I, Walter JE. Primary Immunodeficiency in Children With Autoimmune Cytopenias: Retrospective 154-Patient Cohort. Front Immunol 2021; 12:649182. [PMID: 33968040 PMCID: PMC8100326 DOI: 10.3389/fimmu.2021.649182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Primary immunodeficiency is common among patients with autoimmune cytopenia. Objective The purpose of this study is to retrospectively identify key clinical features and biomarkers of primary immunodeficiency (PID) in pediatric patients with autoimmune cytopenias (AIC) so as to facilitate early diagnosis and targeted therapy. Methods Electronic medical records at a pediatric tertiary care center were reviewed. We selected 154 patients with both AIC and PID (n=17), or AIC alone (n=137) for inclusion in two cohorts. Immunoglobulin levels, vaccine titers, lymphocyte subsets (T, B and NK cells), autoantibodies, clinical characteristics, and response to treatment were recorded. Results Clinical features associated with AIC-PID included splenomegaly, short stature, and recurrent or chronic infections. PID patients were more likely to have autoimmune hemolytic anemia (AIHA) or Evans syndrome than AIC-only patients. The AIC-PID group was also distinguished by low T cells (CD3 and CD8), low immunoglobulins (IgG and IgA), and higher prevalence of autoantibodies to red blood cells, platelets or neutrophils. AIC diagnosis preceded PID diagnosis by 3 years on average, except among those with partial DiGeorge syndrome. AIC-PID patients were more likely to fail first-line treatment. Conclusions AIC patients, especially those with Evans syndrome or AIHA, should be evaluated for PID. Lymphocyte subsets and immune globulins serve as a rapid screen for underlying PID. Early detection of patients with comorbid PID and AIC may improve treatment outcomes. Prospective studies are needed to confirm the diagnostic clues identified and to guide targeted therapy.
Collapse
Affiliation(s)
- Emma Westermann-Clark
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Division of Allergy and Immunology, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Cristina Adelia Meehan
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anna K Meyer
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Graduate Medical Education, University of Colorado, Denver, CO, United States
| | - Joseph F Dasso
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Biology, University of Tampa, Tampa, FL, United States
| | - Devendra Amre
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maryssa Ellison
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Bhumika Patel
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Marisol Betensky
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States.,Division of Hematology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Charles Isaac Hauk
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States
| | - Jennifer Mayer
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States
| | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Panida Sriaroon
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Ambuj Kumar
- Research Methodology and Biostatistics Core, Morssani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Irmel Ayala
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States.,Division of Hematology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
21
|
Stockdale C, Rice L, Carter C, Berry I, Poulter J, O'Riordan S, Pollard S, Anwar R, Tooze R, Savic S. Novel Case of Tripeptidyl Peptidase 2 Deficiency Associated with Mild Clinical Phenotype. J Clin Immunol 2021; 41:1123-1127. [PMID: 33682069 PMCID: PMC7937547 DOI: 10.1007/s10875-021-01006-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/23/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Claire Stockdale
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, UK
| | - Laura Rice
- Leeds Institute of Medical Research at St James's, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds, UK
| | - Clive Carter
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, UK
| | - Ian Berry
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - James Poulter
- Leeds Institute of Medical Research at St James's, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds, UK
| | - Sean O'Riordan
- Department of Paediatric Immunology, Leeds General Infirmary, Leeds, UK
| | - Sally Pollard
- Paediatric Department, Bradford Teaching Hospitals, Bradford, UK
| | - Rashida Anwar
- Leeds Institute of Medical Research at St James's, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds, UK
| | - Reuben Tooze
- Leeds Institute of Medical Research at St James's, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, UK. .,National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
22
|
Atallah I, Quinodoz M, Campos-Xavier B, Peter VG, Fouriki A, Bonvin C, Bottani A, Kumps C, Angelini F, Bellutti Enders F, Christen-Zaech S, Rizzi M, Renella R, Beck-Popovic M, Poloni C, Frossard V, Blouin JL, Rivolta C, Riccio O, Candotti F, Hofer M, Unger S, Superti-Furga A. Immune deficiency, autoimmune disease and intellectual disability: A pleiotropic disorder caused by biallelic variants in the TPP2 gene. Clin Genet 2021; 99:780-788. [PMID: 33586135 DOI: 10.1111/cge.13942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
Four individuals from two families presented with a multisystemic condition of suspected genetic origin that was diagnosed only after genome analysis. The main phenotypic features were immune system dysregulation (severe immunodeficiency with autoimmunity) and intellectual disability. The four individuals were found to be homozygous for a 4.4 Kb deletion removing exons 20-23 (NM_003291.4) of the TPP2 gene, predicting a frameshift with premature termination of the protein. The deletion was located on a shared chromosome 13 haplotype indicating a Swiss founder mutation. Tripeptidyl peptidase 2 (TPP2) is a protease involved in HLA/antigen complex processing and amino acid homeostasis. Biallelic variants in TPP2 have been described in 10 individuals with variable features including immune deficiency, autoimmune cytopenias, and intellectual disability or chronic sterile brain inflammation mimicking multiple sclerosis. Our observations further delineate this severe condition not yet included in the OMIM catalog. Timely recognition of TPP2 deficiency is crucial since (1) immune surveillance is needed and hematopoietic stem cell transplantation may be necessary, and (2) for provision of genetic counselling. Additionally, enzyme replacement therapy, as already established for TPP1 deficiency, might be an option in the future.
Collapse
Affiliation(s)
- Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Virginie G Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Athina Fouriki
- Pediatric Immunology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Christophe Bonvin
- Division of Neurology, Lausanne University Hospital, Lausanne, Switzerland
| | - Armand Bottani
- Division of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Camille Kumps
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Federica Angelini
- Pediatric Immunology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Felicitas Bellutti Enders
- Pediatric Immunology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Mattia Rizzi
- Pediatric Hemato-Oncology Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Raffaele Renella
- Pediatric Hemato-Oncology Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Maja Beck-Popovic
- Pediatric Hemato-Oncology Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Claudia Poloni
- Pediatric Neurology Unit, Sion Hospital, Sion, Switzerland
| | | | - Jean-Louis Blouin
- Division of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Orbicia Riccio
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Hofer
- Pediatric Immunology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Sheila Unger
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Seidel MG. Treatment of immune-mediated cytopenias in patients with primary immunodeficiencies and immune regulatory disorders (PIRDs). HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:673-679. [PMID: 33275670 PMCID: PMC7727533 DOI: 10.1182/hematology.2020000153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Severe immune cytopenias (SICs) are rare acquired conditions characterized by immune-mediated blood cell destruction. They may necessitate emergency medical management and long-term immunosuppressive therapy, strongly compromising the quality of life. The initial diagnostic workup involves excluding malignancies, congenital cytopenias, bone marrow failure syndromes, infections, and rheumatologic diseases such as systemic lupus erythematosus. Causal factors for SIC such as primary immunodeficiencies or immune regulatory disorders, which are referred to as inborn errors of immunity (IEIs), should be diagnosed as early as possible to allow the initiation of a targeted therapy and avoid multiple lines of ineffective treatment. Ideally, this therapy is directed against an overexpressed or overactive gene product or substitutes a defective protein, restoring the impaired pathway; it can also act indirectly, enhancing a countermechanism against the disease-causing defect. Ultimately, the diagnosis of an underling IEI in patients with refractory SIC may lead to evaluation for hematopoietic stem cell transplantation or gene therapy as a definitive treatment. Interdisciplinary care is highly recommended in this complex patient cohort. This case-based educational review supports decision making for patients with immune-mediated cytopenias and suspected inborn errors of immunity.
Collapse
Affiliation(s)
- Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
24
|
Phalke S, Aviszus K, Rubtsova K, Rubtsov A, Barkes B, Powers L, Warner B, Crooks JL, Kappler JW, Fernández-Pérez ER, Maier LA, Hamzeh N, Marrack P. Age-associated B Cells Appear in Patients with Granulomatous Lung Diseases. Am J Respir Crit Care Med 2020; 202:1013-1023. [PMID: 32501729 DOI: 10.1164/rccm.201911-2151oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rationale: A subpopulation of B cells (age-associated B cells [ABCs]) is increased in mice and humans with infections or autoimmune diseases. Because depletion of these cells might be valuable in patients with certain lung diseases, the goal was to find out if ABC-like cells were at elevated levels in such patients.Objectives: To measure ABC-like cell percentages in patients with lung granulomatous diseases.Methods: Peripheral blood and BAL cells from patients with sarcoidosis, beryllium sensitivity, or hypersensitivity pneumonitis and healthy subjects were analyzed for the percentage of B cells that were ABC-like, defined by expression of CD11c, low levels of CD21, FcRL 1-5 (Fc receptor-like protein 1-5) expression, and, in some cases, T-bet.Measurements and Main Results: ABC-like cells in blood were at low percentages in healthy subjects and higher percentages in patients with sarcoidosis as well as at high percentages among BAL cells of patients with sarcoidosis, beryllium disease, and hypersensitivity pneumonitis. Treatment of patients with sarcoidosis led to reduced percentages of ABC-like cells in blood.Conclusions: Increased levels of ABC-like cells in patients with sarcoidosis may be useful in diagnosis. The increase in percentage of ABC-like cells in patients with lung granulomatous diseases and decrease in treated patients suggests that depletion of these cells may be valuable.
Collapse
Affiliation(s)
| | | | | | | | | | - Linda Powers
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brenda Warner
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James L Crooks
- Department of Biomedical Research.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado.,Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado; and
| | - John W Kappler
- Department of Biomedical Research.,Department of Immunology and Microbiology, University Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Nabeel Hamzeh
- Department of Medicine, and.,Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Philippa Marrack
- Department of Biomedical Research.,Department of Immunology and Microbiology, University Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
25
|
Nahálková J. Linking TPPII to the protein interaction and signalling networks. Comput Biol Chem 2020; 87:107291. [PMID: 32702546 DOI: 10.1016/j.compbiolchem.2020.107291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 01/18/2023]
Abstract
Tripeptidyl peptidase II (TPPII) is primarily considered a house-keeping exopeptidase, which contributes to the functions of the ubiquitin-proteasome system by the maintenance of the cellular amino acid homeostasis. Although functionally well-characterised in vitro and using the mammalian cell models, less is known about the molecular mechanisms of its involvement in the signalling and metabolic pathways, which mediate its cellular functions. The present protein-protein interaction network analysis identified these mechanisms involved in the adaptive and innate immunity, the metabolism of the glucose, cancer cell growth, apoptosis, cell cycle and DNA damage responses. The interaction network constructed based on the publicly available protein-protein interaction data was extended by the application GeneMania, which was further used for the pathway enrichment, the protein function prediction and the protein node prioritisation analysis. The analysis suggested that the molecular mechanisms linked to the adaptive and innate immunity (ID, Kit receptor, BCR, IL-2 and G-CSF signalling; the regulation of NFκB), the aerobic glycolysis (ID and IL-2 signalling), tumorigenesis (TGF-β and p53 signalling; the top priority nodes MAPKs, mTOR regulation), diabetes (Kit receptor signalling; the top priority node GSK3β) and neurodegeneration (the control of mTOR and Aβ peptide degradation) are controlling the resulting TPPII interaction network. The uncharacterized interactions with two lung cancer suppressors (DOK3, DENND2D), a protein involved in the increased risk of the lung cancer in smokers (CYP1A1) and a protein implicated in asthmatic reactions (CHIA) suggest potential roles of TPPII in the lung cancer pathology. The interactions with methyltransferase CARNMT1, which modifies di- and tripeptides and the xenobiotic processing enzyme CYP1A1, are additional candidates for the breakthrough in new functions discovery of TPPII.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Biochemworld Co., Biochemistry, Molecular & Cell Biology Unit, Snickar-Anders väg 17, 74394, Skyttorp, Uppsala County, Sweden.
| |
Collapse
|
26
|
|
27
|
Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum Genet 2020; 139:919-939. [PMID: 32435828 DOI: 10.1007/s00439-020-02183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) infect mucosal or cutaneous stratified epithelia. There are 5 genera and more than 200 types of HPV, each with a specific tropism and virulence. HPV infections are typically asymptomatic or result in benign tumors, which may be disseminated or persistent in rare cases, but a few oncogenic HPVs can cause cancers. This review deals with the human genetic and immunological basis of interindividual clinical variability in the course of HPV infections of the skin and mucosae. Typical epidermodysplasia verruciformis (EV) is characterized by β-HPV-driven flat wart-like and pityriasis-like cutaneous lesions and non-melanoma skin cancers in patients with inborn errors of EVER1-EVER2-CIB1-dependent skin-intrinsic immunity. Atypical EV is associated with other infectious diseases in patients with inborn errors of T cells. Severe cutaneous or anogenital warts, including anogenital cancers, are also driven by certain α-, γ-, μ or ν-HPVs in patients with inborn errors of T lymphocytes and antigen-presenting cells. The genetic basis of HPV diseases at other mucosal sites, such as oral multifocal epithelial hyperplasia or juvenile recurrent respiratory papillomatosis (JRRP), remains poorly understood. The human genetic dissection of HPV-driven lesions will clarify the molecular and cellular basis of protective immunity to HPVs, and should lead to novel diagnostic, preventive, and curative approaches in patients.
Collapse
|
28
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Tomkinson B. Tripeptidyl-peptidase II: Update on an oldie that still counts. Biochimie 2019; 166:27-37. [DOI: 10.1016/j.biochi.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
30
|
Rivalta B, Zama D, Pancaldi G, Facchini E, Cantarini ME, Miniaci A, Prete A, Pession A. Evans Syndrome in Childhood: Long Term Follow-Up and the Evolution in Primary Immunodeficiency or Rheumatological Disease. Front Pediatr 2019; 7:304. [PMID: 31396497 PMCID: PMC6664023 DOI: 10.3389/fped.2019.00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 07/08/2019] [Indexed: 12/23/2022] Open
Abstract
Evans syndrome (ES) is a rare but challenging condition, characterized by recurrent and refractory cytopenia episodes. Recent discoveries highlighted that an appropriate diagnostic workup is fundamental to identify an underlying immune dysregulation such as primary immunodeficiencies or a rheumatological disease. We hereby describe clinical features and laboratory results of 12 pediatric patients affected by ES referred to the Pediatric Onco-Hematology Unit of Bologna. Patients experienced a median of four acute episodes of cytopenia with 9 years as median age at the onset of symptoms. In 8/12 (67%) patients an underlying etiology, primary immunodeficiencies, or rheumatological disease was identified. In 4/12 children, other immune manifestations were associated (Thyroiditis, Celiac disease, Psoriasis, Vitiligo, Myositis, Membranoproliferative Glomerulonephritis). ES remained the primary diagnosis in four patients (33%). At a median follow-up time of 4 years, 5/12 (42%) patients revealed a chronic ITP, partially responsive to second line therapy. Immunoglobulin Replacement Therapy (IRT) was effective with a good hematological values control in three patients with a secondary ES (ALPS, CVID, and a patient with Rubinstein Taybi Syndrome and a progressive severe B cell deficiency with hypogammaglobulinemia). Our experience highlights that, in pediatric patients, ES is often only the first manifestation of an immunological or rheumatological disease, especially when cytopenias are persistent or resistant to therapy, with an early-onset or when are associated with lymphadenopathy.
Collapse
Affiliation(s)
- Beatrice Rivalta
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Daniele Zama
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giovanni Pancaldi
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elena Facchini
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maria Elena Cantarini
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Angela Miniaci
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Bakhtiar S, Fekadu J, Seidel MG, Gambineri E. Allogeneic Hematopoietic Stem Cell Transplantation for Congenital Immune Dysregulatory Disorders. Front Pediatr 2019; 7:461. [PMID: 31799221 PMCID: PMC6865355 DOI: 10.3389/fped.2019.00461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiency disorders that predominantly affect immune regulation and mechanisms of self-tolerance have come into the limelight, because at least for a subgroup of monogenetic disorders, a targeted therapy has become available. Nevertheless, their management often involves the treatment of severely compromising, refractory, multi-organ autoimmunity, leading to further increased susceptibility to infections and complications of long-term immune suppressive treatment, including the risk of malignancy. While evidence for allogeneic hematopoietic stem cell transplantation (alloHSCT) as a curative treatment option for severely affected patients by this disease category accumulates, clear indications, and guidelines for alloHSCT are lacking. Predictive and stratification-relevant tools such as disease activity scores are largely missing and often there is not a consistent genotype-phenotype correlation within the same family to facilitate the decision whether to transplant or not. In this review, we provide a literature-based update on indications and outcomes of alloHSCT for congenital immune dysregulative inborn errors of immunity according to the IUIS classification 2017.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Fekadu
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Eleonora Gambineri
- NEUROFARBA Department, University of Florence, University of Florence, Florence, Italy.,Haematology-Oncology Department, Anna Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
32
|
Reinthaler EM, Graf E, Zrzavy T, Wieland T, Hotzy C, Kopecky C, Pferschy S, Schmied C, Leutmezer F, Keilani M, Lill CM, Hoffjan S, Epplen JT, Zettl UK, Hecker M, Deutschländer A, Meuth SG, Ahram M, Mustafa B, El-Khateeb M, Vilariño-Güell C, Sadovnick AD, Zimprich F, Tomkinson B, Strom T, Kristoferitsch W, Lassmann H, Zimprich A. TPP2 mutation associated with sterile brain inflammation mimicking MS. NEUROLOGY-GENETICS 2018; 4:e285. [PMID: 30533531 PMCID: PMC6244017 DOI: 10.1212/nxg.0000000000000285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/26/2018] [Indexed: 12/02/2022]
Abstract
Objective To ascertain the genetic cause of a consanguineous family from Syria suffering from a sterile brain inflammation mimicking a mild nonprogressive form of MS. Methods We used homozygosity mapping and next-generation sequencing to detect the disease-causing gene in the affected siblings. In addition, we performed RNA and protein expression studies, enzymatic activity assays, immunohistochemistry, and targeted sequencing of further MS cases from Austria, Germany, Canada and Jordan. Results In this study, we describe the identification of a homozygous missense mutation (c.82T>G, p.Cys28Gly) in the tripeptidyl peptidase II (TPP2) gene in all 3 affected siblings of the family. Sequencing of all TPP2-coding exons in 826 MS cases identified one further homozygous missense variant (c.2027C>T, p.Thr676Ile) in a Jordanian MS patient. TPP2 protein expression in whole blood was reduced in the affected siblings. In contrast, TPP2 protein expression in postmortem brain tissue from MS patients without TPP2 mutations was highly upregulated. Conclusions The homozygous TPP2 mutation (p.Cys28Gly) is likely responsible for the inflammation phenotype in this family. TPP2 is an ubiquitously expressed serine peptidase that removes tripeptides from the N-terminal end of longer peptides. TPP2 is involved in various biological processes including the destruction of major histocompatibility complex Class I epitopes. Recessive loss-of-function mutations in TPP2 were described in patients with Evans syndrome, a rare autoimmune disease affecting the hematopoietic system. Based on the gene expression results in our MS autopsy brain samples, we further suggest that TPP2 may play a broader role in the inflammatory process in MS.
Collapse
Affiliation(s)
- Eva M Reinthaler
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Elisabeth Graf
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Thomas Wieland
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Christoph Hotzy
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Chantal Kopecky
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Sandra Pferschy
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Christiane Schmied
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Mohammad Keilani
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Christina M Lill
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Sabine Hoffjan
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Jörg T Epplen
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Uwe K Zettl
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Michael Hecker
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Angela Deutschländer
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Sven G Meuth
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Mamoun Ahram
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Baha Mustafa
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Mohammed El-Khateeb
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Carles Vilariño-Güell
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - A Dessa Sadovnick
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Birgitta Tomkinson
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Tim Strom
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Wolfgang Kristoferitsch
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Hans Lassmann
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| | - Alexander Zimprich
- Department of Neurology (E.M.R., S.P., C.S., F.L., F.Z., A.Z.), Medical University of Vienna, Austria; Institut für Humangenetik (E.G., T.W., T.S.), Helmholtz Zentrum München, Germany; Center for Brain Research (T.Z., H.L.), Medical University of Vienna; Division of Nephrology and Dialysis (C.K.), Department of Internal Medicine III, Medical University of Vienna; Department of Physical Medicine (M.K.), Rehabilitation and Occupational Medicine, Medical University of Vienna, Austria; Lübeck Interdisciplinary Platform for Genome Analytics (C.M.L.), Institutes of Neurogenetics and for Cardiogenetics, University of Lübeck; Department of Neurology and Neuroimaging Center (NIC) (C.M.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz; Department of Human Genetics (S.H., J.T.E.), Ruhr-University Bochum; Herdecke (J.T.E.), ZBAF, Faculty of Health, University Witten; Department of Neurology (U.K.Z., M.H.), Neuroimmunological Section, University of Rostock; Department of Neurology (A.D.), Department of Clinical Genomics (A.D.), Department of Neuroscience (A.D.), Jeweils Mayo Clinic, Jacksonville, FL; Department of Neurology (S.G.M.), University of Muenster, Germany; Department of Physiology and Biochemistry (M.A., B.M.), School of Medicine, the University of Jordan; The National Center (Institute) for Diabetes (M.E.-K.), Endocrinology and Genetics (NCDEG), Amman, Jordan; Department of Medical Genetics (C.V.-G., A.D.S.), University of British Columbia, Vancouver, Canada; Department of Medical Biochemistry and Microbiology (B.T.), Uppsala University, Sweden; Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria; and Institute for Neuroimmunological and Neurodegenerative Disorders (W.K.), SMZ-Ost-Donauspital, Vienna, Austria
| |
Collapse
|
33
|
Jaime-Pérez JC, Aguilar-Calderón PE, Salazar-Cavazos L, Gómez-Almaguer D. Evans syndrome: clinical perspectives, biological insights and treatment modalities. J Blood Med 2018; 9:171-184. [PMID: 30349415 PMCID: PMC6190623 DOI: 10.2147/jbm.s176144] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Evans syndrome (ES) is a rare and chronic autoimmune disease characterized by autoimmune hemolytic anemia and immune thrombocytopenic purpura with a positive direct anti-human globulin test. It is classified as primary and secondary, with the frequency in patients with autoimmune hemolytic anemia being 37%–73%. It predominates in children, mainly due to primary immunodeficiencies or autoimmune lymphoproliferative syndrome. ES during pregnancy is associated with high fetal morbidity, including severe hemolysis and intracranial bleeding with neurological sequelae and death. The clinical presentation can include fatigue, pallor, jaundice and mucosal bleeding, with remissions and exacerbations during the person’s lifetime, and acute manifestations as catastrophic bleeding and massive hemolysis. Recent molecular theories explaining the physiopathology of ES include deficiencies of CTLA-4, LRBA, TPP2 and a decreased CD4/CD8 ratio. As in other autoimmune cytopenias, there is no established evidence-based treatment and steroids are the first-line therapy, with intravenous immunoglobulin administered as a life-saving resource in cases of severe immune thrombocytopenic purpura manifestations. Second-line treatment for refractory ES includes rituximab, mofetil mycophenolate, cyclosporine, vincristine, azathioprine, sirolimus and thrombopoietin receptor agonists. In cases unresponsive to immunosuppressive agents, hematopoietic stem cell transplantation has been successful, although it is necessary to consider its potential serious adverse effects. In conclusion, ES is a disease with a heterogeneous course that remains challenging to patients and physicians, with prospective clinical trials needed to explore potential targeted therapy to achieve an improved long-term response or even a cure.
Collapse
Affiliation(s)
- José Carlos Jaime-Pérez
- Department of Hematology, Internal Medicine Division, Dr José E González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México,
| | - Patrizia Elva Aguilar-Calderón
- Department of Hematology, Internal Medicine Division, Dr José E González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México,
| | - Lorena Salazar-Cavazos
- Department of Hematology, Internal Medicine Division, Dr José E González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México,
| | - David Gómez-Almaguer
- Department of Hematology, Internal Medicine Division, Dr José E González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México,
| |
Collapse
|
34
|
de Jong SJ, Créquer A, Matos I, Hum D, Gunasekharan V, Lorenzo L, Jabot-Hanin F, Imahorn E, Arias AA, Vahidnezhad H, Youssefian L, Markle JG, Patin E, D'Amico A, Wang CQF, Full F, Ensser A, Leisner TM, Parise LV, Bouaziz M, Maya NP, Cadena XR, Saka B, Saeidian AH, Aghazadeh N, Zeinali S, Itin P, Krueger JG, Laimins L, Abel L, Fuchs E, Uitto J, Franco JL, Burger B, Orth G, Jouanguy E, Casanova JL. The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 2018; 215:2289-2310. [PMID: 30068544 PMCID: PMC6122964 DOI: 10.1084/jem.20170308] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023] Open
Abstract
Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of TMC6 (encoding EVER1) or TMC8 (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the CIB1 gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.
Collapse
Affiliation(s)
- Sarah Jill de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Amandine Créquer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Irina Matos
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | | | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elias Imahorn
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andres A Arias
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Etienne Patin
- Human Evolutionary Genetics, Pasteur Institute, Paris, France
- National Center for Scientific Research, URA 3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Aurelia D'Amico
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Claire Q F Wang
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Florian Full
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Ensser
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tina M Leisner
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Leslie V Parise
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | | | - Xavier Rueda Cadena
- Dermatology/Oncology - Skin Cancer Unit, National Cancer Institute, Bogota, Colombia
| | - Bayaki Saka
- Department of Dermatology, Sylvanus Olympio Hospital, University of Lomé, Togo
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Nessa Aghazadeh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Kawsar Human Genetics Research Center, Tehran, Iran
| | - Peter Itin
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Dermatology, University Hospital Basel, Basel, Switzerland
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Lou Laimins
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Bettina Burger
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Gérard Orth
- Department of Virology, Pasteur Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
35
|
Cura Daball P, Ventura Ferreira MS, Ammann S, Klemann C, Lorenz MR, Warthorst U, Leahy TR, Conlon N, Roche J, Soler-Palacín P, Garcia-Prat M, Fuchs I, Fuchs S, Beier F, Brümmendorf TH, Speckmann C, Olbrich P, Neth O, Schwarz K, Ehl S, Rensing-Ehl A. CD57 identifies T cells with functional senescence before terminal differentiation and relative telomere shortening in patients with activated PI3 kinase delta syndrome. Immunol Cell Biol 2018; 96:1060-1071. [PMID: 29790605 DOI: 10.1111/imcb.12169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Premature T-cell immunosenescence with CD57+ CD8+ T-cell accumulation has been linked to immunodeficiency and autoimmunity in primary immunodeficiencies including activated PI3 kinase delta syndrome (APDS). To address whether CD57 marks the typical senescent T-cell population seen in adult individuals or identifies a distinct population in APDS, we compared CD57+ CD8+ T cells from mostly pediatric APDS patients to those of healthy adults with similarly prominent senescent T cells. CD57+ CD8+ T cells from APDS patients were less differentiated with more CD27+ CD28+ effector memory T cells showing increased PD1 and Eomesodermin expression. In addition, transition of naïve to CD57+ CD8+ T cells was not associated with the characteristic telomere shortening. Nevertheless, they showed the increased interferon-gamma secretion, enhanced degranulation and reduced in vitro proliferation typical of senescent CD57+ CD8+ T cells. Thus, hyperactive PI3 kinase signaling favors premature accumulation of a CD57+ CD8+ T-cell population, which shows most functional features of typical senescent T cells, but is different in terms of differentiation and relative telomere shortening. Initial observations indicate that this specific differentiation state may offer the opportunity to revert premature T-cell immunosenescence and its potential contribution to inflammation and immunodeficiency in APDS.
Collapse
Affiliation(s)
- Paola Cura Daball
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Monica Sofia Ventura Ferreira
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Sandra Ammann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Klemann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Myriam R Lorenz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ursula Warthorst
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Niall Conlon
- Department of Immunology, St James' Hospital and Trinity College, Dublin, Ireland
| | - Justin Roche
- South Tipperary General Hospital, Clonmel, Ireland
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ilka Fuchs
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Olaf Neth
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Klaus Schwarz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Württemberg-Hessen, Ulm, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
de Jong SJ, Imahorn E, Itin P, Uitto J, Orth G, Jouanguy E, Casanova JL, Burger B. Epidermodysplasia Verruciformis: Inborn Errors of Immunity to Human Beta-Papillomaviruses. Front Microbiol 2018; 9:1222. [PMID: 29946305 PMCID: PMC6005841 DOI: 10.3389/fmicb.2018.01222] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022] Open
Abstract
Epidermodysplasia verruciformis (EV) is an autosomal recessive skin disorder with a phenotype conditional on human beta-papillomavirus (beta-HPV) infection. Such infections are common and asymptomatic in the general population, but in individuals with EV, they lead to the development of plane wart-like and red or brownish papules or pityriasis versicolor-like skin lesions, from childhood onwards. Most patients develop non-melanoma skin cancer (NMSC), mostly on areas of UV-exposed skin, from the twenties or thirties onwards. At least half of the cases of typical EV are caused by biallelic loss-of-function mutations of TMC6/EVER1 or TMC8/EVER2. The cellular and molecular basis of disease in TMC/EVER-deficient patients is unknown, but a defect of keratinocyte-intrinsic immunity to beta-HPV is suspected. Indeed, these patients are not susceptible to other infectious diseases and have apparently normal leukocyte development. In contrast, patients with an atypical form of EV due to inborn errors of T-cell immunity invariably develop clinical symptoms of EV in the context of other infectious diseases. The features of the typical and atypical forms of EV thus suggest that the control of beta-HPV infections requires both EVER1/EVER2-dependent keratinocyte-intrinsic immunity and T cell-dependent adaptive immunity.
Collapse
Affiliation(s)
- Sarah J de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States
| | - Elias Imahorn
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Peter Itin
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia PA, United States
| | | | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States.,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States.,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York NY, United States
| | - Bettina Burger
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
37
|
Edwards ESJ, Bier J, Cole TS, Wong M, Hsu P, Berglund LJ, Boztug K, Lau A, Gostick E, Price DA, O'Sullivan M, Meyts I, Choo S, Gray P, Holland SM, Deenick EK, Uzel G, Tangye SG. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol 2018; 143:276-291.e6. [PMID: 29800648 DOI: 10.1016/j.jaci.2018.04.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphoinositide 3-kinase (PI3K), result in hyperactivation of the PI3K-AKT-mechanistic target of rapamycin pathway and underlie a novel inborn error of immunity. Affected subjects exhibit perturbed humoral and cellular immunity, manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or cytomegalovirus infection, and increased incidence of B-cell lymphoproliferation, lymphoma, or both. Mechanisms underlying disease pathogenesis remain unknown. OBJECTIVE Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B cells is required to understand disease in patients with PIK3CD GOF mutations, identify key molecules required for cell-mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this and other EBV-opathies. METHODS We studied the consequences of PIK3CD GOF mutations on the generation, differentiation, and function of CD8+ T cells and natural killer (NK) cells, which are implicated in host defense against infection with herpesviruses, including EBV. RESULTS PIK3CD GOF total and EBV-specific CD8+ T cells were skewed toward an effector phenotype, with exaggerated expression of markers associated with premature immunosenescence/exhaustion and increased susceptibility to reactivation-induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF mutations. NK cells in patients with PIK3CD GOF mutations also exhibited perturbed expression of differentiation-associated molecules. Both CD8+ T and NK cells had reduced capacity to kill EBV-infected B cells. PIK3CD GOF B cells had increased expression of CD48, programmed death ligand 1/2, and CD70. CONCLUSIONS PIK3CD GOF mutations aberrantly induce exhaustion, senescence, or both and impair cytotoxicity of CD8+ T and NK cells. These defects might contribute to clinical features of affected subjects, such as impaired immunity to herpesviruses and tumor surveillance.
Collapse
Affiliation(s)
- Emily S J Edwards
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Julia Bier
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Theresa S Cole
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Melanie Wong
- Children's Hospital at Westmead, Westmead, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia
| | - Peter Hsu
- Children's Hospital at Westmead, Westmead, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Lucinda J Berglund
- CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; Immunopathology Department, Westmead Hospital, Westmead, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, St Anna Children's Hospital and Children's Cancer Research Institute, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, and Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Anthony Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom; Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | | | - Isabelle Meyts
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium; Department of Microbiology and Immunology, Childhood Immunology, KU Leuven, Leuven, Belgium
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Immunology Laboratory, Laboratory Services, Royal Children's Hospital, Melbourne, Australia
| | - Paul Gray
- CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; University of New South Wales School of Women's and Children's Health, Randwick, Australia
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia.
| |
Collapse
|
38
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
39
|
The influence and impact of ageing and immunosenescence (ISC) on adaptive immunity during multiple sclerosis (MS) and the animal counterpart experimental autoimmune encephalomyelitis (EAE). Ageing Res Rev 2018; 41:64-81. [PMID: 29101043 DOI: 10.1016/j.arr.2017.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
The human ageing process encompasses mechanisms that effect a decline in homeostasis with increased susceptibility to disease and the development of chronic life-threatening illness. Increasing age affects the immune system which undergoes a progressive loss of efficiency, termed immunosenescence (ISC), to impact on quantitative and functional aspects of innate and adaptive immunity. The human demyelinating disease multiple sclerosis (MS) and the corresponding animal model experimental autoimmune encephalomyelitis (EAE) are strongly governed by immunological events that primarily involve the adaptive arm of the immune response. MS and EAE are frequently characterised by a chronic pathology and a protracted disease course which thereby creates the potential for exposure to the inherent, on-going effects and consequences of ISC. Collective evidence is presented to confirm the occurrence of established and unendorsed biological markers of ISC during the development of both diseases. Moreover, results are discussed from studies during the course of MS and EAE that reveal a premature upregulation of ISC-related biomarkers which indicates untimely alterations to the adaptive immune system. The effects of ISC and a prematurely aged immune system on autoimmune-associated neurodegenerative conditions such as MS and EAE are largely unknown but current evaluation of data justifies and encourages further investigation.
Collapse
|
40
|
Pai SY, Notarangelo LD. Congenital Disorders of Lymphocyte Function. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
41
|
Weidner CI, Lin Q, Birkhofer C, Gerstenmaier U, Kaifie A, Kirschner M, Bruns H, Balabanov S, Trummer A, Stockklausner C, Höchsmann B, Schrezenmeier H, Wlodarski M, Panse J, Brümmendorf TH, Beier F, Wagner W. DNA methylation in PRDM8 is indicative for dyskeratosis congenita. Oncotarget 2017; 7:10765-72. [PMID: 26909595 PMCID: PMC4905437 DOI: 10.18632/oncotarget.7458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Dyskeratosis congenita (DKC) is associated with impaired telomere maintenance and with clinical features of premature aging. In this study, we analysed global DNA methylation (DNAm) profiles of DKC patients. Age-associated DNAm changes were not generally accelerated in DKC, but there were significant differences to DNAm patterns of healthy controls, particularly in CpG sites related to an internal promoter region of PR domain containing 8 (PRDM8). Notably, the same genomic region was also hypermethylated in aplastic anemia (AA) – another bone marrow failure syndrome. Site-specific analysis of DNAm level in PRDM8 with pyrosequencing and MassARRAY validated aberrant hypermethylation in 11 DKC patients and 27 AA patients. Telomere length, measured by flow-FISH, did not directly correlate with DNAm in PRDM8. Therefore the two methods may be complementary to also identify patients with still normal telomere length. In conclusion, blood of DKC patients reveals aberrant DNAm patterns, albeit age-associated DNAm patterns are not generally accelerated. Aberrant hypermethylation is particularly observed in PRDM8 and this may support identification and classification of bone marrow failure syndromes.
Collapse
Affiliation(s)
- Carola I Weidner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| | - Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| | | | | | - Andrea Kaifie
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Balabanov
- Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Arne Trummer
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Clemens Stockklausner
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Marcin Wlodarski
- Department of Pediatrics, Hematology and Oncology, University of Freiburg, Freiburg, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| |
Collapse
|
42
|
Walter JE, Farmer JR, Foldvari Z, Torgerson TR, Cooper MA. Mechanism-Based Strategies for the Management of Autoimmunity and Immune Dysregulation in Primary Immunodeficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:1089-1100. [PMID: 27836058 DOI: 10.1016/j.jaip.2016.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
Abstract
A broad spectrum of autoimmunity is now well described in patients with primary immunodeficiencies (PIDs). Management of autoimmune disease in the background of PID is particularly challenging given the seemingly discordant goals of immune support and immune suppression. Our growing ability to define the molecular underpinnings of immune dysregulation has facilitated novel targeted therapeutics. This review focuses on mechanism-based treatment strategies for the most common autoimmune and inflammatory complications of PID including autoimmune cytopenias, rheumatologic disease, and gastrointestinal disease. We aim to provide guidance regarding the rational use of these agents in the complex PID patient population.
Collapse
Affiliation(s)
- Jolan E Walter
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy & Immunology, Massachusetts General Hospital for Children, Boston, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass.
| | - Jocelyn R Farmer
- Department of Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Zsofia Foldvari
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K. G. Jebsen Centers for Cancer Immunotherapy and for Inflammation Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St Louis, Mo
| |
Collapse
|
43
|
Witkowski JM, Mikosik A, Bryl E, Fulop T. Proteodynamics in aging human T cells - The need for its comprehensive study to understand the fine regulation of T lymphocyte functions. Exp Gerontol 2017; 107:161-168. [PMID: 29038026 DOI: 10.1016/j.exger.2017.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
Cellular life depends mostly on the creation, modification, interactions and destruction of proteins. This is true for every cell, including human T lymphocytes. One way these cells can ascertain the fidelity and at least partial functionality of their proteomes under constant attack of irreversible modulations (e.g., ROS- or glycation-dependent) is proteostasis. However, with cellular aging proteostasis progressively fails and proteostenosis (decreased amounts and functionalities of remaining proteins) occurs. There are several mechanisms involved in the modulation and protection of the proteome in the T cells which include mainly multiple layers of vesicle-bound and cytoplasmic proteases (e.g., lysosomal and proteasomal ones) acting mostly by degradation of obsolete and age-modified proteins. Recently it was shown that another not yet so widely known system consisting of obligatorily calcium-dependent cysteine proteases, the calpains and their inhibitor, the calpastatin serves in T cells as a dual switch, either activating or inactivating different proteins depending on intracellular conditions. Thus the proteolytic elimination of altered proteins as well as modulation of activity of those remaining leads to dynamic change of proteome composition and function (proteodynamics) in aging lymphocytes, so far in an almost unknown way. Aging T cell proteodynamics requires further comprehensive analysis of the resulting lysoproteomic patterns and their changes.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Poland.
| | - Anna Mikosik
- Department of Pathophysiology, Medical University of Gdańsk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Poland
| | - Tamas Fulop
- Centre for Aging Research, University of Sherbrooke, QC, Canada
| |
Collapse
|
44
|
Jarasvaraparn C, Imran H, Siddiqui A, Wilson F, Gremse DA. Association of autoimmune hepatitis type 1 in a child with Evans syndrome. World J Hepatol 2017; 9:1008-1012. [PMID: 28878866 PMCID: PMC5569276 DOI: 10.4254/wjh.v9.i23.1008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive liver disease that is often associated with extrahepatic autoimmune disorders. Evans syndrome (ES) is a rare autoimmune disorder, which is characterized by immune thrombocytopenia and autoimmune hemolytic anemia. Association of AIH with ES is rare, especially in children. We report a 3-year-old female with a past medical history of ES who presented with jaundice and significant transaminitis due to AIH type 1. She required multiple treatments with steroids as well as azathioprine, intravenous immunoglobulin and a course of rituximab.
Collapse
|
45
|
Molho-Pessach V, Ramot Y, Mogilevsky M, Cohen-Daniel L, Eisenstein EM, Abu-Libdeh A, Siam I, Berger M, Karni R, Zlotogorski A. RETRACTED: Generalized verrucosis and abnormal T cell activation due to homozygous TAOK2 mutation. J Dermatol Sci 2017; 87:123-129. [PMID: 28385331 DOI: 10.1016/j.jdermsci.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. The authors have notified the Editor of a serious error in their initial assumptions and, therefore, the overall conclusions presented in this article. The causative mutation is essential for the analysis and, therefore, it is difficult to correct part of the article. Had the Editor been aware of the issues flagged by the authors, the article would not have been accepted for publication. The authors have requested that the article is retracted because their data and conclusions are incorrect, and the Editor has agreed to retract the article.
Collapse
Affiliation(s)
- Vered Molho-Pessach
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; The Center for Genetic Diseases of the Skin and Hair, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; The Center for Genetic Diseases of the Skin and Hair, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maxim Mogilevsky
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Leonor Cohen-Daniel
- Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eli M Eisenstein
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Abdulsalam Abu-Libdeh
- Makassed Islamic Hospital, Pediatric Department, Division of Pediatric Endocrinology, Jerusalem, Mount of Olives, Israel
| | - Ihab Siam
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Berger
- Department of Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abraham Zlotogorski
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; The Center for Genetic Diseases of the Skin and Hair, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
46
|
Abstract
Primary Evans syndrome (ES) is defined by the concurrent or sequential occurrence of immune thrombocytopenia and autoimmune hemolytic anemia in the absence of an underlying etiology. The syndrome is characterized by a chronic, relapsing, and potentially fatal course requiring long-term immunosuppressive therapy. Treatment of ES is hardly evidence-based. Corticosteroids are the mainstay of therapy. Rituximab has emerged as the most widely used second-line treatment, as it can safely achieve high response rates and postpone splenectomy. An increasing number of new genetic defects involving critical pathways of immune regulation identify specific disorders, which explain cases of ES previously reported as "idiopathic".
Collapse
|
47
|
Su H. Studying human immunodeficiencies in humans: advances in fundamental concepts and therapeutic interventions. F1000Res 2017; 6:318. [PMID: 28408979 PMCID: PMC5373415 DOI: 10.12688/f1000research.10594.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 01/23/2023] Open
Abstract
Immunodeficiencies reveal the crucial role of the immune system in defending the body against microbial pathogens. Given advances in genomics and other technologies, this is currently best studied in humans who have inherited monogenic diseases. Such investigations have provided insights into how gene products normally function in the natural environment and have opened the door to new, exciting treatments for these diseases.
Collapse
Affiliation(s)
- Helen Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
[Evans syndrome in infants]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:141-146. [PMID: 29382497 DOI: 10.1016/j.bmhimx.2017.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/14/2017] [Accepted: 01/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Evans syndrome is characterized by the reduction of at least two blood cell lineages in the absence of other diagnoses; it was previously described as the simultaneous or sequential development of autoimmune hemolytic anemia and immune thrombocytopenia with unknown etiology. An incidence of 37% and mortality rate of 10% were reported for Evans syndrome. CLINICAL CASES We report the clinical presentation and evolution of Evans syndrome in two infants who were initially diagnosed with immune thrombocytopenia. The clinical diagnosis was supported on complementary studies, where hematological disorders were corroborated. Both cases received treatment with steroids and intravenous immunoglobulin. CONCLUSIONS For the management of children with thrombocytopenia, the pediatrician must analyze for other cell lineage disorders. In the cases that we report here, we found the presence of autoimmune hemolytic anemia and monocytosis. Therefore, infectious and immunological studies must be included. The first-line treatment of choice are steroids, and intravenous immunoglobulin can be considered if severe immune thrombocytopenia is associated, as observed in these cases.
Collapse
|
49
|
Tan Q, Ma S, Hu J, Chen X, Yu Y, Zang G, Tang Z. Role of tripeptidyl peptidase II in MHC class I antigen presentation: Biological characteristics, cellular crosstalk and signaling. Biomed Pharmacother 2016; 84:1954-1958. [PMID: 27829551 DOI: 10.1016/j.biopha.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/29/2023] Open
Abstract
Tripeptidyl peptidase II (TPPII) is a multifunctional cytoplasmic serine protease. The main function of TPPII is to cleave proteasome-generated peptides into tripeptides, which can then be further degraded into free amino acids. Recent evidence suggests that TPPII plays an important role in epitope generation, but the mechanisms of TPPII in MHC class I antigen presentation remain unclear. Recent research has shed new light on the mechanisms and functions of TPPII in MHC class I antigen presentation. We therefore provide an updated review of the biological characteristics of TPPII and explore its role in MHC class I antigen presentation.
Collapse
Affiliation(s)
- Quanhui Tan
- Department of Infectious Disease, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Siyuan Ma
- Department of Infectious Disease, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jianjun Hu
- Department of Infectious Disease, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
50
|
Nahálková J. The protein-interaction network with functional roles in tumorigenesis, neurodegeneration, and aging. Mol Cell Biochem 2016; 423:187-196. [DOI: 10.1007/s11010-016-2836-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023]
|