1
|
Polverelli N, Hernández-Boluda JC, Gagelmann N, Gurnari C, Malagola M, Duarte FB, Funke VAM, Zerbi C, McLornan DP. Navigating 'grey areas' and challenges during evaluation of transplant eligibility in specific myelofibrosis populations: a perspective on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant 2025; 60:10-18. [PMID: 39402189 DOI: 10.1038/s41409-024-02437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 01/12/2025]
Abstract
Significant efforts have been made to effectively select myelofibrosis (MF) patients who can benefit from allogeneic hematopoietic cell transplantation (allo-HCT), the only current cure for MF. The recent EBMT/ELN 2024 recommendations offer valuable guidance for hematologists and transplant physicians. However, several grey areas remain in day-to-day clinical practice regarding the feasibility and optimal preparation for transplantation in patients with this disease. Effective spleen size reduction, often achieved with JAK inhibitors, appears crucial for transplant success. For resistant cases, switching JAK inhibitors, splenectomy, or spleen irradiation may be considered, taking into account patient profiles, treatment availability and center preferences. Managing splanchnic vein thromboses, portal, and pulmonary hypertension is critical as these conditions may affect transplant outcomes. Cytopenias, particularly transfusion-dependent anemia and thrombocytopenia, complicate treatment and impact on outcomes, though new drugs show promise. Comorbidities play a significant role and tools like the Hematopoietic Cell Transplantation-Comorbidity Index (HCT-CI) and frailty assessments are useful for evaluating transplant risks while allowing the implementation of corrective measures. Especially in low- and medium-income countries where access to novel therapies may be challenging, allo-HCT still represents an attractive therapeutic option for MF. Future directions include integrating new therapeutics into the transplant algorithm and leveraging artificial intelligence for more informed risk assessment, highlighting the need for tailored approaches to improve allo-HCT outcomes in such a setting.
Collapse
Affiliation(s)
- Nicola Polverelli
- Unit of Bone Marrow Transplantation and Cellular Therapies - Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | | | - Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Michele Malagola
- Chair of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Unit of Blood Disease and Stem Cell Transplantation, ASST Spedali Civili, Brescia, Italy
| | | | - Vaneuza A M Funke
- Blood and Marrow Transplantation Programme, Hospital de Clínicas, Federal University of Parana, Curitiba, Paraná, Brazil
- Hospital Nossa Senhora das Graças, Curitiba, Brazil
| | - Caterina Zerbi
- Unit of Bone Marrow Transplantation and Cellular Therapies - Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Donal P McLornan
- Department of Haematology and Stem Cell transplantation, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
2
|
Rippel N, Kremyanskaya M. Recent advances in JAK2 inhibition for the treatment of myelofibrosis. Expert Opin Pharmacother 2024; 25:1175-1186. [PMID: 38919983 DOI: 10.1080/14656566.2024.2372453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Myelofibrosis (MF) is a BCR-ABL-negative myeloproliferative neoplasm characterized by splenomegaly, constitutional symptoms, cytopenias, a potential for leukemic transformation, and increased mortality. Patients who are ineligible for stem cell transplant rely on pharmacologic therapies of noncurative intent, whose cornerstone consists of JAK inhibitors (JAKi). While current JAKi are efficacious in controlling symptoms and splenic volume, none meaningfully reduce clonal burden nor halt disease progression, and patients oftentimes develop JAKi intolerant, relapsed, or refractory MF. As such, there remains an urgent necessity for second-line options and novel therapies with disease-modifying properties. AREAS COVERED In this review, we delineate the mechanistic rationale, along with the latest safety and efficacy data, of investigational JAKi-based MF treatment strategies, with a focus on JAKi monotherapies and combinations of novel agents with approved JAKi. Our literature search consisted of extensive review of PubMed and clinicaltrials.gov. EXPERT OPINION A myriad of promising MF-directed therapies are in late-phase studies. Following their approval, treatment selection should be tailored to patient-specific treatment goals and disease characteristics, with an emphasis on combination therapies of JAKi with novel agents of differing mechanistic targets that possess anti-clonal properties, in attempt to alter disease course and concurrently limit dose-dependent JAKi toxicities.
Collapse
Affiliation(s)
- Noa Rippel
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Kremyanskaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Wildschut MHE, Mena J, Dördelmann C, van Oostrum M, Hale BD, Settelmeier J, Festl Y, Lysenko V, Schürch PM, Ring A, Severin Y, Bader MS, Pedrioli PGA, Goetze S, van Drogen A, Balabanov S, Skoda RC, Lopes M, Wollscheid B, Theocharides APA, Snijder B. Proteogenetic drug response profiling elucidates targetable vulnerabilities of myelofibrosis. Nat Commun 2023; 14:6414. [PMID: 37828014 PMCID: PMC10570306 DOI: 10.1038/s41467-023-42101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Myelofibrosis is a hematopoietic stem cell disorder belonging to the myeloproliferative neoplasms. Myelofibrosis patients frequently carry driver mutations in either JAK2 or Calreticulin (CALR) and have limited therapeutic options. Here, we integrate ex vivo drug response and proteotype analyses across myelofibrosis patient cohorts to discover targetable vulnerabilities and associated therapeutic strategies. Drug sensitivities of mutated and progenitor cells were measured in patient blood using high-content imaging and single-cell deep learning-based analyses. Integration with matched molecular profiling revealed three targetable vulnerabilities. First, CALR mutations drive BET and HDAC inhibitor sensitivity, particularly in the absence of high Ras pathway protein levels. Second, an MCM complex-high proliferative signature corresponds to advanced disease and sensitivity to drugs targeting pro-survival signaling and DNA replication. Third, homozygous CALR mutations result in high endoplasmic reticulum (ER) stress, responding to ER stressors and unfolded protein response inhibition. Overall, our integrated analyses provide a molecularly motivated roadmap for individualized myelofibrosis patient treatment.
Collapse
Affiliation(s)
- Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cyril Dördelmann
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Settelmeier
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael S Bader
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Sandra Goetze
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Stefan Balabanov
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
4
|
Verstovsek S, Foltz L, Gupta V, Hasserjian R, Manshouri T, Mascarenhas J, Mesa R, Pozdnyakova O, Ritchie E, Veletic I, Gamel K, Hamidi H, Han L, Higgins B, Trunzer K, Uguen M, Wang D, El-Galaly TC, Todorov B, Gotlib J. Safety and efficacy of zinpentraxin alfa as monotherapy or in combination with ruxolitinib in myelofibrosis: stage I of a phase II trial. Haematologica 2023; 108:2730-2742. [PMID: 37165840 PMCID: PMC10543197 DOI: 10.3324/haematol.2022.282411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
Pentraxin 2 (PTX-2; serum amyloid P component), a circulating endogenous regulator of the inflammatory response to tissue injury and fibrosis, is reduced in patients with myelofibrosis (MF). Zinpentraxin alfa (RO7490677, PRM-151) is a recombinant form of PTX-2 that has shown preclinical antifibrotic activity and no dose-limiting toxicities in phase I trials. We report results from stage 1 of a phase II trial of zinpentraxin alfa in patients with intermediate-1/2 or high-risk MF. Patients (n=27) received intravenous zinpentraxin α weekly (QW) or every 4 weeks (Q4W), as monotherapy or an additional therapy for patients on stable-dose ruxolitinib. The primary endpoint was overall response rate (ORR; investigatorassessed) adapted from International Working Group-Myeloproliferative Neoplasms Research and Treatment criteria. Secondary endpoints included modified Myeloproliferative Neoplasm-Symptom Assessment Form Total Symptom Score (MPN-SAF TSS) change, bone marrow (BM) MF grade reduction, pharmacokinetics, and safety. ORR at week 24 was 33% (n=9/27) and varied across individual cohorts (QW: 38% [3/8]; Q4W: 14% [1/7]; QW+ruxolitinib: 33% [2/6]; Q4W+ruxolitinib: 50% [3/6]). Five of 18 evaluable patients (28%) experienced a ≥50% reduction in MPN-SAF TSS, and six of 17 evaluable patients (35%) had a ≥1 grade improvement from baseline in BM fibrosis at week 24. Most treatment-emergent adverse events (AE) were grade 1-2, most commonly fatigue. Among others, anemia and thrombocytopenia were infrequent (n=3 and n=1, respectively). Treatment-related serious AE occurred in four patients (15%). Overall, zinpentraxin alfa showed evidence of clinical activity and tolerable safety as monotherapy and in combination with ruxolitinib in this open-label, non-randomized trial (clinicaltrials gov. Identifier: NCT01981850).
Collapse
Affiliation(s)
- Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Lynda Foltz
- St Paul's Hospital, University of British Columbia, Vancouver
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University of Toronto, Toronto
| | | | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruben Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX
| | - Olga Pozdnyakova
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | - Dao Wang
- F. Hoffmann-La Roche, Ltd., Basel
| | - Tarec Christoffer El-Galaly
- F. Hoffmann-La Roche, Ltd., Basel, Switzerland; Current affiliation: Department of Hematology, Aalborg University Hospital, Aalborg
| | | | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
5
|
Harrison CN, Garcia JS, Somervaille TC, Foran JM, Verstovsek S, Jamieson C, Mesa R, Ritchie EK, Tantravahi SK, Vachhani P, O'Connell CL, Komrokji RS, Harb J, Hutti JE, Holes L, Masud AA, Nuthalapati S, Potluri J, Pemmaraju N. Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal Response: Phase II Safety and Efficacy. J Clin Oncol 2022; 40:1671-1680. [PMID: 35180010 PMCID: PMC9113204 DOI: 10.1200/jco.21.02188] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Targeting the BCL-XL pathway has demonstrated the ability to overcome Janus kinase inhibitor resistance in preclinical models. This phase II trial investigated the efficacy and safety of adding BCL-XL/BCL-2 inhibitor navitoclax to ruxolitinib therapy in patients with myelofibrosis with progression or suboptimal response to ruxolitinib monotherapy (ClinicalTrials.gov identifier: NCT03222609). METHODS Thirty-four adult patients with intermediate-/high-risk myelofibrosis who had progression or suboptimal response on stable ruxolitinib dose (≥ 10 mg twice daily) were administered navitoclax at 50 mg once daily starting dose, followed by escalation to a maximum of 300 mg once daily in once in weekly increments (if platelets were ≥ 75 × 109/L). The primary end point was ≥ 35% spleen volume reduction (SVR35) from baseline at week 24. Secondary end points included ≥ 50% reduction in total symptom score (TSS50) from baseline at week 24, hemoglobin improvement, change in bone marrow fibrosis (BMF) grade, and safety. RESULTS High molecular risk mutations were identified in 58% of patients, and 52% harbored ≥ 3 mutations. SVR35 was achieved by 26.5% of patients at week 24, and by 41%, at any time on study, with an estimated median duration of SVR35 of 13.8 months. TSS50 was achieved by 30% (6 of 20) of patients at week 24, and BMF improved by 1-2 grades in 33% (11 of 33) of evaluable patients. Anemia response was achieved by 64% (7 of 11), including one patient with baseline transfusion dependence. Median overall survival was not reached with a median follow-up of 21.6 months. The most common adverse event was reversible thrombocytopenia without clinically significant bleeding (88%). CONCLUSION The addition of navitoclax to ruxolitinib in patients with persistent or progressive myelofibrosis resulted in durable SVR35, improved TSS, hemoglobin response, and BMF. Further investigation is underway to qualify the potential for disease modification.
Collapse
Affiliation(s)
| | | | - Tim C.P. Somervaille
- The Christie NHS Foundation Trust, Manchester, United Kingdom
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | | | | | - Catriona Jamieson
- University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Ruben Mesa
- University of Texas Health San Antonio, San Antonio, TX
| | - Ellen K. Ritchie
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY
| | | | | | - Casey L. O'Connell
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Passamonti F, Heidel FH, Parikh RC, Ajmera M, Tang D, Nadal JA, Davis KL, Abraham P. Real-world clinical outcomes of patients with myelofibrosis treated with ruxolitinib: a medical record review. Future Oncol 2022; 18:2217-2231. [PMID: 35388710 DOI: 10.2217/fon-2021-1358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To assess real-world ruxolitinib treatment patterns and outcomes in patients diagnosed with primary or secondary myelofibrosis. Materials & methods: Patient medical records were reviewed in six countries. Results: Eligible patients (n = 469) had a mean age of 63.5 years, and most were male (66.5%) with primary myelofibrosis (78.5%). Median duration of ruxolitinib treatment was 13.1 months; 40% of patients initiated treatment at the recommended dose. The Kaplan-Meier estimate of median survival from ruxolitinib initiation was 44.4 months (95% CI, 38.8-50.2 months). Approximately one quarter (23%) of patients continued ruxolitinib after progression. Conclusion: These results suggest an unmet need for more effective treatments for patients with myelofibrosis who failed ruxolitinib.
Collapse
Affiliation(s)
| | - Florian H Heidel
- Internal Medicine C, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Rohan C Parikh
- Health Economics, RTI Health Solutions, Research Triangle Park, NC 27709, USA
| | - Mayank Ajmera
- Health Economics, RTI Health Solutions, Research Triangle Park, NC 27709, USA
| | - Derek Tang
- Hematology, Bristol Meyers Squibb, Lawrenceville, NJ 08648, USA
| | | | - Keith L Davis
- Health Economics, RTI Health Solutions, Research Triangle Park, NC 27709, USA
| | - Pranav Abraham
- Hematology, Bristol Meyers Squibb, Lawrenceville, NJ 08648, USA
| |
Collapse
|
7
|
Maffioli M, Mora B, Ball S, Iurlo A, Elli EM, Finazzi MC, Polverelli N, Rumi E, Caramella M, Carraro MC, D’Adda M, Molteni A, Sissa C, Lunghi F, Vismara A, Ubezio M, Guidetti A, Caberlon S, Anghilieri M, Komrokji R, Cattaneo D, Della Porta MG, Giorgino T, Bertù L, Brociner M, Kuykendall A, Passamonti F. A prognostic model to predict survival after 6 months of ruxolitinib in patients with myelofibrosis. Blood Adv 2022; 6:1855-1864. [PMID: 35130339 PMCID: PMC8941454 DOI: 10.1182/bloodadvances.2021006889] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Ruxolitinib (RUX) is extensively used in myelofibrosis (MF). Despite its early efficacy, most patients lose response over time and, after discontinuation, have a worse overall survival (OS). Currently, response criteria able to predict OS in RUX-treated patients are lacking, leading to uncertainty regarding the switch to second-line treatments. In this study, we investigated predictors of survival collected after 6 months of RUX in 209 MF patients participating in the real-world ambispective observational RUXOREL-MF study (NCT03959371). Multivariable analysis identified the following risk factors: (1) RUX dose <20 mg twice daily at baseline, months 3 and 6 (hazard ratio [HR], 1.79; 95% confidence interval [CI], 1.07-3.00; P = .03), (2) palpable spleen length reduction from baseline ≤30% at months 3 and 6 (HR, 2.26; 95% CI, 1.40-3.65; P = .0009), (3) red blood cell (RBC) transfusion need at months 3 and/or 6 (HR, 1.66; 95% CI, 0.95-2.88; P = .07), and (4) RBC transfusion need at all time points (ie, baseline and months 3 and 6; HR, 2.32; 95% CI, 1.19-4.54; P = .02). Hence, we developed a prognostic model, named Response to Ruxolitinib After 6 Months (RR6), dissecting 3 risk categories: low (median OS, not reached), intermediate (median OS, 61 months; 95% CI, 43-80), and high (median OS, 33 months; 95% CI, 21-50). The RR6 model was validated and confirmed in an external cohort comprised of 40 MF patients. In conclusion, the RR6 prognostic model allows for the early identification of RUX-treated MF patients with impaired survival who might benefit from a prompt treatment shift.
Collapse
Affiliation(s)
| | - Barbara Mora
- Hematology Unit, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi-Ospedale di Circolo, Varese, Italy
| | - Somedeb Ball
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Maria Elli
- Hematology Division and Bone Marrow Unit, Ospedale San Gerardo, ASST Monza e Brianza, Monza, Italy
| | | | - Nicola Polverelli
- Unit of Blood Diseases and Stem Cell Transplantation, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianna Caramella
- Department of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Mariella D’Adda
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Cinzia Sissa
- Department of Hematology and Transfusion Medicine, ASST Mantova, Mantova, Italy
| | - Francesca Lunghi
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Vismara
- Internal Medicine Department and Hematology Unit, ASST Rhodense, Rho (Milan), Italy
| | - Marta Ubezio
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Milan), Italy
| | - Anna Guidetti
- Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, University of Milan, Milan, Italy
| | | | | | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Giovanni Della Porta
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Milan), Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele (Milan), Italy
| | - Toni Giorgino
- Institute of Biophysics (IBF-CNR), National Research Council, Milan, Italy; and
| | - Lorenza Bertù
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Brociner
- Hematology Unit, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
| | - Andrew Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Francesco Passamonti
- Hematology Unit, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi-Ospedale di Circolo, Varese, Italy
| |
Collapse
|
8
|
Celik H, Krug E, Zhang CR, Han W, Issa N, Koh WK, Bjeije H, Kukhar O, Allen M, Li T, Fisher DAC, Fowles JS, Wong TN, Stubbs MC, Koblish HK, Oh ST, Challen GA. A Humanized Animal Model Predicts Clonal Evolution and Therapeutic Vulnerabilities in Myeloproliferative Neoplasms. Cancer Discov 2021; 11:3126-3141. [PMID: 34193440 PMCID: PMC8716669 DOI: 10.1158/2159-8290.cd-20-1652] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Myeloproliferative neoplasms (MPN) are chronic blood diseases with significant morbidity and mortality. Although sequencing studies have elucidated the genetic mutations that drive these diseases, MPNs remain largely incurable with a significant proportion of patients progressing to rapidly fatal secondary acute myeloid leukemia (sAML). Therapeutic discovery has been hampered by the inability of genetically engineered mouse models to generate key human pathologies such as bone marrow fibrosis. To circumvent these limitations, here we present a humanized animal model of myelofibrosis (MF) patient-derived xenografts (PDX). These PDXs robustly engrafted patient cells that recapitulated the patient's genetic hierarchy and pathologies such as reticulin fibrosis and propagation of MPN-initiating stem cells. The model can select for engraftment of rare leukemic subclones to identify patients with MF at risk for sAML transformation and can be used as a platform for genetic target validation and therapeutic discovery. We present a novel but generalizable model to study human MPN biology. SIGNIFICANCE Although the genetic events driving MPNs are well defined, therapeutic discovery has been hampered by the inability of murine models to replicate key patient pathologies. Here, we present a PDX system to model human myelofibrosis that reproduces human pathologies and is amenable to genetic and pharmacologic manipulation. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan Krug
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Christine R Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Wentao Han
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Nancy Issa
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Won Kyun Koh
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hassan Bjeije
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ostap Kukhar
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Maggie Allen
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Tiandao Li
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jared S Fowles
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Terrence N Wong
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Bose P, Verstovsek S. SOHO State of the Art Updates and Next Questions: Identifying and Treating "Progression" in Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:641-649. [PMID: 34272171 PMCID: PMC8565615 DOI: 10.1016/j.clml.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/19/2023]
Abstract
Over the last decade, the Janus kinase (JAK) 1/2 inhibitor ruxolitinib has become widely established as the cornerstone of pharmacologic therapy for most patients with myelofibrosis (MF), providing dramatic and durable benefits in terms of splenomegaly and symptoms, and prolonging survival. Ruxolitinib does not address all aspects of the disease, however; notably cytopenias, and its ability to modify the underlying biology of the disease remains in question. Furthermore, patients eventually lose response to ruxolitinib. Multiple groups have reported the median overall survival of MF patients after ruxolitinib discontinuation to be 13 to 14 months. While consensus criteria only recognize splenic and blast progression as "progressive disease" in patients with MF, disease progression can occur in a variety of ways. Besides increasing splenomegaly and progression to accelerated phase/leukemic transformation, patients may develop worsening disease-related symptoms, cytopenias, progressive leukocytosis, extramedullary hematopoiesis, etc. As in the frontline setting, treatment needs to be tailored to the clinical needs of the patient. Current treatment options for patients with MF who fail ruxolitinib remain unsatisfactory, and this continues to represent an area of major unmet medical need. The regulatory approval of fedratinib has introduced an important option in the postruxolitinib setting. Fortunately, a plethora of novel agents, both new JAK inhibitors and drugs from other classes, eg, bromodomain and extraterminal (BET), murine double minute 2 (MDM2) and telomerase inhibitors, activin receptor ligand traps, BH3-mimetics and more, are poised to greatly expand the therapeutic armamentarium for patients with MF if successful in pivotal trials.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
AXL Inhibition Represents a Novel Therapeutic Approach in BCR-ABL Negative Myeloproliferative Neoplasms. Hemasphere 2021; 5:e630. [PMID: 34396051 PMCID: PMC8357258 DOI: 10.1097/hs9.0000000000000630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
BCR-ABL negative myeloproliferative neoplasms (MPNs) consist of essential thrombocythemia, polycythemia vera, and myelofibrosis. The majority of patients harbor the JAK2-activating mutation V617F. JAK2 inhibitors were shown to reduce symptom burden and splenomegaly in MPN patients. However, treatment options are limited after failure of JAK2 inhibitors. AXL, a member of the TAM family of receptor tyrosine kinases, mediates survival and therapy resistance of different myeloid cancers including acute myeloid leukemia and chronic myeloid leukemia. We studied the relevance of AXL as a target in MPN using primary patient cells and preclinical disease models. We found that AXL is abundantly activated in MPN cells and that its ligand growth arrest-specific gene 6 is upregulated in MPN patients. Pharmacologic and genetic blockade of AXL impaired viability, decreased proliferation and increased apoptosis of MPN cells. Interestingly, ruxolitinib treatment induced increased phosphorylation of AXL indicating that activation of AXL might mediate resistance to ruxolitinib. Consistently, the AXL inhibitor bemcentinib exerted additive effects with ruxolitinib via impaired STAT3, STAT5, and AKT signaling. Both agents had activity when employed alone and exerted an additive effect on survival and splenomegaly in vivo. Moreover, bemcentinib treatment normalized red blood cell count and hemoglobin levels in vivo. Thus, our data indicate that AXL inhibition represents a novel treatment option in MPN warranting clinical investigation.
Collapse
|
11
|
Phase II study of single-agent nivolumab in patients with myelofibrosis. Ann Hematol 2021; 100:2957-2960. [PMID: 34350483 DOI: 10.1007/s00277-021-04618-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Dysregulated JAK-STAT signaling in myelofibrosis induces pro-inflammatory cytokines, which suppresses T cell proliferation and differentiation, likely responsible for disease progression. The PD-1 pathway, found to be overexpressed in myeloid malignancies, has gained great interest as a therapeutic target, where a significant unmet need exists for novel therapeutic strategies. Preclinical models showed JAK2 mutant cells had higher expression of PD-L1; furthermore, JAK2 mutant xenografts treated with PD-1 inhibition had prolonged survival and reduction in JAK2 allele burden. We evaluated the efficacy and safety of single-agent nivolumab in 8 adult patients with myelofibrosis. Nivolumab was given at 3 mg/kg every 2 weeks for 8 doses, then every 12 weeks for up to 4 years, or until disease progression or toxicity. The median number of nivolumab doses received was 6 [range, 5-16 doses]. Five patients had stable disease including spleen size, total symptom score, and blood requirements for a median of 3.3 months [range, 2.3-15.2 months]. After a median follow-up of 57 months, two patients were still alive. The median overall survival was 6.1 months [range, 3.2-57.4 months]. Due to failure to meet the predetermined efficacy endpoint, the study was terminated early. Trial registration: Clinical trials.gov NCT: 02,421,354.
Collapse
|
12
|
Yasuda S, Aoyama S, Yoshimoto R, Li H, Watanabe D, Akiyama H, Yamamoto K, Fujiwara T, Najima Y, Doki N, Sakaida E, Edahiro Y, Imai M, Araki M, Komatsu N, Miura O, Kawamata N. MPL overexpression induces a high level of mutant-CALR/MPL complex: a novel mechanism of ruxolitinib resistance in myeloproliferative neoplasms with CALR mutations. Int J Hematol 2021; 114:424-440. [PMID: 34165774 DOI: 10.1007/s12185-021-03180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Ruxolitinib (RUX), a JAK1/2-inhibitor, is effective for myeloproliferative neoplasm (MPN) with both JAK2V617 F and calreticulin (CALR) mutations. However, many MPN patients develop resistance to RUX. Although mechanisms of RUX-resistance in cells with JAK2V617 F have already been characterized, those in cells with CALR mutations remain to be elucidated. In this study, we established RUX-resistant human cell lines with CALR mutations and characterized mechanisms of RUX-resistance. Here, we found that RUX-resistant cells had high levels of MPL transcripts, overexpression of both MPL and JAK2, and increased phosphorylation of JAK2 and STAT5. We also found that mature MPL proteins were more stable in RUX-resistant cells. Knockdown of MPL in RUX-resistant cells by shRNAs decreased JAK/STAT signaling. Immunoprecipitation assays showed that binding of mutant CALR to MPL was increased in RUX-resistant cells. Reduction of mutated CALR decreased proliferation of the resistant cells. When resistant cells were cultured in the absence of RUX, the RUX-resistance was reversed, with reduction of the mutant-CALR/MPL complex. In conclusion, MPL overexpression induces higher levels of a mutant-CALR/MPL complex, which may cause RUX-resistance in cells with CALR mutations. This mechanism may be a new therapeutic target to overcome RUX-resistance.
Collapse
Affiliation(s)
- Shunichiro Yasuda
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | - Satoru Aoyama
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | | | - Huixin Li
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Daisuke Watanabe
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | | | | | - Takeo Fujiwara
- Department of Global Health Promotion, TMDU, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University, Chiba, Japan
| | - Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Misa Imai
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Leading center for the development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, TMDU, Tokyo, Japan
| | - Norihiko Kawamata
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
13
|
Tavakoli Shirazi P, Eadie LN, Page EC, Heatley SL, Bruning JB, White DL. Constitutive JAK/STAT signaling is the primary mechanism of resistance to JAKi in TYK2-rearranged acute lymphoblastic leukemia. Cancer Lett 2021; 512:28-37. [PMID: 33971281 DOI: 10.1016/j.canlet.2021.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Activating TYK2-rearrangements have recently been identified and implicated in the leukemogenesis of high-risk acute lymphoblastic leukemia (HR-ALL) cases. Pre-clinical studies indicated the JAK/TYK2 inhibitor (JAKi), cerdulatinib, as a promising therapeutic against TYK2-rearranged ALL, attenuating the constitutive JAK/STAT signaling resulting from the TYK2 fusion protein. However, following a period of clinical efficacy, JAKi resistance often occurs resulting in relapse. In this study, we modeled potential mechanisms of JAKi resistance in TYK2-rearranged ALL cells in vitro in order to recapitulate possible clinical scenarios and provide a rationale for alternative therapies. Cerdulatinib resistant B-cells, driven by the MYB-TYK2 fusion oncogene, were generated by long-term exposure to the drug. Sustained treatment of MYB-TYK2-rearranged ALL cells with cerdulatinib led to enhanced and persistent JAK/STAT signaling, co-occurring with JAK1 overexpression. Hyperactivation of JAK/STAT signaling and JAK1 overexpression was reversible as cerdulatinib withdrawal resulted in re-sensitization to the drug. Importantly, histone deacetylase inhibitor (HDACi) therapies were efficacious against cerdulatinib-resistant cells demonstrating a potential alternative therapy for use in TYK2-rearranged B-ALL patients who have lost response to JAKi treatment regimens.
Collapse
Affiliation(s)
- Paniz Tavakoli Shirazi
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - Elyse C Page
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Sciences, University of Adelaide, Adelaide, Australia.
| | - Susan L Heatley
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - John B Bruning
- Faculty of Sciences, University of Adelaide, Adelaide, Australia.
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Faculty of Sciences, University of Adelaide, Adelaide, Australia; Australian Genomics Health Alliance (AGHA), Australia.
| |
Collapse
|
14
|
Savani M, Dulery R, Bazarbachi AH, Mohty R, Brissot E, Malard F, Bazarbachi A, Nagler A, Mohty M. Allogeneic haematopoietic cell transplantation for myelofibrosis: a real-life perspective. Br J Haematol 2021; 195:495-506. [PMID: 33881169 DOI: 10.1111/bjh.17469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 01/12/2023]
Abstract
Myelofibrosis (MF) is a clonal stem cell neoplasm with heterogeneous clinical phenotypes and well-established molecular drivers. Allogeneic haematopoietic stem cell transplantation (HSCT) offers an important curative treatment option for primary MF and post-essential thrombocythaemia/polycythaemia vera MF or secondary MF. With a disease course that varies from indolent to highly progressive, we are now able to stratify risk of mortality through various tools including patient-related clinical characteristics as well as molecular genetic profile. Owing to the high risk of mortality and morbidity associated with HSCT for patients with myelofibrosis, it is important to improve patient selection for transplant. Our primary goal is to comprehensively define our understanding of current practices including the role of Janus Kinase (JAK) inhibitors, to present the data behind transplantation before and after leukaemic transformation, and to introduce novel personalization of MF treatment with a proposed clinical-molecular prognostic model to help elucidate a timepoint optimal for consideration of HSCT.
Collapse
Affiliation(s)
- Malvi Savani
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Rémy Dulery
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Sorbonne Université, INSERM UMRs 938, Paris, France
| | - Abdul Hamid Bazarbachi
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Sorbonne Université, INSERM UMRs 938, Paris, France.,Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, New York, New York, USA
| | - Razan Mohty
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Sorbonne Université, INSERM UMRs 938, Paris, France.,Department of Internal Medicine, Bone Marrow Transplantation Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Eolia Brissot
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Sorbonne Université, INSERM UMRs 938, Paris, France
| | - Florent Malard
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Sorbonne Université, INSERM UMRs 938, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Bone Marrow Transplantation Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Mohamad Mohty
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Sorbonne Université, INSERM UMRs 938, Paris, France
| |
Collapse
|
15
|
Polverelli N, Mauff K, Kröger N, Robin M, Beelen D, Beauvais D, Chevallier P, Mohty M, Passweg J, Rubio MT, Maertens J, Finke J, Bornhäuser M, Vrhovac R, Helbig G, Mear J, Castagna L, Reményi P, Angelucci E, Karakasis D, Rifòn J, Sirait T, Russo D, Wreede L, Czerw T, Hernández‐Boluda JC, Hayden P, McLornan D, Yakoub‐Agha I. Impact of spleen size and splenectomy on outcomes of allogeneic hematopoietic cell transplantation for myelofibrosis: A retrospective analysis by the chronic malignancies working party on behalf of European society for blood and marrow transplantation (EBMT). Am J Hematol 2021; 96:69-79. [PMID: 33064301 DOI: 10.1002/ajh.26020] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
The role of spleen size and splenectomy for the prediction of post-allogeneic hematopoietic stem cell transplant (allo-HCT) outcome in myelofibrosis remains under debate. In EBMT registry, we identified a cohort of 1195 myelofibrosis patients transplanted between 2000-2017 after either fludarabine-busulfan or fludarabine-melphalan regimens. Overall, splenectomy was performed in 202 (16.9%) patients and its use decreased over time (28.3% in 2000-2009 vs 14.1% in 2010-2017 period). By multivariate analysis, splenectomy was associated with less NRM (HR 0.64, 95% CI 0.44-0.93, P = .018) but increased risk of relapse (HR 1.43, 95% CI 1.01-2.02, P = .042), with no significant impact on OS (HR 0.86, 95% CI 0.67-1.12, P = .274). However, in subset analysis comparing the impact of splenectomy vs specific spleen sizes, for patients with progressive disease, an improved survival was seen in splenectomised subjects compared to those patients with a palpable spleen length ≥ 15 cm (HR 0.44, 95% CI 0.28-0.69, P < .001), caused by a significant reduction in NRM (HR 0.26, 95% CI 0.14-0.49, P < .001), without significantly increased relapse risk (HR 1.47, 95% CI 0.87-2.49, P = .147). Overall, despite the possible biases typical of retrospective cohorts, this study highlights the potential detrimental effect of massive splenomegaly in transplant outcome and supports the role of splenectomy for myelofibrosis patients with progressive disease and large splenomegaly.
Collapse
Affiliation(s)
- Nicola Polverelli
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences University of Brescia ASST Spedali Civili of Brescia
| | | | - Nicolaus Kröger
- Department of Hematology University Hospital Eppendorf Hamburg Germany
| | - Marie Robin
- Department of Hematology Hôpital Saint‐Louis, APHP Paris France
| | - Dietrich Beelen
- Department of Hematology University Hospital of Essen Essen Germany
| | | | | | - Mohamad Mohty
- Sorbonne University Paris France
- Service d'Hématologie Clinique et Thérapie cellulaire Hopital Saint‐Antoine Paris France
- INSERM Paris France
| | - Jakob Passweg
- Department of Hematology University Hospital Basel Basel Switzerland
| | | | - Johan Maertens
- Department of Hematology University Hospital Gasthuisberg Leuven Belgium
| | - Jürgen Finke
- Department of Hematology University of Freiburg Freiburg Germany
| | - Martin Bornhäuser
- Department of Hematology University Hospital Dresded Dresden Germany
| | - Radovan Vrhovac
- Department of Hematology University Hospital Center Rebro Zagreb Croatia
| | - Grzegorz Helbig
- Department of Hematology Silesian Medical Academy Katowice Poland
| | - Jean‐Baptiste Mear
- Department of Hematology Centre Hospitalier Universitaire de Rennes Rennes France
| | - Luca Castagna
- Department of Hematology Centre de Recherche en Cancérologie de Marseille Marseille France
| | - Péter Reményi
- Department of Hematology Dél‐pesti Centrumkórház Budapest Hungary
| | - Emanuele Angelucci
- Hematology and Transplant Center IRCCS Ospedale Policlinico San Martino Genoa Italy
| | | | - Jose Rifòn
- Department of Hematology Clínica Universitaria de Navarra Pamplona Spain
| | | | - Domenico Russo
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences University of Brescia ASST Spedali Civili of Brescia
| | - Liesbeth Wreede
- Department of Biomedical Data Sciences LUMC Leiden Netherlands
| | - Tomasz Czerw
- Department of Bone Marrow Transplantation and Onco‐Hematology Maria Sklodowska‐Curie National Research Institute of Oncology Gliwice Poland
| | | | - Patrick Hayden
- Department of Hematology St. James's Hospital Dublin Ireland
| | - Donal McLornan
- Department of Hematology Guy's and St Thomas' NHS Foundation Trust and University College London Hospitals London UK
| | | |
Collapse
|
16
|
Bossard J, Beuscart J, Robin M, Mohty M, Barraco F, Chevallier P, Marchand T, Rubio M, Charbonnier A, Blaise D, Bay J, Botella‐Garcia C, Damaj G, Beckerich F, Ceballos P, Cluzeau T, Cornillon J, Meunier M, Orvain C, Duhamel A, Garnier F, Kiladjian J, Yakoub‐Agha I. Splenectomy before allogeneic hematopoietic cell transplantation for myelofibrosis: A French nationwide study. Am J Hematol 2021; 96:80-88. [PMID: 33108024 DOI: 10.1002/ajh.26034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The value of pretransplant splenectomy in patients with myelofibrosis (MF) is subject to debate, since the procedure may preclude subsequent allogeneic hematopoietic cell transplantation (allo-HCT). To determine the impact of pretransplant splenectomy on the incidence of allo-HCT, we conducted a comprehensive retrospective study of all patients with MF for whom an unrelated donor search had been initiated via the French bone marrow transplantation registry (RFGM) between 1 January 2008 and 1 January 2017. Additional data were collected from the patients' medical files and a database held by the French-Language Society for Bone Marrow Transplantation and Cell Therapy (SFGM-TC). We used a multistate model with four states ("RFGM registration"; "splenectomy"; "death before allo-HCT", and "allo-HCT") to evaluate the association between splenectomy and the incidence of allo-HCT. The study included 530 patients from 57 centers. With a median follow-up time of 6 years, we observed 81 splenectomies, 99 deaths before allo-HCT (90 without splenectomy and nine after), and 333 allo-HCTs (268 without splenectomy and 65 after). In a bivariable analysis, the hazard ratio [95% confidence interval (CI)] for the association of splenectomy with allo-HCT was 7.2 [5.1-10.3] in the first 4 months and 1.18 [0.69-2.03] thereafter. The hazard ratio [95% CI] for death associated with splenectomy was 1.58 [0.79-3.14]. These reassuring results suggest that splenectomy does not preclude allo-HCT in patients with MF.
Collapse
Affiliation(s)
- Jean‐Baptiste Bossard
- University of Lille, CHU Lille, ULR 2694 ‐ METRICS: Évaluation des technologies de santé et des pratiques médicales Lille France
- Department of Hematology CHU Lille Lille France
| | - Jean‐Baptiste Beuscart
- University of Lille, CHU Lille, ULR 2694 ‐ METRICS: Évaluation des technologies de santé et des pratiques médicales Lille France
| | - Marie Robin
- Hôpital Saint‐Louis, APHP Université Paris 7 Paris France
| | - Mohamad Mohty
- Hématologie Clinique Saint‐Antoine Hospital and University Pierre & Marie Curie Paris France
| | - Fiorenza Barraco
- Departement d'Hématologie, Centre Hospitalier Lyon Sud Hospices Civils de Lyon Lyon France
| | | | | | | | | | | | - Jacques‐Olivier Bay
- Hématologie Clinique Centre Hospitalier Universitaire de Clermont‐Ferrand Clermont Ferrand France
| | | | - Gandhi Damaj
- Hematology Institute University Hospital Caen France
| | - Florence Beckerich
- Henri Mondor & Assistance Publique‐Hôpitaux de Paris Université Paris‐Est Créteil Créteil France
| | - Patrice Ceballos
- Département d'Hématologie Clinique CHU Lapeyronie Montpellier France
| | | | - Jérôme Cornillon
- Department of Clinical Hematology Institut de Cancérologie Lucien Neuwirth Saint‐Priest‐en‐Jarez France
| | | | | | - Alain Duhamel
- University of Lille, CHU Lille, ULR 2694 ‐ METRICS: Évaluation des technologies de santé et des pratiques médicales Lille France
| | | | - Jean‐Jacques Kiladjian
- Centre d'investigations cliniques Hôpital Saint‐Louis Paris France
- Université de Paris Paris France
- Inserm CIC1427 Paris France
| | | | | |
Collapse
|
17
|
Giudice V, Vecchione C, Selleri C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life (Basel) 2020; 10:life10120344. [PMID: 33322351 PMCID: PMC7763613 DOI: 10.3390/life10120344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-related cardiac dysfunction, also known as cardiotoxicity, is a group of drug-related adverse events negatively affecting myocardial structure and functions in patients who received chemotherapy for cancer treatment. Clinical manifestations can vary from life-threatening arrythmias to chronic conditions, such as heart failure or hypertension, which dramatically reduce quality of life of cancer survivors. Standard chemotherapy exerts its toxic effect mainly by inducing oxidative stress and genomic instability, while new targeted therapies work by interfering with signaling pathways important not only in cancer cells but also in myocytes. For example, Bruton’s tyrosine kinase (BTK) inhibitors interfere with class I phosphoinositide 3-kinase isoforms involved in cardiac hypertrophy, contractility, and regulation of various channel forming proteins; thus, off-target effects of BTK inhibitors are associated with increased frequency of arrhythmias, such as atrial fibrillation, compared to standard chemotherapy. In this review, we summarize current knowledge of cardiotoxic effects of targeted therapies used in hematology.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672-493
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- IRCCS Neuromed (Mediterranean Neurological Institute), 86077 Pozzilli, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
18
|
Bewersdorf JP, Giri S, Wang R, Podoltsev N, Williams RT, Rampal RK, Tallman MS, Zeidan AM, Stahl M. Interferon Therapy in Myelofibrosis: Systematic Review and Meta-analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2020; 20:e712-e723. [PMID: 32669244 PMCID: PMC7541411 DOI: 10.1016/j.clml.2020.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myelofibrosis (MF) is a Philadelphia chromosome-negative myeloproliferative neoplasm characterized by progressive bone marrow failure, increased risk of progression to acute myeloid leukemia, and constitutional symptoms. For over 3 decades, various formulations of interferon (IFN) have been used for the treatment of MF, with variable results, and the role of IFN in the treatment of MF is evolving. PATIENTS AND METHODS For this systematic review and meta-analysis, Medline and Embase via Ovid, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science were searched from inception through March 2019 for studies of pegylated IFN (peg-IFN) and non-peg-IFN in MF patients. The primary outcome of overall response rate was defined as a composite of complete response, partial response, complete hematologic response, and partial hematologic response. Random-effects models were used to pool overall response rate, and metaregression analyses were performed to compare peg-IFN and non--peg-IFN formulations. RESULTS Among the 10 studies with 141 MF patients included, the overall response rate was 49.9% (95% confidence interval [CI], 30.4-69.3), and there was no statistically significant difference (P = .99) between peg-IFN (50.0%; 95% CI, 26.2-73.9; I2 = 76.9%) and non-peg-IFN (49.6%; 95% CI, 20.5-79.0; I2 = 56.7%). Treatment discontinuation resulting from adverse events was common with non-peg-IFN at 35.8% (95% CI, 3.5-68.1) per year, and less in the one study on peg-IFN (0.5% per year). CONCLUSION IFN can lead to hematologic improvements in a subset of MF patients, but study quality is limited and heterogenous. Biomarkers predicting response to IFN and formulations with improved tolerability are needed.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT
| | - Smith Giri
- Division of Hematology and Oncology, University of Alabama School of Medicine, Birmingham, AL
| | - Rong Wang
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT; Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT
| | - Nikolai Podoltsev
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT
| | - Robert T Williams
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY
| | - Raajit K Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT
| | - Maximilian Stahl
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
19
|
Marino L, Charlier B, Giudice V, Remondelli P, Paladino S, Vitolo R, Dal Piaz F, Izzo B, Zeppa P, Izzo V, Filippelli A, Selleri C. Bone marrow mesenchymal stem cells as a possible ruxolitinib reservoir in the bone marrow niche. EJHAEM 2020; 1:356-360. [PMID: 35847746 PMCID: PMC9175960 DOI: 10.1002/jha2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Luigi Marino
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
| | - Bruno Charlier
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
| | - Valentina Giudice
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
- Clinical PharmacologyUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Paolo Remondelli
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
| | - Simona Paladino
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”NaplesItaly
| | - Rosa Vitolo
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
| | - Fabrizio Dal Piaz
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
- Clinical PharmacologyUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Barbara Izzo
- Department of Molecular Medicine and Medical BiotechnologyCEINGE‐Biotecnologie AvanzateUniversity of Naples “Federico II”NaplesItaly
| | - Pio Zeppa
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
- Pathology UnitUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Viviana Izzo
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
- Clinical PharmacologyUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Amelia Filippelli
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
- Clinical PharmacologyUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Carmine Selleri
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| |
Collapse
|
20
|
Harrison CN, Schaap N, Mesa RA. Management of myelofibrosis after ruxolitinib failure. Ann Hematol 2020; 99:1177-1191. [PMID: 32198525 PMCID: PMC7237516 DOI: 10.1007/s00277-020-04002-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
Myelofibrosis is a BCR-ABL1-negative myeloproliferative neoplasm characterized by anemia, progressive splenomegaly, extramedullary hematopoiesis, bone marrow fibrosis, constitutional symptoms, leukemic progression, and shortened survival. Constitutive activation of the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway, and other cellular pathways downstream, leads to myeloproliferation, proinflammatory cytokine expression, and bone marrow remodeling. Transplant is the only curative option for myelofibrosis, but high rates of morbidity and mortality limit eligibility. Several prognostic models have been developed to facilitate treatment decisions. Until the recent approval of fedratinib, a JAK2 inhibitor, ruxolitinib was the only available JAK inhibitor for treatment of intermediate- or high-risk myelofibrosis. Ruxolitinib reduces splenomegaly to some degree in almost all treated patients; however, many patients cannot tolerate ruxolitinib due to dose-dependent drug-related cytopenias, and even patients with a good initial response often develop resistance to ruxolitinib after 2-3 years of therapy. Currently, there is no consensus definition of ruxolitinib failure. Until fedratinib approval, strategies to overcome ruxolitinib resistance or intolerance were mainly different approaches to continued ruxolitinib therapy, including dosing modifications and ruxolitinib rechallenge. Fedratinib and two other JAK2 inhibitors in later stages of clinical development, pacritinib and momelotinib, have been shown to induce clinical responses and improve symptoms in patients previously treated with ruxolitinib. Fedratinib induces robust spleen responses, and pacritinib and momelotinib may have preferential activity in patients with severe cytopenias. Reviewed here are strategies to ameliorate ruxolitinib resistance or intolerance, and outcomes of clinical trials in patients with myelofibrosis receiving second-line JAK inhibitors after ruxolitinib treatment.
Collapse
Affiliation(s)
- Claire N Harrison
- Guy's and St Thomas' Hospital Foundation Trust, Westminster Bridge Rd, London, SE1 7EH, UK.
| | | | - Ruben A Mesa
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
21
|
Delgado-Ramirez Y, Colly V, Gonzalez GV, Leon-Cabrera S. Signal transducer and activator of transcription 6 as a target in colon cancer therapy. Oncol Lett 2020; 20:455-464. [PMID: 32565970 PMCID: PMC7285805 DOI: 10.3892/ol.2020.11614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6) is a member of the STAT family of proteins that serve key roles in the initiation of tumorigenesis and malignant transformation. STAT6 is highly expressed in several types of cancer, including breast, pancreatic, prostate and colorectal cancer. STAT6 transduces signals in response to the binding of interleukin (IL)-4 and IL-13 to their receptors and regulates the expression of genes involved in the immune response, cell survival, tumor proliferation and metastasis. Patients with colorectal cancer exhibit high STAT6 activity in the colonic epithelium, and STAT6 expression is associated with lower survival rates, lymph node metastasis, changes in the epithelial barrier function and alterations in the inflammatory response. A number of studies investigating experimental models and cancer cell lines have revealed that STAT6 is associated with tumor growth and development, as well as with increased invasion and metastasis, suggesting that STAT6 inhibition may serve as a novel therapeutic strategy in colon cancer. The present review summarizes the evidence with regard to the implications of STAT6 in cancer biology and the direct and indirect effects on colon tumor transformation. Furthermore, the current treatment strategies targeting the IL-4/IL-13/STAT6 axis in colon cancer are discussed.
Collapse
Affiliation(s)
- Yael Delgado-Ramirez
- Laboratory of Oncoimmunology, Biomedical Research Unit, National Autonomous University of Mexico, Tlalnepantla, CP 54090, Mexico
| | - Vaneesa Colly
- Laboratory of Oncoimmunology, Biomedical Research Unit, National Autonomous University of Mexico, Tlalnepantla, CP 54090, Mexico.,Medical School, Faculty of Superior Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla, CP 54090, Mexico
| | - Giovanni Villanueva Gonzalez
- Medical School, Faculty of Superior Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla, CP 54090, Mexico
| | - Sonia Leon-Cabrera
- Laboratory of Oncoimmunology, Biomedical Research Unit, National Autonomous University of Mexico, Tlalnepantla, CP 54090, Mexico.,Medical School, Faculty of Superior Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla, CP 54090, Mexico
| |
Collapse
|
22
|
Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol 2020; 191:152-170. [PMID: 32196650 DOI: 10.1111/bjh.16576] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022]
Abstract
Myelofibrosis is an enigmatic myeloproliferative neoplasm, despite noteworthy strides in understanding its genetic underpinnings. Driver mutations involving JAK2, CALR or MPL in 90% of patients mediate constitutive JAK-STAT signaling which, in concert with epigenetic alterations (ASXL1, DNMT3A, SRSF2, EZH2, IDH1/2 mutations), play a fundamental role in disease pathogenesis. Aberrant immature megakaryocytes are a quintessential feature, exhibiting reduced GATA1 protein expression and secreting a plethora of pro-inflammatory cytokines (IL-1 ß, TGF-ß), growth factors (b-FGF, PDGF, VEGF) in addition to extra cellular matrix components (fibronectin, laminin, collagens). The ensuing disrupted interactions amongst the megakaryocytes, osteoblasts, endothelium, stromal cells and myofibroblasts within the bone marrow culminate in the development of fibrosis and osteosclerosis. Presently, prognostic assessment tools for primary myelofibrosis (PMF) are centered on genetics, with incorporation of cytogenetic and molecular information into the mutation-enhanced (MIPSS 70-plus version 2.0) and genetically-inspired (GIPSS) prognostic scoring systems. Both models illustrate substantial clinical heterogeneity in PMF and serve as the crux for risk-adapted therapeutic decisions. A major challenge remains the dearth of disease-modifying drugs, whereas allogeneic transplant offers the chance of long-term remission for some patients. Our review serves to synopsise current appreciation of the pathogenesis of myelofibrosis together with emerging management strategies.
Collapse
|
23
|
Bewersdorf JP, Jaszczur SM, Afifi S, Zhao JC, Zeidan AM. Beyond Ruxolitinib: Fedratinib and Other Emergent Treatment Options for Myelofibrosis. Cancer Manag Res 2019; 11:10777-10790. [PMID: 31920387 PMCID: PMC6935287 DOI: 10.2147/cmar.s212559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by clonal proliferation of differentiated myeloid cells leading to bone marrow fibrosis, cytopenias and extramedullary hematopoiesis. In late 2019, the FDA approved the highly selective JAK2 inhibitor, fedratinib, for intermediate-2 or high-risk primary or secondary MF, making it the second drug approved for MF after ruxolitinib, a JAK1/2 inhibitor, which was approved for MF in 2011. The approval of fedratinib was based on phase II trials and the phase III JAKARTA trial, in which the drug significantly reduced splenomegaly and symptom burden compared to placebo, including some patients previously treated with ruxolitinib. The main side effects of fedratinib include anemia, gastrointestinal symptoms, and elevations in liver transaminases. Fedratinib also has ablack box warning for encephalopathy, although this occurred only in about 1% of the treated patients, most of which were ultimately felt not to represent Wernicke’s encephalopathy. Nonetheless, monitoring of thiamine levels and supplementation are recommended especially in high-risk patients. This concern has led to a prolonged clinical hold and delayed the drug approval by several years during which the drug exchanged manufacturers, highlighting the need for meticulous investigation and adjudication of serious, but rare, adverse events in drug development that could end up preventing drugs with favorable risk/benefit ratio from being approved. In this review, we discuss the pharmacokinetic data and efficacy, as well as the toxicity results of clinical trials of fedratinib. We also review ongoing trials of JAK inhibitors in MF and explore future treatment options for MF patients who are refractory to ruxolitinib.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | | | - Salma Afifi
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Yang AY, Liu JQ, Cai YN, Fang MY, Yang L, Chen M, Li B, Xiao ZJ. [The anti-proliferative and anti-inflammatory mechanisms of JAK1 inhibitor SHR0302 versus Ruxolitinib in SET2 cell line and primary cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:1003-1007. [PMID: 32023730 PMCID: PMC7342687 DOI: 10.3760/cma.j.issn.0253-2727.2019.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 11/19/2022]
Abstract
Objective: To explore the effects and molecular mechanism of the selective JAK1inhibitor SHR0302 and Ruxolitinib on myeloproliterative neoplasms (MPN) cell line SET2 and primary cells in vitro. Methods: Cell proliferation was detected by CCK8 kit. Colony forming experiment was conducted to evaluate erythroid burst colony formation unit (BFU-E) of primary cells from MPN patients. Multi-factor kits were used to detect six inflammatory cytokines. Phosphorylated proteins of Jak-Stat signaling pathway were tested by Western blot. Results: At different time points after treated with SHR0302 and Ruxolitinib, the inhibition of cell proliferation was dose dependent by both drugs (P<0.01) . The inhibitory rates of 2.5 μmol/L SHR0302 and 0.1 μmol/L Ruxolitinib on SET2 cells for 72 h were comparable, i.e. (59.94±0.60) % and (64.00±0.66) %, respectively, suggesting that the inhibitory effect of SHR0302 was weaker than that of Ruxolitinib. Similarly, both SHR0302 and Ruxolitinib inhibited BFU-E in primary marrow cells from MPN patients in a dose-dependent manner. SHR0302 1.0 μmol/L produced similar degree of inhibition compared to Ruxolitinib 0.2 μmol/L. Except IL-12, the expression of other 5 cytokines (IL-6, TNF-α, IL-1β, IL-2, IL-8) was significantly inhibited by 1.6 μmol/L SHR0302 in SET2 cells at 24 h (P<0.01) , while Ruxolitinib 1.0 μmol/L had the same effect. Several phosphorylated molecules of Jak-Stat signaling pathway were significantly inhibited by SHR0302 in SET2 cells only for 3 h. P-stat1 (Tyr701) , p-stat3 (Tyr705) were down-regulated when treated with SHR0302 1.0 μmol/L (P<0.05) , p-jak1 (tyr1022/1023) and p-stat5 (Tyr694) were inhibited at 5.0 μmol/L (P<0.05) . Ruxolitinib significantly inhibited the downstream STAT protein at 0.1 μmol/L. Again, the inhibitory effect of SHR0302 on protein expression was weaker than that of Ruxolitinib. Conclusion: SHR0302 can effectively inhibit the proliferation of MPN cell line and patients' primary cells, as well as the expression of inflammatory factors. The molecular mechanism is possibly related to the down-regulation of phosphorylated proteins of Jak-Stat signaling pathway. Overall, the anti-proliferative and anti-inflammatory effects of SHR0302 are weaker than those of Ruxolitinib.
Collapse
Affiliation(s)
- A Y Yang
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Zhongshan Hospital, Dalian Medical University, Dalian 116001, China
| | - J Q Liu
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Y N Cai
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - M Y Fang
- Zhongshan Hospital, Dalian Medical University, Dalian 116001, China
| | - L Yang
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - M Chen
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - B Li
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Z J Xiao
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
25
|
Gerds AT. Beyond JAK-STAT: novel therapeutic targets in Ph-negative MPN. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:407-414. [PMID: 31808852 PMCID: PMC6913459 DOI: 10.1182/hematology.2019000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) share a common pathobiology of constitutive activation of the JAK and STAT pathway, despite having the 3 distinct phenotypes of essential thrombocythemia, polycythemia vera, and primary myelofibrosis. Targeting the JAK-STAT pathway has led to remarkable clinical benefit, including reduction in splenomegaly, amelioration of cytokine-driven symptoms, improvement in quality of life, and even some improvement in survival. However, targeting this pathway has not resulted in consistent disease modification by current metrics, including a reduction in mutant allele burden or reversal of fibrosis. Moreover, targeting JAK-STAT can lead to limiting treatment-emergent side effects, such as anemia and thrombocytopenia. Continued discovery points to a complex system of pathogenesis beyond JAK-STAT driving the formation and evolution of MPNs. This article reviews the successes and limitations of JAK-STAT inhibition, surveys the strategies behind emerging therapies, and discusses the challenges that are present in moving beyond JAK-STAT.
Collapse
Affiliation(s)
- Aaron T Gerds
- Leukemia and Myeloid Disorders Program, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| |
Collapse
|
26
|
Chapeau EA, Mandon E, Gill J, Romanet V, Ebel N, Powajbo V, Andraos-Rey R, Qian Z, Kininis M, Zumstein-Mecker S, Ito M, Hynes NE, Tiedt R, Hofmann F, Eshkind L, Bockamp E, Kinzel B, Mueller M, Murakami M, Baffert F, Radimerski T. A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expression. PLoS One 2019; 14:e0221635. [PMID: 31600213 PMCID: PMC6786561 DOI: 10.1371/journal.pone.0221635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better understanding if JAK2V617F is required for maintenance of myeloproliferative disease once it has evolved, we generated a conditional inducible transgenic JAK2V617F mouse model using the SCL-tTA-2S tet-off system. Our model corroborates that expression of JAK2V617F in hematopoietic stem and progenitor cells recapitulates key hallmarks of human myeloproliferative neoplasms, and exhibits gender differences in disease manifestation. The disease was found to be transplantable, and importantly, reversible when transgenic JAK2V617F expression was switched off. Our results indicate that mutant JAK2V617F-specific inhibitors should result in profound disease modification by disabling the myeloproliferative clone bearing mutant JAK2.
Collapse
Affiliation(s)
- Emilie A. Chapeau
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
- * E-mail:
| | - Emeline Mandon
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jason Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vincent Romanet
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolas Ebel
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Violetta Powajbo
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Rita Andraos-Rey
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zhiyan Qian
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Miltos Kininis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Moriko Ito
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph Tiedt
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Leonid Eshkind
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kinzel
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Matthias Mueller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fabienne Baffert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
27
|
Gangat N, Marinaccio C, Swords R, Watts JM, Gurbuxani S, Rademaker A, Fought AJ, Frankfurt O, Altman JK, Wen QJ, Farnoud N, Famulare CA, Patel A, Tapia R, Vallapureddy RR, Barath S, Graf A, Handlogten A, Zblewski D, Patnaik MM, Al-Kali A, Dinh YT, Englund Prahl K, Patel S, Nobrega JC, Tejera D, Thomassen A, Gao J, Ji P, Rampal RK, Giles FJ, Tefferi A, Stein B, Crispino JD. Aurora Kinase A Inhibition Provides Clinical Benefit, Normalizes Megakaryocytes, and Reduces Bone Marrow Fibrosis in Patients with Myelofibrosis: A Phase I Trial. Clin Cancer Res 2019; 25:4898-4906. [PMID: 31061068 DOI: 10.1158/1078-0432.ccr-19-1005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Myelofibrosis is characterized by bone marrow fibrosis, atypical megakaryocytes, splenomegaly, constitutional symptoms, thrombotic and hemorrhagic complications, and a risk of evolution to acute leukemia. The JAK kinase inhibitor ruxolitinib provides therapeutic benefit, but the effects are limited. The purpose of this study was to determine whether targeting AURKA, which has been shown to increase maturation of atypical megakaryocytes, has potential benefit for patients with myelofibrosis. PATIENTS AND METHODS Twenty-four patients with myelofibrosis were enrolled in a phase I study at three centers. The objective of the study was to evaluate the safety and preliminary efficacy of alisertib. Correlative studies involved assessment of the effect of alisertib on the megakaryocyte lineage, allele burden, and fibrosis. RESULTS In addition to being well tolerated, alisertib reduced splenomegaly and symptom burden in 29% and 32% of patients, respectively, despite not consistently reducing the degree of inflammatory cytokines. Moreover, alisertib normalized megakaryocytes and reduced fibrosis in 5 of 7 patients for whom sequential marrows were available. Alisertib also decreased the mutant allele burden in a subset of patients. CONCLUSIONS Given the limitations of ruxolitinib, novel therapies are needed for myelofibrosis. In this study, alisertib provided clinical benefit and exhibited the expected on-target effect on the megakaryocyte lineage, resulting in normalization of these cells and reduced fibrosis in the majority of patients for which sequential marrows were available. Thus, AURKA inhibition should be further developed as a therapeutic option in myelofibrosis.See related commentary by Piszczatowski and Steidl, p. 4868.
Collapse
Affiliation(s)
| | | | | | - Justin M Watts
- Sylvester Cancer Center, University of Miami, Miami, Florida
| | - Sandeep Gurbuxani
- Section of Hematopathology, University of Chicago, Chicago, Illinois
| | - Alfred Rademaker
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Angela J Fought
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Olga Frankfurt
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Jessica K Altman
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Qiang Jeremy Wen
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering, New York, New York
| | | | - Akshar Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering, New York, New York
| | - Roberto Tapia
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | | | - Stephanie Barath
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - Amy Graf
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | | - Shradha Patel
- Sylvester Cancer Center, University of Miami, Miami, Florida
| | | | - Dalissa Tejera
- Sylvester Cancer Center, University of Miami, Miami, Florida
| | - Amber Thomassen
- Sylvester Cancer Center, University of Miami, Miami, Florida
| | - Juehua Gao
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Raajit K Rampal
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering, New York, New York
| | | | | | - Brady Stein
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois.
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
28
|
Xiao ZJ. [How I treat primary myelofibrosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:179-181. [PMID: 30929381 PMCID: PMC7342540 DOI: 10.3760/cma.j.issn.0253-2727.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 11/21/2022]
Affiliation(s)
- Z J Xiao
- Blood Diseases Hospital and Institute of Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
29
|
Pacilli A, Rotunno G, Mannarelli C, Fanelli T, Pancrazzi A, Contini E, Mannelli F, Gesullo F, Bartalucci N, Fattori GC, Paoli C, Vannucchi AM, Guglielmelli P. Mutation landscape in patients with myelofibrosis receiving ruxolitinib or hydroxyurea. Blood Cancer J 2018; 8:122. [PMID: 30467377 PMCID: PMC6250726 DOI: 10.1038/s41408-018-0152-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Refractoriness to ruxolitinib in patients with myelofibrosis (MF) was associated with clonal evolution; however, whether genetic instability is promoted by ruxolitinib remains unsettled. We evaluated the mutation landscape in 71 MF patients receiving ruxolitinib (n = 46) and hydroxyurea (n = 25) and correlated with response. A spleen volume response (SVR) was obtained in 57% and 12%, respectively. Highly heterogenous patterns of mutation acquisition/loss and/or changes of variant allele frequency (VAF) were observed in the 2 patient groups without remarkable differences. In patients receiving ruxolitinib, driver mutation type and high-molecular risk profile (HMR) at baseline did not impact on response rate, while HMR and sole ASXL1 mutations predicted for SVR loss at 3 years. In patients with SVR, a decrease of ≥ 20% of JAK2V617F VAF predicted for SVR duration. VAF increase of non-driver mutations and clonal progression at follow-up correlated with SVR loss and treatment discontinuation, and clonal progression also predicted for shorter survival. These data indicate that (i) ruxolitinib does not appreciably promote clonal evolution compared with hydroxyurea, (ii) VAF increase of pre-existing and/or (ii) acquisition of new mutations while on treatment correlated with higher rate of discontinuation and/or death, and (iv) reduction of JAK2V617F VAF associated with SVR duration.
Collapse
Affiliation(s)
- Annalisa Pacilli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Giada Rotunno
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Carmela Mannarelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | | | - Alessandro Pancrazzi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Elisa Contini
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Francesco Mannelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Francesca Gesullo
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Niccolò Bartalucci
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | | | - Chiara Paoli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| | - Alessandro M Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy.
| | - Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, Italy
| |
Collapse
|