1
|
Daunov M, Klisovic RB. Pegylated Interferons: Still a Major Player for the Treatment of Myeloproliferative Neoplasms. Am Soc Clin Oncol Educ Book 2025; 45:e473912. [PMID: 40305740 DOI: 10.1200/edbk-25-473912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Over the past 35 years, interferons have been explored in various formulations for the management of Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), such as essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis, and remain a key tool in caring for patients with these diseases. These agents are excellent cytoreductive agents with high rates of hematologic response, are helpful in symptom management, and have a long track record of safety and manageable toxicities. More recently, they have shown promise in sustaining responses over many years, with associated reductions in driver mutations (JAK2, MPL, CALR) of these diseases, particularly in PV and ET. Since reductions in molecular mutant allele burden have been correlated with several response outcomes such as reductions in both thrombotic risk and disease progression, there is emerging proof that interferons may offer disease-modifying activity. These long-term benefits and their use as the preferred agent in young pregnant women who need cytoreduction make interferons often the first choice in young adult population who harbor a lifetime risk of progression. Looking forward, the prospect of sustained treatment-free responses, like chronic myeloid leukemia after deep molecular response, and normal life expectancy may also be on the frontier. Despite relative rookies such as JAK inhibitors in the MPN landscape, the veteran in the game, interferon, remains a key player.
Collapse
Affiliation(s)
- Michael Daunov
- Division of Hematology and Oncology, University Hospitals-Seidman Cancer Center, Cleveland, OH
| | - Rebecca B Klisovic
- Division of Hematology and Oncology, University Hospitals-Seidman Cancer Center, Cleveland, OH
| |
Collapse
|
2
|
Gagelmann N, Kröger N. Allogeneic Stem Cell Transplant for Myelofibrosis and Myelodysplastic Syndromes: A Contemporary Review. Am J Hematol 2025. [PMID: 40079242 DOI: 10.1002/ajh.27660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/31/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Allogeneic hematopoietic stem-cell transplantation (HCT) remains the only potentially curative therapy for patients with myelodysplastic neoplasms (MDS) and myelofibrosis (MF) and is the standard care for eligible patients with higher-risk disease. Despite significant advancements, both diseases pose unique challenges due to their clinical and molecular heterogeneity, necessitating personalized approaches to patient selection, timing, and transplant management. For MDS, genomic profiling has revolutionized prognostic frameworks such as IPSS-M, enabling tailored therapeutic decisions. In MF, driver mutations (e.g., JAK2, CALR, MPL) and additional high-risk molecular markers provide critical insights into disease biology and transplant outcomes. Optimal timing of HCT is critical, and recent models might help personalize treatment approaches. Molecular measurable residual disease monitoring has demonstrated prognostic value in both diseases, guiding preemptive strategies to mitigate relapse risk. Harnessing molecular technologies, clinical expertise, patient-centered decision-making, and innovative pharmaceutical strategies offers an exciting opportunity to shape a transformative and curative treatment framework. Here, we provide a contemporary review on HCT for MDS and MF, highlighting up-to-date insights into disease biology, standard of care, and recommendations, as well as open avenues.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Hochman MJ, Muniz JP, Papadantonakis N. Precision Medicine in Myeloid Neoplasia: Challenges and Opportunities. J Pers Med 2025; 15:49. [PMID: 39997326 PMCID: PMC11856194 DOI: 10.3390/jpm15020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
High-risk myeloid neoplasms encompass a group of hematologic malignancies known to cause significant cytopenias, which are accompanied by the risk of end-organ damage. They tend to have an aggressive clinical course and limit life expectancy in the absence of effective treatments. The adoption of precision medicine approaches has been limited by substantive diversity in somatic mutations, limited fraction of patients with targetable genetic lesions, and the prolonged turnaround times of pertinent genetic tests. Efforts to incorporate targeted agents into first-line treatment, rapidly determine pre-treatment molecular or cytogenetic aberrations, and evaluate functional vulnerabilities ex vivo hold promise for advancing the use of precision medicine in these malignancies. Given the relative accessibility of malignant cells from blood and bone marrow, precision medicine strategies hold great potential to shape future standard-of-care approaches to patients with high-risk myeloid malignancies. This review aims to summarize the development of the targeted therapies currently available to treat these blood cancers, most notably acute myeloid leukemia, and also evaluate future opportunities and challenges related to the integration of personalized approaches.
Collapse
Affiliation(s)
- Michael J. Hochman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Joshua P. Muniz
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Aflac Cancer & Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Palandri F, Branzanti F, Morsia E, Dedola A, Benevolo G, Tiribelli M, Beggiato E, Farina M, Martino B, Caocci G, Pugliese N, Tieghi A, Crugnola M, Binotto G, Cavazzini F, Abruzzese E, Isidori A, Scalzulli E, D'Agostino D, Caserta S, Nardo A, Lemoli RM, Cilloni D, Bocchia M, Pane F, Heidel FH, Palumbo GA, Breccia M, Elli EM, Bonifacio M. Impact of calreticulin mutations on treatment and survival outcomes in myelofibrosis during ruxolitinib therapy. Ann Hematol 2025; 104:241-251. [PMID: 39831987 PMCID: PMC11868333 DOI: 10.1007/s00277-025-06204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Calreticulin (CALR) mutations are detected in around 20% of patients with primary and post-essential thrombocythemia myelofibrosis (MF). Regardless of driver mutations, patients with splenomegaly and symptoms are generally treated with JAK2-inhibitors, most commonly ruxolitinib. Recently, new therapies specifically targeting the CALR mutant clone have entered clinical investigation. To collect information on efficacy and safety of ruxolitinib in CALR-mutated patients, we report a sub-analysis of the "RUX-MF" (NCT06516406) study, comprising 135 CALR-mutated and 786 JAK2-mutated ruxolitinib-treated patients. Compared to JAK2-mutated patients, CALR-mutated patients started ruxolitinib with a more severe disease (higher peripheral blast counts, lower hemoglobin levels and worse marrow fibrosis) and after a longer median time from diagnosis (2.6 versus 0.7 years, p < 0.001). At 6 months, spleen responses were numerically inferior in CALR-mutated patients, who also had significantly lower rates of symptom responses (56.1% versus 66.7%, p = 0.04).
Collapse
Affiliation(s)
- Francesca Palandri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
- Institute of Hematology "L. and A. Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, Bologna (BO), 40138, Italy.
| | - Filippo Branzanti
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Erika Morsia
- Hematology Unit, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica Delle Marche, Ancona, Italy
| | - Alessandra Dedola
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Giulia Benevolo
- University Hematology Division, Città della Salute e Della Scienza Hospital, Torino, Italy
| | - Mario Tiribelli
- Division of Hematology and BMT, Department of Medicine, University of Udine, Udine, Italy
| | - Eloise Beggiato
- Unit of Hematology, Department of Oncology, University of Torino, Torino, Italy
| | - Mirko Farina
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Bruno Martino
- Division of Hematology, Azienda Ospedaliera 'Bianchi Melacrino Morelli', Reggio Calabria, Italy
| | - Giovanni Caocci
- Ematologia, Ospedale Businco, Università Degli Studi di Cagliari, Cagliari, Italy
| | - Novella Pugliese
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Naples, Italy
| | - Alessia Tieghi
- Department of Hematology, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Monica Crugnola
- Haematology and BMT Centre, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianni Binotto
- Unit of Hematology and Clinical Immunology, University of Padova, Padova, Italy
| | | | | | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Domenico D'Agostino
- Department of Engineering for Innovation Medicine, Section of Innovation Biomedicine, Hematology Area, University of Verona, Verona, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonella Nardo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Roberto Massimo Lemoli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Genova, Genova, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Monica Bocchia
- Hematology Unit, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena, Italy
| | - Fabrizio Pane
- Ematologia, Ospedale Businco, Università Degli Studi di Cagliari, Cagliari, Italy
| | - Florian H Heidel
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Giuseppe A Palumbo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Elena M Elli
- Divisione di Ematologia e Unità Trapianto di Midollo, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Massimiliano Bonifacio
- Department of Engineering for Innovation Medicine, Section of Innovation Biomedicine, Hematology Area, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Rajendra A, Gupta V. Advances in Stem Cell Transplantation for Myelofibrosis. Curr Hematol Malig Rep 2024; 19:256-263. [PMID: 39240494 DOI: 10.1007/s11899-024-00742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE OF REVIEW Allogeneic hematopoietic cell transplantation is the only potentially curative treatment for myelofibrosis. This review discusses issues not well-covered by existing guidelines: timing of transplant, pre-transplant spleen management and alternative donors; providing our approach to these situations. RECENT FINDINGS Research continues to allow better identification, by better risk stratification and advances in understanding likelihood of durable JAKi response, which patients are likely to derive benefit from upfront transplant versus those for whom delayed transplant may be more appropriate. Several options of JAKi therapy provide a non-surgical option for pre-HCT splenomegaly management, allowing some patients to avoid risks associated with splenectomy. Recent years have also seen a sharp spike in haploidentical donor transplants, along with narrowing of the gap in outcomes between donor types. Continuous enrollment in prospective studies or well-designed registries is required to generate the high-quality data needed to develop better decision tools for these scenarios.
Collapse
Affiliation(s)
- Akhil Rajendra
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Vikas Gupta
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
6
|
Arora S, Vachhani P, Bose P. Investigational drugs in early phase trials for myelofibrosis. Expert Opin Investig Drugs 2024; 33:1231-1244. [PMID: 39604120 PMCID: PMC11669310 DOI: 10.1080/13543784.2024.2434696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Myelofibrosis (MF) is a chronic myeloproliferative neoplasm characterized by bone marrow fibrosis, cytopenias, and organomegaly. Four JAK inhibitors are US-FDA approved for treatment of MF. While these drugs reduce symptom burden and spleen size to varying degrees, they do not affect the natural disease course or decrease the risk of leukemic transformation. Therefore, there is a strong need for newer therapies to further advance the field and improve the outcomes of MF. In this review, we cover novel therapies for MF currently in early stages of development. AREAS COVERED We present the latest data from early phase clinical trials in MF using drugs with diverse therapeutic mechanisms, including novel JAK-STAT pathway inhibitors, epigenetic therapies, antifibrotic agents, and immunotherapeutic strategies. Additionally, we cover drugs targeted toward anemia improvement in MF. EXPERT OPINION Numerous agents representing diverse drug classes are in clinical development for MF. While deeper and durable improvements in splenomegaly, symptoms, and anemia are the main clinical objectives, a number of putative biomarkers are being assessed as measures of potential 'disease modification.' Although JAK inhibitor monotherapy represents the current standard, it is hoped that JAK inhibitor-based rational combinations and driver mutation-specific therapies will soon usher in a new era.
Collapse
Affiliation(s)
- Sankalp Arora
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pankit Vachhani
- Department of Medicine, Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
7
|
Koschmieder S. Novel approaches in myelofibrosis. Hemasphere 2024; 8:e70056. [PMID: 39670187 PMCID: PMC11636632 DOI: 10.1002/hem3.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Myelofibrosis (MF) is a clonal myeloid neoplasm characterized by bone marrow fibrosis, splenomegaly, and disease-associated symptoms, as well as increased mortality, due to thrombosis, severe bleeding, infections, or progression to acute leukemia. Currently, the management of MF patients is tailored according to risk scores, with higher-risk (intermediate-2 and high-risk) patients being assessed for allogeneic stem cell transplantation, which remains the only potentially curative treatment option. On the other hand, lower risk (low- and intermediate-1 risk) patients who are symptomatic may be treated with JAK inhibitors or other drugs. However, none of these drug treatments have induced relevant rates of durable complete remissions, and, therefore, novel treatments are needed to improve the long-term outcomes of MF patients. This review summarizes current preclinical and clinical approaches to MF therapy, including novel drug combinations involving JAK inhibitors and innovative monotherapies. These drugs target transcription, nuclear export, survival pathways, or various intracellular pathways, ranging from JAK-STAT signaling to PI3-Kinase, TP53, PIM1, or S100A8/A9/toll-like receptor pathways. Also, extracellular targeting using interferon, calreticulin mutant-specific antibodies, and other immunotherapeutic approaches are discussed, as well as various antifibrotic strategies. In addition, preclinical approaches that target individual mutated clones, for example, by mutation-specific JAK2V617F inhibitors or DNA repair pathway inhibitors, are presented. Finally, current efforts of generating novel endpoints for clinical trials aim more at disease modification and overall survival than at improvements of splenomegaly or symptoms. Together, the new generations of clinical trials promise to offer substantial improvements in the management of MF patients and long-term disease control.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical FacultyRWTH Aachen UniversityAachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)AachenGermany
| |
Collapse
|
8
|
Thaw K, Harrison CN, Sriskandarajah P. JAK Inhibitors for Myelofibrosis: Strengths and Limitations. Curr Hematol Malig Rep 2024; 19:264-275. [PMID: 39400853 PMCID: PMC11567979 DOI: 10.1007/s11899-024-00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW The landscape of myelofibrosis (MF) has changed since the discovery of the JAK2 V617F mutation and subsequent development of JAK inhibitors (JAKis). However, treatment with JAKis remain a challenge. In this review we critically analyze the strengths and limitations of currently available JAK inhibitors. RECENT FINDINGS In MF patients, JAK inhibitors have been associated with reduced symptom burden and spleen size, as well as improved survival. However, durability of response and development of treatment resistance remain an issue. Recently, there has been increased efforts to optimize treatment with the development of highly selective JAK inhibitors, as well as use of combination agents to counter disease resistance through targeting aberrant signaling pathways. Treatment of MF patients with JAKi therapy can be challenging but the development of more potent and selective JAK inhibitors, as well as combination therapies, represent exciting treatment advances in this field.
Collapse
Affiliation(s)
- K Thaw
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - C N Harrison
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - P Sriskandarajah
- Department of Haematology, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
9
|
Kong YX, Chiu J, Passam FH. "Sticki-ER": Functions of the Platelet Endoplasmic Reticulum. Antioxid Redox Signal 2024; 41:637-660. [PMID: 38284332 DOI: 10.1089/ars.2024.0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Significance: The primary role of platelets is to generate a thrombus by platelet activation. Platelet activation relies on calcium mobilization from the endoplasmic reticulum (ER). ER resident proteins, which are externalized upon platelet activation, are essential for the function of platelet surface receptors and intercellular interactions. Recent Advances: The platelet ER is a conduit for changes in cellular function in response to the extracellular milieu. ER homeostasis is maintained by an appropriate redox balance, regulated calcium stores and normal protein folding. Alterations in ER function and ER stress results in ER proteins externalizing to the cell surface, including members of the protein disulfide isomerase family (PDIs) and chaperones. Critical Issues: The platelet ER is central to platelet function, but our understanding of its regulation is incomplete. Previous studies have focused on the function of PDIs in the extracellular space, and much less on their intracellular role. How platelets maintain ER homeostasis and how they direct ER chaperone proteins to facilitate intercellular signalling is unknown. Future Directions: An understanding of ER functions in the platelet is essential as these may determine critical platelet activities such as secretion and adhesion. Studies are necessary to understand the redox reactions of PDIs in the intracellular versus extracellular space, as these differentially affect platelet function. An unresolved question is how platelet ER proteins control calcium release. Regulation of protein folding in the platelet and downstream pathways of ER stress require further evaluation. Targeting the platelet ER may have therapeutic application in metabolic and neoplastic disease.
Collapse
Affiliation(s)
- Yvonne X Kong
- Haematology Research Group, Charles Perkins Centre; The University of Sydney, Camperdown, New South Wales, Australia
- Central Clinical School, Faculty of Medicine and Health; The University of Sydney, Camperdown, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Joyce Chiu
- ACRF Centenary Cancer Research Centre, The Centenary Institute; The University of Sydney, Camperdown, New South Wales, Australia
| | - Freda H Passam
- Haematology Research Group, Charles Perkins Centre; The University of Sydney, Camperdown, New South Wales, Australia
- Central Clinical School, Faculty of Medicine and Health; The University of Sydney, Camperdown, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
10
|
Liu X, Wang B, Liu Y, Yu Y, Wan Y, Wu J, Wang Y. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Mol Divers 2024; 28:3445-3456. [PMID: 38006563 DOI: 10.1007/s11030-023-10742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/05/2023] [Indexed: 11/27/2023]
Abstract
The overactivation of Janus kinases 2 (JAK2) by gain-of-function mutations in the JAK2, Myeloproliferative leukemia virus oncogene, or Calreticulin genes are the most important factor in the development of Philadelphia-negative myeloproliferative neoplasms (MPNs). The discovery of the JAK2V617F mutation is a significant breakthrough in understanding the pathogenesis of MPNs, and inhibition of JAK2 abnormal activation has become one of the most effective strategies against MPNs. Currently, three JAK2 inhibitors for treating MPNs have been approved, and several are being evaluated in clinical trials. However, persistent challenges in terms of drug resistance and off-target effects remain unresolved. In this review, we introduce and classify the available JAK2 inhibitors in terms of their mechanisms and clinical considerations. Additionally, through an analysis of target points, binding modes, and structure-activity inhibitor relationships, we propose strategies such as combination therapy and allosteric inhibitors to overcome specific challenges. This review offers valuable insights into current trends and future directions for optimal management of MPNs using JAK2 inhibitors.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yang Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
11
|
Vadeikienė R, Jakštys B, Laukaitienė D, Šatkauskas S, Juozaitytė E, Ugenskienė R. The Role of Mutated Calreticulin in the Pathogenesis of BCR-ABL1-Negative Myeloproliferative Neoplasms. Int J Mol Sci 2024; 25:9873. [PMID: 39337361 PMCID: PMC11432199 DOI: 10.3390/ijms25189873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by increased proliferation of myeloid lineages in the bone marrow. Calreticulin (CALR) 52 bp deletion and CALR 5 bp insertion have been identified in essential thrombocythemia (ET) and primary myelofibrosis (PMF). There is not much data on the crosstalk between mutated CALR and MPN-related signaling pathways, such as JAK/STAT, PI3K/Akt/mTOR, and Hedgehog. Calreticulin, a multifunctional protein, takes part in many cellular processes. Nevertheless, there is little data on how mutated CALR affects the oxidative stress response and oxidative stress-induced DNA damage, apoptosis, and cell cycle progression. We aimed to investigate the role of the CALR 52 bp deletion and 5 bp insertion in the pathogenesis of MPN, including signaling pathway activation and functional analysis in CALR-mutated cells. Our data indicate that the JAK/STAT and PI3K/Akt/mTOR pathways are activated in CALR-mutated cells, and this activation does not necessarily depend on the CALR and MPL interaction. Moreover, it was found that CALR mutations impair calreticulin function, leading to reduced responses to oxidative stress and DNA damage. It was revealed that the accumulation of G2/M-CALR-mutated cells indicates that oxidative stress-induced DNA damage is difficult to repair. Taken together, this study contributes to a deeper understanding of the specific molecular mechanisms underlying CALR-mutated MPNs.
Collapse
Affiliation(s)
- Roberta Vadeikienė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Baltramiejus Jakštys
- Research on Delivery of Medicine and Genes Cluster, Faculty of Natural Sciences, Vytautas Magnus University, LT-44001 Kaunas, Lithuania
| | - Danguolė Laukaitienė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Saulius Šatkauskas
- Research on Delivery of Medicine and Genes Cluster, Faculty of Natural Sciences, Vytautas Magnus University, LT-44001 Kaunas, Lithuania
| | - Elona Juozaitytė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
12
|
Wang B, Guo J, Chen B, Jiao Y, Wan Y, Wu J, Wang Y. Combination of ligand‑based and structure‑based virtual screening for the discovery of novel Janus kinase 2 inhibitors against philadelphia-negative myeloproliferative neoplasms. Mol Divers 2024:10.1007/s11030-024-10938-1. [PMID: 39210217 DOI: 10.1007/s11030-024-10938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The activating V617F mutation in Janus kinase 2 (JAK2) has been shown to be the major cause for classic Philadelphia-negative myeloproliferative neoplasms (MPNs). Thus, the development of pharmacologic JAK2 inhibitors is an essential move in combating MPNs. In this study, screening methods examining both ligands and their structures were developed to discover novel JAK2 inhibitors from the ChemDiv database with virtual screening identifying 886 candidate inhibitors. Next, these compounds were further filtered using ADMET, drug likeliness, and PAINS filtering, which reduced the compound number even further. This consolidated list of candidate compounds (n = 49) was then evaluated biologically at molecular level and the highest performing inhibitor with a novel scaffold was selected for further examination. This candidate inhibitor, CD4, was then subjected to molecular dynamics studies, with complex stability, root-mean-square deviation, radius of gyration, binding free energy, and binding properties all examined. The result suggested that CD4 interacts with JAK2 and that the CD4-JAK2 complex is stable. This study was able to identify a candidate inhibitor that warrants further examination and optimization and may potentially serve as a future MPN treatment.
Collapse
Affiliation(s)
- Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianmin Guo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Bo Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yan Jiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
14
|
Haage TR, Charakopoulos E, Bhuria V, Baldauf CK, Korthals M, Handschuh J, Müller P, Li J, Harit K, Nishanth G, Frey S, Böttcher M, Fischer KD, Dudeck J, Dudeck A, Lipka DB, Schraven B, Green AR, Müller AJ, Mougiakakos D, Fischer T. Neutrophil-specific expression of JAK2-V617F or CALRmut induces distinct inflammatory profiles in myeloproliferative neoplasia. J Hematol Oncol 2024; 17:43. [PMID: 38853260 PMCID: PMC11163796 DOI: 10.1186/s13045-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1β. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.
Collapse
Affiliation(s)
- Tobias Ronny Haage
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Emmanouil Charakopoulos
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Vikas Bhuria
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny K Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Mark Korthals
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Juliane Handschuh
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Müller
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Juan Li
- Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England
| | - Kunjan Harit
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Gopala Nishanth
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Stephanie Frey
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Martin Böttcher
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jan Dudeck
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Dudeck
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Anthony R Green
- Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England
| | - Andreas J Müller
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Fischer
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
15
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
16
|
Ng J, Marneth AE, Griffith A, Younger D, Ghanta S, Jiao A, Willis G, Han J, Imani J, Niu B, Keegan JW, Hancock B, Guo F, Shi Y, Perrella MA, Lederer JA. Mesenchymal Stromal Cells Facilitate Neutrophil-Trained Immunity by Reprogramming Hematopoietic Stem Cells. J Innate Immun 2023; 15:765-781. [PMID: 37797588 PMCID: PMC10622164 DOI: 10.1159/000533732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/20/2023] [Indexed: 10/07/2023] Open
Abstract
Novel therapeutics are urgently needed to prevent opportunistic infections in immunocompromised individuals undergoing cancer treatments or other immune-suppressive therapies. Trained immunity is a promising strategy to reduce this burden of disease. We previously demonstrated that mesenchymal stromal cells (MSCs) preconditioned with a class A CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) agonist, can augment emergency granulopoiesis in a murine model of neutropenic sepsis. Here, we used a chimeric mouse model to demonstrate that MSCs secrete paracrine factors that act on lineage-negative c-kit+ hematopoietic stem cells (HSCs), leaving them "poised" to enhance emergency granulopoiesis months after transplantation. Chimeric mice developed from HSCs exposed to conditioned media from MSCs and CpG-ODN-preconditioned MSCs showed significantly higher bacterial clearance and increased neutrophil granulopoiesis following lung infection than control mice. By Cleavage Under Targets and Release Using Nuclease (CUT&RUN) chromatin sequencing, we identified that MSC-conditioned media leaves H3K4me3 histone marks in HSCs at genes involved in myelopoiesis and in signaling persistence by the mTOR pathway. Both soluble factors and extracellular vesicles from MSCs mediated these effects on HSCs and proteomic analysis by mass spectrometry revealed soluble calreticulin as a potential mediator. In summary, this study demonstrates that trained immunity can be mediated by paracrine factors from MSCs to induce neutrophil-trained immunity by reprogramming HSCs for long-lasting functional changes in neutrophil-mediated antimicrobial immunity.
Collapse
Affiliation(s)
- Julie Ng
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Anna E. Marneth
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alec Griffith
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Daniel Younger
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alan Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gareth Willis
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Junwen Han
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bailin Niu
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Joshua W. Keegan
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Brandon Hancock
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Fei Guo
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Havelange V, Constantinescu SN. Molecular pathogenesis of myeloproliferative neoplasms: Where do we stand in 2023? Am J Hematol 2023; 98:1512-1516. [PMID: 37635451 DOI: 10.1002/ajh.27062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Violaine Havelange
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- Department of Hematology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Stefan N Constantinescu
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- Department of Hematology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- WelBio Department, Wel Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| |
Collapse
|
18
|
Gurban P, Mambet C, Botezatu A, Necula LG, Neagu AI, Matei L, Pitica IM, Nedeianu S, Chivu-Economescu M, Bleotu C, Ataman M, Mocanu G, Saguna C, Pavel AG, Stambouli D, Sepulchre E, Anton G, Diaconu CC, Constantinescu SN. Leukemic conversion involving RAS mutations of type 1 CALR-mutated primary myelofibrosis in a patient treated for HCV cirrhosis: a case report. Front Oncol 2023; 13:1266996. [PMID: 37841434 PMCID: PMC10570518 DOI: 10.3389/fonc.2023.1266996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Somatic frameshift mutations in exon 9 of calreticulin (CALR) gene are recognized as disease drivers in primary myelofibrosis (PMF), one of the three classical Philadelphia-negative myeloproliferative neoplasms (MPNs). Type 1/type 1-like CALR mutations particularly confer a favorable prognostic and survival advantage in PMF patients. We report an unusual case of PMF incidentally diagnosed in a 68-year-old woman known with hepatitis C virus (HCV) cirrhosis who developed a progressive painful splenomegaly, without anomalies in blood cell counts. While harboring a type 1 CALR mutation, the patient underwent a leukemic transformation in less than 1 year from diagnosis, with a lethal outcome. Analysis of paired DNA samples from chronic and leukemic phases by a targeted next-generation sequencing (NGS) panel and single-nucleotide polymorphism (SNP) microarray revealed that the leukemic clone developed from the CALR-mutated clone through the acquisition of genetic events in the RAS signaling pathway: an increased variant allele frequency of the germline NRAS Y64D mutation present in the chronic phase (via an acquired uniparental disomy of chromosome 1) and gaining NRAS G12D in the blast phase. SNP microarray analysis showed five clinically significant copy number losses at regions 7q22.1, 8q11.1-q11.21, 10p12.1-p11.22, 11p14.1-p11.2, and Xp11.4, revealing a complex karyotype already in the chronic phase. We discuss how additional mutations, detected by NGS, as well as HCV infection and antiviral therapy, might have negatively impacted this type 1 CALR-mutated PMF. We suggest that larger studies are required to determine if more careful monitoring would be needed in MPN patients also carrying HCV and receiving anti-HCV treatment.
Collapse
Affiliation(s)
- Petruta Gurban
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
- Cytogenomic Medical Laboratory Ltd., Bucharest, Romania
| | - Cristina Mambet
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
- Department of Radiology, Oncology, and Hematology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Hematology Department, Emergency University Clinical Hospital, Bucharest, Romania
| | - Anca Botezatu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Laura G. Necula
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Ana I. Neagu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
- Department of Radiology, Oncology, and Hematology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Lilia Matei
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Ioana M. Pitica
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Saviana Nedeianu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Mihaela Chivu-Economescu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Marius Ataman
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Gabriela Mocanu
- Department of Hematology, Coltea Clinical Hospital, Bucharest, Romania
| | - Carmen Saguna
- Department of Radiology, Oncology, and Hematology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Coltea Clinical Hospital, Bucharest, Romania
| | - Anca G. Pavel
- Cytogenomic Medical Laboratory Ltd., Bucharest, Romania
| | | | - Elise Sepulchre
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gabriela Anton
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Carmen C. Diaconu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Stefan N. Constantinescu
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- SIGN (Cell Signalling and Molecular Hematology), Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford, United Kingdom
| |
Collapse
|
19
|
Vainchenker W, Yahmi N, Havelange V, Marty C, Plo I, Constantinescu SN. Recent advances in therapies for primary myelofibrosis. Fac Rev 2023; 12:23. [PMID: 37771602 PMCID: PMC10523375 DOI: 10.12703/r/12-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) form the classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are driven by a constitutive activation of JAK2 signaling. PMF as well as secondary MF (post-ET and post-PV MF) are the most aggressive MPNs. Presently, there is no curative treatment, except allogenic hematopoietic stem cell transplantation. JAK inhibitors, essentially ruxolitinib, are the therapy of reference for intermediate and high-risk MF. However, presently the current JAK inhibitors behave mainly as anti-inflammatory drugs, improving general symptoms and spleen size without major impact on disease progression. A better understanding of the genetics of MF, the biology of its leukemic stem cells (LSCs), the mechanisms of fibrosis and of cytopenia and the role of inflammatory cytokines has led to new approaches with the development of numerous therapeutic agents that target epigenetic regulation, telomerase, apoptosis, cell cycle, cytokines and signaling. Furthermore, the use of a new less toxic form of interferon-α has been revived, as it is presently one of the only molecules that targets the mutated clone. These new approaches have different aims: (a) to provide alternative therapy to JAK inhibition; (b) to correct cytopenia; and (c) to inhibit fibrosis development. However, the main important goal is to find new disease modifier treatments, which will profoundly modify the progression of the disease without major toxicity. Presently the most promising approaches consist of the inhibition of telomerase and the combination of JAK2 inhibitors (ruxolitinib) with either a BCL2/BCL-xL or BET inhibitor. Yet, the most straightforward future approaches can be considered to be the development of and/or selective inhibition of JAK2V617F and the targeting MPL and calreticulin mutants by immunotherapy. It can be expected that the therapy of MF will be significantly improved in the coming years.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Nasrine Yahmi
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Violaine Havelange
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Cliniques universitaires Saint Luc, Department of Hematology, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Marty
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Stefan N Constantinescu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
20
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
21
|
Mroczkowska-Bękarciak A, Wróbel T. BCR::ABL1-negative myeloproliferative neoplasms in the era of next-generation sequencing. Front Genet 2023; 14:1241912. [PMID: 37745842 PMCID: PMC10514516 DOI: 10.3389/fgene.2023.1241912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
The classical BCR::ABL1-negative myeloproliferative neoplasms such as polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF) are clonal diseases with the presence of characteristic "driver mutations" in one of the genes: JAK2, CALR, or MPL. The search for mutations in these three genes is required for the diagnosis of MPNs. Nevertheless, the progress that has been made in the field of molecular genetics has opened a new era in medicine. The search for additional mutations in MPNs is helpful in assessing the risk stratification, disease progression, transformation to acute myeloid leukemia (AML), or choosing the right treatment. In some cases, advanced technologies are needed to find a clonal marker of the disease and establish a diagnosis. This review focuses on how the use of new technologies like next-generation sequencing (NGS) helps in the diagnosis of BCR::ABL1-negative myeloproliferative neoplasms.
Collapse
|
22
|
Zhang J, Shen K, Xiao M, Huang J, Wang J, Wang Y, Hong Z. Case report: Application of targeted NGS for the detection of non-canonical driver variants in MPN. Front Genet 2023; 14:1198834. [PMID: 37396034 PMCID: PMC10313112 DOI: 10.3389/fgene.2023.1198834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background: JAK2, CALR, and MPL gene mutations are recognized as driver mutations of myeloproliferative neoplasms (MPNs). MPNs without these mutations are called triple-negative (TN) MPNs. Recently, novel mutation loci were continuously discovered using next-generation sequencing (NGS), along with continued discussion and modification of the traditional TN MPN. Case presentation: Novel pathogenic mutations were discovered by targeted NGS in 4 patients who were diagnosed as JAK2 unmutated polycythaemia vera (PV) or TN MPN. Cases 1, 2, and 3 were of patients with PV, essential thrombocythemia (ET), and primary myelofibrosis (PMF); NGS detected JAK2 p.H538_K539delinsQL (uncommon), CALR p.E380Rfs*51 (novel), and MPL p.W515_Q516del (novel) mutations. Case 4 involved a patient with PMF; JAK2, CALR, or MPL mutations were not detected by qPCR or NGS, but a novel mutation SH2B3 p.S337Ffs*3, which is associated with the JAK/STAT signal transduction pathway, was found by NGS. Conclusion: NGS, a more multidimensional and comprehensive gene mutation detection, is required for patients suspected of having MPN to detect non-canonical driver variants and avoid the misdiagnosis of TN MPN. SH2B3 p.S337Ffs*3 can drive MPN occurrence, and SH2B3 mutation may also be a driver mutation of MPN.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinjin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqin Wang
- Department of Pediatric Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Pennisi MS, Di Gregorio S, Tirrò E, Romano C, Duminuco A, Garibaldi B, Giuffrida G, Manzella L, Vigneri P, Palumbo GA. Additional Genetic Alterations and Clonal Evolution of MPNs with Double Mutations on the MPL Gene: Two Case Reports. Hematol Rep 2023; 15:317-324. [PMID: 37367082 DOI: 10.3390/hematolrep15020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are two of the main BCR-ABL1-negative chronic myeloproliferative neoplasms (MPNs) characterized by abnormal megakaryocytic proliferation. Janus kinase 2 (JAK2) mutations are detected in 50-60% of ET and PMF, while myeloproliferative leukemia (MPL) virus oncogene mutations are present in 3-5% of cases. While Sanger sequencing is a valuable diagnostic tool to discriminate the most common MPN mutations, next-generation sequencing (NGS) is a more sensitive technology that also identifies concurrent genetic alterations. In this report, we describe two MPN patients with simultaneous double MPL mutations: a woman with ET presenting both MPLV501A-W515R and JAK2V617F mutations and a man with PMF displaying an uncommon double MPLV501A-W515L. Using colony-forming assays and NGS analyses, we define the origin and mutational landscape of these two unusual malignancies and uncover further gene alterations that may contribute to the pathogenesis of ET and PMF.
Collapse
Affiliation(s)
- Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy
| | - Bruno Garibaldi
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy
| | - Gaetano Giuffrida
- Hematology Unit and Bone Marrow Transplant, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
24
|
Wang YH, Chen YJ, Lai YH, Wang MC, Chen YY, Wu YY, Yang YR, Tsou HY, Li CP, Hsu CC, Huang CE, Chen CC. Mutation-Driven S100A8 Overexpression Confers Aberrant Phenotypes in Type 1 CALR-Mutated MPN. Int J Mol Sci 2023; 24:8747. [PMID: 37240094 PMCID: PMC10217897 DOI: 10.3390/ijms24108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Numerous pathogenic CALR exon 9 mutations have been identified in myeloproliferative neoplasms (MPN), with type 1 (52bp deletion; CALRDEL) and type 2 (5bp insertion; CALRINS) being the most prevalent. Despite the universal pathobiology of MPN driven by various CALR mutants, it is unclear why different CALR mutations result in diverse clinical phenotypes. Through RNA sequencing followed by validation at the protein and mRNA levels, we found that S100A8 was specifically enriched in CALRDEL but not in CALRINS MPN-model cells. The expression of S100a8 could be regulated by STAT3 based on luciferase reporter assay complemented with inhibitor treatment. Pyrosequencing demonstrated relative hypomethylation in two CpG sites within the potential pSTAT3-targeting S100a8 promoter region in CALRDEL cells as compared to CALRINS cells, suggesting that distinct epigenetic alteration could factor into the divergent S100A8 levels in these cells. The functional analysis confirmed that S100A8 non-redundantly contributed to accelerated cellular proliferation and reduced apoptosis in CALRDEL cells. Clinical validation showed significantly enhanced S100A8 expression in CALRDEL-mutated MPN patients compared to CALRINS-mutated cases, and thrombocytosis was less prominent in those with S100A8 upregulation. This study provides indispensable insights into how different CALR mutations discrepantly drive the expression of specific genes that contributes to unique phenotypes in MPN.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yi-Hua Lai
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ming-Chung Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yao-Ren Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Hsing-Yi Tsou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chian-Pei Li
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
25
|
How J, Garcia JS, Mullally A. Biology and therapeutic targeting of molecular mechanisms in MPNs. Blood 2023; 141:1922-1933. [PMID: 36534936 PMCID: PMC10163317 DOI: 10.1182/blood.2022017416] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription signaling. As a result, JAK inhibitors have been the standard therapy for treatment of patients with myelofibrosis (MF). Although currently approved JAK inhibitors successfully ameliorate MPN-related symptoms, they are not known to substantially alter the MF disease course. Similarly, in essential thrombocythemia and polycythemia vera, treatments are primarily aimed at reducing the risk of cardiovascular and thromboembolic complications, with a watchful waiting approach often used in patients who are considered to be at a lower risk for thrombosis. However, better understanding of MPN biology has led to the development of rationally designed therapies, with the goal of not only addressing disease complications but also potentially modifying disease course. We review the most recent data elucidating mechanisms of disease pathogenesis and highlight emerging therapies that target MPN on several biologic levels, including JAK2-mutant MPN stem cells, JAK and non-JAK signaling pathways, mutant calreticulin, and the inflammatory bone marrow microenvironment.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| |
Collapse
|
26
|
Chifotides HT, Masarova L, Verstovsek S. SOHO State of the Art Updates and Next Questions: Novel Therapeutic Strategies in Development for Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:219-231. [PMID: 36797153 PMCID: PMC10378306 DOI: 10.1016/j.clml.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Development of myelofibrosis (MF) therapeutics has reached fruition as the transformative impact of JAK2 inhibitors in the MPN landscape is complemented/expanded by a profusion of novel monotherapies and rational combinations in the frontline and second line settings. Agents in advanced clinical development span various mechanisms of action (eg, epigenetic or apoptotic regulation), may address urgent unmet clinical needs (cytopenias), increase the depth/duration of spleen and symptom responses elicited by ruxolitinib, improve other aspects of the disease besides splenomegaly/constitutional symptoms (eg, resistance to ruxolitinib, bone marrow fibrosis or disease course), provide personalized strategies, and extend overall survival (OS). Ruxolitinib had a dramatic impact on the quality of life and OS of MF patients. Recently, pacritinib received regulatory approval for severely thrombocytopenic MF patients. Momelotinib is advantageously poised among JAK inhibitors given its differentiated mode of action (suppression of hepcidin expression). Momelotinib demonstrated significant improvements in anemia measures, spleen responses, and MF-associated symptoms in MF patients with anemia; and will likely receive regulatory approval in 2023. An array of other novel agents combined with ruxolitinib, such as pelabresib, navitoclax, parsaclisib, or as monotherapies (navtemadlin) are evaluated in pivotal phase 3 trials. Imetelstat (telomerase inhibitor) is currently evaluated in the second line setting; OS was set as the primary endpoint, marking an unprecedented goal in MF trials, wherein SVR35 and TSS50 at 24 weeks have been typical endpoints heretofore. Transfusion independence may be considered another clinically meaningful endpoint in MF trials given its correlation with OS. Overall, therapeutics are at the cusp of an exponential expansion and advancements that will likely lead to the golden era in treatment of MF.
Collapse
Affiliation(s)
- Helen T Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
27
|
Structural and Dynamic Differences between Calreticulin Mutants Associated with Essential Thrombocythemia. Biomolecules 2023; 13:biom13030509. [PMID: 36979444 PMCID: PMC10046389 DOI: 10.3390/biom13030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Essential thrombocythemia (ET) is a blood cancer. ET is characterized by an overproduction of platelets that can lead to thrombosis formation. Platelet overproduction occurs in megakaryocytes through a signaling pathway that could involve JAK2, MPL, or CALR proteins. CALR mutations are associated with 25–30% of ET patients; CALR variants must be dimerized to induce ET. We classified these variants into five classes named A to E; classes A and B are the most frequent classes in patients with ET. The dynamic properties of these five classes using structural models of CALR’s C-domain were analyzed using molecular dynamics simulations. Classes A, B, and C are associated with frameshifts in the C-domain. Their dimers can be stable only if a disulfide bond is formed; otherwise, the two monomers repulse each other. Classes D and E cannot be stable as dimers due to the absence of disulfide bonds. Class E and wild-type CALR have similar dynamic properties. These results suggest that the disulfide bond newly formed in classes A, B, and C may be essential for the pathogenicity of these variants. They also underline that class E cannot be directly related to ET but corresponds to human polymorphisms.
Collapse
|
28
|
La Spina E, Giallongo S, Giallongo C, Vicario N, Duminuco A, Parenti R, Giuffrida R, Longhitano L, Li Volti G, Cambria D, Di Raimondo F, Musumeci G, Romano A, Palumbo GA, Tibullo D. Mesenchymal stromal cells in tumor microenvironment remodeling of BCR-ABL negative myeloproliferative diseases. Front Oncol 2023; 13:1141610. [PMID: 36910610 PMCID: PMC9996158 DOI: 10.3389/fonc.2023.1141610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic myeloproliferative neoplasms encompass the BCR-ABL1-negative neoplasms polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These are characterized by calreticulin (CALR), myeloproliferative leukemia virus proto-oncogene (MPL) and the tyrosine kinase Janus kinase 2 (JAK2) mutations, eventually establishing a hyperinflammatory tumor microenvironment (TME). Several reports have come to describe how constitutive activation of JAK-STAT and NFκB signaling pathways lead to uncontrolled myeloproliferation and pro-inflammatory cytokines secretion. In such a highly oxidative TME, the balance between Hematopoietic Stem Cells (HSCs) and Mesenchymal Stromal Cells (MSCs) has a crucial role in MPN development. For this reason, we sought to review the current literature concerning the interplay between HSCs and MSCs. The latter have been reported to play an outstanding role in establishing of the typical bone marrow (BM) fibrotic TME as a consequence of the upregulation of different fibrosis-associated genes including PDGF- β upon their exposure to the hyperoxidative TME characterizing MPNs. Therefore, MSCs might turn to be valuable candidates for niche-targeted targeting the synthesis of cytokines and oxidative stress in association with drugs eradicating the hematopoietic clone.
Collapse
Affiliation(s)
- Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
29
|
Rolles B, Mullally A. Molecular Pathogenesis of Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2022; 17:319-329. [PMID: 36336766 DOI: 10.1007/s11899-022-00685-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Myeloproliferative neoplasms (MPNs) are chronic hematological malignancies characterized by increased proliferation of MPN stem and myeloid progenitor cells with or without bone marrow fibrosis that typically lead to increased peripheral blood cell counts. The genetic and cytogenetic alterations that initiate and drive the development of MPNs have largely been defined, and we summarize these here. RECENT FINDINGS In recent years, advances in understanding the pathogenesis of MPNs have defined a long-preclinical phase in JAK2-mutant MPN, identified genetic loci associated with MPN predisposition and uncovered mechanistic insights in CALR-mutant MPN. The integration of molecular genetics into prognostic risk models is well-established in myelofibrosis and ongoing studies are interrogating the prognostic implications of concomitant mutations in ET and PV. Despite all these advances, the field is deficient in clonally selective therapies to effectively target the MPN clone at any stage of disease, from pre-clinical to advanced. Although the biological understanding of the pathogenesis of MPNs has progressed quickly, substantial knowledge gaps remain, including in the molecular mechanisms underlying MPN progression and myelofibrotic transformation. An ongoing goal for the MPN field is to translate advances in biological understanding to improved treatments for patients.
Collapse
Affiliation(s)
- Benjamin Rolles
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Building, Room 738, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Building, Room 738, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
30
|
Strategies to improve drug penetration into tumor microenvironment by nanoparticles: focus on nanozymes. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Mutant CALR's "sweet tooth". Blood 2022; 140:1187-1189. [PMID: 36107460 PMCID: PMC9479035 DOI: 10.1182/blood.2022017448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
|
32
|
Jutzi JS, Marneth AE, Ciboddo M, Guerra-Moreno A, Jiménez-Santos MJ, Kosmidou A, Dressman JW, Liang H, Hamel R, Lozano P, Rumi E, Doench JG, Gotlib J, Krishnan A, Elf S, Al-Shahrour F, Mullally A. Whole-genome CRISPR screening identifies N-glycosylation as a genetic and therapeutic vulnerability in CALR-mutant MPNs. Blood 2022; 140:1291-1304. [PMID: 35763665 PMCID: PMC9479036 DOI: 10.1182/blood.2022015629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023] Open
Abstract
Calreticulin (CALR) mutations are frequent, disease-initiating events in myeloproliferative neoplasms (MPNs). Although the biological mechanism by which CALR mutations cause MPNs has been elucidated, there currently are no clonally selective therapies for CALR-mutant MPNs. To identify unique genetic dependencies in CALR-mutant MPNs, we performed a whole-genome clustered regularly interspaced short palindromic repeats (CRISPR) knockout depletion screen in mutant CALR-transformed hematopoietic cells. We found that genes in the N-glycosylation pathway (among others) were differentially depleted in mutant CALR-transformed cells as compared with control cells. Using a focused pharmacological in vitro screen targeting unique vulnerabilities uncovered in the CRISPR screen, we found that chemical inhibition of N-glycosylation impaired the growth of mutant CALR-transformed cells, through a reduction in MPL cell surface expression. We treated Calr-mutant knockin mice with the N-glycosylation inhibitor 2-deoxy-glucose (2-DG) and found a preferential sensitivity of Calr-mutant cells to 2-DG as compared with wild-type cells and normalization of key MPNs disease features. To validate our findings in primary human cells, we performed megakaryocyte colony-forming unit (CFU-MK) assays. We found that N-glycosylation inhibition significantly reduced CFU-MK formation in patient-derived CALR-mutant bone marrow as compared with bone marrow derived from healthy donors. In aggregate, our findings advance the development of clonally selective treatments for CALR-mutant MPNs.
Collapse
Affiliation(s)
- Jonas S Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michele Ciboddo
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL
| | - Angel Guerra-Moreno
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - María José Jiménez-Santos
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anastasia Kosmidou
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - James W Dressman
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC
| | - Hongyan Liang
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC
| | - Rebecca Hamel
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- RWTH Aachen University, Aachen, Germany
| | - Patricia Lozano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | | | - Jason Gotlib
- Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Anandi Krishnan
- Department of Pathology, Stanford Cancer Institute, Stanford University School of Medicine, Palo Alto, CA; and
| | - Shannon Elf
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
33
|
Gigoux M, Holmström MO, Zappasodi R, Park JJ, Pourpe S, Bozkus CC, Mangarin LMB, Redmond D, Verma S, Schad S, George MM, Venkatesh D, Ghosh A, Hoyos D, Molvi Z, Kamaz B, Marneth AE, Duke W, Leventhal MJ, Jan M, Ho VT, Hobbs GS, Knudsen TA, Skov V, Kjær L, Larsen TS, Hansen DL, Lindsley RC, Hasselbalch H, Grauslund JH, Lisle TL, Met Ö, Wilkinson P, Greenbaum B, Sepulveda MA, Chan T, Rampal R, Andersen MH, Abdel-Wahab O, Bhardwaj N, Wolchok JD, Mullally A, Merghoub T. Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Sci Transl Med 2022; 14:eaba4380. [PMID: 35704596 PMCID: PMC11182673 DOI: 10.1126/scitranslmed.aba4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The majority of JAK2V617F-negative myeloproliferative neoplasms (MPNs) have disease-initiating frameshift mutations in calreticulin (CALR), resulting in a common carboxyl-terminal mutant fragment (CALRMUT), representing an attractive source of neoantigens for cancer vaccines. However, studies have shown that CALRMUT-specific T cells are rare in patients with CALRMUT MPN for unknown reasons. We examined class I major histocompatibility complex (MHC-I) allele frequencies in patients with CALRMUT MPN from two independent cohorts. We observed that MHC-I alleles that present CALRMUT neoepitopes with high affinity are underrepresented in patients with CALRMUT MPN. We speculated that this was due to an increased chance of immune-mediated tumor rejection by individuals expressing one of these MHC-I alleles such that the disease never clinically manifested. As a consequence of this MHC-I allele restriction, we reasoned that patients with CALRMUT MPN would not efficiently respond to a CALRMUT fragment cancer vaccine but would when immunized with a modified CALRMUT heteroclitic peptide vaccine approach. We found that heteroclitic CALRMUT peptides specifically designed for the MHC-I alleles of patients with CALRMUT MPN efficiently elicited a CALRMUT cross-reactive CD8+ T cell response in human peripheral blood samples but not to the matched weakly immunogenic CALRMUT native peptides. We corroborated this effect in vivo in mice and observed that C57BL/6J mice can mount a CD8+ T cell response to the CALRMUT fragment upon immunization with a CALRMUT heteroclitic, but not native, peptide. Together, our data emphasize the therapeutic potential of heteroclitic peptide-based cancer vaccines in patients with CALRMUT MPN.
Collapse
Affiliation(s)
- Mathieu Gigoux
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Morten O. Holmström
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Joseph J. Park
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Stephane Pourpe
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Levi M. B. Mangarin
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Redmond
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Svena Verma
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Sara Schad
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Mariam M. George
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Divya Venkatesh
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arnab Ghosh
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY 10065, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Baransel Kamaz
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna E. Marneth
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William Duke
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Max Jan
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vincent T. Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela S. Hobbs
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde 4000, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde 4000, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde 4000, Denmark
| | | | - Dennis Lund Hansen
- Department of Hematology, Odense University Hospital, Odense 5000, Denmark
| | - R. Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hans Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde 4000, Denmark
| | - Jacob H. Grauslund
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Thomas L. Lisle
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Özcan Met
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Patrick Wilkinson
- Janssen Oncology Therapeutic Area, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19002, USA
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Manuel A. Sepulveda
- Janssen Oncology Therapeutic Area, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19002, USA
| | - Timothy Chan
- Weill Cornell Medical College, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mads H. Andersen
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev Hospital, Herlev 2730, Denmark
- Department of Immunology and Microbiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nina Bhardwaj
- Parker Institute for Cancer Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jedd D. Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Ann Mullally
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program and Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
34
|
Tvorogov D, Thompson‐Peach CAL, Foßelteder J, Dottore M, Stomski F, Onnesha SA, Lim K, Moretti PAB, Pitson SM, Ross DM, Reinisch A, Thomas D, Lopez AF. Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody. EMBO Rep 2022; 23:e52904. [PMID: 35156745 PMCID: PMC8982588 DOI: 10.15252/embr.202152904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
Calreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co-expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK-STAT signalling, TPO-independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR. Importantly, 4D7 inhibited proliferation of patient samples with both insertion and deletion CALR mutations but not JAK2 V617F and prolonged survival in xenografted bone marrow models of mutant CALR-dependent myeloproliferation. Together, our data demonstrate a novel therapeutic approach to target a problematic disease driven by a recurrent somatic mutation that would normally be considered undruggable.
Collapse
Affiliation(s)
- Denis Tvorogov
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Chloe A L Thompson‐Peach
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Johannes Foßelteder
- Department of Internal MedicineDivision of HaematologyMedical University of GrazGrazAustria
| | - Mara Dottore
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Frank Stomski
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Suraiya A Onnesha
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Kelly Lim
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Paul A B Moretti
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Stuart M Pitson
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - David M Ross
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Department of HaematologyFlinders University and Medical CentreAdelaideSAAustralia
| | - Andreas Reinisch
- Department of Internal MedicineDivision of HaematologyMedical University of GrazGrazAustria
- Department of Blood Group Serology and Transfusion MedicineMedical University of GrazGrazAustria
| | - Daniel Thomas
- Cancer ProgramPrecision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)University of AdelaideAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Angel F Lopez
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Discipline of MedicineAdelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| |
Collapse
|
35
|
Chifotides HT, Bose P, Masarova L, Pemmaraju N, Verstovsek S. SOHO State of the Art Updates and Next Questions: Novel Therapies in Development for Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:210-223. [PMID: 34840087 DOI: 10.1016/j.clml.2021.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Myeloproliferative neoplasms research has entered a dynamic and exciting era as we witness exponential growth of novel agents in advanced/early phase clinical trials for myelofibrosis (MF). Building on the success and pivotal role of ruxolitinib, many novel agents, spanning a wide range of mechanisms/targets (epigenetic regulation, apoptotic/intracellular signaling pathways, telomerase, bone marrow fibrosis) are in clinical development; several are studied in registrational trials and hold great potential to expand the therapeutic arsenal/shift the treatment paradigm if regulatory approval is granted. Insight into MF pathogenesis and its molecular underpinnings, preclinical studies demonstrating synergism of ruxolitinib with investigational agents, urgent unmet clinical needs (cytopenias, loss of response to JAK inhibitors); and progressive disease fueled the rapid rise of innovative therapeutics. New strategies include pairing ruxolitinib with erythroid maturation agents to manage anemia (luspatercept), designing rational combinations with ruxolitinib to boost responses in both the frontline and suboptimal response settings (pelabresib, navitoclax, parsaclisib), treatment with non-JAK inhibitor monotherapy in the second-line setting (navtemadlin, imetelstat), novel JAK inhibitors tailored to subgroups with challenging unmet needs (momelotinib and pacritinib for anemia and thrombocytopenia, respectively); and agents potentially enhancing longevity (imetelstat). Beyond typical endpoints evaluated in MF clinical trials (spleen volume reduction ≥ 35%, total symptom score reduction ≥ 50%) thus far, emerging endpoints include overall survival, progression-free survival, transfusion independence, anemia benefits, bone marrow fibrosis and driver mutation allele burden reduction. Novel biomarkers and additional clinical features are being sought to assess new agents and tailor emerging therapies to appropriate patients. New strategies are needed to optimize the design of clinical trials comparing novel combinations to standard agent monotherapy.
Collapse
Affiliation(s)
- Helen T Chifotides
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Lucia Masarova
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
36
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
37
|
Thomas S, Krishnan A. Platelet Heterogeneity in Myeloproliferative Neoplasms. Arterioscler Thromb Vasc Biol 2021; 41:2661-2670. [PMID: 34615371 PMCID: PMC8551046 DOI: 10.1161/atvbaha.121.316373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a group of malignant disorders of the bone marrow where a dysregulated balance between proliferation and differentiation gives rise to abnormal numbers of mature blood cells. MPNs encompass a spectrum of disease entities with progressively more severe clinical features, including complications with thrombosis and hemostasis and an increased propensity for transformation to acute myeloid leukemia. There is an unmet clinical need for markers of disease progression. Our understanding of the precise mechanisms that influence pathogenesis and disease progression has been limited by access to disease-specific cells as biosources. Here, we review the landscape of MPN pathology and present blood platelets as potential candidates for disease-specific understanding. We conclude with our recent work discovering progressive platelet heterogeneity by subtype in a large clinical cohort of patients with MPN.
Collapse
Affiliation(s)
- Sally Thomas
- Department of Oncology and Metabolism, University of Sheffield and Department of Haematology, Royal Hallamshire Hospital, United Kingdom (S.T.)
| | - Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine, CA (A.K.)
| |
Collapse
|
38
|
Penna D. New Horizons in Myeloproliferative Neoplasms Treatment: A Review of Current and Future Therapeutic Options. Medicina (B Aires) 2021; 57:medicina57111181. [PMID: 34833399 PMCID: PMC8619471 DOI: 10.3390/medicina57111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are aggressive diseases characterized by clonal proliferation of myeloid stem cells. The clonal process leads to excessive red cells production, platelets production, and bone marrow fibrosis. According to the phenotype, MPN can be classified as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). MPN patients have shortened survival due to the increased risk of thrombosis, hemorrhages, and transformation to acute myeloid leukemia (AML). Prognosis is variable, with a shorter life expectancy in myelofibrosis. Currently, drug therapy can reduce symptoms, splenomegaly, and risk of thrombosis. Still, some patients can be resistant or intolerant to the treatment. At the same time, allogeneic stem cell transplant (ASCT) is the only treatment modality with the potential to cure the disease. Nevertheless, the ASCT is reserved for high-risk leukemic progression patients due to the risk of treatment-related death and comorbidity. Therefore, there is a need for new drugs that can eradicate clonal hematopoiesis and prevent progression to more aggressive myeloid neoplasms. Thanks to the better understanding of the disease’s molecular pathogenesis, many new potentially disease-modifying drugs have been developed and are currently in clinical trials. This review explores the most promising new drugs currently in clinical trials.
Collapse
Affiliation(s)
- Domenico Penna
- Hematology Unit, Azienda Unità Sanitaria Locale—IRCCS, 42123 Reggio Emilia, Italy; ; Tel.: +39-522-296-623
- Ph.D. Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 42121 Modena, Italy
| |
Collapse
|
39
|
Easwar A, Siddon AJ. Genetic Landscape of Myeloproliferative Neoplasms with an Emphasis on Molecular Diagnostic Laboratory Testing. Life (Basel) 2021; 11:1158. [PMID: 34833034 PMCID: PMC8625510 DOI: 10.3390/life11111158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic myeloproliferative neoplasms (MPNs) are hematopoietic stem cell neoplasms with driver events including the BCR-ABL1 translocation leading to a diagnosis of chronic myeloid leukemia (CML), or somatic mutations in JAK2, CALR, or MPL resulting in Philadelphia-chromosome-negative MPNs with constitutive activation of the JAK-STAT signaling pathway. In the Philadelphia-chromosome-negative MPNs, modern sequencing panels have identified a vast molecular landscape including additional mutations in genes involved in splicing, signal transduction, DNA methylation, and chromatin modification such as ASXL1, SF3B1, SRSF2, and U2AF1. These additional mutations often influence prognosis in MPNs and therefore are increasingly important for risk stratification. This review focuses on the molecular alterations within the WHO classification of MPNs and laboratory testing used for diagnosis.
Collapse
Affiliation(s)
- Arti Easwar
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Alexa J. Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
40
|
Sharda AV, Bogue T, Barr A, Mendez LM, Flaumenhaft R, Zwicker JI. Circulating Protein Disulfide Isomerase Is Associated with Increased Risk of Thrombosis in JAK2-Mutated Myeloproliferative Neoplasms. Clin Cancer Res 2021; 27:5708-5717. [PMID: 34400417 DOI: 10.1158/1078-0432.ccr-21-1140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Thromboembolic events (TE) are the most common complications of myeloproliferative neoplasms (MPN). Clinical parameters, including patient age and mutation status, are used to risk-stratify patients with MPN, but a true biomarker of TE risk is lacking. Protein disulfide isomerase (PDI), an endoplasmic reticulum protein vital for protein folding, also possesses essential extracellular functions, including regulation of thrombus formation. Pharmacologic PDI inhibition prevents thrombus formation, but whether pathologic increases in PDI increase TE risk remains unknown. EXPERIMENTAL DESIGN We evaluated the association of plasma PDI levels and risk of TE in a cohort of patients with MPN with established diagnosis of polycythemia vera (PV) or essential thrombocythemia (ET), compared with healthy controls. Plasma PDI was measured at enrollment and subjects followed prospectively for development of TE. RESULTS A subset of patients, primarily those with JAK2-mutated MPN, had significantly elevated plasma PDI levels as compared with controls. Plasma PDI was functionally active. There was no association between PDI levels and clinical parameters typically used to risk-stratify patients with MPN. The risk of TE was 8-fold greater in those with PDI levels above 2.5 ng/mL. Circulating endothelial cells from JAK2-mutated MPN patients, but not platelets, demonstrated augmented PDI release, suggesting endothelial activation as a source of increased plasma PDI in MPN. CONCLUSIONS The observed association between plasma PDI levels and increased risk of TE in patients with JAK2-mutated MPN has both prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Anish V Sharda
- Division of Hematology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical School and Harvard Medical School, Boston, Massachusetts
| | - Thomas Bogue
- Division of Hematology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Alexandra Barr
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical School and Harvard Medical School, Boston, Massachusetts
| | - Lourdes M Mendez
- Division of Hematology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical School and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey I Zwicker
- Division of Hematology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts. .,Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical School and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Watanabe A, Mizoguchi I, Hasegawa H, Katahira Y, Inoue S, Sakamoto E, Furusaka Y, Sekine A, Miyakawa S, Murakami F, Xu M, Yoneto T, Yoshimoto T. A Chaperone-Like Role for EBI3 in Collaboration With Calnexin Under Inflammatory Conditions. Front Immunol 2021; 12:757669. [PMID: 34603342 PMCID: PMC8484754 DOI: 10.3389/fimmu.2021.757669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and β-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another β-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.
Collapse
Affiliation(s)
- Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
42
|
Increased levels of NETosis in myeloproliferative neoplasms are not linked to thrombotic events. Blood Adv 2021; 5:3515-3527. [PMID: 34464975 DOI: 10.1182/bloodadvances.2020004061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Morbidity and mortality of Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) are mainly determined by thromboembolic complications. Thrombus formation is facilitated by a neutrophil-specific form of cell death linked to neutrophil extracellular trap (NET) formation (NETosis). Preclinical and clinical data suggested a potential link between NETosis and thrombosis in MPNs. In this study, we aimed to define the impact of NETosis on clinical end points in a large MPN cohort. NETosis was induced in vitro by ionomycin and quantified by enzyme-linked immunosorbent assay-based nucleosome release assays as well as fluorescent staining of free DNA in samples from 103 MPN patients and 28 healthy donors. NETosis rate was correlated with a broad set of clinical data, such as MPN subtype, mutational status, laboratory variables, history of thrombotic events, and treatment types. Triggered NETosis levels were clearly higher in MPN patients than in healthy donors. Positivity for JAK2 V617F or exon 12 as well as CALR mutations correlate with increased NET formation. However, neither JAK2 allelic burden nor history of thromboembolic complication nor the presence of other risk factors for thrombosis (eg, leukocytosis) were associated with the rate of NETosis. In addition, none of the analyzed laboratory parameters nor the type of treatment significantly impacted the rate of NETosis formation. The biology of MPNs has an impact on NET formation because genetic driver mutations favor induction of NETosis, but this does not seems to translate into important clinical end points such as thromboembolic complications. Therefore, NETosis may play a role in facilitating thrombosis, but it is not a sole causative determinant in MPN-associated thrombophilia.
Collapse
|
43
|
Greenfield G, McMullin MF, Mills K. Molecular pathogenesis of the myeloproliferative neoplasms. J Hematol Oncol 2021; 14:103. [PMID: 34193229 PMCID: PMC8246678 DOI: 10.1186/s13045-021-01116-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The Philadelphia negative myeloproliferative neoplasms (MPN) compromise a heterogeneous group of clonal myeloid stem cell disorders comprising polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. Despite distinct clinical entities, these disorders are linked by morphological similarities and propensity to thrombotic complications and leukaemic transformation. Current therapeutic options are limited in disease-modifying activity with a focus on the prevention of thrombus formation. Constitutive activation of the JAK/STAT signalling pathway is a hallmark of pathogenesis across the disease spectrum with driving mutations in JAK2, CALR and MPL identified in the majority of patients. Co-occurring somatic mutations in genes associated with epigenetic regulation, transcriptional control and splicing of RNA are variably but recurrently identified across the MPN disease spectrum, whilst epigenetic contributors to disease are increasingly recognised. The prognostic implications of one MPN diagnosis may significantly limit life expectancy, whilst another may have limited impact depending on the disease phenotype, genotype and other external factors. The genetic and clinical similarities and differences in these disorders have provided a unique opportunity to understand the relative contributions to MPN, myeloid and cancer biology generally from specific genetic and epigenetic changes. This review provides a comprehensive overview of the molecular pathophysiology of MPN exploring the role of driver mutations, co-occurring mutations, dysregulation of intrinsic cell signalling, epigenetic regulation and genetic predisposing factors highlighting important areas for future consideration.
Collapse
Affiliation(s)
- Graeme Greenfield
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | | | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
44
|
Activated IL-6 signaling contributes to the pathogenesis of, and is a novel therapeutic target for, CALR-mutated MPNs. Blood Adv 2021; 5:2184-2195. [PMID: 33890979 DOI: 10.1182/bloodadvances.2020003291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/14/2021] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), an endoplasmic reticulum-associated chaperone, is frequently mutated in myeloproliferative neoplasms (MPNs). Mutated CALR promotes downstream JAK2/STAT5 signaling through interaction with, and activation of, the thrombopoietin receptor (MPL). Here, we provide evidence of a novel mechanism contributing to CALR-mutated MPNs, represented by abnormal activation of the interleukin 6 (IL-6)-signaling pathway. We found that UT7 and UT7/mpl cells, engineered by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to express the CALR type 1-like (DEL) mutation, acquired cytokine independence and were primed to the megakaryocyte (Mk) lineage. Levels of IL-6 messenger RNA (mRNA), extracellular-released IL-6, membrane-associated glycoprotein 130 (gp130), and IL-6 receptor (IL-6R), phosphorylated JAK1 and STAT3 (p-JAK1 and p-STAT3), and IL-6 promoter region occupancy by STAT3 all resulted in increased CALR DEL cells in the absence of MPL stimulation. Wild-type, but not mutated, CALR physically interacted with gp130 and IL-6R, downregulating their expression on the cell membrane. Agents targeting gp130 (SC-144), IL-6R (tocilizumab [TCZ]), and cell-released IL-6 reduced proliferation of CALR DEL as well as CALR knockout cells, supporting a mutated CALR loss-of-function model. CD34+ cells from CALR-mutated patients showed increased levels of IL-6 mRNA and p-STAT3, and colony-forming unit-Mk growth was inhibited by either SC144 or TCZ, as well as an IL-6 antibody, supporting cell-autonomous activation of the IL-6 pathway. Targeting IL-6 signaling also reduced colony formation by CD34+ cells of JAK2V617F-mutated patients. The combination of TCZ and ruxolitinib was synergistic at very low nanomolar concentrations. Overall, our results suggest that target inhibition of IL-6 signaling may have therapeutic potential in CALR, and possibly JAK2V617F, mutated MPNs.
Collapse
|
45
|
Kanduła Z, Lewandowski K. Calreticulin – a multifaced protein. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calreticulin (CALR) is a highly conserved multi-function protein that primarily localizes within
the lumen of the endoplasmic reticulum (ER). It participates in various processes in the cells,
including glycoprotein chaperoning, regulation of Ca2+ homeostasis, antigen processing and
presentation for adaptive immune response, cell adhesion/migration, cell proliferation, immunogenic
cell death, gene expression and RNA stability. The role of CALR in the assembly,
retrieval and cell surface expression of MHC class I molecules is well known. A fraction of
the total cellular CALR is localized in the cytosol, following its retro-translocation from the
ER. In the cell stress conditions, CALR is also expressed on the cell surface via an interaction
with phosphatidylserine localized on the inner leaflet of the plasma membrane. The abovementioned
mechanism is relevant for the recognition of the cells, as well as immunogenicity
and phagocytic uptake of proapoptotic and apoptotic cells.
Lastly, the presence of CALR exon 9 gene mutations was confirmed in patients with myeloproliferative
neoplasms. Their presence results in an abnormal CALR structure due to the
loss of its ER-retention sequence, CALR extra-ER localisation, the formation of a complex
with thrombopoietin receptor, and oncogenic transformation of hematopoietic stem cells. It
is also known that CALR exon 9 mutants are highly immunogenic and induce T cell response.
Despite this fact, CALR mutant positive hematopoietic cells emerge. The last phenomenon is
probably the result of the inhibition of phagocytosis of the cancer cells exposing CALR mutant
protein by dendritic cells.
Collapse
Affiliation(s)
- Zuzanna Kanduła
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| |
Collapse
|
46
|
Abstract
Megakaryocytes give rise to platelets, which have a wide variety of functions in coagulation, immune response, inflammation, and tissue repair. Dysregulation of megakaryocytes is a key feature of in the myeloproliferative neoplasms, especially myelofibrosis. Megakaryocytes are among the main drivers of myelofibrosis by promoting myeloproliferation and bone marrow fibrosis. In vivo targeting of megakaryocytes by genetic and pharmacologic approaches ameliorates the disease, underscoring the important role of megakaryocytes in myeloproliferative neoplasms. Here we review the current knowledge of the function of megakaryocytes in the JAK2, CALR, and MPL-mutant myeloproliferative neoplasms.
Collapse
|
47
|
Pemmaraju N, Chen NC, Verstovsek S. Immunotherapy and Immunomodulation in Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:409-429. [PMID: 33641877 DOI: 10.1016/j.hoc.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myeloproliferative neoplasms are characterized by chronic inflammation. The discovery of constitutively active JAK-STAT signaling associated with driver mutations has led to clinical and translational breakthroughs. Insights into the other pathways and novel factors of potential importance are being actively investigated. Various classes of agents with immunomodulating or immunosuppressive properties have been used with varying degrees of success in treating myeloproliferative neoplasms. Early clinical trials are investigating the feasibility, effectiveness, and safety of immune checkpoint inhibitors, cell-based immunotherapies, and SMAC mimetics. The dynamic landscape of immunotherapy and immunomodulation in myeloproliferative neoplasms is the topic of the present review.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #3000, Houston, TX 77030, USA.
| | - Natalie C Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #428, Houston, TX 77030, USA
| |
Collapse
|
48
|
El Jahrani N, Cretin G, de Brevern AG. CALR-ETdb, the database of calreticulin variants diversity in essential thrombocythemia. Platelets 2021; 33:157-167. [PMID: 33444113 DOI: 10.1080/09537104.2020.1869712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Essential thrombocythemia (ET) is a blood cancer defined by a strong increase of platelet numbers. A quarter of patients suffering from ET show mutations in the last exon of calreticulin (CALR) gene. Two variants named type 1 and type 2 represent 85% of these patients. However, a large number of other variants have been determined. In this study, we have compiled variants taken from COSMIC database and literature leading to 155 different variants. This large number of variants allowed redefining 5 new classes extending the classification of type 1-like and type 2-like to a finer description. These analyses showed that last class, named E, corresponding to more than 10% of CALR variants seemed not attached to ET. Structural properties analyzed showed that CALR variants associated to ET have common features. All the compiled and refined information had been included into a freely dedicated database CALR-ETdb (https://www.dsimb.inserm.fr/CALR-ET).
Collapse
Affiliation(s)
- Nora El Jahrani
- Université de Paris, UMR_S 1134, Université De La Réunion, Université Des Antilles, Paris, France.,INSERM, U 1134, DSIMB, Paris, France.,Institut National De La Transfusion Sanguine (INTS), Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Gabriel Cretin
- Université de Paris, UMR_S 1134, Université De La Réunion, Université Des Antilles, Paris, France.,INSERM, U 1134, DSIMB, Paris, France.,Institut National De La Transfusion Sanguine (INTS), Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Alexandre G de Brevern
- Université de Paris, UMR_S 1134, Université De La Réunion, Université Des Antilles, Paris, France.,INSERM, U 1134, DSIMB, Paris, France.,Institut National De La Transfusion Sanguine (INTS), Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
49
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
50
|
Roles of Calreticulin in Protein Folding, Immunity, Calcium Signaling and Cell Transformation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:145-162. [PMID: 34050865 DOI: 10.1007/978-3-030-67696-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.
Collapse
|