1
|
Ochodnicka-Mackovicova K, van Keimpema M, Spaargaren M, van Noesel CJM, Guikema JEJ. DNA damage-induced p53 downregulates expression of RAG1 through a negative feedback loop involving miR-34a and FOXP1. J Biol Chem 2024; 300:107922. [PMID: 39454960 PMCID: PMC11625342 DOI: 10.1016/j.jbc.2024.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels. This feedback loop involves ataxia telangiectasia mutated activation, subsequent stabilization of p53, and modulation of microRNA-34a (miR-34a) levels, which is one of the p53 targets. Notably, this loop incorporates transcription factor forkhead box P1 as a downstream effector. The absence of p53 resulted in an increased proportion of IgM+ cells prompted to upregulate RAG1/2 and to undergo Ig light chain recombination. Similar results were obtained in primary pre-B cells with depleted levels of miR-34a. We propose that in pre-B cells undergoing Ig gene recombination, the DNA breaks activate a p53/miR-34a/forkhead box P1-mediated negative-feedback loop that contributes to the rapid downregulation of RAG. This regulation limits the RAG-dependent DNA damage, thereby protecting the stability of the genome during V(D)J rearrangement in developing B cells.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Martine van Keimpema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Duret LC, Hamidouche T, Steers NJ, Pons C, Soubeiran N, Buret D, Gilson E, Gharavi AG, D'Agati VD, Shkreli M. Targeting WIP1 phosphatase promotes partial remission in experimental collapsing glomerulopathy. Kidney Int 2024; 105:980-996. [PMID: 38423182 DOI: 10.1016/j.kint.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Collapsing focal segmental glomerulosclerosis (FSGS), also known as collapsing glomerulopathy (CG), is the most aggressive variant of FSGS and is characterized by a rapid progression to kidney failure. Understanding CG pathogenesis represents a key step for the development of targeted therapies. Previous work implicated the telomerase protein component TERT in CG pathogenesis, as transgenic TERT expression in adult mice resulted in a CG resembling that seen in human primary CG and HIV-associated nephropathy (HIVAN). Here, we used the telomerase-induced mouse model of CG (i-TERTci mice) to identify mechanisms to inhibit CG pathogenesis. Inactivation of WIP1 phosphatase, a p53 target acting in a negative feedback loop, blocked disease initiation in i-TERTci mice. Repression of disease initiation upon WIP1 deficiency was associated with senescence enhancement and required transforming growth factor-β functions. The efficacy of a pharmacologic treatment to reduce disease severity in both i-TERTci mice and in a mouse model of HIVAN (Tg26 mice) was then assessed. Pharmacologic inhibition of WIP1 enzymatic activity in either the telomerase mice with CG or in the Tg26 mice promoted partial remission of proteinuria and ameliorated kidney histopathologic features. Histological as well as high-throughput sequencing methods further showed that selective inhibition of WIP1 does not promote kidney fibrosis or inflammation. Thus, our findings suggest that targeting WIP1 may be an effective therapeutic strategy for patients with CG.
Collapse
Affiliation(s)
- Lou C Duret
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (Inserm) U1081, Institute for Research on Cancer and aging, Nice (IRCAN), Nice, France
| | - Tynhinane Hamidouche
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (Inserm) U1081, Institute for Research on Cancer and aging, Nice (IRCAN), Nice, France
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Catherine Pons
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (Inserm) U1081, Institute for Research on Cancer and aging, Nice (IRCAN), Nice, France
| | - Nicolas Soubeiran
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (Inserm) U1081, Institute for Research on Cancer and aging, Nice (IRCAN), Nice, France
| | - Delphine Buret
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (Inserm) U1081, Institute for Research on Cancer and aging, Nice (IRCAN), Nice, France
| | - Eric Gilson
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (Inserm) U1081, Institute for Research on Cancer and aging, Nice (IRCAN), Nice, France; International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/INSERM/Nice University, Pôle Sino-Français de Recherche en Sciences du Vivant et Génomique, Shanghai Ruijin Hospital, Huangpu, Shanghai, PR China; Department of Genetics, CHU Nice, Nice, France
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Marina Shkreli
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (Inserm) U1081, Institute for Research on Cancer and aging, Nice (IRCAN), Nice, France.
| |
Collapse
|
3
|
Gasparoli L, Virely C, Tsakaneli A, Che N, Edwards D, Bartram J, Hubank M, Pal D, Heidenreich O, Martens JHA, De Boer J, Williams O. Susceptibility of pediatric acute lymphoblastic leukemia to STAT3 inhibition depends on p53 induction. Haematologica 2024; 109:1069-1081. [PMID: 37794795 PMCID: PMC10985450 DOI: 10.3324/haematol.2023.283613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases. We previously reported the susceptibility of ETV6-RUNX1+ pediatric B-ALL to inhibition of signal transducer and activator of transcription 3 (STAT3) activity. In the present study, we demonstrate that pharmacological or genetic inhibition of STAT3 results in p53 induction and that CRISPR-mediated TP53 knockout substantially reverses susceptibility to STAT3 inhibition. Furthermore, we demonstrate that sensitivity to STAT3 inhibition in patient-derived xenograft (PDX) B-ALL samples is not restricted to any particular disease subtype, but rather depends on TP53 status, the only resistant samples being TP53 mutant. Induction of p53 following STAT3 inhibition is not directly dependent on MDM2 but correlates with degradation of MDM4. As such, STAT3 inhibition exhibits synergistic in vitro and in vivo anti-leukemia activity when combined with MDM2 inhibition. Taken together with the relatively low frequency of TP53 mutations in this disease, these data support the future development of combined STAT3/ MDM2 inhibition in the therapy of refractory and relapsed pediatric B-ALL.
Collapse
Affiliation(s)
- Luca Gasparoli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Clemence Virely
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Alexia Tsakaneli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Noelia Che
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Darren Edwards
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Jack Bartram
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Michael Hubank
- Centre for Molecular Pathology, The Royal Marsden, Sutton
| | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | | | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen
| | - Jasper De Boer
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Owen Williams
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London.
| |
Collapse
|
4
|
Miller PG, Sperling AS, Mayerhofer C, McConkey ME, Ellegast JM, Da Silva C, Cohen DN, Wang C, Sharda A, Yan N, Saha S, Schluter C, Schechter I, Słabicki M, Sandoval B, Kahn J, Boettcher S, Gibson CJ, Scadden DT, Stegmaier K, Bhatt S, Lindsley RC, Ebert BL. PPM1D modulates hematopoietic cell fitness and response to DNA damage and is a therapeutic target in myeloid malignancy. Blood 2023; 142:2079-2091. [PMID: 37595362 PMCID: PMC10733824 DOI: 10.1182/blood.2023020331] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023] Open
Abstract
PPM1D encodes a phosphatase that is recurrently activated across cancer, most notably in therapy-related myeloid neoplasms. However, the function of PPM1D in hematopoiesis and its contribution to tumor cell growth remain incompletely understood. Using conditional mouse models, we uncover a central role for Ppm1d in hematopoiesis and validate its potential as a therapeutic target. We find that Ppm1d regulates the competitive fitness and self-renewal of hematopoietic stem cells (HSCs) with and without exogenous genotoxic stresses. We also show that although Ppm1d activation confers cellular resistance to cytotoxic therapy, it does so to a lesser degree than p53 loss, informing the clonal competition phenotypes often observed in human studies. Notably, loss of Ppm1d sensitizes leukemias to cytotoxic therapies in vitro and in vivo, even in the absence of a Ppm1d mutation. Vulnerability to PPM1D inhibition is observed across many cancer types and dependent on p53 activity. Importantly, organism-wide loss of Ppm1d in adult mice is well tolerated, supporting the tolerability of pharmacologically targeting PPM1D. Our data link PPM1D gain-of-function mutations to the clonal expansion of HSCs, inform human genetic observations, and support the therapeutic targeting of PPM1D in cancer.
Collapse
Affiliation(s)
- Peter G. Miller
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Adam S. Sperling
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Christina Mayerhofer
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Marie E. McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jana M. Ellegast
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Carmen Da Silva
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Drew N. Cohen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Chuqi Wang
- National University of Singapore, Singapore
| | - Azeem Sharda
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Ni Yan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Subha Saha
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Cameron Schluter
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Ilexa Schechter
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Brittany Sandoval
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Josephine Kahn
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Christopher J. Gibson
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - David T. Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA
- Ludwig Center at Harvard, Boston, MA
| | - Kimberly Stegmaier
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - R. Coleman Lindsley
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Benjamin L. Ebert
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Howard Hughes Medical Institute, Bethesda, MD
| |
Collapse
|
5
|
Belotserkovskaya E, Golotin V, Uyanik B, Demidov ON. Clonal haematopoiesis - a novel entity that modifies pathological processes in elderly. Cell Death Discov 2023; 9:345. [PMID: 37726289 PMCID: PMC10509183 DOI: 10.1038/s41420-023-01590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Progress in the development of new sequencing techniques with wider accessibility and higher sensitivity of the protocol of deciphering genome particularities led to the discovery of a new phenomenon - clonal haematopoiesis. It is characterized by the presence in the bloodstream of elderly people a minor clonal population of cells with mutations in certain genes, but without any sign of disease related to the hematopoietic system. Here we will review this recent advancement in the field of clonal haematopoiesis and how it may affect the disease's development in old age.
Collapse
Affiliation(s)
| | - Vasily Golotin
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia
- Saint Petersburg bra-nch of "VNIRO" ("Gos-NOIRH" named after L.S. Berg), Saint Petersburg, Russia
| | - Burhan Uyanik
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France
| | - Oleg N Demidov
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia.
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France.
- Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, 354340, Russian Federation.
| |
Collapse
|
6
|
Zhou S, Xi Y, Chen Y, Fu F, Yan W, Li M, Wu Y, Luo A, Li Y, Wang S. Low WIP1 Expression Accelerates Ovarian Aging by Promoting Follicular Atresia and Primordial Follicle Activation. Cells 2022; 11:cells11233920. [PMID: 36497179 PMCID: PMC9736686 DOI: 10.3390/cells11233920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Our previous study demonstrated that ovarian wild-type P53-induced phosphatase 1 (WIP1) expression decreased with age. We hypothesized that WIP1 activity was related to ovarian aging. The role of WIP1 in regulating ovarian aging and its mechanisms remain to be elucidated. Adult female mice with or without WIP1 inhibitor (GSK2830371) treatment were divided into three groups (Veh, GSK-7.5, GSK-15) to evaluate the effect of WIP1 on ovarian endocrine and reproductive function and the ovarian reserve. In vitro follicle culture and primary granulosa cell culture were applied to explore the mechanisms of WIP1 in regulating follicular development. This study revealed that WIP1 expression in atretic follicle granulosa cells is significantly lower than that in healthy follicles. Inhibiting WIP1 phosphatase activity in mice induced irregular estrous cycles, caused fertility declines, and decreased the ovarian reserve through triggering excessive follicular atresia and primordial follicle activation. Primordial follicle depletion was accelerated via PI3K-AKT-rpS6 signaling pathway activation. In vitro follicle culture experiments revealed that inhibiting WIP1 activity impaired follicular development and oocyte quality. In vitro granulosa cell experiments further indicated that downregulating WIP1 expression promoted granulosa cell death via WIP1-p53-BAX signaling pathway-mediated apoptosis. These findings suggest that appropriate WIP1 expression is essential for healthy follicular development, and decreased WIP1 expression accelerates ovarian aging by promoting follicular atresia and primordial follicle activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ya Li
- Correspondence: (Y.L.); (S.W.); Tel.: +86-27-83663078 (Y.L. & S.W.)
| | - Shixuan Wang
- Correspondence: (Y.L.); (S.W.); Tel.: +86-27-83663078 (Y.L. & S.W.)
| |
Collapse
|
7
|
Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, Swagemakers S, van der Spek PJ. Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep 2022; 12:11106. [PMID: 35773312 PMCID: PMC9246359 DOI: 10.1038/s41598-022-15279-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.
Collapse
Affiliation(s)
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Olivia Manusama
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto Spalice
- Department of Pediatrics, Pediatric Neurology, Sapienza University of Rome, Rome, Italy
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, UOC Genetica Medica, Rome, Italy
| | - Allan Schornagel
- GGZ-Delfland, Kinderpraktijk Zoetermeer, Zoetermeer, The Netherlands
| | - Andreea M Serban
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Rogier van Wijck
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Chen M, Wang W, Hu S, Tong Y, Li Y, Wei Q, Yu L, Zhu L, Zhu Y, Liu L, Ju Z, Wang X, Jin H, Feng L. Co-targeting WIP1 and PARP induces synthetic lethality in hepatocellular carcinoma. Cell Commun Signal 2022; 20:39. [PMID: 35346236 PMCID: PMC8962187 DOI: 10.1186/s12964-022-00850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most fatal cancers. Due to limited strategies for effective treatments, patients with advanced HCC have a very poor prognosis. This study aims to identify new insights in HCC to develop novel strategies for HCC management. Methods The role of WIP1 (wild type p53 induced protein phosphatase1) in HCC was analyzed in HCC cells, xenograft model, DEN (Diethylnitrosamine) induced mice liver cancer model with WIP1 knockout mice, and TCGA database. DNA damage was evaluated by Gene Set Enrichment Analysis, western blotting, comet assay, and Immunofluorescence. Results High expression of WIP1 is associated with the poor prognosis of patients with HCC. Genetically and chemically suppression of WIP1 drastically reduced HCC cell proliferation. Besides, WIP1 knockout retarded DEN induced mice hepato-carcinogenesis. Mechanically, WIP1 inhibition induced DNA damage by increasing H2AX phosphorylation (γH2AX). Therefore, suppression of WIP1 and PARP induced synthetic lethality in HCC in vitro and in vivo by augmenting DNA damage. Conclusion WIP1 plays an oncogenic effect in HCC development, and targeting WIP1-dependent DNA damage repair alone or in combination with PARP inhibition might be a reasonable strategy for HCC management. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00850-2.
Collapse
|
9
|
Lv N, Jin S, Liang Z, Wu X, Kang Y, Su L, Dong Y, Wang B, Ma T, Shi L. PP2Cδ Controls the Differentiation and Function of Dendritic Cells Through Regulating the NSD2/mTORC2/ACLY Pathway. Front Immunol 2022; 12:751409. [PMID: 35069527 PMCID: PMC8777276 DOI: 10.3389/fimmu.2021.751409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) are recognized as a key orchestrator of immune response and homeostasis, deregulation of which may lead to autoimmunity such as experimental autoimmune encephalomyelitis (EAE). Herein we show that the phosphatase PP2Cδ played a pivotal role in regulating DC activation and function, as PP2Cδ ablation caused aberrant maturation, activation, and Th1/Th17-priming of DCs, and hence induced onset of exacerbated EAE. Mechanistically, PP2Cδ restrained the expression of the essential subunit of mTORC2, Rictor, primarily through de-phosphorylating and proteasomal degradation of the methyltransferase NSD2 via CRL4DCAF2 E3 ligase. Loss of PP2Cδ in DCs accordingly sustained activation of the Rictor/mTORC2 pathway and boosted glycolytic and mitochondrial metabolism. Consequently, ATP-citrate lyse (ACLY) was increasingly activated and catalyzed acetyl-CoA for expression of the genes compatible with hyperactivated DCs under PP2Cδ deletion. Collectively, our findings demonstrate that PP2Cδ has an essential role in controlling DCs activation and function, which is critical for prevention of autoimmunity.
Collapse
Affiliation(s)
- Nianyin Lv
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sufeng Jin
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Zihao Liang
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Wu
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhua Kang
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China.,Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Lan Su
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Yeping Dong
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Bingwei Wang
- College of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tonghui Ma
- College of Medicine and Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyun Shi
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
10
|
Pang JL, Huang FH, Zhang YH, Wu Y, Ge XM, Li S, Li X. Sodium cantharidate induces Apoptosis in breast cancer cells by regulating energy metabolism via the protein phosphatase 5-p53 axis. Toxicol Appl Pharmacol 2021; 430:115726. [PMID: 34537213 DOI: 10.1016/j.taap.2021.115726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide, and despite multiple chemotherapeutic approaches, effective treatment strategies for advanced metastatic breast cancer are still lacking. Metabolic reprogramming is essential for tumor cell growth and propagation, and most cancers, including breast cancer, are accompanied by abnormalities in energy metabolism. Here, we confirmed that sodium cantharidate inhibited cell viability using the Cell Counting Kit-8, clonogenic assay, and Transwell assay. The cell cycle and apoptosis assays indicated that sodium cantharidate induced apoptosis and cell cycle arrest in breast cancer cells. Additionally, proteomic assays, western blots, and metabolic assays revealed that sodium cantharidate converted the metabolic phenotype of breast cancer cells from glycolysis to oxidative phosphorylation. Furthermore, bioinformatics analysis identified possible roles for p53 with respect to the effects of sodium cantharidate on breast cancer cells. Western blot, docking, and phosphatase assays revealed that the regulation of p53 activity by sodium cantharidate was related to its inhibition of protein phosphatase 5 activity. Moreover, sodium cantharidate significantly inhibited tumor growth in tumor-bearing nude mice. In summary, our study provides evidence for the use of sodium cantharidate as an effective and new therapeutic candidate for the treatment of human breast cancer in clinical trials.
Collapse
Affiliation(s)
- Jin-Long Pang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Fu-Hao Huang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Yu-Han Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Yu Wu
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Xian-Ming Ge
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China.
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 236425, China; New Technologies for Chinese Medicine Drinker Manufacturing Anhui Provincial Key Laboratory, Hefei City 230012, China; Postdoctoral workstation of Anhui Xiehecheng Drinker Tablets Co., Ltd, Bozhou City 236800, China.
| |
Collapse
|
11
|
Zhou N, Liu W, Zhang W, Liu Y, Li X, Wang Y, Zheng R, Zhang Y. Wip1 regulates the immunomodulatory effects of murine mesenchymal stem cells in type 1 diabetes mellitus via targeting IFN-α/BST2. Cell Death Discov 2021; 7:326. [PMID: 34716317 PMCID: PMC8556269 DOI: 10.1038/s41420-021-00728-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show significant therapeutic effects in type 1 diabetes mellitus (T1DM) as regulating the inflammatory processes. However, little is known about the detailed process of MSCs immunosuppression in T1DM. In this study, we investigated the effects of wild-type p53-induce phosphatase 1 (Wip1) on regulating MSCs immunosuppressive capacities in T1DM mice. We found that Wip1 knockout (Wip1-/-) MSCs had lower therapeutic effects in T1DM mice, and displayed weaker immunosuppressive capability. In vivo distribution analysis results indicated thatWip1-/-MSCs could home to the damaged pancreas and increase the expression of tumor necrosis factor-α (TNF-α), interleukin-17a (IL-17a), interferon-α(IFN-α), IFN-β, and IFN-γ, while decrease the expression of IL-4 and IL-10. Moreover, we confirmedWip1-/-MSCs exhibited weaker immunosuppressive capacity, as evidenced by enhanced expression of bone marrow stromal cell antigen 2(BST2) and IFN-α. In conclusion, these results revealed Wip1 affects MSCs immunomodulation by regulating the expression of IFN-α/BST2. Our study uncovered that Wip1 is required to regulate the therapeutic effects of MSCs on T1DM treatment, indicating a novel role of Wip1 in MSCs immunoregulation properties.
Collapse
Affiliation(s)
- Na Zhou
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Weijiang Liu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Zhang
- Department of Medical Administration, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yuanlin Liu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xue Li
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yang Wang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yi Zhang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
12
|
He W, Zhang Y, Cao Z, Ye Z, Lu X, Fan J, Peng W, Li Z. Wild-Type p53-Induced Phosphatase 1 Plays a Positive Role in Hematopoiesis in the Mouse Embryonic Head. Front Cell Dev Biol 2021; 9:732527. [PMID: 34604235 PMCID: PMC8484912 DOI: 10.3389/fcell.2021.732527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
The first adult repopulating hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, which are produced from hemogenic endothelial cells. Embryonic head is the other site for HSC development. Wild-type p53-induced phosphatase 1 (Wip1) is a type-2Cδ family serine/threonine phosphatase involved in various cellular processes such as lymphoid development and differentiation of adult HSCs. Most recently, we have shown that Wip1 modulates the pre-HSC maturation in the AGM region. However, it is not clear whether Wip1 regulates hematopoiesis in the embryonic head. Here we reported that disruption of Wip1 resulted in a decrease of hematopoietic progenitor cell number in the embryonic head. In vivo transplantation assays showed a reduction of HSC function after Wip1 ablation. We established that Wip1 deletion reduced the frequency and cell number of microglia in the embryonic head. Further observations revealed that Wip1 absence enhanced the gene expression of microglia-derived pro-inflammatory factors. Thus, it is likely that Wip1 functions as a positive regulator in HSC development by regulating the function of microglia in the embryonic head.
Collapse
Affiliation(s)
- Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhan Cao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zehua Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xun Lu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Peng
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuan Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
14
|
Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun 2021; 12:3622. [PMID: 34131120 PMCID: PMC8206133 DOI: 10.1038/s41467-021-23330-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
PPM1D/Wip1 is a negative regulator of the tumor suppressor p53 and is overexpressed in several human solid tumors. Recent reports associate gain-of-function mutations of PPM1D in immune cells with worse outcomes for several human cancers. Here we show that mice with genetic knockout of Ppm1d or with conditional knockout of Ppm1d in the hematopoietic system, in myeloid cells, or in neutrophils all display significantly reduced growth of syngeneic melanoma or lung carcinoma tumors. Ppm1d knockout neutrophils infiltrate tumors extensively. Chemical inhibition of Wip1 in human or mouse neutrophils increases anti-tumor phenotypes, p53-dependent expression of co-stimulatory ligands, and proliferation of co-cultured cytotoxic T cells. These results suggest that inhibition of Wip1 in neutrophils enhances immune anti-tumor responses.
Collapse
|
15
|
The inhibition of WIP1 phosphatase accelerates the depletion of primordial follicles. Reprod Biomed Online 2021; 43:161-171. [PMID: 34210610 DOI: 10.1016/j.rbmo.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
RESEARCH QUESTION What role does wild-type p53-induced phosphatase 1 (WIP1) play in the regulation of primordial follicle development? DESIGN WIP1 expression was detected in the ovaries of mice of different ages by western blotting and immunohistochemical staining. Three-day-old neonatal mouse ovaries were cultured in vitro with or without the WIP1 inhibitor GSK2830371 (10 μM) for 4 days. Ovarian morphology, follicle growth and follicle classification were analysed and the PI3K-AKT-mTOR signal pathway and the WIP1-p53-related mitochondrial apoptosis pathway evaluated. RESULTS WIP1 expression was downregulated with age. Primordial follicles were significantly decreased in the GSK2830371-treated group, without a significant increase in growing follicles. The ratio of growing follicles to primordial follicles was not significantly different between the control and GSK2830371 groups, and no significant variation was observed in the PI3K-AKT-mTOR signal pathway. The inhibition of WIP1 phosphatase accelerated primordial follicle atresia by activating the p53-BAX-caspase-3 pathway. CONCLUSIONS These findings reveal that WIP1 participates in regulating primordial follicle development and that inhibiting WIP1 phosphatase leads to massive primordial follicle loss via interaction with the p53-BAX-caspase-3 pathway. This might also provide valuable information for understanding decreased ovarian reserve during ovarian ageing.
Collapse
|
16
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
17
|
Development of Specific Inhibitors for Oncogenic Phosphatase PPM1D by Using Ion-Responsive DNA Aptamer Library. Catalysts 2020. [DOI: 10.3390/catal10101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Ser/Thr protein phosphatase PPM1D is an oncogenic protein. In normal cells, however, PPM1D plays essential roles in spermatogenesis and immune response. Hence, it is necessary to develop novel PPM1D inhibitors without side effects on normal cells. Stimuli-responsive molecules are suitable for the spatiotemporal regulation of inhibitory activity. (2) Methods: In this study, we designed an ion-responsive DNA aptamer library based on G-quadruplex DNA that can change its conformation and function in response to monovalent cations. (3) Results: Using this library, we identified the PPM1D specific inhibitor M1D-Q5F aptamer. The M1D-Q5F aptamer showed anti-cancer activity against breast cancer MCF7 cells. Interestingly, the induction of the structural change resulting in the formation of G-quadruplex upon stimulation by monovalent cations led to the enhancement of the inhibitory activity and binding affinity of M1D-Q5F. (4) Conclusions: These data suggest that the M1D-Q5F aptamer may act as a novel stimuli-responsive anti-cancer agent.
Collapse
|
18
|
Martinikova AS, Burocziova M, Stoyanov M, Macurek L. Truncated PPM1D Prevents Apoptosis in the Murine Thymus and Promotes Ionizing Radiation-Induced Lymphoma. Cells 2020; 9:cells9092068. [PMID: 32927737 PMCID: PMC7565556 DOI: 10.3390/cells9092068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022] Open
Abstract
Genome integrity is protected by the cell-cycle checkpoints that prevent cell proliferation in the presence of DNA damage and allow time for DNA repair. The transient checkpoint arrest together with cellular senescence represent an intrinsic barrier to tumorigenesis. Tumor suppressor p53 is an integral part of the checkpoints and its inactivating mutations promote cancer growth. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of p53. Although its loss impairs recovery from the G2 checkpoint and promotes induction of senescence, amplification of the PPM1D locus or gain-of-function truncating mutations of PPM1D occur in various cancers. Here we used a transgenic mouse model carrying a truncating mutation in exon 6 of PPM1D (Ppm1dT). As with human cell lines, we found that the truncated PPM1D was present at high levels in the mouse thymus. Truncated PPM1D did not affect differentiation of T-cells in the thymus but it impaired their response to ionizing radiation (IR). Thymocytes in Ppm1dT/+ mice did not arrest in the checkpoint and continued to proliferate despite the presence of DNA damage. In addition, we observed a decreased level of apoptosis in the thymi of Ppm1dT/+ mice. Moreover, the frequency of the IR-induced T-cell lymphomas increased in Ppm1dT/+Trp53+/- mice resulting in decreased survival. We conclude that truncated PPM1D partially suppresses the p53 pathway in the mouse thymus and potentiates tumor formation under the condition of a partial loss of p53 function.
Collapse
Affiliation(s)
- Andra S. Martinikova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ14220 Prague, Czech Republic; (A.S.M.); (M.B.); (M.S.)
- Department of Developmental and Cell Biology, Faculty of Science, Charles University, Albertov 6, CZ12800 Prague, Czech Republic
| | - Monika Burocziova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ14220 Prague, Czech Republic; (A.S.M.); (M.B.); (M.S.)
| | - Miroslav Stoyanov
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ14220 Prague, Czech Republic; (A.S.M.); (M.B.); (M.S.)
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, CZ14220 Prague, Czech Republic; (A.S.M.); (M.B.); (M.S.)
- Correspondence: ; Tel.: +42-(0)2-4106-3210
| |
Collapse
|
19
|
Labi V, Derudder E. Cell signaling and the aging of B cells. Exp Gerontol 2020; 138:110985. [PMID: 32504658 DOI: 10.1016/j.exger.2020.110985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
The uniqueness of each B cell lies in the structural diversity of the B-cell antigen receptor allowing the virtually limitless recognition of antigens, a necessity to protect individuals against a range of challenges. B-cell development and response to stimulation are exquisitely regulated by a group of cell surface receptors modulating various signaling cascades and their associated genetic programs. The effects of these signaling pathways in optimal antibody-mediated immunity or the aberrant promotion of immune pathologies have been intensely researched in the past in young individuals. In contrast, we are only beginning to understand the contribution of these pathways to the changes in B cells of old organisms. Thus, critical transcription factors such as E2A and STAT5 show differential expression or activity between young and old B cells. As a result, B-cell physiology appears altered, and antibody production is impaired. Here, we discuss selected phenotypic changes during B-cell aging and attempt to relate them to alterations of molecular mechanisms.
Collapse
Affiliation(s)
- Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
20
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
22
|
Wang B, Zhang M, Che J, Li K, Mu Y, Liu Z. Wild-type p53-induced phosphatase 1 (WIP1) regulates the proliferation of swine Sertoli cells through P53. Reprod Fertil Dev 2020; 32:1350-1356. [PMID: 33287951 DOI: 10.1071/rd20215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) plays an oncogenic function by increasing cell proliferation in various cancer types. Deficiency in WIP1 expression leads to male infertility, possibly by impairing the blood-testis barrier and spermatogenesis. However, how WIP1 functions in the Sertoli cells to affect male reproduction remains unclear. Thus, in the present study we used a swine Sertoli cell line to investigate whether WIP1 regulated the proliferation of Sertoli cells to participate in male reproduction. The WIP1 inhibitor GSK2830371, WIP1-short interference (si) RNAs and an upstream microRNA (miR-16) were used to inhibit the expression of WIP1, after which the proliferation of swine Sertoli cells, P53 expression and the levels of P53 phosphorylation were determined. Inhibiting WIP1 expression suppressed swine Sertoli cell proliferation, increased P53 expression and increased levels of P53 phosphorylation. In addition, overexpression of miR-16 in swine Sertoli cells resulted in a decrease in WIP1 expression and increases in both P53 expression and P53 phosphorylation. Together, these findings suggest that WIP1 positively regulates the proliferation of swine Sertoli cells by inhibiting P53 phosphorylation, and the miR-16 is likely also involved by targeting WIP1.
Collapse
Affiliation(s)
- Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingrui Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; and College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjing Che
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; and Corresponding authors. ;
| | - Zhiguo Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; and Corresponding authors. ;
| |
Collapse
|
23
|
Wei Y, Gao Q, Niu P, Xu K, Qiu Y, Hu Y, Liu S, Zhang X, Yu M, Liu Z, Wang B, Mu Y, Li K. Integrative Proteomic and Phosphoproteomic Profiling of Testis from Wip1 Phosphatase-Knockout Mice: Insights into Mechanisms of Reduced Fertility. Mol Cell Proteomics 2019; 18:216-230. [PMID: 30361445 PMCID: PMC6356077 DOI: 10.1074/mcp.ra117.000479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
Mice lacking wild-type p53-induced phosphatase 1 (Wip1) display male reproductive defects including smaller testes, subfertility and spermatogenesis defects at the round- and elongating-spermatid stages. However, the molecular mechanisms underlying these abnormalities remain unclear. Here we examined the proteome and phosphoproteome of testes from Wip1-knockout mice using a quantitative proteomic approach. From a total of 6872 proteins and 4280 phosphorylation sites identified, 58 proteins and 159 phosphorylation sites were found to be differentially regulated compared with wild type mice. Pathway enrichment analyses revealed that these regulated proteins and phosphosites were mainly involved in adherens/tight junctions, apoptosis, inflammatory response, spermatogenesis, sperm motility, and cytoskeletal assembly and depolymerization. Wip1-knockout mice showed decreased expression of junction-associated proteins (occludin, ZO-1, and N-cadherin) and impaired integrity of the blood-testis barrier. In addition, Wip1 deficiency was associated with elevated levels of cytokines and germ cell apoptosis in the testis. These results suggest that proinflammatory cytokines may impair the blood-testis barrier dynamics by decreasing the expression of junction-associated proteins, which could lead to subfertility and spermatogenesis defects. Collectively, these findings help to explain the low reproductive function caused by Wip1 deletion and provide novel insights into our understanding of causes of male infertility.
Collapse
Affiliation(s)
- Yinghui Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qian Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengxia Niu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yiqing Qiu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanqing Hu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shasha Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Miaoying Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bingyuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
24
|
Demirkıran G, Kalaycı Demir G, Güzeliş C. Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2D relaxation oscillator model. IET Syst Biol 2018; 12:26-38. [PMID: 29337287 PMCID: PMC8687238 DOI: 10.1049/iet-syb.2017.0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 01/03/2023] Open
Abstract
This study proposes a two-dimensional (2D) oscillator model of p53 network, which is derived via reducing the multidimensional two-phase dynamics model into a model of ataxia telangiectasia mutated (ATM) and Wip1 variables, and studies the impact of p53-regulators on cell fate decision. First, the authors identify a 6D core oscillator module, then reduce this module into a 2D oscillator model while preserving the qualitative behaviours. The introduced 2D model is shown to be an excitable relaxation oscillator. This oscillator provides a mechanism that leads diverse modes underpinning cell fate, each corresponding to a cell state. To investigate the effects of p53 inhibitors and the intrinsic time delay of Wip1 on the characteristics of oscillations, they introduce also a delay differential equation version of the 2D oscillator. They observe that the suppression of p53 inhibitors decreases the amplitudes of p53 oscillation, though the suppression increases the sustained level of p53. They identify Wip1 and P53DINP1 as possible targets for cancer therapies considering their impact on the oscillator, supported by biological findings. They model some mutations as critical changes of the phase space characteristics. Possible cancer therapeutic strategies are then proposed for preventing these mutations' effects using the phase space approach.
Collapse
Affiliation(s)
- Gökhan Demirkıran
- The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Buca, İzmir 35160, Turkey.
| | - Güleser Kalaycı Demir
- Department of Electrical and Electronics Engineering, Dokuz Eylül University, Buca, İzmir 35160, Turkey
| | - Cüneyt Güzeliş
- Department of Electrical-Electronics Engineering, Yaşar University, Bornova, İzmir 35100, Turkey
| |
Collapse
|
25
|
Abstract
Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivity of tumor cells to anti-cancer treatment. Wild type p53-induced phosphatase, Wip1, is involved in governance of both pathways. Recently, strategies directed to manipulation with Wip1 activity proposed to advance current day anticancer treatment and novel chemical compounds synthesized to improve specificity of manipulation with Wip1 activity. Here we reviewed the history of Wip1 studies in vitro and in vivo, in genetically modified animal models that support Wip1 role in tumorigenesis through regulation of p53 and p38MAPK pathways. Based on our knowledge we propose several recommendations for future more accurate studies of Wip1 interactions with other pathways involved in tumorigenesis using recently developed tools and for adoption of Wip1 manipulation strategies in anti-cancer therapy.
Collapse
|
26
|
Kamada R, Kudoh F, Yoshimura F, Tanino K, Sakaguchi K. Inhibition of Ser/Thr phosphatase PPM1D induces neutrophil differentiation in HL-60 cells. J Biochem 2017; 162:303-308. [PMID: 28486685 DOI: 10.1093/jb/mvx032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Protein phosphatase Magnesium-dependent 1, Delta (PPM1D) is a wild-type p53-inducible Ser/Thr phosphatase that acts as a negative regulator of the p53 tumor suppressor. Gene amplification and overexpression of PPM1D have been reported in various cancers including leukemia and neuroblastoma. Therefore, PPM1D is a promising target in cancer therapy. It has been reported that PPM1D knockout mice exhibit neutrophilia in blood and show a defective immune response. Here, we found that inhibition of PPM1D induced neutrophil differentiation of human promyelocytic leukemia cell line HL-60. The combination of a PPM1D inhibitor and all-trans retinoic acid significantly increased their differentiation efficiency. The PPM1D inhibitor also induced G1 arrest in HL-60 cells. Our results suggest that PPM1D may be a potential therapeutic target for blood cell diseases including leukemia.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North10, West8, Kita-ku, Sapporo 060-0810, Japan
| | - Fuki Kudoh
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North10, West8, Kita-ku, Sapporo 060-0810, Japan
| | - Fumihiko Yoshimura
- Laboratory of Organic Chemistry II, Department of Chemistry, Faculty of Science, Hokkaido University, North10, West8, Kita-ku, Sapporo 060-0810, Japan
| | - Keiji Tanino
- Laboratory of Organic Chemistry II, Department of Chemistry, Faculty of Science, Hokkaido University, North10, West8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, North10, West8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
27
|
Zhan XH, Xu QY, Tian R, Yan H, Zhang M, Wu J, Wang W, He J. MicroRNA16 regulates glioma cell proliferation, apoptosis and invasion by targeting Wip1-ATM-p53 feedback loop. Oncotarget 2017; 8:54788-54798. [PMID: 28903382 PMCID: PMC5589621 DOI: 10.18632/oncotarget.18510] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/27/2017] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to investigate the role and underlying mechanisms of microRNA16 (miR-16) on proliferation, apoptosis and invasion of glioma cells. The cell models of miR-16 upregulation and Negative control group (NC group) were built. The cell functions of different groups were detected by colony formation assay, transwell chamber assay, proliferation, apoptosis and cycle experiments. The intracranial orthotopic transplantation animal models were built to different groups: miR-16 agomir group, miR-16 antagomir group and their NC group. The expressions of miR-16, Wip1, ATM and p53 were measured by qRT-PCR, western blot and immunohistochemistry. As a result, miR-16 overexpressed groups had lower cloning formation rate and proliferation rate, less invasive cells, higher early apoptosis rate than the control groups. G1 phase was significantly smaller compared miR-16 overexpressed groups with the control groups, and S phase significantly lesser. Cell growth was retardated. Differences were statistically significant (P <0.05). Compared with miR-16 overexpressed groups and NC groups, the Wip1 gene and protein expression were downregulated, while ATM and p53 genes, p-ATM and p-p53 proteins were upregulated. The differences were statistically significant (P <0.05). Taken together, our findings demonstrated that miR-16 suppressed glioma cell proliferation and invasion, promoted apoptosis and inhibited cell cycle by targeting Wip1-ATM-p53 signaling pathway.
Collapse
Affiliation(s)
- Xiao-Hong Zhan
- 1 School of Medicine, Shandong University, Jinan 250012, Shangdong Province, P.R. China
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
- 3 Department of Pathology, The Affiliated Central Hospital of Qingdao University, Qingdao 266000, Shandong Province, P.R. China
| | - Qiu-Yan Xu
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Rui Tian
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Hong Yan
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Min Zhang
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Jing Wu
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| | - Wei Wang
- 4 Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, P.R. China
| | - Jie He
- 1 School of Medicine, Shandong University, Jinan 250012, Shangdong Province, P.R. China
- 2 Department of Pathology, Anhui Provincial Cancer Hospital; Anhui Provincial Hospital, Anhui Medical University, Hefei 230031, Anhui Province, P.R. China
| |
Collapse
|
28
|
Phosphatase wild-type p53-induced phosphatase 1 controls the development of T H9 cells and allergic airway inflammation. J Allergy Clin Immunol 2017; 141:2168-2181. [PMID: 28732646 DOI: 10.1016/j.jaci.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Allergic asthma is one of the most common diseases worldwide, resulting in a burden of diseases. No available therapeutic regimens can cure asthma thus far. OBJECTIVE We sought to identify new molecular targets for TH9 cell-mediated allergic airway inflammation. METHODS Wild-type p53-induced phosphatase 1 (Wip1) gene knockout mice, Wip1 inhibitor-treated mice, and ovalbumin-induced allergic airway inflammation mouse models were used to characterize the roles of Wip1 in allergic airway inflammation. The induction of TH cell subsets in vitro, real-time PCR, immunoblots, luciferase assays, and chromatin immunoprecipitation assays were used to determine the regulatory pathways of Wip1 in TH9 differentiation. RESULTS Here we demonstrate that Wip1-deficient mice are less prone to allergic airway inflammation, as indicated by the decreased pathologic alterations in lungs. Short-term treatment with a Wip1-specific inhibitor significantly ameliorates allergic inflammation progression. Intriguingly, Wip1 selectively impaired TH9 but not TH1, TH2, and TH17 cell differentiation. Biochemical assays show that Wip1 deficiency increases c-Jun/c-Fos activity in a c-Jun N-terminal kinase-dependent manner and that c-Jun/c-Fos directly binds to Il9 promoter and inhibits Il9 transcription. CONCLUSION Wip1 controls TH9 cell development through regulating c-Jun/c-Fos activity on the Il9 promoter and is important for the pathogenesis of allergic airway inflammation. These findings shed light on the previously unrecognized roles of Wip1 in TH9 cell differentiation. The inhibitory effects of a Wip1 inhibitor on the pathogenesis of allergic airway inflammation can have important implications for clinical application of Wip1 inhibitors in allergy therapies.
Collapse
|
29
|
Li D, Zhang L, Xu L, Liu L, He Y, Zhang Y, Huang X, Zhao T, Wu L, Zhao Y, Wu K, Li H, Yu X, Zhao T, Gong S, Fan M, Zhu L. WIP1 phosphatase is a critical regulator of adipogenesis through dephosphorylating PPARγ serine 112. Cell Mol Life Sci 2017; 74:2067-2079. [PMID: 28180926 PMCID: PMC11107755 DOI: 10.1007/s00018-016-2450-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/07/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022]
Abstract
WIP1, as a critical phosphatase, plays many important roles in various physiological and pathological processes through dephosphorylating different substrate proteins. However, the functions of WIP1 in adipogenesis and fat accumulation are not clear. Here, we report that WIP1-deficient mice show impaired body weight growth, dramatically decreased fat mass, and significantly reduced triglyceride and leptin levels in circulation. This dysregulation of adipose development caused by the deletion of WIP1 occurs as early as adipogenesis. In contrast, lentivirus-mediated WIP1 phosphatase overexpression significantly increases the adipogenesis of pre-adipocytes via an enzymatic activity-dependent mechanism. PPARγ is a master gene of adipogenesis, and the phosphorylation of PPARγ at serine 112 strongly inhibits adipogenesis; however, very little is known about the negative regulation of this phosphorylation. Here, we show that WIP1 phosphatase plays a pro-adipogenic role by interacting directly with PPARγ and dephosphorylating p-PPARγ S112 in vitro and in vivo.
Collapse
Affiliation(s)
- Dahu Li
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Lijun Zhang
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Lun Xu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Lili Liu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
- Navy General Hospital of PLA, Beijing, 100048, China
| | - Yunling He
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yiyao Zhang
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
- Air Force General Hospital of PLA, Beijing, 100142, China
| | - Xin Huang
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tong Zhao
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Liying Wu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yongqi Zhao
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Kuiwu Wu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hui Li
- Department of Physiology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, 250012, China
| | - Taiyun Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shenghui Gong
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ming Fan
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Lingling Zhu
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
30
|
Jacobsen JA, Woodard J, Mandal M, Clark MR, Bartom ET, Sigvardsson M, Kee BL. EZH2 Regulates the Developmental Timing of Effectors of the Pre-Antigen Receptor Checkpoints. THE JOURNAL OF IMMUNOLOGY 2017; 198:4682-4691. [PMID: 28490575 DOI: 10.4049/jimmunol.1700319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
The histone methyltransferase EZH2 is required for B and T cell development; however, the molecular mechanisms underlying this requirement remain elusive. In a murine model of lymphoid-specific EZH2 deficiency we found that EZH2 was required for proper development of adaptive, but not innate, lymphoid cells. In adaptive lymphoid cells EZH2 prevented the premature expression of Cdkn2a and the consequent stabilization of p53, an effector of the pre-Ag receptor checkpoints. Deletion of Cdkn2a in EZH2-deficient lymphocytes prevented p53 stabilization, extended lymphocyte survival, and restored differentiation resulting in the generation of mature B and T lymphocytes. Our results uncover a crucial role for EZH2 in adaptive lymphocytes to control the developmental timing of effectors of the pre-Ag receptor checkpoints.
Collapse
Affiliation(s)
| | - Jennifer Woodard
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Malay Mandal
- Division of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637
| | - Marcus R Clark
- Committee on Immunology, The University of Chicago, Chicago, IL 60637.,Division of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637
| | | | - Mikael Sigvardsson
- Department of Molecular Hematology, Lund University, 22184 Lund, Sweden; and
| | - Barbara L Kee
- Committee on Immunology, The University of Chicago, Chicago, IL 60637; .,Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
31
|
Pecháčková S, Burdová K, Macurek L. WIP1 phosphatase as pharmacological target in cancer therapy. J Mol Med (Berl) 2017; 95:589-599. [PMID: 28439615 PMCID: PMC5442293 DOI: 10.1007/s00109-017-1536-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
DNA damage response (DDR) pathway protects cells from genome instability and prevents cancer development. Tumor suppressor p53 is a key molecule that interconnects DDR, cell cycle checkpoints, and cell fate decisions in the presence of genotoxic stress. Inactivating mutations in TP53 and other genes implicated in DDR potentiate cancer development and also influence the sensitivity of cancer cells to treatment. Protein phosphatase 2C delta (referred to as WIP1) is a negative regulator of DDR and has been proposed as potential pharmaceutical target. Until recently, exploitation of WIP1 inhibition for suppression of cancer cell growth was compromised by the lack of selective small-molecule inhibitors effective at cellular and organismal levels. Here, we review recent advances in development of WIP1 inhibitors and discuss their potential use in cancer treatment.
Collapse
Affiliation(s)
- Soňa Pecháčková
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Kamila Burdová
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic.
| |
Collapse
|
32
|
Uyanik B, Grigorash BB, Goloudina AR, Demidov ON. DNA damage-induced phosphatase Wip1 in regulation of hematopoiesis, immune system and inflammation. Cell Death Discov 2017; 3:17018. [PMID: 28417018 PMCID: PMC5377063 DOI: 10.1038/cddiscovery.2017.18] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/04/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023] Open
Abstract
PP2C serine-threonine phosphatase, Wip1, is an important regulator of stress response. Wip1 controls a number of critical cellular functions: proliferation, cell cycle arrest, senescence and programmed cell death, apoptosis or autophagy. Ppm1d, the gene encoding Wip1 phosphatase, is expressed in hematopoietic progenitors, stem cells, neutrophils, macrophages B and T lymphocytes in bone marrow and peripheral blood. The Wip1-/- mice display immunodeficiency, abnormal lymphoid histopathology in thymus and spleen, defects in B- and T-cell differentiation, as well as susceptibility to viral infection. At the same time, Wip1 knockout mice exhibit pro-inflammatory phenotype in skin and intestine in the model of inflammatory bowel disease (IBD) with elevated levels of inflammation-promoting cytokines TNF-α, IL-6, IL-12, IL-17. Several Wip1 downstream targets can mediate Wip1 effects on hematopoietic system including, p53, ATM, p38MAPK kinase, NFkB, mTOR. Here, we summarized the current knowledge on the role of Wip1 in the differentiation of various hematopoietic lineages and how Wip1 deficiency affects the functions of immune cells.
Collapse
Affiliation(s)
- B Uyanik
- INSERM U866, University of Burgundy, Dijon, France
| | | | | | - O N Demidov
- INSERM U866, University of Burgundy, Dijon, France.,Institute of Cytology RAS, St. Petersburg, Russia
| |
Collapse
|
33
|
Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1013-1022. [DOI: 10.1016/j.bbadis.2017.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/28/2016] [Accepted: 01/28/2017] [Indexed: 12/26/2022]
|
34
|
Shen XF, Zhao Y, Jiang JP, Guan WX, Du JF. Phosphatase Wip1 in Immunity: An Overview and Update. Front Immunol 2017; 8:8. [PMID: 28144241 PMCID: PMC5239779 DOI: 10.3389/fimmu.2017.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/04/2017] [Indexed: 01/18/2023] Open
Abstract
Wild-type p53-induced phosphatase 1 (Wip1) is a newly identified serine/threonine phosphatase, which belongs to the PP2C family. Due to its involvement in stress-induced networks and overexpression in human tumors, primary studies have mainly focused on the role of Wip1 in tumorigenesis. It now has also been implicated in regulating several other physiological processes such as organism aging and neurogenesis. Recent evidence highlights a new role of Wip1 in controlling immune response through regulating immune cell development and function, as well as through the interplay with inflammatory signaling pathways such NF-κB and p38 mitogen-activated protein kinase. In this short review, we will give an overview of Wip1 in immunity to better understand this important phosphatase.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Transplantation Biology Research Division, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Zhao
- Transplantation Biology Research Division, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jin-Peng Jiang
- Department of Rehabilitation Medicine, PLA Army General Hospital , Beijing , China
| | - Wen-Xian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Jun-Feng Du
- Department of General Surgery, PLA Army General Hospital , Beijing , China
| |
Collapse
|
35
|
Abstract
Wild-type p53-induced phosphatase 1 (Wip1) is currently believed to be a promising drug target for cancer therapy. Our recent studies showed that deletion of Wip1 remarkably promoted neutrophil inflammatory response. Whether Wip1 is involved in the regulation of inflammatory bowel disease is unknown. In the present study, we found that Wip1 knockout (KO) mice were more susceptible to colitis induced by dextran sulphate sodium (DSS) than wild-type mice as substantiated by the lower mouse survival ratio, rapid bodyweight loss, increased disease activity index, shorter colon length, and more severe pathology of colons in Wip1KO mice. Using full bone marrow chimera mouse models, we demonstrated that Wip1 intrinsically controls inflammatory response of immune cells. Deletion of IL-17 (Wip1/IL-17 double KO mice) significantly rescued the pathology in Wip1KO mice. Neutrophils of DSS-treated wild-type and Wip1KO mice expressed significantly higher IL-17. After adoptive transfer of sorted Wip1KO or double KO neutrophils into IL-17KO mice, mice receiving double KO neutrophils were more resistant to DSS-induced colitis than mice receiving Wip1KO neutrophils. These data collectively indicate that Wip1 modulates host sensitivity to colitis by intrinsically regulating immune cells. The enhanced IL-17 expression in neutrophils contributed to the increased sensitivity and severity of colitis in Wip1KO mice. Thus, Wip1 may be used as a drug target to treat colitis.
Collapse
|
36
|
|