1
|
Raghuwanshi S, Magdy A, Hay N, Gartel A. A novel FOXM1-BCL2A1 axis determines unfavorable response to venetoclax in AML. J Biol Chem 2025; 301:108240. [PMID: 39880086 PMCID: PMC11904578 DOI: 10.1016/j.jbc.2025.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Forkhead box M1 (FOXM1), a Forkhead family transcription factor, is often overexpressed in a variety of human cancers, including acute myeloid leukemia (AML), and is strongly associated with therapy resistance and unfavorable outcomes. In AML with NPM1 mutations, NPM1-FOXM1 complex sequesters FOXM1 in the cytoplasm and confers favorable treatment outcomes for AML patients because of FOXM1 inactivation. Inhibition of FOXM1 in AML cell lines and animal models of AML sensitizes AML cells to the BCL2 inhibitor, venetoclax. In a recent study, the upregulation of the BCL2-family protein, BCL2A1, conferred resistance to venetoclax and multiple venetoclax combinations. In this study, we investigated the FOXM1-BCL2A1 axis and determined that FOXM1 specifically inhibits venetoclax-induced apoptosis in AML via upregulation of BCL2A1. The knockdown of BCL2A1 in AML in the presence of high levels of FOXM1 led to sensitization of AML cells to venetoclax, suggesting that BCL2A1 is a major target of FOXM1 responsible for resistance to venetoclax. Venetoclax in combination with FOXM1 inhibitor STL001 inhibited BCL2A1 and circumvented venetoclax resistance. Pharmacological inhibition of the FOXM1-BCL2A1 axis represents a therapeutic strategy to sensitize AML cells to venetoclax-induced apoptosis.
Collapse
MESH Headings
- Forkhead Box Protein M1/metabolism
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/antagonists & inhibitors
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Sulfonamides/pharmacology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Animals
- Apoptosis/drug effects
- Nucleophosmin
- Mice
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- Minor Histocompatibility Antigens
Collapse
Affiliation(s)
- Sanjeev Raghuwanshi
- University of Illinois at Chicago, Department of Medicine, Chicago, Illinois, USA
| | - Ahmed Magdy
- University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics, Chicago, Illinois, USA
| | - Nissim Hay
- University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics, Chicago, Illinois, USA
| | - Andrei Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Markouli M, Pagoni MN, Diamantopoulos P. BCL-2 inhibitors in hematological malignancies: biomarkers that predict response and management strategies. Front Oncol 2025; 14:1501950. [PMID: 39906657 PMCID: PMC11790632 DOI: 10.3389/fonc.2024.1501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Apoptosis is an essential characteristic of cancer and its dysregular promotes tumor growth, clonal evolution, and treatment resistance. B-cell lymphoma-2 (BCL-2) protein family members are key to the intrinsic, mitochondrial apoptotic pathway. The inhibition of the BCL-2 family pro-survival proteins, which are frequently overexpressed in B-cell malignancies and pose a fundamental carcinogenic mechanism has been proposed as a promising therapeutic option, with venetoclax (ABT-199) being the first FDA-approved BCL-2 inhibitor. Unfortunately, although BCL-2 inhibition has shown remarkable results in a range of B-cell lymphoid cancers as well as acute myeloid leukemia (AML), the development of resistance significantly reduces response rates in specific tumor subtypes. In this article, we explain the role of BCL-2 family proteins in apoptosis and their mechanism of action that justifies their inhibition as a potential treatment target in B-cell malignancies, including chronic lymphocytic leukemia, multiple myeloma, B-cell lymphomas, but also AML. We further analyze the tumor characteristics that result in the development of intrinsic or inherited resistance to BCL-2 inhibitors. Finally, we focus on the biomarkers that can be used to predict responses to treatment in the name of personalized medicine, with the goal of exploring alternative strategies to overcome resistance.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Internal Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Maria N. Pagoni
- Department of Hematology-Lymphomas and BMT Unit, Evangelismos Hospital, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Boeckmann L, Berner J, Kordt M, Lenz E, Schäfer M, Semmler ML, Frey A, Sagwal SK, Rebl H, Miebach L, Niessner F, Sawade M, Hein M, Ramer R, Grambow E, Seebauer C, von Woedtke T, Nebe B, Metelmann HR, Langer P, Hinz B, Vollmar B, Emmert S, Bekeschus S. Synergistic effect of cold gas plasma and experimental drug exposure exhibits skin cancer toxicity in vitro and in vivo. J Adv Res 2024; 57:181-196. [PMID: 37391038 PMCID: PMC10918357 DOI: 10.1016/j.jare.2023.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
INTRODUCTION Skin cancer is often fatal, which motivates new therapy avenues. Recent advances in cancer treatment are indicative of the importance of combination treatments in oncology. Previous studies have identified small molecule-based therapies and redox-based technologies, including photodynamic therapy or medical gas plasma, as promising candidates to target skin cancer. OBJECTIVE We aimed to identify effective combinations of experimental small molecules with cold gas plasma for therapy in dermato-oncology. METHODS Promising drug candidates were identified after screening an in-house 155-compound library using 3D skin cancer spheroids and high content imaging. Combination effects of selected drugs and cold gas plasma were investigated with respect to oxidative stress, invasion, and viability. Drugs that had combined well with cold gas plasma were further investigated in vascularized tumor organoids in ovo and a xenograft mouse melanoma model in vivo. RESULTS The two chromone derivatives Sm837 and IS112 enhanced cold gas plasma-induced oxidative stress, including histone 2A.X phosphorylation, and further reduced proliferation and skin cancer cell viability. Combination treatments of tumor organoids grown in ovo confirmed the principal anti-cancer effect of the selected drugs. While one of the two compounds exerted severe toxicity in vivo, the other (Sm837) resulted in a significant synergistic anti-tumor toxicity at good tolerability. Principal component analysis of protein phosphorylation profiles confirmed profound combination treatment effects in contrast to the monotherapies. CONCLUSION We identified a novel compound that, combined with topical cold gas plasma-induced oxidative stress, represents a novel and promising treatment approach to target skin cancer.
Collapse
Affiliation(s)
- Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Julia Berner
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Marcel Kordt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Elea Lenz
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marie-Luise Semmler
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anna Frey
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Felix Niessner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Marie Sawade
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Martin Hein
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Robert Ramer
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Eberhard Grambow
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Christian Seebauer
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Hans-Robert Metelmann
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Peter Langer
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Sander Bekeschus
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany.
| |
Collapse
|
4
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
5
|
Cottet M, Marrero YF, Mathien S, Audette K, Lambert R, Bonneil E, Chng K, Campos A, Andrews DW. Live Cell Painting: New nontoxic dye to probe cell physiology in high content screening. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 29:S2472-5552(23)00075-8. [PMID: 39492484 DOI: 10.1016/j.slasd.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
High-content imaging approaches, in combination with the use of perturbing agents such as small molecules or CRISPR-driven gene editing, have widely contributed to the identification of new therapeutic compounds. Thanks to recent advances in image-analysis methods, the use of high-content screens is increasingly gaining popularity and thus accelerating the discovery of new therapeutics. However, due to the lack of fully biocompatible fluorescent markers, large-scale high-content screens are mostly performed on fixed cells, which complicates the monitoring of changes in cell physiology over time. Here we present a novel fluorescent nontoxic dye that displays intensity and staining pattern changes in response to different physiological states. With multiparametric image analysis, these unique properties allow not only for the detection of distinct phenotypic fingerprints, but also for the quantification of more traditional disease-relevant phenotypes such as apoptosis, autophagy, ER stress and more. Since the dye only gets fluorescent when incorporated into cellular membranes, it is typically used without washing steps, therefore making it ideal to include in automation workflows. In this work, we present relevant data on its biocompatibility and its potential to quantitatively assess subtle cellular phenotypes. Applications such as live kinetic imaging, and live image-based morphological profiling are also discussed. The rich information this fluorescent probe provides facilitates unbiased quantitative phenotypic analysis at larger scale, and ultimately paves the way for more discoveries of new therapeutic agents.
Collapse
Affiliation(s)
- Martin Cottet
- Saguaro Technologies, Quebec, QC, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| | | | | | | | | | - Eric Bonneil
- IRIC, Université de Montréal, Montreal, QC, Canada
| | | | | | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
6
|
Jia Y, Han L, Ramage CL, Wang Z, Weng CC, Yang L, Colla S, Ma H, Zhang W, Andreeff M, Daver N, Jain N, Pemmaraju N, Bhalla K, Mustjoki S, Zhang P, Zheng G, Zhou D, Zhang Q, Konopleva M. Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells. Haematologica 2023; 108:2626-2638. [PMID: 37078252 PMCID: PMC10542840 DOI: 10.3324/haematol.2022.281915] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
BCL-XL and BCL-2 are key anti-apoptotic proteins and validated cancer targets. 753B is a novel BCL-XL/BCL-2 proteolysis targeting chimera (PROTAC) that targets both BCL-XL and BCL-2 to the von Hippel-Lindau (VHL) E3 ligase, leading to BCLX L/BCL-2 ubiquitination and degradation selectively in cells expressing VHL. Because platelets lack VHL expression, 753B spares on-target platelet toxicity caused by the first-generation dual BCL-XL/BCL-2 inhibitor navitoclax (ABT-263). Here, we report pre-clinical single-agent activity of 753B against different leukemia subsets. 753B effectively reduced cell viability and induced dose-dependent degradation of BCL-XL and BCL-2 in a subset of hematopoietic cell lines, acute myeloid leukemia (AML) primary samples, and in vivo patient-derived xenograft AML models. We further demonstrated the senolytic activity of 753B, which enhanced the efficacy of chemotherapy by targeting chemotherapy-induced cellular senescence. These results provide a pre-clinical rationale for the utility of 753B in AML therapy, and suggest that 753B could produce an added therapeutic benefit by overcoming cellular senescence-induced chemoresistance when combined with chemotherapy.
Collapse
Affiliation(s)
- Yannan Jia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Lina Han
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cassandra L Ramage
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhe Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Connie C Weng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lei Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Helen Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Weiguo Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Qi Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
7
|
Jayappa KD, Tran B, Gordon VL, Morris C, Saha S, Farrington CC, O’Connor CM, Zawacki KP, Isaac KM, Kester M, Bender TP, Williams ME, Portell CA, Weber MJ, Narla G. PP2A modulation overcomes multidrug resistance in chronic lymphocytic leukemia via mPTP-dependent apoptosis. J Clin Invest 2023; 133:e155938. [PMID: 37166997 PMCID: PMC10313372 DOI: 10.1172/jci155938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Targeted therapies such as venetoclax (VEN) (Bcl-2 inhibitor) have revolutionized the treatment of chronic lymphocytic leukemia (CLL). We previously reported that persister CLL cells in treated patients overexpress multiple antiapoptotic proteins and display resistance to proapoptotic agents. Here, we demonstrated that multidrug-resistant CLL cells in vivo exhibited apoptosis restriction at a pre-mitochondrial level due to insufficient activation of the Bax and Bak (Bax/Bak) proteins. Co-immunoprecipitation analyses with selective BH domain antagonists revealed that the pleiotropic proapoptotic protein (Bim) was prevented from activating Bax/Bak by "switching" interactions to other upregulated antiapoptotic proteins (Mcl-1, Bcl-xL, Bcl-2). Hence, treatments that bypass Bax/Bak restriction are required to deplete these resistant cells in patients. Protein phosphatase 2A (PP2A) contributes to oncogenesis and treatment resistance. We observed that small-molecule activator of PP2A (SMAP) induced cytotoxicity in multiple cancer cell lines and CLL samples, including multidrug-resistant leukemia and lymphoma cells. The SMAP (DT-061) activated apoptosis in multidrug-resistant CLL cells through induction of mitochondrial permeability transition pores, independent of Bax/Bak. DT-061 inhibited the growth of wild-type and Bax/Bak double-knockout, multidrug-resistant CLL cells in a xenograft mouse model. Collectively, we discovered multidrug-resistant CLL cells in patients and validated a pharmacologically tractable pathway to deplete this reservoir.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- bcl-2-Associated X Protein/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Protein Phosphatase 2/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Proto-Oncogene Proteins c-bcl-2
- Apoptosis/physiology
- Apoptosis Regulatory Proteins/metabolism
- Drug Resistance, Multiple
Collapse
Affiliation(s)
- Kallesh D. Jayappa
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, Charlottesville, Virginia, USA
- Department of Pharmacology, Charlottesville, Virginia, USA
| | - Brian Tran
- Division of Genetic Medicine, Department of Internal Medicine, the University of Michigan, Ann Arbor, Michigan, USA
| | - Vicki L. Gordon
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, Charlottesville, Virginia, USA
| | - Christopher Morris
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, Charlottesville, Virginia, USA
| | - Shekhar Saha
- Department of Biochemistry and Molecular Genetics, Charlottesville, Virginia, USA
| | - Caroline C. Farrington
- Division of Genetic Medicine, Department of Internal Medicine, the University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M. O’Connor
- Division of Genetic Medicine, Department of Internal Medicine, the University of Michigan, Ann Arbor, Michigan, USA
| | - Kaitlin P. Zawacki
- Division of Genetic Medicine, Department of Internal Medicine, the University of Michigan, Ann Arbor, Michigan, USA
| | - Krista M. Isaac
- Division of Hematology/Oncology, UVA School of Medicine, Charlottesville, Virginia, USA
| | - Mark Kester
- Department of Pharmacology, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, UVA, Charlottesville, Virginia, USA
| | - Timothy P. Bender
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, Charlottesville, Virginia, USA
| | - Michael E. Williams
- Division of Hematology/Oncology, UVA School of Medicine, Charlottesville, Virginia, USA
- Cancer Center, UVA, Charlottesville, Virginia, USA
| | - Craig A. Portell
- Division of Hematology/Oncology, UVA School of Medicine, Charlottesville, Virginia, USA
- Cancer Center, UVA, Charlottesville, Virginia, USA
| | - Michael J. Weber
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, Charlottesville, Virginia, USA
- Cancer Center, UVA, Charlottesville, Virginia, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, the University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Mittal N, Davis C, McLean P, Calla J, Godinez-Macias KP, Gardner A, Healey D, Orjuela-Sanchez P, Ottilie S, Chong Y, Gibson C, Winzeler EA. Human nuclear hormone receptor activity contributes to malaria parasite liver stage development. Cell Chem Biol 2023; 30:486-498.e7. [PMID: 37172592 PMCID: PMC10878326 DOI: 10.1016/j.chembiol.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/14/2022] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Chemical genetic approaches have had a transformative impact on discovery of drug targets for malaria but have primarily been used for parasite targets. To identify human pathways required for intrahepatic development of parasite, we implemented multiplex cytological profiling of malaria infected hepatocytes treated with liver stage active compounds. Some compounds, including MMV1088447 and MMV1346624, exhibited profiles similar to cells treated with nuclear hormone receptor (NHR) agonist/antagonists. siRNAs targeting human NHRs, or their signaling partners identified eight genes that were critical for Plasmodium berghei infection. Knockdown of NR1D2, a host NHR, significantly impaired parasite growth by downregulation of host lipid metabolism. Importantly, treatment with MMV1088447 and MMV1346624 but not other antimalarials, phenocopied the lipid metabolism defect of NR1D2 knockdown. Our data underlines the use of high-content imaging for host-cellular pathway deconvolution, highlights host lipid metabolism as a drug-able human pathway and provides new chemical biology tools for studying host-parasite interactions.
Collapse
Affiliation(s)
- Nimisha Mittal
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chadwick Davis
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Peter McLean
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Jaeson Calla
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karla P Godinez-Macias
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alison Gardner
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - David Healey
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Pamela Orjuela-Sanchez
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | - Sabine Ottilie
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yolanda Chong
- Recursion, 41 S Rio Grande Street, Salt Lake City, UT 84101, USA
| | | | - Elizabeth A Winzeler
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
O’Donnell A, Pepper C, Mitchell S, Pepper A. NF-kB and the CLL microenvironment. Front Oncol 2023; 13:1169397. [PMID: 37064123 PMCID: PMC10098180 DOI: 10.3389/fonc.2023.1169397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent type of leukemia in the western world. Despite the positive clinical effects of new targeted therapies, CLL still remains an incurable and refractory disease and resistance to treatments are commonly encountered. The Nuclear Factor-Kappa B (NF-κB) transcription factor has been implicated in the pathology of CLL, with high levels of NF-κB associated with disease progression and drug resistance. This aberrant NF-κB activation can be caused by genetic mutations in the tumor cells and microenvironmental factors, which promote NF-κB signaling. Activation can be induced via two distinct pathways, the canonical and non-canonical pathway, which result in tumor cell proliferation, survival and drug resistance. Therefore, understanding how the CLL microenvironment drives NF-κB activation is important for deciphering how CLL cells evade treatment and may aid the development of novel targeting therapeutics. The CLL microenvironment is comprised of various cells, including nurse like cells, mesenchymal stromal cells, follicular dendritic cells and CD4+ T cells. By activating different receptors, including the B cell receptor and CD40, these cells cause overactivity of the canonical and non-canonical NF-κB pathways. Within this review, we will explore the different components of the CLL microenvironment that drive the NF-κB pathway, investigating how this knowledge is being translated in the development of new therapeutics.
Collapse
Affiliation(s)
- Alice O’Donnell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
- Royal Sussex County Hospital, University Hospitals Sussex, Brighton, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
10
|
Spaner DE, Luo TY, Wang G, Schreiber G, Harari D, Shi Y. Paradoxical activation of chronic lymphocytic leukemia cells by ruxolitinib in vitro and in vivo. Front Oncol 2023; 13:1043694. [PMID: 37114129 PMCID: PMC10126367 DOI: 10.3389/fonc.2023.1043694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) is characterized by an aberrant cytokine network that can support tumor growth by triggering janus kinase (JAK)/STAT pathways. Targeting cytokine-signaling should then be a rational therapeutic strategy but the JAK inhibitor ruxolitinib failed to control and seemingly accelerated the disease in clinical trials. Methods The effect of ruxolitinib on primary human CLL cells was studied in vitro and in vivo. Results Ruxolitinib increased phosphorylation of IRAK4, an important toll-like receptor (TLR)- signaling intermediate, in circulating CLL cells in vitro. It also enhanced p38 and NFKB1 phosphorylation while lowering STAT3 phosphorylation in CLL cells activated with TLR-7/8 agonists and IL-2. Among the cytokines made by activated CLL cells, high levels of IL-10 contributed strongly to STAT3 phosphorylation and inhibited TLR7 activity. Ruxolitinib limited TLR-mediated IL10 transcription and markedly reduced IL-10 production in vitro. It also decreased blood levels of IL-10 while increasing TNFα along with phospho-p38 expression and gene sets associated with TLR-activation in CLL cells in vivo. The bruton's tyrosine kinase inhibitor ibrutinib decreased IL-10 production in vitro but, in contrast to ruxolitinib, blocked initial IL10 transcription induced by TLR-signaling in vitro, decreased TNFα production, and deactivates CLL cells in vivo. Discussion These findings suggest the possible benefits of inhibiting growth factors with JAK inhibitors in CLL are outweighed by negative effects on potential tumor suppressors such as IL-10 that allow unrestrained activation of NFκB by drivers such as TLRs. Specific inhibition of growth-promoting cytokines with blocking antibodies or infusing suppressive cytokines like IL-10 might be better strategies to manipulate cytokines in CLL.
Collapse
Affiliation(s)
- David E. Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Hematology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: David E. Spaner,
| | - Tina YuXuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
11
|
Patel R, Yadav BK, Patel G. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:208-227. [PMID: 35762539 DOI: 10.2174/1872210516666220628150447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a non invasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. OBJECTIVE This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy. METHODS Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. RESULTS The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. CONCLUSION Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.
Collapse
Affiliation(s)
- Riya Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
12
|
Sarapura Martinez VJ, Buonincontro B, Cassarino C, Bernatowiez J, Colado A, Cordini G, Custidiano MDR, Mahuad C, Pavlovsky MA, Bezares RF, Favale NO, Vermeulen M, Borge M, Giordano M, Gamberale R. Venetoclax resistance induced by activated T cells can be counteracted by sphingosine kinase inhibitors in chronic lymphocytic leukemia. Front Oncol 2023; 13:1143881. [PMID: 37020867 PMCID: PMC10067719 DOI: 10.3389/fonc.2023.1143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) patients with venetoclax-based regimens has demonstrated efficacy and a safety profile, but the emergence of resistant cells and disease progression is a current complication. Therapeutic target of sphingosine kinases (SPHK) 1 and 2 has opened new opportunities in the treatment combinations of cancer patients. We previously reported that the dual SPHK1/2 inhibitor, SKI-II enhanced the in vitro cell death triggered by fludarabine, bendamustine or ibrutinib and reduced the activation and proliferation of chronic lymphocytic leukemia (CLL) cells. Since we previously showed that autologous activated T cells from CLL patients favor the activation of CLL cells and the generation of venetoclax resistance due to the upregulation of BCL-XL and MCL-1, we here aim to determine whether SPHK inhibitors affect this process. To this aim we employed the dual SPHK1/2 inhibitor SKI-II and opaganib, a SPHK2 inhibitor that is being studied in clinical trials. We found that SPHK inhibitors reduce the activation of CLL cells and the generation of venetoclax resistance induced by activated T cells mainly due to a reduced upregulation of BCL-XL. We also found that SPHK2 expression was enhanced in CLL cells by activated T cells of the same patient and the presence of venetoclax selects resistant cells with high levels of SPHK2. Of note, SPHK inhibitors were able to re-sensitize already resistant CLL cells to a second venetoclax treatment. Our results highlight the therapeutic potential of SPHK inhibitors in combination with venetoclax as a promising treatment option for the patients.
Collapse
Affiliation(s)
- Valeria J. Sarapura Martinez
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Brenda Buonincontro
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Chiara Cassarino
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Juliana Bernatowiez
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Gregorio Cordini
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Servicio de Hematología, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Maria del Rosario Custidiano
- Departamento de Hematología y Unidad de Trasplante Hematopoyético, Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Carolina Mahuad
- Servicio de Hematología, Hospital Alemán, Buenos Aires, Argentina
| | | | | | - Nicolás O. Favale
- Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas “Profesor Dr. Alejandro C. Paladini” (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Células Presentadoras de Antígeno y Respuesta Inflamatoria, IMEX-CONICET-ANM, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
- *Correspondence: Romina Gamberale,
| |
Collapse
|
13
|
Sullivan GP, Flanagan L, Rodrigues DA, Ní Chonghaile T. The path to venetoclax resistance is paved with mutations, metabolism, and more. Sci Transl Med 2022; 14:eabo6891. [PMID: 36475901 DOI: 10.1126/scitranslmed.abo6891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Venetoclax is a B cell lymphoma 2 (BCL-2)-selective antagonist used to treat chronic lymphocytic leukemia (CLL) and acute myelogenous leukemia (AML). Although this has been a promising therapeutic option for these patients, many of these patients develop resistance and relapsed disease. Here, we summarize the emerging mechanisms of resistance to venetoclax treatment, discuss the promising combination strategies, and highlight the combinations that are currently in clinical trials. Efforts to understand mechanisms of resistance are critical to advance the development of new targeted therapeutic strategies and further our understanding of the biological functions of BCL-2 in tumor cells.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Lyndsey Flanagan
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Daniel Alencar Rodrigues
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Tríona Ní Chonghaile
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.,Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
14
|
Berker Y, ElHarouni D, Peterziel H, Fiesel P, Witt O, Oehme I, Schlesner M, Oppermann S. Patient-by-Patient Deep Transfer Learning for Drug-Response Profiling Using Confocal Fluorescence Microscopy of Pediatric Patient-Derived Tumor-Cell Spheroids. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3981-3999. [PMID: 36099221 DOI: 10.1109/tmi.2022.3205554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Image-based phenotypic drug profiling is receiving increasing attention in drug discovery and precision medicine. Compared to classical end-point measurements quantifying drug response, image-based profiling enables both the quantification of drug response and characterization of disease entities and drug-induced cell-death phenotypes. Here, we aim to quantify image-based drug responses in patient-derived 3D spheroid tumor cell cultures, tackling the challenges of a lack of single-cell-segmentation methods and limited patient-derived material. Therefore, we investigate deep transfer learning with patient-by-patient fine-tuning for cell-viability quantification. We fine-tune a convolutional neural network (pre-trained on ImageNet) with 210 control images specific to a single training cell line and 54 additional screen -specific assay control images. This method of image-based drug profiling is validated on 6 cell lines with known drug sensitivities, and further tested with primary patient-derived samples in a medium-throughput setting. Network outputs at different drug concentrations are used for drug-sensitivity scoring, and dense-layer activations are used in t-distributed stochastic neighbor embeddings of drugs to visualize groups of drugs with similar cell-death phenotypes. Image-based cell-line experiments show strong correlation to metabolic results ( R ≈ 0.7 ) and confirm expected hits, indicating the predictive power of deep learning to identify drug-hit candidates for individual patients. In patient-derived samples, combining drug sensitivity scoring with phenotypic analysis may provide opportunities for complementary combination treatments. Deep transfer learning with patient-by-patient fine-tuning is a promising, segmentation-free image-analysis approach for precision medicine and drug discovery.
Collapse
|
15
|
Luo TY, Shi Y, Wang G, Spaner DE. Enhanced IFN Sensing by Aggressive Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1662-1673. [DOI: 10.4049/jimmunol.2200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Type I IFN is made by cells in response to stress. Cancer cells exist in a state of stress, but their IFN response is complex and not completely understood. This study investigated the role of autocrine IFN in human chronic lymphocytic leukemia (CLL) cells. CLL cells were found to make low amounts of IFN via TANK-binding kinase 1 pathways, but p-STAT1 and -STAT2 proteins along with IFN-stimulated genes that reflect IFN activation were variably downregulated in cultured CLL cells by the neutralizing IFNAR1 Ab anifrolumab. Patients with CLL were segregated into two groups based on the response of their leukemia cells to anifrolumab. Samples associated with more aggressive clinical behavior indicated by unmutated IGHV genes along with high CD38 and p-Bruton’s tyrosine kinase expression exhibited responses to low amounts of IFN that were blocked by anifrolumab. Samples with more indolent behavior were unaffected by anifrolumab. Hypersensitivity to IFN was associated with higher expression of IFNAR1, MX1, STAT1, and STAT2 proteins and lower activity of negative regulatory tyrosine phosphatases. Autocrine IFN protected responsive CLL cells from stressful tissue culture environments and therapeutic drugs such as ibrutinib and venetoclax in vitro, in part by upregulating Mcl-1 expression. These findings suggest hypersensitivity to IFN may promote aggressive clinical behavior. Specific blockade of IFN signaling may improve outcomes for patients with CLL with higher-risk disease.
Collapse
Affiliation(s)
- Tina YuXuan Luo
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhi Wang
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E. Spaner
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- ‡Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
- ¶Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Qualls D, Kumar A, Epstein-Peterson Z. Targeting the immune microenvironment in mantle cell lymphoma: implications for current and emerging therapies. Leuk Lymphoma 2022; 63:2515-2527. [PMID: 35704674 PMCID: PMC9741766 DOI: 10.1080/10428194.2022.2086244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Mantle cell lymphoma (MCL) is a morphologically and phenotypically heterogeneous subtype of non-Hodgkin lymphoma, and has historically been associated with poor outcomes. However, recent advances in our understanding of this disease have yielded new targeted and immune-based therapies with promising activity. Immune-based therapies such as monoclonal antibodies, immunomodulators, and CAR T cells have significantly improved outcomes and are now standard of care in MCL. In this review, we describe our current understanding of the immune microenvironment of MCL, discuss current immunotherapeutic approaches, and highlight promising novel immune-based therapies and combination therapies that may further improve outcomes for patients with MCL.
Collapse
Affiliation(s)
- David Qualls
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center. New York, NY, USA
| | - Anita Kumar
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center. New York, NY, USA
| | - Zachary Epstein-Peterson
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center. New York, NY, USA
| |
Collapse
|
17
|
Liu J, Chen Y, Yu L, Yang L. Mechanisms of venetoclax resistance and solutions. Front Oncol 2022; 12:1005659. [PMID: 36313732 PMCID: PMC9597307 DOI: 10.3389/fonc.2022.1005659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
The BCL-2 inhibitor venetoclax is currently approved for treatment of hematologic diseases and is widely used either as monotherapy or in combination strategies. It has produced promising results in the treatment of refractory or relapsed (R/R) and aged malignant hematologic diseases. However, with clinical use, resistance to venetoclax has emerged. We review the mechanism of reduced dependence on BCL-2 mediated by the upregulation of antiapoptotic proteins other than BCL-2, such as MCL-1 and BCL-XL, which is the primary mechanism of venetoclax resistance, and find that this mechanism is achieved through different pathways in different hematologic diseases. Additionally, this paper also summarizes the current investigations of the mechanisms of venetoclax resistance in terms of altered cellular metabolism, changes in the mitochondrial structure, altered or modified BCL-2 binding domains, and some other aspects; this article also reviews relevant strategies to address these resistance mechanisms.
Collapse
Affiliation(s)
- Jiachen Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yidong Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lihua Yu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Thus YJ, Eldering E, Kater AP, Spaargaren M. Tipping the balance: toward rational combination therapies to overcome venetoclax resistance in mantle cell lymphoma. Leukemia 2022; 36:2165-2176. [PMID: 35725771 PMCID: PMC9418002 DOI: 10.1038/s41375-022-01627-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Mantle cell lymphoma (MCL), an aggressive, but incurable B-cell lymphoma, is genetically characterized by the t(11;14) translocation, resulting in the overexpression of Cyclin D1. In addition, deregulation of the B-cell lymphoma-2 (BCL-2) family proteins BCL-2, B-cell lymphoma-extra large (BCL-XL), and myeloid cell leukemia-1 (MCL-1) is highly common in MCL. This renders these BCL-2 family members attractive targets for therapy; indeed, the BCL-2 inhibitor venetoclax (ABT-199), which already received FDA approval for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML), shows promising results in early clinical trials for MCL. However, a significant subset of patients show primary resistance or will develop resistance upon prolonged treatment. Here, we describe the underlying mechanisms of venetoclax resistance in MCL, such as upregulation of BCL-XL or MCL-1, and the recent (clinical) progress in the development of inhibitors for these BCL-2 family members, followed by the transcriptional and (post-)translational (dys)regulation of the BCL-2 family proteins, including the role of the lymphoid organ microenvironment. Based upon these insights, we discuss how rational combinations of venetoclax with other therapies can be exploited to prevent or overcome venetoclax resistance and improve MCL patient outcome.
Collapse
Affiliation(s)
- Yvonne J Thus
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
| | - Eric Eldering
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Arnon P Kater
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands.
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, Target & Therapy Discovery, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
20
|
Bruch P, Giles HAR, Kolb C, Herbst SA, Becirovic T, Roider T, Lu J, Scheinost S, Wagner L, Huellein J, Berest I, Kriegsmann M, Kriegsmann K, Zgorzelski C, Dreger P, Zaugg JB, Müller‐Tidow C, Zenz T, Huber W, Dietrich S. Drug-microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL. Mol Syst Biol 2022; 18:e10855. [PMID: 35959629 PMCID: PMC9372727 DOI: 10.15252/msb.202110855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
The tumour microenvironment and genetic alterations collectively influence drug efficacy in cancer, but current evidence is limited and systematic analyses are lacking. Using chronic lymphocytic leukaemia (CLL) as a model disease, we investigated the influence of 17 microenvironmental stimuli on 12 drugs in 192 genetically characterised patient samples. Based on microenvironmental response, we identified four subgroups with distinct clinical outcomes beyond known prognostic markers. Response to multiple microenvironmental stimuli was amplified in trisomy 12 samples. Trisomy 12 was associated with a distinct epigenetic signature. Bromodomain inhibition reversed this epigenetic profile and could be used to target microenvironmental signalling in trisomy 12 CLL. We quantified the impact of microenvironmental stimuli on drug response and their dependence on genetic alterations, identifying interleukin 4 (IL4) and Toll-like receptor (TLR) stimulation as the strongest actuators of drug resistance. IL4 and TLR signalling activity was increased in CLL-infiltrated lymph nodes compared with healthy samples. High IL4 activity correlated with faster disease progression. The publicly available dataset can facilitate the investigation of cell-extrinsic mechanisms of drug resistance and disease progression.
Collapse
Affiliation(s)
- Peter‐Martin Bruch
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
| | - Holly AR Giles
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg UniversityFaculty of BiosciencesHeidelbergGermany
| | - Carolin Kolb
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
| | - Sophie A Herbst
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tina Becirovic
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
| | - Tobias Roider
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
| | | | - Sebastian Scheinost
- German Cancer Research Center (DKFZ)HeidelbergGermany
- National Center for Tumour DiseasesHeidelbergGermany
| | - Lena Wagner
- German Cancer Research Center (DKFZ)HeidelbergGermany
- National Center for Tumour DiseasesHeidelbergGermany
| | | | | | - Mark Kriegsmann
- Institute of PathologyUniversity of HeidelbergHeidelbergGermany
| | | | | | - Peter Dreger
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
| | - Judith B Zaugg
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
| | - Carsten Müller‐Tidow
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
| | - Thorsten Zenz
- Department of HematologyUniversity of ZürichZürichSwitzerland
| | - Wolfgang Huber
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
| | - Sascha Dietrich
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
21
|
In Vitro and In Vivo Models of CLL–T Cell Interactions: Implications for Drug Testing. Cancers (Basel) 2022; 14:cancers14133087. [PMID: 35804862 PMCID: PMC9264798 DOI: 10.3390/cancers14133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) cells in the peripheral blood and lymphoid microenvironment display substantially different gene expression profiles and proliferative capaci-ty. It has been suggested that CLL–T-cell interactions are key pro-proliferative stimuli in immune niches. We review in vitro and in vivo model systems that mimic CLL-T-cell interactions to trigger CLL proliferation and study therapy resistance. We focus on studies describing the co-culture of leukemic cells with T cells, or supportive cell lines expressing T-cell factors, and simplified models of CLL cells’ stimulation with recombinant factors. In the second part, we summarize mouse models revealing the role of T cells in CLL biology and implications for generating patient-derived xenografts by co-transplanting leukemic cells with T cells. Abstract T cells are key components in environments that support chronic lymphocytic leukemia (CLL), activating CLL-cell proliferation and survival. Here, we review in vitro and in vivo model systems that mimic CLL–T-cell interactions, since these are critical for CLL-cell division and resistance to some types of therapy (such as DNA-damaging drugs or BH3-mimetic venetoclax). We discuss approaches for direct CLL-cell co-culture with autologous T cells, models utilizing supportive cell lines engineered to express T-cell factors (such as CD40L) or stimulating CLL cells with combinations of recombinant factors (CD40L, interleukins IL4 or IL21, INFγ) and additional B-cell receptor (BCR) activation with anti-IgM antibody. We also summarize strategies for CLL co-transplantation with autologous T cells into immunodeficient mice (NOD/SCID, NSG, NOG) to generate patient-derived xenografts (PDX) and the role of T cells in transgenic CLL mouse models based on TCL1 overexpression (Eµ-TCL1). We further discuss how these in vitro and in vivo models could be used to test drugs to uncover the effects of targeted therapies (such as inhibitors of BTK, PI3K, SYK, AKT, MEK, CDKs, BCL2, and proteasome) or chemotherapy (fludarabine and bendamustine) on CLL–T-cell interactions and CLL proliferation.
Collapse
|
22
|
Osterlund EJ, Hirmiz N, Pemberton JM, Nougarède A, Liu Q, Leber B, Fang Q, Andrews DW. Efficacy and specificity of inhibitors of BCL-2 family protein interactions assessed by affinity measurements in live cells. SCIENCE ADVANCES 2022; 8:eabm7375. [PMID: 35442739 PMCID: PMC9020777 DOI: 10.1126/sciadv.abm7375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Cytoplasmic and membrane-bound BCL-2 family proteins regulate apoptosis, a form of programmed cell death, via dozens of binary protein interactions confounding measurement of the effects of inhibitors in live cells. In cancer, apoptosis is frequently dysregulated, and cell survival depends on antiapoptotic proteins binding to and inhibiting proapoptotic BH3 proteins. The clinical success of BH3 mimetic inhibitors of antiapoptotic proteins has spawned major efforts by the pharmaceutical industry to develop molecules with different specificities and higher affinities. Here, quantitative fast fluorescence lifetime imaging microscopy enabled comparison of BH3 mimetic drugs in trials and preclinical development by measuring drug effects on binding affinities of interacting protein pairs in live cells. Both selectivity and efficacy were assessed for 15 inhibitors of four antiapoptotic proteins for each of six BH3 protein ligands. While many drugs target the designed interaction, most also have unexpected selectivity and poor efficacy in cells.
Collapse
Affiliation(s)
- Elizabeth J. Osterlund
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Nehad Hirmiz
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - James M. Pemberton
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| | - Adrien Nougarède
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Qian Liu
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - David W. Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 2J7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2J7, Canada
| |
Collapse
|
23
|
Tregnago C, Benetton M, Da Ros A, Borella G, Longo G, Polato K, Francescato S, Biffi A, Pigazzi M. Novel Compounds Synergize With Venetoclax to Target KMT2A-Rearranged Pediatric Acute Myeloid Leukemia. Front Pharmacol 2022; 12:820191. [PMID: 35153769 PMCID: PMC8830338 DOI: 10.3389/fphar.2021.820191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
In pediatric acute myeloid leukemia (AML), fusions involving lysine methyltransferase 2A (KMT2A) are considered hallmarks of aggressive AML, for whom the development of targeted specific therapeutic agents to ameliorate classic chemotherapy and obtain a complete eradication of disease is urgent. In this study, we investigated the antiapoptotic proteins in a cohort of 66 pediatric AML patients, finding that 75% of the KMT2A-r are distributed in Q3 + Q4 quartiles of BCL-2 expression, and KMT2A-r have statistically significant high levels of BCL-2, phospho-BCL-2 S70, and MCL-1, indicating a high anti-apoptotic pathway activation. In an attempt to target it, we tested novel drug combinations of venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, in KMT2A-MLLT3, for being the most recurrent, and KMT2A-AFDN, for mediating the worst prognosis, rearranged AML cell lines. Our screening revealed that both the bromodomain and extra-terminal domain (BET) inhibitor, I-BET151, and kinase inhibitor, sunitinib, decreased the BCL-2 family protein expression and significantly synergized with venetoclax, enhancing KMT2A-r AML cell line death. Blasts t (6; 11) KMT2A-AFDN rearranged, both from cell lines and primary samples, were shown to be significantly highly responsive to the combination of venetoclax and thioridazine, with the synergy being induced by a dramatic increase of mitochondrial depolarization that triggered blast apoptosis. Finally, the efficacy of novel combined drug treatments was confirmed in KMT2A-r AML cell lines or ex vivo primary KMT2A-r AML samples cultured in a three-dimensional system which mimics the bone marrow niche. Overall, this study identified that, by high-throughput screening, the most KMT2A-selective drugs converged in different but all mitochondrial apoptotic network activation, supporting the use of venetoclax in this AML setting. The novel drug combinations here unveiled provide a rationale for evaluating these combinations in preclinical studies to accelerate the introduction of targeted therapies for the life-threatening KMT2A-AML subgroup of pediatric AML.
Collapse
Affiliation(s)
- Claudia Tregnago
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Maddalena Benetton
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Ambra Da Ros
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Giulia Borella
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Giorgia Longo
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Katia Polato
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Samuela Francescato
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Alessandra Biffi
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Martina Pigazzi
- Pediatric Haematology-Oncology and Hematopoietic Cell and Gene Therapy Division, Woman and Child Health Department, University-Hospital of Padova, Padova, Italy
| |
Collapse
|
24
|
Shi ZD, Hao L, Han XX, Wu ZX, Pang K, Dong Y, Qin JX, Wang GY, Zhang XM, Xia T, Liang Q, Zhao Y, Li R, Zhang SQ, Zhang JH, Chen JG, Wang GC, Chen ZS, Han CH. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol Cancer 2022; 21:37. [PMID: 35130920 PMCID: PMC8819945 DOI: 10.1186/s12943-022-01517-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 01/01/2023] Open
Abstract
Purpose The overall response of cisplatin-based chemotherapy in bladder urothelial carcinoma (BUC) remains unsatisfactory due to the complex pathological subtypes, genomic difference, and drug resistance. The genes that associated with cisplatin resistance remain unclear. Herein, we aimed to identify the cisplatin resistance associated genes in BUC. Experimental design The cytotoxicity of cisplatin was evaluated in six bladder cancer cell lines to compare their responses to cisplatin. The T24 cancer cells exhibited the lowest sensitivity to cisplatin and was therefore selected to explore the mechanisms of drug resistance. We performed genome-wide CRISPR screening in T24 cancer cells in vitro, and identified that the gene heterogeneous nuclear ribonucleoprotein U (HNRNPU) was the top candidate gene related to cisplatin resistance. Epigenetic and transcriptional profiles of HNRNPU-depleted cells after cisplatin treatment were analyzed to investigate the relationship between HNRNPU and cisplatin resistance. In vivo experiments were also performed to demonstrate the function of HNRNPU depletion in cisplatin sensitivity. Results Significant correlation was found between HNRNPU expression level and sensitivity to cisplatin in bladder cancer cell lines. In the high HNRNPU expressing T24 cancer cells, knockout of HNRNPU inhibited cell proliferation, invasion, and migration. In addition, loss of HNRNPU promoted apoptosis and S-phase arrest in the T24 cells treated with cisplatin. Data from The Cancer Genome Atlas (TCGA) demonstrated that HNRNPU expression was significantly higher in tumor tissues than in normal tissues. High HNRNPU level was negatively correlated with patient survival. Transcriptomic profiling analysis showed that knockout of HNRNPU enhanced cisplatin sensitivity by regulating DNA damage repair genes. Furthermore, it was found that HNRNPU regulates chemosensitivity by affecting the expression of neurofibromin 1 (NF1). Conclusions Our study demonstrated that HNRNPU expression is associated with cisplatin sensitivity in bladder urothelial carcinoma cells. Inhibition of HNRNPU could be a potential therapy for cisplatin-resistant bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01517-9.
Collapse
|
25
|
Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. TGF-β Signaling and Resistance to Cancer Therapy. Front Cell Dev Biol 2021; 9:786728. [PMID: 34917620 PMCID: PMC8669610 DOI: 10.3389/fcell.2021.786728] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor β (TGF-β) pathway, which is well studied for its ability to inhibit cell proliferation in early stages of tumorigenesis while promoting epithelial-mesenchymal transition and invasion in advanced cancer, is considered to act as a double-edged sword in cancer. Multiple inhibitors have been developed to target TGF-β signaling, but results from clinical trials were inconsistent, suggesting that the functions of TGF-β in human cancers are not yet fully explored. Multiple drug resistance is a major challenge in cancer therapy; emerging evidence indicates that TGF-β signaling may be a key factor in cancer resistance to chemotherapy, targeted therapy and immunotherapy. Finally, combining anti-TGF-β therapy with other cancer therapy is an attractive venue to be explored for the treatment of therapy-resistant cancer.
Collapse
Affiliation(s)
- Maoduo Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yi Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yongze Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
ElHarouni D, Berker Y, Peterziel H, Gopisetty A, Turunen L, Kreth S, Stainczyk SA, Oehme I, Pietiäinen V, Jäger N, Witt O, Schlesner M, Oppermann S. iTReX: Interactive exploration of mono- and combination therapy dose response profiling data. Pharmacol Res 2021; 175:105996. [PMID: 34848323 DOI: 10.1016/j.phrs.2021.105996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic features for developing novel predictors of treatment response, but they can also add evidence for therapy decision making in precision oncology. Recent analysis methods developed for either assessing single agents or combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction networks and support the detection of matches between top therapy hits and the sample omics features to enable the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal the application's ability to identify potential sample-specific biomarkers based on drug target interaction networks. The iTReX web application is accessible at https://itrex.kitz-heidelberg.de.
Collapse
Affiliation(s)
- Dina ElHarouni
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Yannick Berker
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Apurva Gopisetty
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sina Kreth
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sabine A Stainczyk
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Pediatric Oncology, Hematology, Immunology and Pulmonology Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sina Oppermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
27
|
Punchak M, Miranda SP, Gutierrez A, Brem S, O'Rourke D, Lee JYK, Shabason JE, Petrov D. Resecting the dominant lesion: Patient outcomes after surgery and radiosurgery vs stand-alone radiosurgery in the setting of multiple brain metastases. Clin Neurol Neurosurg 2021; 211:107016. [PMID: 34823154 DOI: 10.1016/j.clineuro.2021.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/17/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Brain metastases are the most common central nervous system (CNS) tumors, occurring in 300,000 people per year in the US. While there are immediate local benefits to surgical resection for dominant lesions, including reduction of tumor burden and edema, the survival benefits of surgical resection, over radiosurgery, remains unclear. METHODS The University of Pennsylvania Health System database was retrospectively reviewed for patients presenting with multiple brain metastases from 1/1/16-8/31/18 with one dominant lesion > 2 cm in diameter, who underwent initial treatment with either resection of the dominant lesion or Gamma Knife radiosurgery (GKS). Inclusion criteria were age > 18, > 1 brain metastasis, and presence of a dominant lesion (>2 cm). We analyzed factors associated with mortality. RESULTS 129 patients were identified (surgery=84, GKS=45). The median number of intracranial metastases was 3 (IQR: 2-5). The median diameter of the largest lesion was 31 mm (IQR: 25-38) in the surgery group vs 21 mm (IQR: 20-24) in the GKS group (p < 0.001). Mortality did not differ between surgery and GKS patients (69.1% vs 77.8%, p = 0.292). In a multivariate survival analysis, there was no difference in mortality between the surgery and GKS cohorts (aHR: 1.35, 95% CI: 0.74-2.45 p = 0.32). Pre-operative KPS (aHR: 0.97, 95% CI: 0.95-0.99, p = 0.004), CNS radiotherapy (aHR: 0.33, 95% CI: 0.19-0.56 p < 0.001), chemotherapy (aHR: 0.27, 95% CI: 0.15-0.47, p < 0.001), and immunotherapy (aHR: 0.41, 95% CI: 0.25-0.68, p = 0.001) were associated with decreased mortality. CONCLUSION In our institution, patients with multiple brain metastases and one symptomatic dominant lesion demonstrated similar survival after GKS when compared with up-front surgical resection of the dominant lesion.
Collapse
Affiliation(s)
- Maria Punchak
- Department of Neurosurgery, University of Pennsylvania Health System, Philadelphia, USA
| | - Stephen P Miranda
- Department of Neurosurgery, University of Pennsylvania Health System, Philadelphia, USA
| | - Alexis Gutierrez
- Department of Neurosurgery, University of Pennsylvania Health System, Philadelphia, USA
| | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania Health System, Philadelphia, USA
| | - Donald O'Rourke
- Department of Neurosurgery, University of Pennsylvania Health System, Philadelphia, USA
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania Health System, Philadelphia, USA
| | - Jacob E Shabason
- Deparment of Radiation Oncology, University of Pennsylvania Health System, Philadelphia, USA
| | - Dmitriy Petrov
- Department of Neurosurgery, University of Pennsylvania Health System, Philadelphia, USA.
| |
Collapse
|
28
|
Spaner DE, Luo Y, Wang G, Gallagher J, Tsui H, Shi Y. Janus kinases restrain chronic lymphocytic leukemia cells in patients on ibrutinib: Results of a phase II trial. Cancer Med 2021; 10:8789-8798. [PMID: 34791813 PMCID: PMC8683523 DOI: 10.1002/cam4.4378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 11/06/2022] Open
Abstract
Preclinical observations that killing of chronic lymphocytic leukemia (CLL) cells was dexamethasone (DEX) were enhanced by concomitant inhibition of Bruton's tyrosine kinase and janus kinases (JAKs) motivated a phase II trial to determine if clinical responses to ibrutinib could be deepened by DEX and the JAK inhibitor ruxolitinib. Patients on ibrutinib at 420 mg daily for 2 months or with abnormal serum β2M levels after 6 months or with persistent lymphadenopathy or splenomegaly after 12 months were randomized to receive DEX 40 mg on days 1-4 of a 4-week cycle for six cycles alone (three patients) or with ruxolitinib 15 mg BID on days 1-21 of each cycle (five patients). Ruxolitinib dosing was based on a previous phase I trial. Steroid withdrawal symptoms and significantly decreased serum IgG levels occurred in all patients regardless of their exposure to ruxolitinib. A fatal invasive fungal infection was seen in a patient taking DEX without ruxolitinib. Complete responses anticipated with addition of ruxolitinib were not seen. Gene expression studies suggested ruxolitinib had turned off interferon signaling in CLL cells and turned on genes associated with the activation of NFκB by TNF-α. Ruxolitinib increased blood levels of TNF-α by cycle 3 and decreased the inhibitory cytokine IL-10. These results suggest ruxolitinib releases activating signals for CLL cells that persist in patients on ibrutinib. This inhibitory JAK signaling may contribute to the therapeutic activity of ibrutinib. Thus JAK inhibitors provide no added value with ibrutinib for disease control and should be used with caution in CLL patients. Combining glucocorticoids with ibrutinib may increase the risk of serious infects.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuxuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Guizhei Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Division of Hematological Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Heterogeneous modulation of Bcl-2 family members and drug efflux mediate MCL-1 inhibitor resistance in multiple myeloma. Blood Adv 2021; 5:4125-4139. [PMID: 34478517 PMCID: PMC8945627 DOI: 10.1182/bloodadvances.2020003826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer, with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has led to the rapid establishment of clinical trials evaluating the impact of various MCL-1 inhibitors. However, our understanding about the clinical impact and optimal use of MCL-1 inhibitors is still limited. We therefore explored mechanisms of acquired MCL-1 inhibitor resistance and optimization strategies in myeloma. Our findings indicated heterogeneous paths to resistance involving baseline Bcl-2 family alterations of proapoptotic (BAK, BAX, and BIM) and antiapoptotic (Bcl-2 and MCL-1) proteins. These manifestations depend on the BH3 profile of parental cells that guide the enhanced formation of Bcl-2:BIM and/or the dynamic (ie, treatment-induced) formation of Bcl-xL:BIM and Bcl-xL:BAK complexes. Accordingly, an unbiased high-throughput drug-screening approach (n = 528) indicated alternative BH3 mimetics as top combination partners for MCL-1 inhibitors in sensitive and resistant cells (Bcl-xL>Bcl-2 inhibition), whereas established drug classes were mainly antagonistic (eg, antimitotic agents). We also revealed reduced activity of MCL-1 inhibitors in the presence of stromal support as a drug-class effect that was overcome by concurrent Bcl-xL or Bcl-2 inhibition. Finally, we demonstrated heterogeneous Bcl-2 family deregulation and MCL-1 inhibitor cross-resistance in carfilzomib-resistant cells, a phenomenon linked to the MDR1-driven drug efflux of MCL-1 inhibitors. The implications of our findings for clinical practice emphasize the need for patient-adapted treatment protocols, with the tracking of tumor- and/or clone-specific adaptations in response to MCL-1 inhibition.
Collapse
|
30
|
Edilova MI, Law JC, Zangiabadi S, Ting K, Mbanwi AN, Arruda A, Uehling D, Isaac M, Prakesch M, Al-Awar R, Minden MD, Abdul-Sater AA, Watts TH. The PKN1- TRAF1 signaling axis as a potential new target for chronic lymphocytic leukemia. Oncoimmunology 2021; 10:1943234. [PMID: 34589290 PMCID: PMC8475556 DOI: 10.1080/2162402x.2021.1943234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TRAF1 is a pro-survival adaptor molecule in TNFR superfamily (TNFRSF) signaling. TRAF1 is overexpressed in many B cell cancers including refractory chronic lymphocytic leukemia (CLL). Little has been done to assess the role of TRAF1 in human cancer. Here we show that the protein kinase C related kinase Protein Kinase N1 (PKN1) is required to protect TRAF1 from cIAP-mediated degradation during constitutive CD40 signaling in lymphoma. We show that the active phospho-Thr774 form of PKN1 is constitutively expressed in CLL but minimally detected in unstimulated healthy donor B cells. Through a screen of 700 kinase inhibitors, we identified two inhibitors, OTSSP167, and XL-228, that inhibited PKN1 in the nanomolar range and induced dose-dependent loss of TRAF1 in RAJI cells. OTSSP167 or XL-228 treatment of primary patient CLL samples led to a reduction in TRAF1, pNF-κB p65, pS6, pERK, Mcl-1 and Bcl-2 proteins, and induction of activated caspase-3. OTSSP167 synergized with venetoclax in inducing CLL death, correlating with loss of TRAF1, Mcl-1, and Bcl-2. Although correlative, these findings suggest the PKN1-TRAF1 signaling axis as a potential new target for CLL. These findings also suggest the use of the orally available inhibitor OTSSP167 in combination treatment with venetoclax for TRAF1 overexpressing CLL.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Safoura Zangiabadi
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON, Canada
| | - Kenneth Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Achire N Mbanwi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Extrinsic interactions in the microenvironment in vivo activate an antiapoptotic multidrug-resistant phenotype in CLL. Blood Adv 2021; 5:3497-3510. [PMID: 34432864 DOI: 10.1182/bloodadvances.2020003944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The Bcl-2 inhibitor venetoclax has yielded exceptional clinical responses in chronic lymphocytic leukemia (CLL). However, de novo resistance can result in failure to achieve negative minimal residual disease and predicts poor treatment outcomes. Consequently, additional proapoptotic drugs, such as inhibitors of Mcl-1 and Bcl-xL, are in development. By profiling antiapoptotic proteins using flow cytometry, we find that leukemic B cells that recently emigrated from the lymph node (CD69+/CXCR4Low) in vivo are enriched for cell clusters simultaneously overexpressing multiple antiapoptotic proteins (Mcl-1High/Bcl-xLHigh/Bcl-2High) in both treated and treatment-naive CLL patients. These cells exhibited antiapoptotic resistance to multiple BH-domain antagonists, including inhibitors of Bcl-2, Mcl-1, and Bcl-xL, when tested as single agents in a flow cytometry-based functional assay. Antiapoptotic multidrug resistance declines ex vivo, consistent with resistance being generated in vivo by extrinsic microenvironmental interactions. Surviving "persister" cells in patients undergoing venetoclax treatment are enriched for CLL cells displaying the functional and molecular properties of microenvironmentally induced multidrug resistance. Overcoming this resistance required simultaneous inhibition of multiple antiapoptotic proteins, with potential for unwanted toxicities. Using a drug screen performed using patient peripheral blood mononuclear cells cultured in an ex vivo microenvironment model, we identify novel venetoclax drug combinations that induce selective cytotoxicity in multidrug-resistant CLL cells. Thus, we demonstrate that antiapoptotic multidrug-resistant CLL cells exist in patients de novo and show that these cells persist during proapoptotic treatment, such as venetoclax. We validate clinically actionable approaches to selectively deplete this reservoir in patients.
Collapse
|
32
|
Mancikova V, Peschelova H, Kozlova V, Ledererova A, Ladungova A, Verner J, Loja T, Folber F, Mayer J, Pospisilova S, Smida M. Performance of anti-CD19 chimeric antigen receptor T cells in genetically defined classes of chronic lymphocytic leukemia. J Immunother Cancer 2021; 8:jitc-2019-000471. [PMID: 32217767 PMCID: PMC7206910 DOI: 10.1136/jitc-2019-000471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 01/25/2023] Open
Abstract
Background While achieving prolonged remissions in other B cell-derived malignancies, chimeric antigen receptor (CAR) T cells still underperform when injected into patients with chronic lymphocytic leukemia (CLL). We studied the influence of genetics on CLL response to anti-CD19 CAR T-cell therapy. Methods First, we studied 32 primary CLL samples composed of 26 immunoglobulin heavy-chain gene variable (IGHV)-unmutated (9 ATM-mutated, 8 TP53-mutated, and 9 without mutations in ATM, TP53, NOTCH1 or SF3B1) and 6 IGHV-mutated samples without mutations in the above-mentioned genes. Then, we mimicked the leukemic microenvironment in the primary cells by ‘2S stimulation’ through interleukin-2 and nuclear factor kappa B. Finally, CRISPR/Cas9-generated ATM-knockout and TP53-knockout clones (four and seven, respectively) from CLL-derived cell lines MEC1 and HG3 were used. All these samples were exposed to CAR T cells. In vivo survival study in NSG mice using HG3 wild-type (WT), ATM-knockout or TP53-knockout cells was also performed. Results Primary unstimulated CLL cells were specifically eliminated after >24 hours of coculture with CAR T cells. ‘2S’ stimulated cells showed increased survival when exposed to CAR T cells compared with unstimulated ones, confirming the positive effect of this stimulation on CLL cells’ in vitro fitness. After 96 hours of coculture, there was no difference in survival among the genetic classes. Finally, CAR T cells were specifically activated in vitro in the presence of target knockout cell lines as shown by the production of interferon-γ when compared with control (CTRL) T cells (p=0.0020), but there was no difference in knockout cells’ survival. In vivo, CAR T cells prolonged the survival of mice injected with WT, TP53-knockout and ATM-knockout HG3 tumor cells as compared with CTRL T cells (p=0.0485, 0.0204 and <0.0001, respectively). When compared with ATM-knockout, TP53-knockout disease was associated with an earlier time of onset (p<0.0001), higher tumor burden (p=0.0002) and inefficient T-cell engraftment (p=0.0012). Conclusions While in vitro no differences in survival of CLL cells of various genetic backgrounds were observed, CAR T cells showed a different effectiveness at eradicating tumor cells in vivo depending on the driver mutation. Early disease onset, high-tumor burden and inefficient T-cell engraftment, associated with TP53-knockout tumors in our experimental setting, ultimately led to inferior performance of CAR T cells.
Collapse
Affiliation(s)
- Veronika Mancikova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic .,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Helena Peschelova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Veronika Kozlova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aneta Ledererova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Adriana Ladungova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Verner
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Loja
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Frantisek Folber
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Smida
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic .,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
33
|
Venetoclax-resistant CLL cells show a highly activated and proliferative phenotype. Cancer Immunol Immunother 2021; 71:979-987. [PMID: 34467417 DOI: 10.1007/s00262-021-03043-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Venetoclax treatment has demonstrated efficacy and a safety profile in chronic lymphocytic leukemia (CLL) patients, however the emergence of resistant cells is a current complication. We and others, previously reported that the activation of CLL cells by signals that mimic microenvironment stimuli favors the upregulation of anti-apoptotic proteins from B cell lymphoma-2 (BCL-2) family that are not targeted by venetoclax, reducing malignant cell sensitivity to the drug. We here studied venetoclax-resistant CLL cells generated in vitro by autologous activated T lymphocytes, and found that they showed an aggressive phenotype characterized by increased expression of activation and proliferation markers. Moreover, surviving cells expressed high levels of B cell lymphoma-extra-large (BCL-XL) and/or myeloid cell leukemia-1 (MCL-1), and a sustained resistance to a second treatment with the drug. Interestingly, the spleen tyrosine kinase (SYK) inhibitor entospletinib, and the phosphoinositide 3-kinase delta (PI3Kδ) inhibitor idelalisib, reduced T cell activation, impaired the generation of leukemic cells with this aggressive phenotype, and were able to restore CLL sensitivity to venetoclax. Our data highlight a novel combination to overcome resistance to venetoclax in CLL.
Collapse
|
34
|
He Z, Charleton C, Devine RW, Kelada M, Walsh JMD, Conway GE, Gunes S, Mondala JRM, Tian F, Tiwari B, Kinsella GK, Malone R, O'Shea D, Devereux M, Wang W, Cullen PJ, Stephens JC, Curtin JF. Enhanced pyrazolopyrimidinones cytotoxicity against glioblastoma cells activated by ROS-Generating cold atmospheric plasma. Eur J Med Chem 2021; 224:113736. [PMID: 34384944 DOI: 10.1016/j.ejmech.2021.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
Pyrazolopyrimidinones are fused nitrogen-containing heterocyclic systems, which act as a core scaffold in many pharmaceutically relevant compounds. Pyrazolopyrimidinones have been demonstrated to be efficient in treating several diseases, including cystic fibrosis, obesity, viral infection and cancer. In this study using glioblastoma U-251MG cell line, we tested the cytotoxic effects of 15 pyrazolopyrimidinones, synthesised via a two-step process, in combination with cold atmospheric plasma (CAP). CAP is an adjustable source of reactive oxygen and nitrogen species as well as other unique chemical and physical effects which has been successfully tested as an innovative cancer therapy in clinical trials. Significantly variable cytotoxicity was observed with IC50 values ranging from around 11 μM to negligible toxicity among tested compounds. Interestingly, two pyrazolopyrimidinones were identified that act in a prodrug fashion and display around 5-15 times enhanced reactive-species dependent cytotoxicity when combined with cold atmospheric plasma. Activation was evident for direct CAP treatment on U-251MG cells loaded with the pyrazolopyrimidinone and indirect CAP treatment of the pyrazolopyrimidinone in media before adding to cells. Our results demonstrated the potential of CAP combined with pyrazolopyrimidinones as a programmable cytotoxic therapy and provide screened scaffolds that can be used for further development of pyrazolopyrimidinone prodrug derivatives.
Collapse
Affiliation(s)
- Zhonglei He
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland; Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Clara Charleton
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Robert W Devine
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mark Kelada
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John M D Walsh
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gillian E Conway
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland; In-Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, United Kingdom
| | - Sebnem Gunes
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Julie Rose Mae Mondala
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Furong Tian
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Brijesh Tiwari
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Gemma K Kinsella
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Renee Malone
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Denis O'Shea
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Michael Devereux
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Australia
| | - John C Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James F Curtin
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
35
|
Karunanithi S, Liu R, Hou Y, Gonzalez G, Oldford N, Roe AJ, Idipilly N, Gupta K, Amara CS, Putluri S, Lee GK, Valentin-Goyco J, Stetson L, Moreton SA, Putluri V, Kavuri SM, Saunthararajah Y, de Lima M, Tochtrop GP, Putluri N, Wald DN. Thioredoxin reductase is a major regulator of metabolism in leukemia cells. Oncogene 2021; 40:5236-5246. [PMID: 34239044 PMCID: PMC8380733 DOI: 10.1038/s41388-021-01924-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Despite the fact that AML is the most common acute leukemia in adults, patient outcomes are poor necessitating the development of novel therapies. We identified that inhibition of Thioredoxin Reductase (TrxR) is a promising strategy for AML and report a highly potent and specific inhibitor of TrxR, S-250. Both pharmacologic and genetic inhibition of TrxR impairs the growth of human AML in mouse models. We found that TrxR inhibition leads to a rapid and marked impairment of metabolism in leukemic cells subsequently leading to cell death. TrxR was found to be a major and direct regulator of metabolism in AML cells through impacts on both glycolysis and the TCA cycle. Studies revealed that TrxR directly regulates GAPDH leading to a disruption of glycolysis and an increase in flux through the pentose phosphate pathway (PPP). The combined inhibition of TrxR and the PPP led to enhanced leukemia growth inhibition. Overall, TrxR abrogation, particularly with S-250, was identified as a promising strategy to disrupt AML metabolism.
Collapse
Affiliation(s)
- Sheelarani Karunanithi
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- CuronBiotech Inc, Cleveland, OH, USA
| | - Ruifu Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Giancarlo Gonzalez
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Natasha Oldford
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Anne Jessica Roe
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- CuronBiotech Inc, Cleveland, OH, USA
| | - Nethrie Idipilly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- CuronBiotech Inc, Cleveland, OH, USA
| | - Kalpana Gupta
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chandra Sekhar Amara
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Satwikreddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Grace Kyueun Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Juan Valentin-Goyco
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsay Stetson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Vasanta Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marcos de Lima
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
- CuronBiotech Inc, Cleveland, OH, USA.
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
36
|
Bernard R, Fazili I, Rajagopala SV, Das SR, Hiremath G. Association between Oral Microbiome and Esophageal Diseases: A State-of-the-Art Review. Dig Dis 2021; 40:345-354. [PMID: 34315165 PMCID: PMC9036863 DOI: 10.1159/000517736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Esophageal conditions result in significant morbidity and mortality worldwide. There is growing enthusiasm for discerning the role of microbiome in esophageal diseases. Conceivably, the focus has been on examining the role of local microbiome in esophageal diseases although this is somewhat limited by the invasive approach required to sample the esophageal tissue. Given the ease of sampling the oral cavity combined with the advances in genomic techniques, there is immense interest in discovering the role of the oral microbiome in esophageal conditions. SUMMARY In this review, we aim to discuss the current evidence highlighting the association between the oral microbiome and esophageal diseases. In particular, we have focused on summarizing the alterations in oral microbiome associated with malignant, premalignant, and benign esophageal cancers, inflammatory and infectious conditions, and esophageal dysmotility diseases. Identifying alterations in the oral microbiome is a key to advancing our understanding of the etiopathogenesis and progression of esophageal diseases, promoting novel diagnostics, and laying the foundation for personalized treatment approaches. KEY MESSAGES Further studies are needed to unravel the mechanisms by which the oral microbiome influences the development and progression of esophageal diseases, as well as to investigate whether alterations in the oral microbiome can impact the natural history of various esophageal diseases.
Collapse
Affiliation(s)
- Rachel Bernard
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carrell Jr Vanderbilt Children's Hospital, Nashville, Tennessee, USA
| | - Irtiqa Fazili
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Seesandra V Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suman R Das
- Department of Otolaryngology and Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Girish Hiremath
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carrell Jr Vanderbilt Children's Hospital, Nashville, Tennessee, USA
| |
Collapse
|
37
|
Vereertbrugghen A, Colado A, Gargiulo E, Bezares RF, Fernández Grecco H, Cordini G, Custidiano MDR, François JH, Berchem G, Borge M, Paggetti J, Moussay E, Gamberale R, Giordano M, Morande PE. In Vitro Sensitivity to Venetoclax and Microenvironment Protection in Hairy Cell Leukemia. Front Oncol 2021; 11:598319. [PMID: 34381700 PMCID: PMC8350736 DOI: 10.3389/fonc.2021.598319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Current standard treatment of patients with hairy cell leukemia (HCL), a chronic B-cell neoplasia of low incidence that affects the elderly, is based on the administration of purine analogs such as cladribine. This chemotherapy approach shows satisfactory responses, but the disease relapses, often repeatedly. Venetoclax (ABT-199) is a Bcl-2 inhibitor currently approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) in adult patients ineligible for intensive chemotherapy. Given that HCL cells express Bcl-2, our aim was to evaluate venetoclax as a potential therapy for HCL. We found that clinically relevant concentrations of venetoclax (0.1 and 1 µM) induced primary HCL cell apoptosis in vitro as measured by flow cytometry using Annexin V staining. As microenvironment induces resistance to venetoclax in CLL, we also evaluated its effect in HCL by testing the following stimuli: activated T lymphocytes, stromal cells, TLR-9 agonist CpG, and TLR-2 agonist PAM3. We found decreased levels of venetoclax-induced cytotoxicity in HCL cells exposed for 48 h to any of these stimuli, suggesting that leukemic B cells from HCL patients are sensitive to venetoclax, but this sensitivity can be overcome by signals from the microenvironment. We propose that the combination of venetoclax with drugs that target the microenvironment might improve its efficacy in HCL.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Ana Colado
- Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Ernesto Gargiulo
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | | | - Gregorio Cordini
- Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Jean-Hugues François
- Laboratory of Hematology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Guy Berchem
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Hemato-Oncology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Mercedes Borge
- Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Romina Gamberale
- Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirta Giordano
- Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Elías Morande
- Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
38
|
Venetoclax-based salvage therapy followed by Venetoclax and DLI maintenance vs. FLAG-Ida for relapsed or refractory acute myeloid leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant 2021; 56:2804-2812. [PMID: 34274954 DOI: 10.1038/s41409-021-01416-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022]
Abstract
We retrospectively compared the outcomes of 20 patients receiving Venetoclax + low-dose Cytarabine + Actinomycin D (ACTIVE) with 29 patients receiving FLAG-Ida as salvage therapy for relapsed or refractory AML (R/R AML) after alloSCT. The groups were statistically balanced according to age, performance status, cytogenetics, and previous treatment. The overall response rate (CR + CRp + MLFS) of ACTIVE was 75% (15/20) in comparison to 66% (19/29) in the FLAG-Ida group (p = 0.542). The cumulative CR + CRp rate was significantly higher in the ACTIVE group compared to FLAG-Ida (70% (14/20) vs. 34% (10/29), respectively, p = 0.02). All three patients failing previous Venetoclax therapy and five out of seven patients with previous FLAG-Ida exposure achieved a CR/CRp after ACTIVE induction. ACTIVE patients survived longer compared to FLAG-Ida patients (13.1 vs. 5.1 months, respectively, p = 0.032). The treatment-related mortality was 0% in the ACTIVE group and 34% (10/29) in the FLAG-Ida patients (p = 0.003). The cumulative incidence of relapse did not differ between the two treatment groups. ACTIVE appears to have comparable antileukemic activity and lower toxicity compared to FLAG-Ida resulting in improved survival. Patients with Venetoclax or FLAG-Ida exposure responded to ACTIVE.
Collapse
|
39
|
Overcoming of Microenvironment Protection on Primary Chronic Lymphocytic Leukemia Cells after Treatment with BTK and MDM2 Pharmacological Inhibitors. ACTA ACUST UNITED AC 2021; 28:2439-2451. [PMID: 34287267 PMCID: PMC8293193 DOI: 10.3390/curroncol28040223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022]
Abstract
In B-chronic lymphocytic leukemia (B-CLL), the interaction between leukemic cells and the microenvironment promotes tumor cell survival. The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib is one of the first-in-class molecules for the treatment of B-CLL patients; however, the emerging mechanisms of resistance to ibrutinib call for new therapeutic strategies. The purpose of the current study was to investigate the ability of ibrutinib plus the MDM2-inhibitor nutlin-3 to counteract the tumor microenvironment protective effect. We observed that primary B-CLL cells cultivated in microenvironment mimicking conditions were protected from apoptosis by the up-regulation of c-MYC and of p53. In the same setting, combined treatments with ibrutinib plus nutlin-3 led to significantly higher levels of apoptosis compared to the single treatments, counteracting the c-MYC up-regulation. Moreover, the combination induced high p53 levels and a significant dissipation of the mitochondrial membrane potential, together with BAX cleavage in the more active p18 form and phospho-BAD down-regulation, that are key components of the mitochondrial apoptotic pathway, enhancing the apoptosis level. Our findings propose a new therapeutic strategy to overcome the tumor microenvironment protection involved in B-CLL resistance to drugs, with possible clinical implications also for other hematologic and solid tumors for which ibrutinib is considered a therapeutic option.
Collapse
|
40
|
Salah HT, DiNardo CD, Konopleva M, Khoury JD. Potential Biomarkers for Treatment Response to the BCL-2 Inhibitor Venetoclax: State of the Art and Future Directions. Cancers (Basel) 2021; 13:2974. [PMID: 34198580 PMCID: PMC8231978 DOI: 10.3390/cancers13122974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022] Open
Abstract
Intrinsic apoptotic pathway dysregulation plays an essential role in all cancers, particularly hematologic malignancies. This role has led to the development of multiple therapeutic agents targeting this pathway. Venetoclax is a selective BCL-2 inhibitor that has been approved for the treatment of chronic lymphoid leukemia and acute myeloid leukemia. Given the reported resistance to venetoclax, understanding the mechanisms of resistance and the potential biomarkers of response is crucial to ensure optimal drug usage and improved patient outcomes. Mechanisms of resistance to venetoclax include alterations involving the BH3-binding groove, BCL2 gene mutations affecting venetoclax binding, and activation of alternative anti-apoptotic pathways. Moreover, various potential genetic biomarkers of venetoclax resistance have been proposed, including chromosome 17p deletion, trisomy 12, and TP53 loss or mutation. This manuscript provides an overview of biomarkers that could predict treatment response to venetoclax.
Collapse
Affiliation(s)
- Haneen T. Salah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.D.D.); (M.K.)
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.D.D.); (M.K.)
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
41
|
Haselager M, Thijssen R, West C, Young L, Van Kampen R, Willmore E, Mackay S, Kater A, Eldering E. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ 2021; 28:1658-1668. [PMID: 33495554 PMCID: PMC8167103 DOI: 10.1038/s41418-020-00692-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), the lymph node (LN) microenvironment delivers critical survival signals by inducing the expression of anti-apoptotic Bcl-2 members Bcl-XL, Bfl-1, and Mcl-1, resulting in apoptosis blockade. We determined previously that resistance against various drugs, among which is the clinically applied BH3 mimetic venetoclax, is dominated by upregulation of the anti-apoptotic regulator Bcl-XL. Direct clinical targeting of Bcl-XL by, e.g., Navitoclax is however not desirable due to induction of thrombocytopenia. Since the actual regulation of Bcl-XL in CLL in the context of the LN microenvironment is not well elucidated, we investigated various candidate LN signals to drive Bcl-XL expression. We found a dominance for NF-κB signaling upon CD40 stimulation, which results in activation of both the canonical and non-canonical NF-κB signaling pathways. We demonstrate that expression of Bcl-XL is first induced by the canonical NF-κB pathway, and subsequently boosted and continued via non-canonical NF-κB signaling through stabilization of NIK. NF-κB subunits p65 and p52 can both bind to the Bcl-XL promoter and activate transcription upon CD40 stimulation. Moreover, canonical NF-κB signaling was correlated with Bfl-1 expression, whereas Mcl-1 in contrast, was not transcriptionally regulated by NF-κB. Finally, we applied a novel compound targeting NIK to selectively inhibit the non-canonical NF-κB pathway and showed that venetoclax-resistant CLL cells were sensitized to venetoclax. In conclusion, protective signals from the CLL microenvironment can be tipped towards apoptosis sensitivity by interfering with non-canonical NF-κB signaling.
Collapse
Affiliation(s)
- Marco Haselager
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| | - Rachel Thijssen
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Christopher West
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Louise Young
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Roel Van Kampen
- grid.416905.fZuyderland Medical Center, Sittard, The Netherlands
| | - Elaine Willmore
- grid.1006.70000 0001 0462 7212Drug Discovery Unit, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Mackay
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnon Kater
- grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Mergenthaler P, Hariharan S, Pemberton JM, Lourenco C, Penn LZ, Andrews DW. Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning. PLoS Comput Biol 2021; 17:e1008630. [PMID: 33617523 PMCID: PMC7932518 DOI: 10.1371/journal.pcbi.1008630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/04/2021] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Phenotypic profiling of large three-dimensional microscopy data sets has not been widely adopted due to the challenges posed by cell segmentation and feature selection. The computational demands of automated processing further limit analysis of hard-to-segment images such as of neurons and organoids. Here we describe a comprehensive shallow-learning framework for automated quantitative phenotyping of three-dimensional (3D) image data using unsupervised data-driven voxel-based feature learning, which enables computationally facile classification, clustering and advanced data visualization. We demonstrate the analysis potential on complex 3D images by investigating the phenotypic alterations of: neurons in response to apoptosis-inducing treatments and morphogenesis for oncogene-expressing human mammary gland acinar organoids. Our novel implementation of image analysis algorithms called Phindr3D allowed rapid implementation of data-driven voxel-based feature learning into 3D high content analysis (HCA) operations and constitutes a major practical advance as the computed assignments represent the biology while preserving the heterogeneity of the underlying data. Phindr3D is provided as Matlab code and as a stand-alone program (https://github.com/DWALab/Phindr3D). Fluorescence microscopy is a fundamental technology for cell biology. However, unbiased quantitative phenotypic analysis of microscopy images of cells grown in 3D organoids or in dense culture conditions in large enough numbers to reach statistical clarity remains a fundamental challenge. Here, we report that using data-driven voxel-based features and machine learning it is possible to analyze complex 3D image data without compressing them to 2D, identifying individual cells or using computationally intensive deep learning techniques. Further, we present methods for analyzing this data by classification or clustering. Together these techniques provide the means for facile discovery and interpretation of meaningful patterns in a high dimensional feature space without complex image processing and prior knowledge or assumptions about the feature space. Our method enables novel opportunities for rapid large-scale multivariate phenotypic microscopy image analysis in 3D using a standard desktop computer.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Charité — Universitätsmedizin Berlin, Department of Experimental Neurology, Department of Neurology, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- * E-mail: (PM); (DWA)
| | - Santosh Hariharan
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James M. Pemberton
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z. Penn
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David W. Andrews
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PM); (DWA)
| |
Collapse
|
43
|
Fatima N, Shen Y, Crassini K, Iwanowicz EJ, Lang H, Karanewsky DS, Christopherson RI, Mulligan SP, Best OG. The ClpP activator ONC-212 (TR-31) inhibits BCL2 and B-cell receptor signaling in CLL. EJHAEM 2021; 2:81-93. [PMID: 35846080 PMCID: PMC9175891 DOI: 10.1002/jha2.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Despite advances in therapy, a significant proportion of patients with chronic lymphocytic leukemia (CLL) relapse with drug resistant disease. Novel treatment approaches are required, particularly for high risk disease. The imipridones represent a new class of cancer therapy that has been investigated in pre-clinical and clinical trials against a range of different cancers. We investigated the effects of the imipridone, ONC-212, against CLL cells cultured under conditions that mimic aspects of the tumour microenvironment and a TP53ko CLL cell line (OSU-CLL-TP53ko). ONC-212 induced dose-dependent apoptosis, cell cycle arrest and reduced the migration of CLL cells in vitro, including cells from patients with TP53 lesions and OSU-CLL-TP53ko cells. The effects of ONC-212 were associated with protein changes consistent with activation of the mitochondrial protease, CIpP, and the integrated stress response. We also observed inhibition of pathways downstream of the B-cell receptor (BCR) (AKT and MAPK-ERK1/2) and a pro-apoptotic shift in the balance of proteins of the BCL2 family of proteins (BCL2, MCL1, BCLxL, BAX and NOXA). In conclusion, the study suggests ONC-212 may represent an effective treatment for high risk CLL disease by inhibiting multiple facets of the BCR signaling pathway and the pro-survival effects of the BCL2-family proteins.
Collapse
Affiliation(s)
- Narjis Fatima
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Yandong Shen
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Kyle Crassini
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
| | | | - Henk Lang
- Madera TherapeuticsLLCCaryNorth Carolina
| | | | | | - Stephen P. Mulligan
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Oliver G. Best
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
- Department of Molecular Medicine and GeneticsFlinders Health and Medical Research Institute (FHMRI)College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| |
Collapse
|
44
|
Xia M, Luo TY, Shi Y, Wang G, Tsui H, Harari D, Spaner DE. Effect of Ibrutinib on the IFN Response of Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2629-2639. [PMID: 33067379 DOI: 10.4049/jimmunol.2000478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023]
Abstract
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has profound activity in chronic lymphocytic leukemia (CLL) but limited curative potential by itself. Residual signaling pathways that maintain survival of CLL cells might be targeted to improve ibrutinib's therapeutic activity, but the nature of these pathways is unclear. Ongoing activation of IFN receptors in patients on ibrutinib was suggested by the presence of type I and II IFN in blood together with the cycling behavior of IFN-stimulated gene (ISG) products when IFN signaling was blocked intermittently with the JAK inhibitor ruxolitinib. IFN signaling in CLL cells from human patients was not prevented by ibrutinib in vitro or in vivo, but ISG expression was significantly attenuated in vitro. ISGs such as CXCL10 that require concomitant activation of NF-κB were decreased when this pathway was inhibited by ibrutinib. Other ISGs, exemplified by LAG3, were decreased as a result of inhibited protein translation. Effects of IFN on survival remained intact as type I and II IFN-protected CLL cells from ibrutinib in vitro, which could be prevented by ruxolitinib and IFNR blocking Abs. These observations suggest that IFNs may help CLL cells persist and specific targeting of IFN signaling might deepen clinical responses of patients on ibrutinib.
Collapse
Affiliation(s)
- Meihui Xia
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.,Department of Gynecology and Obstetrics, First Hospital, Jilin University, 130021 Changchun, Jilin, China.,Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, 130021 Changchun, Jilin, China
| | - Tina Yuxuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Hematopathology, Sunnybrook Health Sciences Center, Toronto, Ontario M4C 3E7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada; and.,Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
45
|
Lin VS, Xu ZF, Huang DCS, Thijssen R. BH3 Mimetics for the Treatment of B-Cell Malignancies-Insights and Lessons from the Clinic. Cancers (Basel) 2020; 12:cancers12113353. [PMID: 33198338 PMCID: PMC7696913 DOI: 10.3390/cancers12113353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary B-cell malignancies, including chronic lymphocytic leukemia (CLL), non-Hodgkin lymphoma (NHL), and plasma cell dyscrasias, are significant contributors to cancer morbidity and mortality worldwide. The pathogenesis of many B-cell malignancies involves perturbations in the intrinsic pathway of apoptosis that allow cells to evade cell death. BH3 mimetics represent a class of anti-cancer agents that can restore the ability of cancer cells to undergo apoptosis. Venetoclax, a recently approved BH3 mimetic, has transformed the therapeutic landscape for CLL. Other BH3 mimetics are currently under development. This review summarizes the available data on existing BH3 mimetics and highlights both the rapidly expanding role of BH3 mimetics in the treatment of B-cell malignancies and the clinical challenges of their use. Abstract The discovery of the link between defective apoptotic regulation and cancer cell survival engendered the idea of targeting aberrant components of the apoptotic machinery for cancer therapy. The intrinsic pathway of apoptosis is tightly controlled by interactions amongst members of three distinct subgroups of the B-cell lymphoma 2 (BCL2) family of proteins. The pro-survival BCL2 proteins prevent apoptosis by keeping the pro-apoptotic effector proteins BCL2-associated X protein (BAX) and BCL2 homologous antagonist/killer (BAK) in check, while the BH3-only proteins initiate apoptosis by either neutralizing the pro-survival BCL2 proteins or directly activating the pro-apoptotic effector proteins. This tripartite regulatory mechanism is commonly perturbed in B-cell malignancies facilitating cell death evasion. Over the past two decades, structure-based drug discovery has resulted in the development of a series of small molecules that mimic the function of BH3-only proteins called the BH3 mimetics. The most clinically advanced of these is venetoclax, which is a highly selective inhibitor of BCL2 that has transformed the treatment landscape for chronic lymphocytic leukemia (CLL). Other BH3 mimetics, which selectively target myeloid cell leukemia 1 (MCL1) and B-cell lymphoma extra large (BCLxL), are currently under investigation for use in diverse malignancies. Here, we review the current role of BH3 mimetics in the treatment of CLL and other B-cell malignancies and address open questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Victor S. Lin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 3000 Melbourne, Australia
| | - Zhuo-Fan Xu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- School of Medicine, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Department of Medical Biology, University of Melbourne, 3000 Melbourne, Australia
| | - Rachel Thijssen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Department of Medical Biology, University of Melbourne, 3000 Melbourne, Australia
- Correspondence:
| |
Collapse
|
46
|
Yue X, Chen Q, He J. Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Cancer Cell Int 2020; 20:524. [PMID: 33292251 PMCID: PMC7597043 DOI: 10.1186/s12935-020-01614-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Venetoclax has been approved by the United States Food and Drug Administration since 2016 as a monotherapy for treating patients with relapsed/refractory chronic lymphocytic leukemia having 17p deletion. It has led to a breakthrough in the treatment of hematologic malignancies in recent years. However, unfortunately, resistance to venetoclax is inevitable. Multiple studies confirmed that the upregulation of the anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family mediated by various mechanisms, such as tumor microenvironment, and the activation of intracellular signaling pathways were the major factors leading to resistance to venetoclax. Therefore, only targeting BCL2 often fails to achieve the expected therapeutic effect. Based on the mechanism of resistance in specific hematologic malignancies, the combination of specific drugs with venetoclax was a clinically optional treatment strategy for overcoming resistance to venetoclax. This study aimed to summarize the possible resistance mechanisms of various hematologic tumors to venetoclax and the corresponding clinical strategies to overcome resistance to venetoclax in hematologic malignancies.
Collapse
Affiliation(s)
- XiaoYan Yue
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China
| | - JingSong He
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
SOHO State of the Art Updates and Next Questions: Clonal Evolution in Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:779-784. [PMID: 33039357 DOI: 10.1016/j.clml.2020.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an indolent disease with a long-lasting clinical course, with indication for treatment only when symptomatic. Its clinical heterogeneity is widely reported, with some patients requiring treatment soon after diagnosis because of development of cytopenia or bulky lymphadenopathy, and others showing a stable or a slowly progressive disease not requiring treatment for decades. Longitudinal sampling of peripheral blood, with accessible tumor cells and circulating tumor DNA, enabled the analysis of disease growing dynamics and the characterization of clonal evolution. Here we describe the main known features of CLL genomics and its shaping upon treatment, which can lead to progression, treatment refractoriness, or transformation into an aggressive lymphoma.
Collapse
|
48
|
Zou HS, Yi SH, Qiu LG. [Resistance mechanisms and treatment strategies of Venetoclax in chronic lymphocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:783-787. [PMID: 33113617 PMCID: PMC7595867 DOI: 10.3760/cma.j.issn.0253-2727.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 11/17/2022]
Affiliation(s)
- H S Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S H Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L G Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
49
|
Serrat N, Guerrero-Hernández M, Matas-Céspedes A, Yahiaoui A, Valero JG, Nadeu F, Clot G, Di Re M, Corbera-Bellalta M, Magnano L, Rivas-Delgado A, Enjuanes A, Beà S, Cid MC, Campo E, Montero J, Hodson DJ, López-Guillermo A, Colomer D, Tannheimer S, Pérez-Galán P. PI3Kδ inhibition reshapes follicular lymphoma-immune microenvironment cross talk and unleashes the activity of venetoclax. Blood Adv 2020; 4:4217-4231. [PMID: 32898249 PMCID: PMC7479943 DOI: 10.1182/bloodadvances.2020001584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Despite idelalisib approval in relapsed follicular lymphoma (FL), a complete characterization of the immunomodulatory consequences of phosphatidylinositol 3-kinase δ (PI3Kδ) inhibition, biomarkers of response, and potential combinatorial therapies in FL remain to be established. Using ex vivo cocultures of FL patient biopsies and follicular dendritic cells (FDCs) to mimic the germinal center (n = 42), we uncovered that PI3Kδ inhibition interferes with FDC-induced genes related to angiogenesis, extracellular matrix formation, and transendothelial migration in a subset of FL samples, defining an 18-gene signature fingerprint of idelalisib sensitivity. A common hallmark of idelalisib found in all FL cases was its interference with the CD40/CD40L pathway and induced proliferation, together with the downregulation of proteins crucial for B-T-cell synapses, leading to an inefficient cross talk between FL cells and the supportive T-follicular helper cells (TFH). Moreover, idelalisib downmodulates the chemokine CCL22, hampering the recruitment of TFH and immunosupressive T-regulatory cells to the FL niche, leading to a less supportive and tolerogenic immune microenvironment. Finally, using BH3 profiling, we uncovered that FL-FDC and FL-macrophage cocultures augment tumor addiction to BCL-XL and MCL-1 or BFL-1, respectively, limiting the cytotoxic activity of the BCL-2 inhibitor venetoclax. Idelalisib restored FL dependence on BCL-2 and venetoclax activity. In summary, idelalisib exhibits a patient-dependent activity toward angiogenesis and lymphoma dissemination. In all FL cases, idelalisib exerts a general reshaping of the FL immune microenvironment and restores dependence on BCL-2, predisposing FL to cell death, providing a mechanistic rationale for investigating the combination of PI3Kδ inhibitors and venetoclax in clinical trials.
Collapse
Affiliation(s)
- Neus Serrat
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Martina Guerrero-Hernández
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Matas-Céspedes
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Anella Yahiaoui
- Department of Biomarker Sciences, Gilead Sciences, Inc., Seattle, WA
| | - Juan G Valero
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Ferran Nadeu
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Guillem Clot
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Miriam Di Re
- Department of Haematology, Wellcome Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Marc Corbera-Bellalta
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Laura Magnano
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Alfredo Rivas-Delgado
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Anna Enjuanes
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Silvia Beà
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| | - Maria C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Elías Campo
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona, Spain; and
| | - Joan Montero
- Department of Nanobioengineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel J Hodson
- Department of Haematology, Wellcome Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Armando López-Guillermo
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Department of Hematology and
| | - Dolors Colomer
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
- Hematopathology Unit, Department of Pathology, Hospital Clínic-IDIBAPS, Barcelona, Spain; and
| | - Stacey Tannheimer
- Department of Biomarker Sciences, Gilead Sciences, Inc., Seattle, WA
| | - Patricia Pérez-Galán
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología, Madrid, Spain
| |
Collapse
|
50
|
Abstract
Agents that specifically target pathologic mechanisms of survival have now been approved for the treatment of chronic lymphocytic leukemia in both the treatment-naive and relapsed/refractory settings. These 4 agents include the Bruton tyrosine kinase inhibitor ibrutinib, the B-cell leukemia/lymphoma-2 inhibitor venetoclax, and the phosphatidylinositol-3 kinase inhibitors idelalisib and duvelisib. Although clinical outcomes are improved with all of these inhibitors, acquired resistance does occur and leads to progression of disease. Resistance to targeted therapy can occur through direct mutations of the target or through the overexpression of alternative cell survival pathways not affected by the specific inhibitor. Determining which patients will develop resistance, why resistance occurs, how to overcome resistance, and when to test for resistance are all subjects of ongoing research. In this review, we describe the current data relative to the development of resistance to targeted therapies in CLL.
Collapse
|