1
|
Bellani V, Cattaneo D, Abbonante V, Bucelli C, Stella S, Mora B, Malara A, Gianelli U, Balduini A, Iurlo A. Circulating Levels of PF4/CXCL4 in Patients With BCR::ABL1-Negative Myeloproliferative Neoplasms: A New Potential Prognostic Factor for Disease Progression. Hematol Oncol 2025; 43:e70083. [PMID: 40221885 DOI: 10.1002/hon.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Affiliation(s)
- Valentina Bellani
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Stella
- Epidemiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Mora
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Umberto Gianelli
- Division of Pathology, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025:10.1038/s41375-025-02569-8. [PMID: 40140631 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
3
|
Lei L, Xiang YX, Luo ML, Zhang ZY, Wu HW, Tang C, Cui TJ, Zhang XM, Wang XH, Delic D, Klein T, Liu Y, Krämer BK, Zheng ZH, Lu YP, Hocher B, Zhu T. Intercellular Communication Network of CellChat Uncovers Mechanisms of Kidney Fibrosis Based on Single-Cell RNA Sequencing. Kidney Blood Press Res 2025; 50:276-299. [PMID: 40112793 DOI: 10.1159/000545209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global health concern, with renal fibrosis being a major pathological feature. Empagliflozin (Empa), a sodium-glucose co-transporter-2 inhibitor, has shown promise in protecting the kidney. This study aimed to investigate the effects of Empa on renal fibrosis in a nondiabetic CKD model and to elucidate the underlying mechanisms. METHODS We established a CKD model using 5/6 nephrectomy (5/6 Nx) rats and divided them into three groups: placebo-treated sham surgery rats, placebo-treated 5/6 Nx rats, and Empa-treated 5/6 Nx rats. Kidney function was assessed by measuring blood urea nitrogen, serum creatinine, and urinary albumin-to-creatinine ratio. Renal fibrosis was evaluated histologically. Single-cell RNA sequencing (scRNA-seq) was performed to analyze intercellular communication networks and identify alterations in ligand-receptor pairs and signaling pathways involved in fibrosis. RESULTS Empa treatment significantly improved kidney function and reduced renal interstitial fibrosis in 5/6 Nx rats. scRNA-seq revealed that Empa modulated the TGF-β signaling pathway, inhibited intercellular communication, and reduced the expression of fibrotic genes such as COLLAGEN, FN1, THBS, and LAMININ. Furthermore, Empa downregulated GRN gene expression, weakened signal transmission in the MIF pathway, consequently reduced the interaction between M2 macrophages and other cell types, such as endothelial cells, fibroblasts, and mesangial cells. CONCLUSION This study elucidates the potential mechanisms by which Empa slows the progression of renal fibrosis in nondiabetic CKD. By reducing the number of M2 macrophages and inhibiting signal transduction in both pro-inflammatory and fibrotic pathways, Empa modulates the intercellular communication network in renal cells, offering a promising therapeutic strategy for CKD management.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun-Xiu Xiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Mao-Lin Luo
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Endocrinology and Metabolism, People's Hospital of Liwan District, Guangzhou, China
| | - Ze-Yu Zhang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Tian-Jiao Cui
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xue-Mei Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Denis Delic
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Klein
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany,
- Medical Faculty, Charité Universitätsmedizin Berlin, Berlin, Germany,
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- School of Medicine, Central South University, Changsha, China
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
4
|
Brennan-Cook J, Rein L, Kuykendall A, Johnson N, Koch A, Taylor AO, Jones CA, Leblanc TW. Top Ten Tips Palliative Care Clinicians Should Know About Caring for Patients with Myeloproliferative Neoplasms. J Palliat Med 2025; 28:257-264. [PMID: 39162409 DOI: 10.1089/jpm.2024.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of rare chronic progressive blood cancers that vary widely in clinical presentation, yet all patients have a risk of disease progression and thrombotic complications. Diseases include primary myelofibrosis, polycythemia vera, and essential thrombocythemia. With current treatment approaches, most patients live a prolonged life, but many experience a complex of symptoms that negatively influence their functional status and quality of life. Although significant advances have been made in preventing arterial and venous complications while mitigating inflammatory processes, comprehensive palliative care can help address unmet complex physical and psychosocial needs on a long-term basis. This article, created by a multidisciplinary group of providers, offers an overview of MPNs so palliative care clinicians can better support patients with these hematologic cancers.
Collapse
Affiliation(s)
| | - Lindsay Rein
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew Kuykendall
- Department of Malignant Hematology, Moffit Cancer Center, Tampa, Florida, USA
| | - Natasha Johnson
- Department of Malignant Hematology, Moffit Cancer Center, Tampa, Florida, USA
| | - Amie Koch
- Duke University School of Nursing, Bayada Pediatrics, Durham, North Carolina, USA
| | - Allison O Taylor
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher A Jones
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas W Leblanc
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Lykins J, Becker IC, Camacho V, Alfar HR, Park J, Italiano J, Whiteheart SW. Serglycin controls megakaryocyte retention of platelet factor 4 and influences megakaryocyte fate in bone marrow. Blood Adv 2025; 9:15-28. [PMID: 38941534 PMCID: PMC11732581 DOI: 10.1182/bloodadvances.2024012995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT Megakaryocytes (MKs) produce platelets, and similar to other hematopoietic progenitors, they are involved in homeostatic aspects of their bone marrow niche. MKs release and endocytose various factors, such as platelet factor 4 (PF4)/CXCL4. Here, we show that the intra-α-granular proteoglycan, serglycin (SRGN), plays a key role in this process by retaining PF4, and perhaps other factors, during MK maturation. Immature, SRGN-/- MKs released ∼80% of their PF4, and conditioned media from these cells negatively affected wild-type MK differentiation in vitro. This was replicated in wild-type MKs by treatment with the polycation surfen, a known inhibitor of glycosaminoglycan (GAG)/protein interactions. In vivo, SRGN-/- mice had an interstitial accumulation of PF4, transforming growth factor β1, interleukin-1β, and tumor necrosis factor α in their bone marrow and increased numbers of immature MKs, consistent with their mild thrombocytopenia. SRGN-/- mice also had reduced numbers of hematopoietic stem cells and multipotent progenitors, reduced laminin, and increased collagen I deposition. These findings demonstrate that MKs depend on SRGN and its charged GAGs to balance the distribution of PF4 and perhaps other factors between their α-granules and their adjacent extracellular spaces. Disrupting this balance negatively affects MK development and bone marrow microenvironment homeostasis.
Collapse
Affiliation(s)
- Joshua Lykins
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Isabelle C. Becker
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Virginia Camacho
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Hammodah R. Alfar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - JoonWoo Park
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Joseph Italiano
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| |
Collapse
|
6
|
Becker IC, Barrachina MN, Lykins J, Camacho V, Stone AP, Chua BA, Signer RAJ, Machlus KR, Whiteheart SW, Roweth HG, Italiano JE. Inhibition of RhoA-mediated secretory autophagy in megakaryocytes mitigates myelofibrosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626665. [PMID: 39677616 PMCID: PMC11642871 DOI: 10.1101/2024.12.04.626665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Megakaryocytes (MKs) are large, polyploid cells that contribute to bone marrow homeostasis through the secretion of cytokines such as transforming growth factor β1 (TGFβ1). During neoplastic transformation, immature MKs accumulate in the bone marrow where they induce fibrotic remodeling ultimately resulting in myelofibrosis. Current treatment strategies aim to prevent MK hyperproliferation, however, little is understood about the potential of targeting dysregulated cytokine secretion from neoplastic MKs as a novel therapeutic avenue. Unconventional secretion of TGFβ1 as well as interleukin 1β (IL1β) via secretory autophagy occurs in cells other than MKs, which prompted us to investigate whether similar mechanisms are utilized by MKs. Here, we identified that TGFβ1 strongly co-localized with the autophagy marker light chain 3B in native MKs. Disrupting secretory autophagy by inhibiting the small GTPase RhoA or its downstream effector Rho kinase (ROCK) markedly reduced TGFβ1 and IL1β secretion in vitro . In vivo , conditional deletion of the essential autophagy gene Atg5 from the hematopoietic system limited megakaryocytosis and aberrant cytokine secretion in an MPL W515L -driven transplant model. Similarly, mice with a selective deletion of Rhoa from the MK and platelet lineage were protected from progressive fibrosis. Finally, disease hallmarks in MPL W515L -transplanted mice were attenuated upon treatment with the autophagy inhibitor hydroxychloroquine or the ROCK inhibitor Y27632, either as monotherapy or in combination with the JAK2 inhibitor ruxolitinib. Overall, our data indicate that aberrant cytokine secretion is dependent on secretory autophagy downstream of RhoA, targeting of which represents a novel therapeutic avenue in the treatment of myelofibrosis. One Sentence Summary TGFβ1 is released from megakaryocytes via RhoA-mediated secretory autophagy, and targeting this process can alleviate fibrosis progression in a preclinical mouse model of myelofibrosis.
Collapse
|
7
|
Cuenca-Zamora EJ, Martínez C, Morales ML, Guijarro-Carrillo PJ, López-Poveda MJ, Alcolea-Guardiola C, Vidal-Garrido N, Lozano ML, Gonzalez-Conejero R, Teruel-Montoya R, Ferrer-Marín F. Pacritinib prevents inflammation-driven myelofibrosis-like phenotype in a miR-146a -/- murine model. Biomed Pharmacother 2024; 181:117712. [PMID: 39603040 DOI: 10.1016/j.biopha.2024.117712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic proinflammatory signaling is a characteristic trait in myeloproliferative neoplasms (MPN), particularly myelofibrosis (MF). Aberrant inflammatory signaling, particularly from NF-κB pathway, exacerbates the progression of MPN. Previously, we identified a critical role of miR-146a, a negative regulator of the TLR/NF-κB axis, in MF development. MPN patients carrying the miR-146a rs2431697-TT genotype, associated with lower miR-146a expression levels, have a higher risk of progression to overt-MF from chronic-phase disease. Using miR-146a-/- (KO) mice, a MF-like model lacking MPN driver mutations, we here investigate whether pacritinib, a dual JAK/NF-κB pathways inhibitor (via JAK2/IRAK1, respectively), prevents the age-associated myelofibrotic phenotype of these mice. Young miR-146a-/- mice were treated either with or without pacritinib, for 3 or 6 months. Notably, pacritinib prevented the splenomegaly, reticulin fibrosis and osteosclerosis observed in untreated KO mice. Pacritinib also avoided the myeloproliferation, loss of splenic architecture, and extramedullary hematopoiesis observed in age-matched untreated KO mice. Pharmacological targeting of IRAK1/JAK2 attenuated the pro-inflammatory environment, preventing the increase of inflammatory cytokines, particularly CXCL1 and TNF-α, without inducing cytopenias but rather the opposite. Compared to age-matched untreated KO mice, treated mice showed higher platelet counts irrespective of treatment duration, and higher erythrocyte counts with the longer treatment. Additionally, pacritinib preventive treatment reduced COL1A1 production in an in vitro model mimicking JAK2-driven fibrosis. These findings highlight that dual inhibition of JAK2/IRAK1 with pacritinib, by delaying or attenuating the myelofibrotic progression, could be a potential modifier of the natural course of MPN.
Collapse
Affiliation(s)
- Ernesto José Cuenca-Zamora
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Constantino Martínez
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | - María Luz Morales
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Pedro Jesús Guijarro-Carrillo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | | | | | - Natalia Vidal-Garrido
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain
| | - María Luisa Lozano
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain
| | - Rocío Gonzalez-Conejero
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; Universidad de Murcia, Murcia, Spain
| | - Raúl Teruel-Montoya
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| | - Francisca Ferrer-Marín
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Murcia, Spain; CIBERER-ISCIII CB15/00055 (U765), Spain; Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| |
Collapse
|
8
|
Xiao Y, Martinez L, Zigmond Z, Woltmann D, Singer DV, Singer HA, Vazquez-Padron RI, Salman LH. Functions for platelet factor 4 (PF4/CXCL4) and its receptors in fibroblast-myofibroblast transition and fibrotic failure of arteriovenous fistulas (AVFs). J Vasc Access 2024; 25:1911-1924. [PMID: 37589266 PMCID: PMC10998683 DOI: 10.1177/11297298231192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Over 60% of End Stage Renal Disease (ESRD) patients are relying on hemodialysis (HD) to survive, and the arteriovenous fistula (AVF) is the preferred vascular access method for HD. However approximately half of all newly created AVF fail to mature and cannot be used without a salvage procedure. We have recently demonstrated an association between AVF maturation failure and post-operative fibrosis, while our RNA-seq study also revealed that veins that ultimately failed during AVF maturation had elevated levels of platelet factor 4 (PF4/CXCL4). However, a link between these two findings was yet to be established. METHODS In this study, we investigated potential mechanisms between PF4 levels and fibrotic remodeling in veins. We compared the local expression of PF4 and fibrosis marker integrin β6 (ITGB6) in veins that successfully underwent maturation with that in veins that ultimately failed to mature. We also measured the changes of expression level of α-smooth muscle actin (αSMA/ACTA2) and collagen (Col1/COL1A1) in venous fibroblasts upon various treatments, such as PF4 pharmacological treatment, alteration of PF4 expression, and blocking of PF4 receptors. RESULTS We found that PF4 is expressed in veins and co-localizes with αSMA. In venous fibroblasts, PF4 stimulates expression of αSMA and Col1 via different pathways. The former requires integrins αvβ5 and α5β1, while chemokine receptor CXCR3 is needed for the latter. Interestingly, we also discovered that the expression of PF4 is associated with that of ITGB6, the β subunit of integrin αvβ6. This integrin is critical for the activation of the major fibrosis factor TGFβ, and overexpression of PF4 promotes activation of the TGFβ pathway. CONCLUSIONS These results indicate that upregulation of PF4 may cause venous fibrosis both directly by stimulating fibroblast differentiation and expression of extracellular matrix (ECM) molecules and indirectly by facilitating the activation of the TGFβ pathway.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zachary Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Woltmann
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology & Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
9
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
10
|
Capitanio D, Calledda FR, Abbonante V, Cattaneo D, Moriggi M, Bartalucci N, Bucelli C, Tosi D, Gianelli U, Vannucchi AM, Iurlo A, Gelfi C, Balduini A, Malara A. Proteomic screening identifies PF4/Cxcl4 as a critical driver of myelofibrosis. Leukemia 2024; 38:1971-1984. [PMID: 39025985 DOI: 10.1038/s41375-024-02354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Despite increased understanding of the genomic landscape of Myeloproliferative Neoplasms (MPNs), the pathological mechanisms underlying abnormal megakaryocyte (Mk)-stromal crosstalk and fibrotic progression in MPNs remain unclear. We conducted mass spectrometry-based proteomics on mice with Romiplostim-dependent myelofibrosis to reveal alterations in signaling pathways and protein changes in Mks, platelets, and bone marrow (BM) cells. The chemokine Platelet Factor 4 (PF4)/Cxcl4 was up-regulated in all proteomes and increased in plasma and BM fluids of fibrotic mice. High TPO concentrations sustained in vitro PF4 synthesis and secretion in cultured Mks, while Ruxolitinib restrains the abnormal PF4 expression in vivo. We discovered that PF4 is rapidly internalized by stromal cells through surface glycosaminoglycans (GAGs) to promote myofibroblast differentiation. Cxcl4 gene silencing in Mks mitigated the profibrotic phenotype of stromal cells in TPO-saturated co-culture conditions. Consistently, extensive stromal PF4 uptake and altered GAGs deposition were detected in Romiplostim-treated, JAK2V617F mice and BM biopsies of MPN patients. BM PF4 levels and Mk/platelet CXCL4 expression were elevated in patients, exclusively in overt fibrosis. Finally, pharmacological inhibition of GAGs ameliorated in vivo fibrosis in Romiplostim-treated mice. Thus, our findings highlight the critical role of PF4 in the fibrosis progression of MPNs and substantiate the potential therapeutic strategy of neutralizing PF4-GAGs interaction.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Delfina Tosi
- Department of Health Sciences, University of Milan, S.C. di Anatomia Patologica, ASST-Santi Paolo e Carlo, Milan, Italy
| | - Umberto Gianelli
- Department of Health Sciences, University of Milan, S.C. di Anatomia Patologica, ASST-Santi Paolo e Carlo, Milan, Italy
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Bassan VL, de Freitas Martins Felício R, Ribeiro Malmegrim KC, Attié de Castro F. Myeloproliferative Neoplasms Transcriptome Reveals Pro-Inflammatory Signature and Enrichment in Peripheral Blood Monocyte-Related Genes. Cancer Invest 2024; 42:605-618. [PMID: 38958254 DOI: 10.1080/07357907.2024.2371371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Myeloproliferative neoplasms (MPN) are hematological diseases associated with genetic driver mutations in the JAK2, CALR, and MPL genes and exacerbated oncoinflammatory status. Analyzing public microarray data from polycythemia vera (n = 41), essential thrombocythemia (n = 21), and primary myelofibrosis (n = 9) patients' peripheral blood by in silico approaches, we found that pro-inflammatory and monocyte-related genes were differentially expressed in MPN patients' transcriptome. Genes related to cell activation, secretion of pro-inflammatory and pro-angiogenic mediators, activation of neutrophils and platelets, coagulation, and interferon pathway were upregulated in monocytes compared to controls. Together, our results suggest that molecular alterations in monocytes may contribute to oncoinflammation in MPN.
Collapse
Affiliation(s)
- Vitor Leonardo Bassan
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafaela de Freitas Martins Felício
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Sivaraj KK, Majev PG, Dharmalingam B, Schröder S, Banjanin B, Stehling M, Zeuschner D, Nordheim A, Schneider RK, Adams RH. Endothelial LATS2 is a suppressor of bone marrow fibrosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:951-969. [PMID: 39155965 PMCID: PMC11324521 DOI: 10.1038/s44161-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
Myelofibrosis and osteosclerosis are fibrotic diseases disrupting bone marrow function that occur in various leukemias but also in response to non-malignant alterations in hematopoietic cells. Here we show that endothelial cell-specific inactivation of the Lats2 gene, encoding Hippo kinase large tumor suppressor kinase 2, or overexpression of the downstream effector YAP1 induce myofibroblast formation and lead to extensive fibrosis and osteosclerosis, which impair bone marrow function and cause extramedullary hematopoiesis in the spleen. Mechanistically, loss of LATS2 induces endothelial-to-mesenchymal transition, resulting in increased expression of extracellular matrix and secreted signaling molecules. Changes in endothelial cells involve increased expression of serum response factor target genes, and, strikingly, major aspects of the LATS2 mutant phenotype are rescued by inactivation of the Srf gene. These findings identify the endothelium as a driver of bone marrow fibrosis, which improves understanding of myelofibrotic and osteosclerotic diseases, for which drug therapies are currently lacking.
Collapse
Affiliation(s)
- Kishor K. Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Paul-Georg Majev
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Silke Schröder
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Rebekka K. Schneider
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute for Cell and Tumor Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
13
|
Cuenca-Zamora EJ, Guijarro-Carrillo PJ, López-Poveda MJ, Morales ML, Lozano ML, Gonzalez-Conejero R, Martínez C, Teruel-Montoya R, Ferrer-Marín F. miR-146a -/- mice model reveals that NF-κB inhibition reverts inflammation-driven myelofibrosis-like phenotype. Am J Hematol 2024; 99:1326-1337. [PMID: 38646919 DOI: 10.1002/ajh.27322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Emerging evidence shows the crucial role of inflammation (particularly NF-κB pathway) in the development and progression of myelofibrosis (MF), becoming a promising therapeutic target. Furthermore, tailoring treatment with currently available JAK inhibitors (such as ruxolitinib or fedratinib) does not modify the natural history of the disease and has important limitations, including cytopenias. Since recent studies have highlighted the role of miR-146a, a negative regulator of the NF-κB pathway, in the pathogenesis of MF; here we used miR-146a-/- (KO) mice, a MF-like model lacking driver mutations, to investigate whether pharmacological inhibition of JAK/STAT and/or NF-κB pathways may reverse the myelofibrotic phenotype of these mice. Specifically, we tested the JAK1/2 inhibitor, ruxolitinib; the NF-κB inhibitor via IKKα/β, BMS-345541; both inhibitors in combination; or a dual inhibitor of both pathways (JAK2/IRAK1), pacritinib. Although all treatments decreased spleen size and partially recovered its architecture, only NF-κB inhibition, either using BMS-345541 (alone or in combination) or pacritinib, resulted in a reduction of extramedullary hematopoiesis, bone marrow (BM) fibrosis and osteosclerosis, along with an attenuation of the exacerbated inflammatory state (via IL-1β and TNFα). However, although dual inhibitor improved anemia and reversed thrombocytopenia, the combined therapy worsened anemia by inducing BM hypoplasia. Both therapeutic options reduced NF-κB and JAK/STAT signaling in a context of JAK2V617F-driven clonal hematopoiesis. Additionally, combined treatment reduced both COL1A1 and IL-6 production in an in vitro model mimicking JAK2-driven fibrosis. In conclusion, NF-κB inhibition reduces, in vitro and in vivo, disease burden and BM fibrosis, which could provide benefits in myelofibrosis patients.
Collapse
Affiliation(s)
- Ernesto José Cuenca-Zamora
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- CIBERER-ISCIII CB15/00055 (U765), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Pedro J Guijarro-Carrillo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | | | - María Luz Morales
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - María Luisa Lozano
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- CIBERER-ISCIII CB15/00055 (U765), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Rocío Gonzalez-Conejero
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Constantino Martínez
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Raúl Teruel-Montoya
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- CIBERER-ISCIII CB15/00055 (U765), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Francisca Ferrer-Marín
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
- CIBERER-ISCIII CB15/00055 (U765), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
- Universidad Católica San Antonio (UCAM), Murcia, Spain
| |
Collapse
|
14
|
Wei J, Peng MY, Wang SN, Lu HX. CXCL4:NLRP3-mediated pyroptosis product that regulates cardiac fibrosis. Int Immunopharmacol 2024; 133:112096. [PMID: 38657496 DOI: 10.1016/j.intimp.2024.112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. NOD-like receptor protein 3 (NLRP3) inflammation is involved in the development of myocarditis and is closely related to the form of cell death. Inhibiting pyroptosis mediated by NLRP3 inflammasome can reduce cardiac fibrosis, although its exact mechanism remains unknown. In this study, we induced Viral myocarditis (VMC) via infection of CVB3 to explore the relationship between pyroptosis and fibrosis. Our results showed that intraperitoneal injection of an NLRP3 inhibitor MCC950 or use of NLRP3-/- mice inhibited cardiac pyroptosis mediated by NLRP3 inflammasome in VMC. CXCL4 is a chemokine that has been reported to have pro-inflammatory and pro-fibrotic functions. In VMC, we further found that pyroptosis of Mouse myocardial fibroblasts (MCF) promoted the secretion of CXCL4 by activating Wnt/β-Catenin signaling. Subsequently, the transcriptome sequencing data showed that CXCL4 could promote cardiac fibrosis by activating PI3K/AKT pathway. In summary, infection of CVB3 induced host oxidative stress to further activate the NLRP3 inflammasome and ultimately lead to heart pyroptosis, in which MCF secreted CXCL4 by activating Wnt/β-Catenin signaling and CXCL4 participated in cardiac fibrosis by activating PI3K/AKT pathway. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.
Collapse
Affiliation(s)
- Jing Wei
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjng Medical University, Nanjing 210006, China
| | - Ming Yu Peng
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjng Medical University, Nanjing 211100, China
| | - Sai Nan Wang
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjng Medical University, Nanjing 211100, China
| | - Hong Xiang Lu
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjng Medical University, Nanjing 211100, China; Department of Laboratory Medicine, Nanjing First Hospital, Nanjng Medical University, Nanjing 210006, China.
| |
Collapse
|
15
|
Liu Y, Wang Y, Huang G, Wu S, Liu X, Chen S, Luo P, Liu C, Zuo X. The role of leukocytes in myeloproliferative neoplasm thromboinflammation. J Leukoc Biol 2024; 115:1020-1028. [PMID: 38527797 DOI: 10.1093/jleuko/qiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Classic myeloproliferative neoplasms lacking the Philadelphia chromosome are stem cell disorders characterized by the proliferation of myeloid cells in the bone marrow and increased counts of peripheral blood cells. The occurrence of thrombotic events is a common complication in myeloproliferative neoplasms. The heightened levels of cytokines play a substantial role in the morbidity and mortality of these patients, establishing a persistent proinflammatory condition that culminates in thrombosis. The etiology of thrombosis remains intricate and multifaceted, involving blood cells and endothelial dysfunction, the inflammatory state, and the coagulation cascade, leading to hypercoagulability. Leukocytes play a pivotal role in the thromboinflammatory process of myeloproliferative neoplasms by releasing various proinflammatory and prothrombotic factors as well as interacting with other cells, which contributes to the amplification of the clotting cascade and subsequent thrombosis. The correlation between increased leukocyte counts and thrombotic risk has been established. However, there is a need for an accurate biomarker to assess leukocyte activation. Lastly, tailored treatments to address the thrombotic risk in myeloproliferative neoplasms are needed. Therefore, this review aims to summarize the potential mechanisms of leukocyte involvement in myeloproliferative neoplasm thromboinflammation, propose potential biomarkers for leukocyte activation, and discuss promising treatment options for controlling myeloproliferative neoplasm thromboinflammation.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Yingying Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing 400016, P.R. China
| | - Gang Huang
- Department of Cell Systems & Anatomy, Department of Pathology & Laboratory, Medicine UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, 8403 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Shuo Chen
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, OH 43210, United States
| | - Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Chang Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| |
Collapse
|
16
|
Xie J, Xing S, Jiang H, Zhang J, Li D, Niu S, Huang Z, Yin H. Extracellular vesicles-derived CXCL4 is a candidate serum tumor biomarker for colorectal cancer. iScience 2024; 27:109612. [PMID: 38632995 PMCID: PMC11022053 DOI: 10.1016/j.isci.2024.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Extracellular vesicles (EVs) were promising circulating biomarkers for multiple diseases, but whether serum EVs-derived proteins could be used as a reliable tumor biomarker for colorectal cancer (CRC) remained inconclusive. In this study, we identified CXCL4 by a 4D data-independent acquisition-based quantitative proteomics assay of serum EVs-derived proteins in 40 individuals and subsequently analyzed serum EVs-derived CXCL4 levels by ELISA in 2 cohorts of 749 individuals. The results revealed that EVs-derived CXCL4 levels were dramatically elevated in CRC patients than in benign colorectal polyp patients or healthy controls (HC). Furthermore, receiver operating characteristic curves revealed that EVs-derived CXCL4 exhibited superior diagnostic performance with area under the curve of 0.948 in the training cohort. Additionally, CXCL4 could effectively distinguish CRC in stage I/II from HC. Notably, CRC patients with high levels of EVs-derived CXCL4 have shorter 2-year progression-free survival than those with low levels. Overall, our findings demonstrated that serum EVs-derived CXCL4 was a candidate diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Jinye Xie
- Department of Laboratory Medicine, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongbo Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiaju Zhang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daxiao Li
- Department of Ophtalmology and ENT, Shenzhen Longgang District Second People’s Hospital, Shenzhen, Guangdong, China
| | - Shiqiong Niu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhijian Huang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Haofan Yin
- Department of Laboratory Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Gurbuxani S. SETBP1 sets the stage. Blood 2024; 143:1323-1324. [PMID: 38573606 DOI: 10.1182/blood.2023023757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
|
18
|
Wang Z, Mei Y, Yang Z, Gao Q, Xu H, Han Z, Hong Z. TNF-α is a predictive marker in distinguishing myeloproliferative neoplasm and idiopathic erythrocytosis/thrombocytosis: development and validation of a non-invasive diagnostic model. Front Oncol 2024; 14:1369346. [PMID: 38585007 PMCID: PMC10995358 DOI: 10.3389/fonc.2024.1369346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Philadelphia-chromosome negative myeloproliferative neoplasms (MPN) exhibit phenotypic similarities with JAK/STAT-unmutated idiopathic erythrocytosis and thrombocytosis (IE/IT). We aimed to develop a clinical diagnostic model to discern MPN and IE/IT. Methods A retrospective study was performed on 77 MPN patients and 32 IE/IT patients in our center from January 2018 to December 2023. We investigated the role of hemogram, cytokine and spleen size in differentiating MPN and IE/IT among newly onset erythrocytosis and thrombocytosis patients. Independent influencing factors were integrated into a nomogram for individualized risk prediction. The calibration and discrimination ability of the model were evaluated by concordance index (C-index), calibration curve. Results MPN had significantly higher TNF-α level than IE/IT, and the TNF-α level is correlated with MF-grade. Multivariable analyses revealed that TNF-α, PLT count, age, size of spleen were independent diagnostic factors in differentiating MPN and IE/IT. Nomograms integrated the above 4 factors for differentiating MPN and IE/IT was internally validated and had good performance, the C-index of the model is 0.979. Conclusion The elevation of serum TNF-α in MPN patients is of diagnostic significance and is correlated with the severity of myelofibrosis. The nomogram incorporating TNF-α with age, PLT count and spleen size presents a noteworthy tool in the preliminary discrimination of MPN patients and those with idiopathic erythrocytosis or thrombocytosis. This highlights the potential of cytokines as biomarkers in hematologic disorders.
Collapse
Affiliation(s)
- Zhenhao Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Mei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuming Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Gao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Liu Z, Li L, Zhang H, Pang X, Qiu Z, Xiang Q, Cui Y. Platelet factor 4(PF4) and its multiple roles in diseases. Blood Rev 2024; 64:101155. [PMID: 38008700 DOI: 10.1016/j.blre.2023.101155] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Platelet factor 4 (PF4) combines with heparin to form an antigen that could produce IgG antibodies and participate in heparin-induced thrombocytopenia (HIT). PF4 has attracted wide attention due to its role in novel coronavirus vaccine-19 (COVID-9)-induced immune thrombotic thrombocytopenia (VITT) and cognitive impairments. The electrostatic interaction between PF4 and negatively charged molecules is vital in the progression of VITT, which is similar to HIT. Emerging evidence suggests its multiple roles in hematopoietic and angiogenic inhibition, platelet coagulation interference, host inflammatory response promotion, vascular inhibition, and antitumor properties. The emerging pharmacological effects of PF4 may help deepen the exploration of its mechanism, thus accelerating the development of targeted therapies. However, due to its pleiotropic properties, the development of drugs targeting PF4 is at an early stage and faces many challenges. Herein, we discussed the characteristics and biological functions of PF4, summarized PF4-mediated signaling pathways, and discussed its multiple roles in diseases to inform novel approaches for successful clinical translational research.
Collapse
Affiliation(s)
- Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| | - Longtu Li
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China
| | - Zhiwei Qiu
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| |
Collapse
|
21
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
22
|
Flosdorf N, Böhnke J, de Toledo MAS, Lutterbach N, Lerma VG, Graßhoff M, Olschok K, Gupta S, Tharmapalan V, Schmitz S, Götz K, Schüler HM, Maurer A, Sontag S, Küstermann C, Seré K, Wagner W, Costa IG, Brümmendorf TH, Koschmieder S, Chatain N, Castilho M, Schneider RK, Zenke M. Proinflammatory phenotype of iPS cell-derived JAK2 V617F megakaryocytes induces fibrosis in 3D in vitro bone marrow niche. Stem Cell Reports 2024; 19:224-238. [PMID: 38278152 PMCID: PMC10874863 DOI: 10.1016/j.stemcr.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024] Open
Abstract
The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.
Collapse
Affiliation(s)
- Niclas Flosdorf
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Janik Böhnke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Marcelo A S de Toledo
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Niklas Lutterbach
- Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Vanesa Gómez Lerma
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Graßhoff
- Institute of Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Kathrin Olschok
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Siddharth Gupta
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Vithurithra Tharmapalan
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Susanne Schmitz
- Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Katrin Götz
- Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Herdit M Schüler
- Institute for Human Genetics and Genome Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Center for Rare Diseases, Medical Faculty, and University Hospital Düsseldorf Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Angela Maurer
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Stephanie Sontag
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Caroline Küstermann
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kristin Seré
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Ivan G Costa
- Institute of Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Tim H Brümmendorf
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Steffen Koschmieder
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Nicolas Chatain
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Miguel Castilho
- Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Rebekka K Schneider
- Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
23
|
Pritchard JE, Pearce JE, Snoeren IAM, Fuchs SNR, Götz K, Peisker F, Wagner S, Benabid A, Lutterbach N, Klöker V, Nagai JS, Hannani MT, Galyga AK, Sistemich E, Banjanin B, Flosdorf N, Bindels E, Olschok K, Biaesch K, Chatain N, Bhagwat N, Dunbar A, Sarkis R, Naveiras O, Berres ML, Koschmieder S, Levine RL, Costa IG, Gleitz HFE, Kramann R, Schneider RK. Non-canonical Hedgehog signaling mediates profibrotic hematopoiesis-stroma crosstalk in myeloproliferative neoplasms. Cell Rep 2024; 43:113608. [PMID: 38117649 PMCID: PMC10828549 DOI: 10.1016/j.celrep.2023.113608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.
Collapse
Affiliation(s)
- Jessica E Pritchard
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany; Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Juliette E Pearce
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Inge A M Snoeren
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stijn N R Fuchs
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Katrin Götz
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Silke Wagner
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Adam Benabid
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Niklas Lutterbach
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Vanessa Klöker
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - James S Nagai
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Monica T Hannani
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany; Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna K Galyga
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Ellen Sistemich
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Niclas Flosdorf
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eric Bindels
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Katharina Biaesch
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | | | - Andrew Dunbar
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rita Sarkis
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences (DSB), Université de Lausanne (UNIL), Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences (DSB), Université de Lausanne (UNIL), Lausanne, Switzerland
| | - Marie-Luise Berres
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Medical Department III, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Hélène F E Gleitz
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Rebekka K Schneider
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany; Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Guo K, Machlus KR, Camacho V. The many faces of the megakaryocytes and their biological implications. Curr Opin Hematol 2024; 31:1-5. [PMID: 37910197 PMCID: PMC10842450 DOI: 10.1097/moh.0000000000000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW Single-cell RNA sequencing studies have revealed transcriptional heterogeneity within the megakaryocytic lineage and the identified unique subsets. In this review, we discuss the functional and phenotypic plasticity of these subpopulations as well as the impacts on health and disease. RECENT FINDINGS Megakaryocytes (MKs) can be transcriptionally categorized into platelet generating, niche supporting, immune, and cycling cells, which are distinguished by their unique gene expression patterns and cellular markers. Additionally, a significant population of these cells has been established to reside in the nonhematopoietic tissues and they display enhanced immune-related characteristics. Combined with the location in which the megakaryocytes exist, these cells can play unique roles dictated by their current environment and biological needs, including responding to changes in pathogen exposure. SUMMARY Advances in megakaryocyte research has elucidated the existence of multiple subpopulations of MKs that serve different functions. These subpopulations implicate a greater potential for MKs to be regulators of health and suggest new avenues for treatments and therapies in related diseases.
Collapse
Affiliation(s)
- Karen Guo
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Virginia Camacho
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Ellison S, Liao A, Gleitz HF, Parker H, Booth L, Robinson J, Wood S, Taylor J, Holley R, Bigger BW. Sustained long-term disease correction in a murine model of MPSII following stem cell gene therapy. Mol Ther Methods Clin Dev 2023; 31:101127. [PMID: 37920237 PMCID: PMC10618237 DOI: 10.1016/j.omtm.2023.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Mucopolysaccharidosis type II (MPSII) is a pediatric lysosomal storage disease caused by deficiencies in the IDS (iduronate-2-sulfatase) gene resulting in accumulation of glycosaminoglycans, multisystem disease, and profound neurodegeneration in severe forms. Although enzyme replacement therapy is available for somatic forms of disease, the inability of native IDS to pass the blood-brain barrier renders it ineffective for the brain. We previously demonstrated the short-term efficacy of a brain-targeted hematopoietic stem cell gene therapy approach to treat MPSII mice using lentiviral IDS fused to the blood-brain-barrier-crossing peptide ApoEII (IDS.ApoEII) in comparison with a lentivirus expressing native IDS and an unmanipulated bone marrow transplant. Here we evaluated the longevity of disease correction for 12-16 months following treatment. We observed sustained IDS enzyme activity in organs of long-term IDS.ApoEII-treated MPSII mice, similar to those analyzed 6 months post-treatment, with continued clearance of storage material in the brain and peripheral organs, maintained correction of astrogliosis, microgliosis, and correction of altered cytokines and chemokines. IDS.ApoEII also significantly reduced retinal atrophy, characteristic of MPSII. Overall, IDS.ApoEII resulted in systemic prevention of the MPSII phenotype, with no observed toxicity following treatment. This provides evidence of the sustained efficacy and safety of this treatment ahead of a recently opened clinical trial.
Collapse
Affiliation(s)
- Stuart Ellison
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - Aiyin Liao
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - Hélène F.E. Gleitz
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - Helen Parker
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - Laura Booth
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - John Robinson
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - Shaun Wood
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Taylor
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - Rebecca Holley
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| | - Brian W. Bigger
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
26
|
Yang C, Yuan R, Brauner C, Du Y, Ah Kioon MD, Barrat FJ, Ivashkiv LB. Dichotomous roles of RIPK3 in regulating the IFN response and NLRP3 inflammasome in human monocytes. J Leukoc Biol 2023; 114:615-629. [PMID: 37648661 PMCID: PMC10723620 DOI: 10.1093/jleuko/qiad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Regulation of the profile and magnitude of toll-like receptor (TLR) responses is important for effective host defense against infections while minimizing inflammatory toxicity. The chemokine CXCL4 regulates the TLR8 response to amplify inflammatory gene and inflammasome activation while attenuating the interferon (IFN) response in primary monocytes. In this study, we describe an unexpected role for the kinase RIPK3 in suppressing the CXCL4 + TLR8-induced IFN response and providing signal 2 to activate the NLRP3 inflammasome and interleukin (IL)-1 production in primary human monocytes. RIPK3 also amplifies induction of inflammatory genes such as TNF, IL6, and IL1B while suppressing IL12B. Mechanistically, RIPK3 inhibits STAT1 activation and activates PI3K-Akt-dependent and XBP1- and NRF2-mediated stress responses to regulate downstream genes in a dichotomous manner. These findings identify new functions for RIPK3 in modulating TLR responses and provide potential mechanisms by which RIPK3 plays roles in inflammatory diseases and suggest targeting RIPK3 and XBP1- and NRF2-mediated stress responses as therapeutic strategies to suppress inflammation while preserving the IFN response for host defense.
Collapse
Affiliation(s)
- Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Ruoxi Yuan
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Caroline Brauner
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, NY 10065, United States
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, NY 10065, United States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 1300 York Avenue, Box 65, New York, NY 10065, United States
| | - Lionel B. Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 1300 York Avenue, Box 65, New York, NY 10065, United States
- Department of Medicine, Weill Cornell Medicine, 530 East 70th Street, M-522, New York, NY 10021, United States
| |
Collapse
|
27
|
Ryou H, Lomas O, Theissen H, Thomas E, Rittscher J, Royston D. Quantitative interpretation of bone marrow biopsies in MPN-What's the point in a molecular age? Br J Haematol 2023; 203:523-535. [PMID: 37858962 PMCID: PMC10952168 DOI: 10.1111/bjh.19154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
The diagnosis of myeloproliferative neoplasms (MPN) requires the integration of clinical, morphological, genetic and immunophenotypic findings. Recently, there has been a transformation in our understanding of the cellular and molecular mechanisms underlying disease initiation and progression in MPN. This has been accompanied by the widespread application of high-resolution quantitative molecular techniques. By contrast, microscopic interpretation of bone marrow biopsies by haematologists/haematopathologists remains subjective and qualitative. However, advances in tissue image analysis and artificial intelligence (AI) promise to transform haematopathology. Pioneering studies in bone marrow image analysis offer to refine our understanding of the boundaries between reactive samples and MPN subtypes and better capture the morphological correlates of high-risk disease. They also demonstrate potential to improve the evaluation of current and novel therapeutics for MPN and other blood cancers. With increased therapeutic targeting of diverse molecular, cellular and extra-cellular components of the marrow, these approaches can address the unmet need for improved objective and quantitative measures of disease modification in the context of clinical trials. This review focuses on the state-of-the-art in image analysis/AI of bone marrow tissue, with an emphasis on its potential to complement and inform future clinical studies and research in MPN.
Collapse
Affiliation(s)
- Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Oliver Lomas
- Department of HaematologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Helen Theissen
- Department of Engineering Science, Institute of Biomedical Engineering (IBME)University of OxfordOxfordUK
| | - Emily Thomas
- Department of Engineering Science, Institute of Biomedical Engineering (IBME)University of OxfordOxfordUK
| | - Jens Rittscher
- Department of Engineering Science, Institute of Biomedical Engineering (IBME)University of OxfordOxfordUK
- Ground Truth LabsOxfordUK
- Oxford NIHR Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
- Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of PathologyOxford University Hospitals NHS Foundation TrustOxfordUK
| |
Collapse
|
28
|
Ramachandra N, Gupta M, Schwartz L, Todorova T, Shastri A, Will B, Steidl U, Verma A. Role of IL8 in myeloid malignancies. Leuk Lymphoma 2023; 64:1742-1751. [PMID: 37467070 DOI: 10.1080/10428194.2023.2232492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Aberrant overexpression of Interleukin-8 (IL8) has been reported in Myelodysplastic Syndromes (MDS), Acute Myeloid Leukemia (AML), Myeloproliferative Neoplasms (MPNs) and other myeloid malignancies. IL8 (CXCL8) is a CXC chemokine that is secreted by aberrant hematopoietic stem and progenitors as well as other cells in the tumor microenvironment. IL8 can bind to CXCR1/CXCR2 receptors and activate oncogenic signaling pathways, and also increase the recruitment of myeloid derived suppressor cells to the tumor microenvironment. IL8/CXCR1/2 overexpression has been associated with poorer prognosis in MDS and AML and increased bone marrow fibrosis in Myelofibrosis. Preclinical studies have demonstrated benefit of inhibiting the IL8/CXCR1/2 pathways via restricting the growth of leukemic stem cells as well as normalizing the immunosuppressive microenvironment in tumors. Targeting the IL8-CXCR1/2 pathway is a potential therapeutic strategy in myeloid neoplasms and is being evaluated with small molecule inhibitors as well as monoclonal antibodies in ongoing clinical trials. We review the role of IL8 signaling pathway in myeloid cancers and discuss future directions on therapeutic targeting of IL8 in these diseases.
Collapse
Affiliation(s)
- Nandini Ramachandra
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Malini Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Leya Schwartz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
| | - Tihomira Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Britta Will
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
29
|
Calledda FR, Malara A, Balduini A. Inflammation and bone marrow fibrosis: novel immunotherapeutic targets. Curr Opin Hematol 2023; 30:237-244. [PMID: 37548363 DOI: 10.1097/moh.0000000000000778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW Myelofibrosis (MF) is primarily driven by constitutive activation of the Janus kinase/signal transducer of activators of transcription (JAK/STAT) pathway. While JAK inhibitors have shown to alleviate disease symptoms, their disease-modifying effects in MF are limited. The only curative treatment remains allogeneic stem cell transplantation, which can be applied to a minority of patients. As a result, there is a need to explore novel targets in MF to facilitate appropriate drug development and therapeutic pathways. RECENT FINDINGS Recent research has focused on identifying novel signals that contribute to the abnormal cross-talk between hematopoietic and stromal cells, which promotes MF and disease progression. Inflammation and immune dysregulation have emerged as key drivers of both the initiation and progression of MF. A growing number of actionable targets has been identified, including cytokines, transcription factors, signalling networks and cell surface-associated molecules. These targets exhibit dysfunctions in malignant and nonmalignant hematopoietic cells, but also in nonhematopoietic cells of the bone marrow. The study of these inflammation-related molecules, in preclinical models and MF patient's samples, is providing novel therapeutic targets. SUMMARY The identification of immunotherapeutic targets is expanding the therapeutic landscape of MF. This review provides a summary of the most recent advancements in the study of immunotherapeutic targets in MF.
Collapse
|
30
|
Ghosh K, Shome DK, Kulkarni B, Ghosh MK, Ghosh K. Fibrosis and bone marrow: understanding causation and pathobiology. J Transl Med 2023; 21:703. [PMID: 37814319 PMCID: PMC10561412 DOI: 10.1186/s12967-023-04393-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/28/2023] [Indexed: 10/11/2023] Open
Abstract
Bone marrow fibrosis represents an important structural change in the marrow that interferes with some of its normal functions. The aetiopathogenesis of fibrosis is not well established except in its primary form. The present review consolidates current understanding of marrow fibrosis. We searched PubMed without time restriction using key words: bone marrow and fibrosis as the main stem against the terms: growth factors, cytokines and chemokines, morphology, megakaryocytes and platelets, myeloproliferative disorders, myelodysplastic syndrome, collagen biosynthesis, mesenchymal stem cells, vitamins and minerals and hormones, and mechanism of tissue fibrosis. Tissue marrow fibrosis-related papers were short listed and analysed for the review. It emerged that bone marrow fibrosis is the outcome of complex interactions between growth factors, cytokines, chemokines and hormones together with their facilitators and inhibitors. Fibrogenesis is initiated by mobilisation of special immunophenotypic subsets of mesenchymal stem cells in the marrow that transform into fibroblasts. Fibrogenic stimuli may arise from neoplastic haemopoietic or non-hematopoietic cells, as well as immune cells involved in infections and inflammatory conditions. Autoimmunity is involved in a small subset of patients with marrow fibrosis. Megakaryocytes and platelets are either directly involved or are important intermediaries in stimulating mesenchymal stem cells. MMPs, TIMPs, TGF-β, PDGRF, and basic FGF and CRCXL4 chemokines are involved in these processes. Genetic and epigenetic changes underlie many of these conditions.
Collapse
Affiliation(s)
- Kanjaksha Ghosh
- National Institute of Immunohaematology, 13 Th Fl KEM Hospital, Parel, Mumbai, 400012, India.
| | - Durjoy K Shome
- Department of Pathophysiology, American University of Antigua College of Medicine, Coolidge, Antigua and Barbuda
| | - Bipin Kulkarni
- Department of Molecular Biology and Haemostasis, National Institute of Immunohaematology, 13Th Fl KEM Hospital, Parel, Mumbai, 400012, India
| | - Malay K Ghosh
- Department of Haematology, Nilratan Sarkar Medical College, Kolkata, 700014, West Bengal, India
| | - Kinjalka Ghosh
- Department of Clinical Biochemistry, Tata Medical Centre and Homi Bhaba National Institute, Parel, Mumbai, 400012, India
| |
Collapse
|
31
|
Chapman SP, Duprez E, Remy E. Logical modelling of myelofibrotic microenvironment predicts dysregulated progenitor stem cell crosstalk. Biosystems 2023; 231:104961. [PMID: 37392989 DOI: 10.1016/j.biosystems.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Primary myelofibrosis is an untreatable age-related disorder of haematopoiesis in which a break in the crosstalk between progenitor Haematopoietic Stem Cells (HSCs) and neighbouring mesenchymal stem cells causes HSCs to rapidly proliferate and migrate out of the bone marrow. Around 90% of patients harbour mutations in driver genes that all converge to overactivate haematopoietic JAK-STAT signalling, which is thought to be critical for disease progression, as well as microenvironment modification induced by chronic inflammation. The trigger to the initial event is unknown but dysregulated thrombopoietin (TPO) and Toll-Like Receptor (TLR) signalling are hypothesised to initiate chronic inflammation which then disrupts stem cell crosstalk. Using a systems biology approach, we have constructed an intercellular logical model that captures JAK-STAT signalling and key crosstalk channels between haematopoietic and mesenchymal stem cells. The aim of the model is to decipher how TPO and TLR stimulation can perturb the bone marrow microenvironment and dysregulate stem cell crosstalk. The model predicted conditions in which the disease was averted and established for both wildtype and ectopically JAK mutated simulations. The presence of TPO and TLR are both required to disturb stem cell crosstalk and result in the disease for wildtype. TLR signalling alone was sufficient to perturb the crosstalk and drive disease progression for JAK mutated simulations. Furthermore, the model predicts probabilities of disease onset for wildtype simulations that match clinical data. These predictions might explain why patients who test negative for the JAK mutation can still be diagnosed with PMF, in which continual exposure to TPO and TLR receptor activation may trigger the initial inflammatory event that perturbs the bone marrow microenvironment and induce disease onset.
Collapse
Affiliation(s)
- S P Chapman
- I2M, Aix-Marseille University, CNRS, Marseille, France
| | - E Duprez
- Epigenetic Factors in Normal and Malignant Haematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
| | - E Remy
- I2M, Aix-Marseille University, CNRS, Marseille, France.
| |
Collapse
|
32
|
Razmkhah F, Kim S, Lim S, Dania AJ, Choi J. S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy. Int J Mol Sci 2023; 24:13382. [PMID: 37686186 PMCID: PMC10488294 DOI: 10.3390/ijms241713382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
S100A8 and S100A9 are multifunctional proteins that can initiate various signaling pathways and modulate cell function both inside and outside immune cells, depending on their receptors, mediators, and molecular environment. They have been reported as dysregulated genes and proteins in a wide range of cancers, including hematologic malignancies, from diagnosis to response to therapy. The role of S100A8 and S100A9 in hematologic malignancies is highlighted due to their ability to work together or as antagonists to modify cell phenotype, including viability, differentiation, chemosensitivity, trafficking, and transcription strategies, which can lead to an oncogenic phase or reduced symptoms. In this review article, we discuss the critical roles of S100A8, S100A9, and calprotectin (heterodimer or heterotetramer forms of S100A8 and S100A9) in forming and promoting the malignant bone marrow microenvironment. We also focus on their potential roles as biomarkers and therapeutic targets in various stages of hematologic malignancies from diagnosis to treatment.
Collapse
Affiliation(s)
| | | | | | | | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (F.R.); (S.K.); (S.L.); (A.-J.D.)
| |
Collapse
|
33
|
Dunbar AJ, Kim D, Lu M, Farina M, Bowman RL, Yang JL, Park Y, Karzai A, Xiao W, Zaroogian Z, O’Connor K, Mowla S, Gobbo F, Verachi P, Martelli F, Sarli G, Xia L, Elmansy N, Kleppe M, Chen Z, Xiao Y, McGovern E, Snyder J, Krishnan A, Hill C, Cordner K, Zouak A, Salama ME, Yohai J, Tucker E, Chen J, Zhou J, McConnell T, Migliaccio AR, Koche R, Rampal R, Fan R, Levine RL, Hoffman R. CXCL8/CXCR2 signaling mediates bone marrow fibrosis and is a therapeutic target in myelofibrosis. Blood 2023; 141:2508-2519. [PMID: 36800567 PMCID: PMC10273167 DOI: 10.1182/blood.2022015418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.
Collapse
Affiliation(s)
- Andrew J. Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Min Lu
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mirko Farina
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Blood Diseases and Bone Marrow Transplantation Unit, Cell Therapies and Hematology Research Program, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julie L. Yang
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Young Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abdul Karzai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zach Zaroogian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Fabrizio Martelli
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Lijuan Xia
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nada Elmansy
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Yang Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Erin McGovern
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jenna Snyder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Corrine Hill
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Keith Cordner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anouar Zouak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohamed E. Salama
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Mayo Clinic School of Medicine, Rochester, MN
| | - Jayden Yohai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Anna R. Migliaccio
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Altius Institute for Biomedical Sciences, Seattle, WA
- Unit of Microscopic and Ultrastructural Anatomy, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Richard Koche
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronald Hoffman
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
34
|
How J, Garcia JS, Mullally A. Biology and therapeutic targeting of molecular mechanisms in MPNs. Blood 2023; 141:1922-1933. [PMID: 36534936 PMCID: PMC10163317 DOI: 10.1182/blood.2022017416] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription signaling. As a result, JAK inhibitors have been the standard therapy for treatment of patients with myelofibrosis (MF). Although currently approved JAK inhibitors successfully ameliorate MPN-related symptoms, they are not known to substantially alter the MF disease course. Similarly, in essential thrombocythemia and polycythemia vera, treatments are primarily aimed at reducing the risk of cardiovascular and thromboembolic complications, with a watchful waiting approach often used in patients who are considered to be at a lower risk for thrombosis. However, better understanding of MPN biology has led to the development of rationally designed therapies, with the goal of not only addressing disease complications but also potentially modifying disease course. We review the most recent data elucidating mechanisms of disease pathogenesis and highlight emerging therapies that target MPN on several biologic levels, including JAK2-mutant MPN stem cells, JAK and non-JAK signaling pathways, mutant calreticulin, and the inflammatory bone marrow microenvironment.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| |
Collapse
|
35
|
Bianchi E, Rontauroli S, Tavernari L, Mirabile M, Pedrazzi F, Genovese E, Sartini S, Dall'Ora M, Grisendi G, Fabbiani L, Maccaferri M, Carretta C, Parenti S, Fantini S, Bartalucci N, Calabresi L, Balliu M, Guglielmelli P, Potenza L, Tagliafico E, Losi L, Dominici M, Luppi M, Vannucchi AM, Manfredini R. Inhibition of ERK1/2 signaling prevents bone marrow fibrosis by reducing osteopontin plasma levels in a myelofibrosis mouse model. Leukemia 2023; 37:1068-1079. [PMID: 36928007 PMCID: PMC10169646 DOI: 10.1038/s41375-023-01867-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Clonal myeloproliferation and development of bone marrow (BM) fibrosis are the major pathogenetic events in myelofibrosis (MF). The identification of novel antifibrotic strategies is of utmost importance since the effectiveness of current therapies in reverting BM fibrosis is debated. We previously demonstrated that osteopontin (OPN) has a profibrotic role in MF by promoting mesenchymal stromal cells proliferation and collagen production. Moreover, increased plasma OPN correlated with higher BM fibrosis grade and inferior overall survival in MF patients. To understand whether OPN is a druggable target in MF, we assessed putative inhibitors of OPN expression in vitro and identified ERK1/2 as a major regulator of OPN production. Increased OPN plasma levels were associated with BM fibrosis development in the Romiplostim-induced MF mouse model. Moreover, ERK1/2 inhibition led to a remarkable reduction of OPN production and BM fibrosis in Romiplostim-treated mice. Strikingly, the antifibrotic effect of ERK1/2 inhibition can be mainly ascribed to the reduced OPN production since it could be recapitulated through the administration of anti-OPN neutralizing antibody. Our results demonstrate that OPN is a novel druggable target in MF and pave the way to antifibrotic therapies based on the inhibition of ERK1/2-driven OPN production or the neutralization of OPN activity.
Collapse
Affiliation(s)
- Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy. .,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Tavernari
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Margherita Mirabile
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Pedrazzi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Genovese
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Sartini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Fabbiani
- Department of Medical and Surgical Sciences of Children & Adults, Pathology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Maccaferri
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124, Modena, Italy
| | - Chiara Carretta
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sandra Parenti
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sebastian Fantini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niccolò Bartalucci
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Laura Calabresi
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Manjola Balliu
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124, Modena, Italy
| | - Enrico Tagliafico
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, Pathology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences of Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AUSL/AOU Policlinico, 41124, Modena, Italy
| | - Alessandro Maria Vannucchi
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy. .,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
36
|
Hoeft K, Schaefer GJL, Kim H, Schumacher D, Bleckwehl T, Long Q, Klinkhammer BM, Peisker F, Koch L, Nagai J, Halder M, Ziegler S, Liehn E, Kuppe C, Kranz J, Menzel S, Costa I, Wahida A, Boor P, Schneider RK, Hayat S, Kramann R. Platelet-instructed SPP1 + macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep 2023; 42:112131. [PMID: 36807143 PMCID: PMC9992450 DOI: 10.1016/j.celrep.2023.112131] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Fibrosis represents the common end stage of chronic organ injury independent of the initial insult, destroying tissue architecture and driving organ failure. Here we discover a population of profibrotic macrophages marked by expression of Spp1, Fn1, and Arg1 (termed Spp1 macrophages), which expands after organ injury. Using an unbiased approach, we identify the chemokine (C-X-C motif) ligand 4 (CXCL4) to be among the top upregulated genes during profibrotic Spp1 macrophage differentiation. In vitro and in vivo studies show that loss of Cxcl4 abrogates profibrotic Spp1 macrophage differentiation and ameliorates fibrosis after both heart and kidney injury. Moreover, we find that platelets, the most abundant source of CXCL4 in vivo, drive profibrotic Spp1 macrophage differentiation. Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals that macrophages orchestrate fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. Finally, we confirm that Spp1 macrophages expand in both human chronic kidney disease and heart failure.
Collapse
Affiliation(s)
- Konrad Hoeft
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Gideon J L Schaefer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Hyojin Kim
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Anesthesiology, RWTH Aachen University, Aachen, Germany
| | - Tore Bleckwehl
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Qingqing Long
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | | | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Lars Koch
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - James Nagai
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Maurice Halder
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Elisa Liehn
- Institute for Molecular Medicine, University of South Denmark, Odense, Denmark
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Jennifer Kranz
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Urology, RWTH Aachen University, Aachen, Germany; Department of Urology and Kidney Transplantation, Martin-Luther-University, Halle (Saale), Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Ivan Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany; Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Cell Biology, Institute for Biomedical Technologies, RWTH Aachen University, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
37
|
Ryou H, Sirinukunwattana K, Aberdeen A, Grindstaff G, Stolz BJ, Byrne H, Harrington HA, Sousos N, Godfrey AL, Harrison CN, Psaila B, Mead AJ, Rees G, Turner GDH, Rittscher J, Royston D. Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients. Leukemia 2023; 37:348-358. [PMID: 36470992 PMCID: PMC9898027 DOI: 10.1038/s41375-022-01773-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022]
Abstract
The grading of fibrosis in myeloproliferative neoplasms (MPN) is an important component of disease classification, prognostication and monitoring. However, current fibrosis grading systems are only semi-quantitative and fail to fully capture sample heterogeneity. To improve the quantitation of reticulin fibrosis, we developed a machine learning approach using bone marrow trephine (BMT) samples (n = 107) from patients diagnosed with MPN or a reactive marrow. The resulting Continuous Indexing of Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids MPN subtyping. When combined with megakaryocyte feature analysis, CIF discriminates between the frequently challenging differential diagnosis of essential thrombocythemia (ET) and pre-fibrotic myelofibrosis with high predictive accuracy [area under the curve = 0.94]. CIF also shows promise in the identification of MPN patients at risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled in the Primary Thrombocythemia-1 trial identified features predictive of post-ET myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated analysis of fibrosis has clear potential to further refine disease classification boundaries and inform future studies of the micro-environmental factors driving disease initiation and progression in MPN and other stem cell disorders.
Collapse
Affiliation(s)
- Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Korsuk Sirinukunwattana
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ground Truth Labs, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Gillian Grindstaff
- Department of Mathematics, University of California, Los Angeles, CA, USA
| | - Bernadette J Stolz
- Mathematical Institute, University of Oxford, Oxford, UK
- Laboratory for Topology and Neuroscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Helen Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Heather A Harrington
- Mathematical Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nikolaos Sousos
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anna L Godfrey
- Haematopathology & Oncology Diagnostics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Bethan Psaila
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Adam J Mead
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gabrielle Rees
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gareth D H Turner
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jens Rittscher
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ground Truth Labs, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
38
|
Zhu K, Li X, Gao L, Ji M, Huang X, Zhao Y, Diao W, Fan Y, Chen X, Luo P, Shen L, Li L. Identification of Hub Genes Correlated with the Initiation and Development in Chronic Kidney Disease via Bioinformatics Analysis. Kidney Blood Press Res 2023; 48:79-91. [PMID: 36603559 PMCID: PMC9979271 DOI: 10.1159/000528870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a major public health issue worldwide, which is characterized by irreversible loss of nephron and renal function. However, the molecular mechanism of CKD remains underexplored. METHODS This study integrated three transcriptional profile datasets to investigate the molecular mechanism of CKD. The differentially expressed genes (DEGs) between Sham control (Con) and unilateral ureteral obstruction (UUO)-operated mice were analyzed by utilizing the limma package in R. The shared DEGs were analyzed by Gene Ontology and functional enrichment. Protein-protein interactions (PPIs) were constructed by utilizing the STRING database. Hub genes were analyzed by MCODE and Cytohubba. We further validated the gene expression by using the other dataset and mouse UUO model. RESULTS A total of 315 shared DEGs between Con and UUO samples were identified. Gene function and KEGG pathway enrichment revealed that DEGs were mainly enriched in inflammatory response, immune system process, and chemokine signaling pathway. Two modules were clustered based on PPI network analysis. Module 1 contained 13 genes related to macrophage activation, migration, and chemotaxis. Ten hub genes were identified by PPI network analysis. Subsequently, the expression levels of hub genes were validated with the other dataset. Finally, these four validated hub genes were further confirmed by our UUO mice. Three validated hub genes, Gng2, Pf4, and Ccl9, showed significant response to UUO. CONCLUSION Our study reveals the coordination of genes during UUO and provides a promising gene panel for CKD treatment. GNG2 and PF4 were identified as potential targets for developing CKD drugs.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinxin Li
- Department of Urology, Tongren Hospital of Wuhan University, Wuhan Third Hospital, Wuhan, China
| | - Likun Gao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengyao Ji
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenxiu Diao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqin Fan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinghua Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Tongren Hospital of Wuhan University, Wuhan Third Hospital, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
IL-13/IL-4 signaling contributes to fibrotic progression of the myeloproliferative neoplasms. Blood 2022; 140:2805-2817. [PMID: 36283106 DOI: 10.1182/blood.2022017326] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 01/17/2023] Open
Abstract
Myelofibrosis (MF) is a disease associated with high unmet medical needs because allogeneic stem cell transplantation is not an option for most patients, and JAK inhibitors are generally effective for only 2 to 3 years and do not delay disease progression. MF is characterized by dysplastic megakaryocytic hyperplasia and progression to fulminant disease, which is associated with progressively increasing marrow fibrosis. Despite evidence that the inflammatory milieu in MF contributes to disease progression, the specific factors that promote megakaryocyte growth are poorly understood. Here, we analyzed changes in the cytokine profiles of MF mouse models before and after the development of fibrosis, coupled with the analysis of bone marrow populations using single-cell RNA sequencing. We found high interleukin 13 (IL-13) levels in the bone marrow of MF mice. IL-13 promoted the growth of mutant megakaryocytes and induced surface expression of transforming growth factor β and collagen biosynthesis. Similarly, analysis of samples from patients with MF revealed elevated levels of IL-13 in the plasma and increased IL-13 receptor expression in marrow megakaryocytes. In vivo, IL-13 overexpression promoted disease progression, whereas reducing IL-13/IL-4 signaling reduced several features of the disease, including fibrosis. Finally, we observed an increase in the number of marrow T cells and mast cells, which are known sources of IL-13. Together, our data demonstrate that IL-13 is involved in disease progression in MF and that inhibition of the IL-13/IL-4 signaling pathway might serve as a novel therapeutic target to treat MF.
Collapse
|
40
|
Rai S, Grockowiak E, Hansen N, Luque Paz D, Stoll CB, Hao-Shen H, Mild-Schneider G, Dirnhofer S, Farady CJ, Méndez-Ferrer S, Skoda RC. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat Commun 2022; 13:5346. [PMID: 36100613 PMCID: PMC9470591 DOI: 10.1038/s41467-022-32927-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin-1β (IL-1β) is a master regulator of inflammation. Increased activity of IL-1β has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1β serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1β overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1β in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1β in JAK2-V617F mutant mice by anti-IL-1β antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1β with anti-IL-1β antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.
Collapse
Affiliation(s)
- Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Elodie Grockowiak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Damien Luque Paz
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Cedric B Stoll
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Gabriele Mild-Schneider
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Department of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | | | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
41
|
Karantanou C, Minciacchi VR, Karantanos T. Extracellular Vesicles in Myeloid Neoplasms. Int J Mol Sci 2022; 23:ijms23158827. [PMID: 35955960 PMCID: PMC9369333 DOI: 10.3390/ijms23158827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid neoplasms arise from malignant primitive cells, which exhibit growth advantage within the bone marrow microenvironment (BMM). The interaction between these malignant cells and BMM cells is critical for the progression of these diseases. Extracellular vesicles (EVs) are lipid bound vesicles secreted into the extracellular space and involved in intercellular communication. Recent studies have described RNA and protein alterations in EVs isolated from myeloid neoplasm patients compared to healthy controls. The altered expression of various micro-RNAs is the best-described feature of EVs of these patients. Some of these micro-RNAs induce growth-related pathways such as AKT/mTOR and promote the acquisition of stem cell-like features by malignant cells. Another well-described characteristic of EVs in myeloid neoplasms is their ability to suppress healthy hematopoiesis either via direct effect on healthy CD34+ cells or via alteration of the differentiation of BMM cells. These results support a role of EVs in the pathogenesis of myeloid neoplasms. mainly through mediating the interaction between malignant and BMM cells, and warrant further study to better understand their biology. In this review, we describe the reported alterations of EV composition in myeloid neoplasms and the recent discoveries supporting their involvement in the development and progression of these diseases.
Collapse
Affiliation(s)
- Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Valentina René Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21218, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, The Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD 21218, USA
- Correspondence:
| |
Collapse
|
42
|
Yao JC, Oetjen KA, Wang T, Xu H, Abou-Ezzi G, Krambs JR, Uttarwar S, Duncavage EJ, Link DC. TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J Clin Invest 2022. [PMID: 35439167 DOI: 10.1172/jci154092.pmid:35439167;pmcid:pmc9151699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with significant alterations in the bone marrow microenvironment that include decreased expression of key niche factors and myelofibrosis. Here, we explored the contribution of TGF-β to these alterations by abrogating TGF-β signaling in bone marrow mesenchymal stromal cells. Loss of TGF-β signaling in Osx-Cre-targeted MSCs prevented the development of myelofibrosis in both MPLW515L and Jak2V617F models of MPNs. In contrast, despite the absence of myelofibrosis, loss of TGF-β signaling in mesenchymal stromal cells did not rescue the defective hematopoietic niche induced by MPLW515L, as evidenced by decreased bone marrow cellularity, hematopoietic stem/progenitor cell number, and Cxcl12 and Kitlg expression, and the presence of splenic extramedullary hematopoiesis. Induction of myelofibrosis by MPLW515L was intact in Osx-Cre Smad4fl/fl recipients, demonstrating that SMAD4-independent TGF-β signaling mediates the myelofibrosis phenotype. Indeed, treatment with a c-Jun N-terminal kinase (JNK) inhibitor prevented the development of myelofibrosis induced by MPLW515L. Together, these data show that JNK-dependent TGF-β signaling in mesenchymal stromal cells is responsible for the development of myelofibrosis but not hematopoietic niche disruption in MPNs, suggesting that the signals that regulate niche gene expression in bone marrow mesenchymal stromal cells are distinct from those that induce a fibrogenic program.
Collapse
Affiliation(s)
- Juo-Chin Yao
- Division of Oncology, Department of Medicine and
| | | | - Tianjiao Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haoliang Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
43
|
Yao JC, Oetjen KA, Wang T, Xu H, Abou-Ezzi G, Krambs JR, Uttarwar S, Duncavage EJ, Link DC. TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J Clin Invest 2022; 132:154092. [PMID: 35439167 PMCID: PMC9151699 DOI: 10.1172/jci154092] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/14/2022] [Indexed: 12/31/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with significant alterations in the bone marrow microenvironment that include decreased expression of key niche factors and myelofibrosis. Here, we explored the contribution of TGF-β to these alterations by abrogating TGF-β signaling in bone marrow mesenchymal stromal cells. Loss of TGF-β signaling in Osx-Cre-targeted MSCs prevented the development of myelofibrosis in both MPLW515L and Jak2V617F models of MPNs. In contrast, despite the absence of myelofibrosis, loss of TGF-β signaling in mesenchymal stromal cells did not rescue the defective hematopoietic niche induced by MPLW515L, as evidenced by decreased bone marrow cellularity, hematopoietic stem/progenitor cell number, and Cxcl12 and Kitlg expression, and the presence of splenic extramedullary hematopoiesis. Induction of myelofibrosis by MPLW515L was intact in Osx-Cre Smad4fl/fl recipients, demonstrating that SMAD4-independent TGF-β signaling mediates the myelofibrosis phenotype. Indeed, treatment with a c-Jun N-terminal kinase (JNK) inhibitor prevented the development of myelofibrosis induced by MPLW515L. Together, these data show that JNK-dependent TGF-β signaling in mesenchymal stromal cells is responsible for the development of myelofibrosis but not hematopoietic niche disruption in MPNs, suggesting that the signals that regulate niche gene expression in bone marrow mesenchymal stromal cells are distinct from those that induce a fibrogenic program.
Collapse
Affiliation(s)
- Juo-Chin Yao
- Division of Oncology, Department of Medicine and
| | | | - Tianjiao Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haoliang Xu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
44
|
Torres DG, Paes J, da Costa AG, Malheiro A, Silva GV, Mourão LPDS, Tarragô AM. JAK2 Variant Signaling: Genetic, Hematologic and Immune Implication in Chronic Myeloproliferative Neoplasms. Biomolecules 2022; 12:291. [PMID: 35204792 PMCID: PMC8961666 DOI: 10.3390/biom12020291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The JAK2V617F variant constitutes a genetic alteration of higher frequency in BCR/ABL1 negative chronic myeloproliferative neoplasms, which is caused by a substitution of a G ˃ T at position 1849 and results in the substitution of valine with phenylalanine at codon 617 of the polypeptide chain. Clinical, morphological and molecular genetic features define the diagnosis criteria of polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, JAK2V617F is associated with clonal hematopoiesis, genomic instability, dysregulations in hemostasis and immune response. JAK2V617F clones induce an inflammatory immune response and lead to a process of immunothrombosis. Recent research has shown great interest in trying to understand the mechanisms associated with JAK2V617F signaling and activation of cellular and molecular responses that progressively contribute to the development of inflammatory and vascular conditions in association with chronic myeloproliferative neoplasms. Thus, the aim of this review is to describe the main genetic, hematological and immunological findings that are linked to JAK2 variant signaling in chronic myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Dania G. Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Allyson G. da Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - George V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
- Fundação Centro de Controle de Oncologia do Amazonas (FCECON), Manaus 69040-010, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil; (D.G.T.); (J.P.); (A.G.d.C.); (A.M.); (G.V.S.)
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
45
|
Khatib-Massalha E, Méndez-Ferrer S. Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions. Front Oncol 2022; 12:840044. [PMID: 35186768 PMCID: PMC8854253 DOI: 10.3389/fonc.2022.840044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) rely on local interactions in the bone marrow (BM) microenvironment with stromal cells and other hematopoietic cells that facilitate their survival and proliferation, and also regulate their functions. HSCs and multipotent progenitor cells differentiate into lineage-specific progenitors that generate all blood and immune cells. Megakaryocytes (Mks) are hematopoietic cells responsible for producing blood platelets, which are essential for normal hemostasis and blood coagulation. Although the most prominent function of Mks is platelet production (thrombopoiesis), other increasingly recognized functions include HSC maintenance and host immune response. However, whether and how these diverse programs are executed by different Mk subpopulations remains poorly understood. This Perspective summarizes our current understanding of diversity in ontogeny, functions and cell-cell interactions. Cumulative evidence suggests that BM microenvironment dysfunction, partly caused by mutated Mks, can induce or alter the progression of a variety of hematologic malignancies, including myeloproliferative neoplasms (MPNs) and other disorders associated with tissue scarring (fibrosis). Therefore, as an example of the heterogeneous functions of Mks in malignant hematopoiesis, we will discuss the role of Mks in the onset and progression of BM fibrosis. In this regard, abnormal interactions between of Mks and other immune cells might directly contribute to fibrotic diseases. Overall, further understanding of megakaryopoiesis and how Mks interact with HSCs and immune cells has potential clinical implications for stem cell transplantation and other therapies for hematologic malignancies, as well as for treatments to stimulate platelet production and prevent thrombocytopenia.
Collapse
Affiliation(s)
- Eman Khatib-Massalha
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Simón Méndez-Ferrer
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Instituto de Biomedicina de Sevilla-IBiS, Hospitales Universitarios Virgen del Rocío y Macarena/Spanish National Research Council (CSIC)/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
46
|
Kaczor DM, Kramann R, Hackeng TM, Schurgers LJ, Koenen RR. Differential Effects of Platelet Factor 4 (CXCL4) and Its Non-Allelic Variant (CXCL4L1) on Cultured Human Vascular Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23020580. [PMID: 35054772 PMCID: PMC8775478 DOI: 10.3390/ijms23020580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Platelet factor 4 (CXCL4) is a chemokine abundantly stored in platelets. Upon injury and during atherosclerosis, CXCL4 is transported through the vessel wall where it modulates the function of vascular smooth muscle cells (VSMCs) by affecting proliferation, migration, gene expression and cytokine release. Variant CXCL4L1 is distinct from CXCL4 in function and expression pattern, despite a minor three-amino acid difference. Here, the effects of CXCL4 and CXCL4L1 on the phenotype and function of human VSMCs were compared in vitro. VSMCs were found to constitutively express CXCL4L1 and only exogenously added CXCL4 was internalized by VSMCs. Pre-treatment with heparin completely blocked CXCL4 uptake. A role of the putative CXCL4 receptors CXCR3 and DARC in endocytosis was excluded, but LDL receptor family members appeared to be involved in the uptake of CXCL4. Incubation of VSMCs with both CXCL4 and CXCL4L1 resulted in decreased expression of contractile marker genes and increased mRNA levels of KLF4 and NLRP3 transcription factors, yet only CXCL4 stimulated proliferation and calcification of VSMCs. In conclusion, CXCL4 and CXCL4L1 both modulate gene expression, yet only CXCL4 increases the division rate and formation of calcium-phosphate crystals in VSMCs. CXCL4 and CXCL4L1 may play distinct roles during vascular remodeling in which CXCL4 induces proliferation and calcification while endogenously expressed CXCL4L1 governs cellular homeostasis. The latter notion remains a subject for future investigation.
Collapse
Affiliation(s)
- Dawid M. Kaczor
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (D.M.K.); (T.M.H.); (L.J.S.)
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
- Division of Nephrology and Clinical Immunology and Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- Erasmus Medical Center, Department of Internal Medicine, Nephrology and Transplantation, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Tilman M. Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (D.M.K.); (T.M.H.); (L.J.S.)
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (D.M.K.); (T.M.H.); (L.J.S.)
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (D.M.K.); (T.M.H.); (L.J.S.)
- Correspondence: ; Tel.: +31-433-881-674
| |
Collapse
|
47
|
CXCL4 drives fibrosis by promoting several key cellular and molecular processes. Cell Rep 2022; 38:110189. [PMID: 34986347 DOI: 10.1016/j.celrep.2021.110189] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/28/2021] [Accepted: 12/08/2021] [Indexed: 01/05/2023] Open
Abstract
Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development. CXCL4 levels are increased in multiple inflammatory and fibrotic mouse models, and, using CXCL4-deficient mice, we demonstrate the essential role of CXCL4 in promoting fibrotic events in the skin, lungs, and heart. Overexpressing human CXCL4 in mice aggravates, whereas blocking CXCL4 reduces, bleomycin-induced fibrosis. Single-cell ligand-receptor analysis predicts CXCL4 to affect endothelial cells and fibroblasts. In vitro, we confirm that CXCL4 directly induces myofibroblast differentiation and collagen synthesis in different precursor cells, including endothelial cells, by stimulating endothelial-to-mesenchymal transition. Our findings identify a pivotal role of CXCL4 in fibrosis, further substantiating the potential role of neutralizing CXCL4 as a therapeutic strategy.
Collapse
|
48
|
Bone marrow microenvironment of MPN cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 34756245 DOI: 10.1016/bs.ircmb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this chapter, we will discuss the current knowledge concerning the alterations of the cellular components in the bone marrow niche in Myeloproliferative Neoplasms (MPNs), highlighting the central role of the megakaryocytes in MPN progression, and the extracellular matrix components characterizing the fibrotic bone marrow.
Collapse
|
49
|
Thomas S, Krishnan A. Platelet Heterogeneity in Myeloproliferative Neoplasms. Arterioscler Thromb Vasc Biol 2021; 41:2661-2670. [PMID: 34615371 PMCID: PMC8551046 DOI: 10.1161/atvbaha.121.316373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a group of malignant disorders of the bone marrow where a dysregulated balance between proliferation and differentiation gives rise to abnormal numbers of mature blood cells. MPNs encompass a spectrum of disease entities with progressively more severe clinical features, including complications with thrombosis and hemostasis and an increased propensity for transformation to acute myeloid leukemia. There is an unmet clinical need for markers of disease progression. Our understanding of the precise mechanisms that influence pathogenesis and disease progression has been limited by access to disease-specific cells as biosources. Here, we review the landscape of MPN pathology and present blood platelets as potential candidates for disease-specific understanding. We conclude with our recent work discovering progressive platelet heterogeneity by subtype in a large clinical cohort of patients with MPN.
Collapse
Affiliation(s)
- Sally Thomas
- Department of Oncology and Metabolism, University of Sheffield and Department of Haematology, Royal Hallamshire Hospital, United Kingdom (S.T.)
| | - Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine, CA (A.K.)
| |
Collapse
|
50
|
Leimkühler NB, Costa IG, Schneider RK. From cell to cell: Identification of actionable targets in bone marrow fibrosis using single-cell technologies. Exp Hematol 2021; 104:48-54. [PMID: 34601067 DOI: 10.1016/j.exphem.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
Single-cell technologies have rapidly developed in recent years and have already had a significant impact on the research of myeloproliferative neoplasms. The increasing number of publicly available data sets allows characterization of the bone marrow niche in patients and mouse models at unprecedented resolution. Single-cell RNA sequencing has successfully been used to identify and characterize disease-driving cell populations and to identify the alarmin S100A8/A9 as an important mediator of myelofibrosis and potent therapeutic target. It is now possible to execute a streamlined set of experiments to specifically identify and validate actionable target genes functionally with the advance of reliable in vivo models and the possibility of conducting single-cell analyses with a minimal amount of patient material. The advent of large-scale analyses of both hematopoietic and non-hematopoietic bone marrow cells will allow comprehensive network analyses guiding an increasingly detailed mapping of the MPN interactome.
Collapse
Affiliation(s)
- Nils B Leimkühler
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Cell Biology, Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|