1
|
Zeiser R. Immunotherapy in cancer. Semin Arthritis Rheum 2025; 72S:152666. [PMID: 40032535 DOI: 10.1016/j.semarthrit.2025.152666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Immunotherapy has revolutionized the treatment of cancer. However, therapy resistance and immune mediated side effects reduce the overall success. Recent developments in these two areas were reported at the 2024 ATT conference. Here we discuss that immunotherapy resistance relies on immune escape mechanisms of cancer cells. Malignant conversion of a cell encompasses oncogene activation causing altered intracellular signal transduction termed "oncogenic signaling". A functional connection between oncogenic signaling and immune evasion mechanisms was shown for different haematological malignancies such as the FLT3-ITD/ATF6/IL-15 inhibition axis in acute myeloid leukemia. A second clinical problem are Immune mediated side effects after cancer immunotherapy because they lead to treatment interruption and potentially loss of activity by introduction of immunosuppressive medication. Anti-PD-1 immunotherapy induced inflammation of the central nervous system is rare but has a high morbidity and mortality. Recent data show that spleen tyrosine kinase (Syk) activation and downstream signaling in microglia mediates anti-PD-1 immunotherapy induced inflammation of the central nervous system.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Smallbone P, Mehta RS, Alousi A. Steroid Refractory Acute GVHD: The Hope for a Better Tomorrow. Am J Hematol 2025; 100 Suppl 3:14-29. [PMID: 40123554 DOI: 10.1002/ajh.27592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 03/25/2025]
Abstract
Steroid-refractory acute graft-versus-host disease (SR-AGVHD) presents a significant barrier to successful outcomes following allogeneic hematopoietic cell transplantation (HCT), despite advancements in GVHD prophylaxis and management. While ruxolitinib therapy has shown improved response rates, survival benefits remain elusive. This review explores the definitions and proposed distinct pathophysiology and treatment landscape of SR-AGVHD. Emerging therapies offer potential, yet further research is critical to better define steroid-refractory populations, improve treatment precision with biomarkers, and overcome resistance, particularly in ruxolitinib-refractory cases.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rohtesh S Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Brehm N, Biavasco F, Clausen J, Jung J, Maas-Bauer K, Wäsch R, Verbeek M, Nuernbergk C, Ihorst G, Seropian S, Finke J, Gowda L, Sidlik Muskatel R, Peffault de Latour R, Socie G, Wehr C, Michonneau D, Zeiser R. Teduglutide for treatment-refractory severe intestinal acute graft-versus-host disease - a multicenter survey. Bone Marrow Transplant 2025:10.1038/s41409-025-02586-2. [PMID: 40229535 DOI: 10.1038/s41409-025-02586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Intestinal glucocorticoid-refractory (SR) acute (a) graft-versus-host disease (GVHD) causes high non-relapse mortality (NRM) in patients after allogeneic hematopoietic cell transplantation (allo-HCT). Recent preclinical data indicate that acute GVHD causes a loss of intestinal neuroendocrine L-cells leading to reduced levels of glucagon-like peptide-2 (GLP-2). GLP-2 substitution improved GVHD severity and increased Paneth cells and intestinal stem cells in mice. This motivated us to treat patients with refractory intestinal aGHVD using the GLP-2-analogon teduglutide. In this retrospective multicenter survey, 17 patients received teduglutide as salvage-therapy for SR-intestinal aGVHD. The best response (CR or PR) at any time point during and after treatment was 64.7% (11/17) including 41.2% (7/17) CR and 23.5% (4/17) PR. At a median follow-up of 28 weeks after teduglutide 10/17 patients are alive. Most patients experienced an increase of the albumin serum level within 2 months after the first teduglutide dose, including patients who clinically did not respond to teduglutide treatment. No specific teduglutide-related toxicity was observed. Our retrospective analysis suggests that teduglutide is safe and has activity in a fraction of patients with intestinal SR-aGVHD, which needs validation in a prospective trial.
Collapse
Affiliation(s)
- Niklas Brehm
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesca Biavasco
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Clausen
- Department of Internal Medicine I, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Johannes Jung
- Technical University of Munich, TUM School of Medicine and Health, Department of Medicine III, Hematology and Medical Oncology, Munich, Germany
| | - Kristina Maas-Bauer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mareike Verbeek
- Technical University of Munich, TUM School of Medicine and Health, Department of Medicine III, Hematology and Medical Oncology, Munich, Germany
| | - Christoph Nuernbergk
- Technical University of Munich, TUM School of Medicine and Health, Department of Medicine III, Hematology and Medical Oncology, Munich, Germany
| | - Gabriele Ihorst
- Clinical Trial Unit, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Stuart Seropian
- Yale University School of Medicine, Yale Cancer Center at Smilow Yale New Haven Hospital, New Haven, CT, USA
| | - Jürgen Finke
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lohith Gowda
- Yale University School of Medicine, Yale Cancer Center at Smilow Yale New Haven Hospital, New Haven, CT, USA
| | - Rakefet Sidlik Muskatel
- BMT Unit, Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach-Tikva, Tel-Aviv University, Tel-Aviv, Israel
| | - Régis Peffault de Latour
- Hôpital Saint-Louis, Hematology and transplantation, Assistance Publique des Hôpitaux de Paris, Paris Cité University, Paris, France
- INSERM UMR 976, Human Immunology, Pathophysiology, Immunotherapy, Leukemia institute Paris Saint Louis, IHU Thema2 Paris, Paris, France
- INSERM UMR1342, Saint Louis Research Institute, InIdex Immuno-Oncology, SIRIC InSitu, IHU Leukemia Institute Paris Saint Louis, Paris Cité University, Paris, France
| | - Gérard Socie
- Hôpital Saint-Louis, Hematology and transplantation, Assistance Publique des Hôpitaux de Paris, Paris Cité University, Paris, France
- INSERM UMR1342, Saint Louis Research Institute, InIdex Immuno-Oncology, SIRIC InSitu, IHU Leukemia Institute Paris Saint Louis, Paris Cité University, Paris, France
| | - Claudia Wehr
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Michonneau
- Hôpital Saint-Louis, Hematology and transplantation, Assistance Publique des Hôpitaux de Paris, Paris Cité University, Paris, France
- INSERM UMR 976, Human Immunology, Pathophysiology, Immunotherapy, Leukemia institute Paris Saint Louis, IHU Thema2 Paris, Paris, France
- INSERM UMR1342, Saint Louis Research Institute, InIdex Immuno-Oncology, SIRIC InSitu, IHU Leukemia Institute Paris Saint Louis, Paris Cité University, Paris, France
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Gong B, Wang T, Sun L. Evolution and therapeutic potential of glucagon-like peptide 2 analogs. Biochem Pharmacol 2025; 233:116758. [PMID: 39842552 DOI: 10.1016/j.bcp.2025.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Glucagon-like peptide 2 (GLP-2) is a proglucagon-derived peptide released by intestinal endocrine cells. However, its therapeutic potential is limited by rapid inactivation via dipeptidyl peptidase-IV. The elucidation of three-dimensional structures of G-protein-coupled receptors, including GLP-2 receptor, has facilitated the rational design of novel peptide therapeutics. Recent studies have explored various structural modifications based on the structure of GLP-2, such as amino acid substitution, lipidation, and fusion with proteins, to extend the half-life of GLP-2 and enhance its biological activity. One promising avenue involves the development of multifunctional molecules targeting multiple pharmacological systems to boost therapeutic efficacy. This paper reviews the recent advancements in understanding GLP-2, including its physiological roles and structure-activity relationships, and evaluates the development prospects of GLP-2 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, PR China
| | - Ting Wang
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China; Taizhou Hospital, Zhejiang University, Taizhou 317000, PR China.
| |
Collapse
|
5
|
Reikvam H, Hatfield K, Sandnes M, Bruserud Ø. Future biomarkers for acute graft-versus-host disease: potential roles of nucleic acids, metabolites, and immune cell markers. Expert Rev Clin Immunol 2025; 21:305-321. [PMID: 39670445 DOI: 10.1080/1744666x.2024.2441246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Acute graft versus host disease (aGVHD) is a potentially lethal complication after allogeneic stem cell transplantation. Biomarkers are used to estimate the risk of aGVHD and evaluate response to treatment. The most widely used biomarkers are systemic levels of various protein mediators involved in immunoregulation or reflecting tissue damage. However, systemic levels of other molecular markers such as nucleic acids or metabolites, levels of immunocompetent cells or endothelial cell markers may also be useful biomarkers in aGVHD. AREAS COVERED This review is based on selected articles from the PubMed database. We review and discuss the scientific basis for further studies to evaluate nucleic acids, metabolites, circulating immunocompetent cell subsets or endothelial markers as biomarkers in aGVHD. EXPERT OPINION A wide range of interacting and communicating cells are involved in the complex pathogenesis of aGVHD. Both nucleic acids and metabolites function as soluble mediators involved in communication between various subsets of immunocompetent cells and between immunocompetent cells and other neighboring cells. Clinical and experimental studies suggest that both neutrophils, monocytes, and endothelial cells are involved in the early stages of aGVHD pathogenesis. In our opinion, the possible clinical use of these molecular and cellular biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kimberley Hatfield
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miriam Sandnes
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Liu Y, Tan J, Zhang N, Qu Z, Li W, Wu Y, Yin H, Liu G, Fu B. Trichinella spiralis excretory/secretory antigens ameliorate porcine epidemic diarrhea virus-induced mucosal damage in porcine intestinal oganoids by alleviating inflammation and promoting tight junction. Int J Parasitol 2025; 55:183-195. [PMID: 39725260 DOI: 10.1016/j.ijpara.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Trichinella spiralis and porcine epidemic diarrhea virus (PEDV) are two infectious swine pathogens. Parasite excretory/secretory antigens play critical roles in various disease processes. To explore the coexistence mechanism of two pathogens infecting the same host, the intestinal organoid was utilized to reproduce these biological processes. In this study, we investigated the effects of T. spiralis excretory/secretory antigens (TsES) on PEDV-induced inflammatory regulation, lesion recovery, and mucosal barrier repair in porcine intestinal organoids. The results showed that PEDV effectively infected the porcine intestinal organoids. Next, TsES inhibited pro-inflammatory cytokines and increased the anti-inflammatory cytokines produced by PEDV-infected porcine intestinal organoids. Further, four-dimensional (4D) label-free quantitative proteomics and western blotting confirmed that TsES regulate the inflammation caused by PEDV infection through the nuclear factor kappa-B (NF-κB) pathway. In addition, TsES promoted cell proliferation, inhibited apoptosis, and reduced PEDV-induced lesions in intestinal organoids. The elevated secretory immunoglobulin A (sIgA) levels caused by PEDV infection were downregulated by TsES treatment in intestinal organoids. TsES treatment reversed the mucosal barrier damage caused by PEDV infection in intestinal organoids. Finally, PEDV replication increased after TsES treatment in organoids. We highlight the potential of TsES to ameliorate PEDV-induced inflammation, mucosal lesions, and barrier damage in porcine intestinal organoids. TsES also contribute to PEDV replication. This study presents a novel research model for research on host-virus-parasite interactions, while also providing a theoretical foundation to consider parasite derivatives as a potential adjunctive therapy for intestinal inflammation.
Collapse
Affiliation(s)
- Yinju Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jinlong Tan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| | - Nianzhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Wenhui Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yaodong Wu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou 225009, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Baoquan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou 225009, China.
| |
Collapse
|
7
|
Kujawska J, Zeiser R, Gil L. Recent advances in acute gastrointestinal graft versus host disease (aGvHD): aspects of steroid-resistant disease. Ann Hematol 2025; 104:855-865. [PMID: 39207560 PMCID: PMC11971137 DOI: 10.1007/s00277-024-05952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Acute Graft versus Host Disease (aGvHD) is a common immunological complication occurring in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Moreover, aGvHD is associated with a higher risk of infections and metabolic complications, affecting non-relapse mortality. Progress in transplantation has changed the prophylactic and therapeutic strategies of aGvHD and improved patient outcomes. The standard first-line therapy remains steroids, with a response rate of about 50%. The Janus Kinase 2 (JAK2) inhibitor, ruxolitinib, is an effective second-line therapy. The management of patients who developed a disease that is refractory to steroids and ruxolitinib, especially in the severe gastrointestinal forms of aGvHD, is not validated and remains an unmet medical need. In the article, we present the current clinical practice, as well as the latest advances targeting pathophysiological pathways of GvHD and gut microbiota, which may be a potential future of aGvHD therapy.
Collapse
Affiliation(s)
- Joanna Kujawska
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland.
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
8
|
Azhar Ud Din M, Lin Y, Lyu C, Yi C, Fang A, Mao F. Advancing therapeutic strategies for graft-versus-host disease by targeting gut microbiome dynamics in allogeneic hematopoietic stem cell transplantation: current evidence and future directions. Mol Med 2025; 31:2. [PMID: 39754054 PMCID: PMC11699782 DOI: 10.1186/s10020-024-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system. Consequently, it significantly affects the overall well-being and susceptibility of the host to disease. Patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) may experience a disruption in the balance between the immune system and gut bacteria when treated with medicines and foreign cells. This can lead to secondary intestinal inflammation and GVHD. Thus, GM is both a reliable indicator of post-transplant mortality and a means of enhancing GVHD prevention and treatment after allo-HSCT. This can be achieved through various strategies, including nutritional support, probiotics, selective use of antibiotics, and fecal microbiota transplantation (FMT) to target gut microbes. This review examines research advancements and the practical use of intestinal bacteria in GVHD following allo-HSCT. These findings may offer novel insights into the prevention and treatment of GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Lin
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212399, Jiangsu, People's Republic of China
| | - Changkun Lyu
- School of Medical Technology, Shangqiu Medical College Shangqiu, Shangqiu, 476100, Henan, People's Republic of China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, 212028, Jiangsu, People's Republic of China
| | - Anning Fang
- Basic Medical School, Anhui Medical College, 632 Furong Road, Economic and Technological Development Zone, Hefei, 230061, Anhui, People's Republic of China.
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Hammoud R, Kaur KD, Koehler JA, Baggio LL, Wong CK, Advani KE, Yusta B, Efimova I, Gribble FM, Reimann F, Fishman S, Varol C, Drucker DJ. Glucose-dependent insulinotropic polypeptide receptor signaling alleviates gut inflammation in mice. JCI Insight 2024; 10:e174825. [PMID: 39723966 PMCID: PMC11948578 DOI: 10.1172/jci.insight.174825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived peptide hormones that potentiate glucose-dependent insulin secretion. The clinical development of GIP receptor-GLP-1 receptor (GIPR-GLP-1R) multiagonists exemplified by tirzepatide and emerging GIPR antagonist-GLP-1R agonist therapeutics such as maritide is increasing interest in the extrapancreatic actions of incretin therapies. Both GLP-1 and GIP modulate inflammation, with GLP-1 also acting locally to alleviate gut inflammation in part through antiinflammatory actions on GLP-1R+ intestinal intraepithelial lymphocytes. In contrast, whether GIP modulates gut inflammation is not known. Here, using gain- and loss-of-function studies, we show that GIP alleviates 5-fluorouracil-induced (5FU-induced) gut inflammation, whereas genetic deletion of Gipr exacerbates the proinflammatory response to 5FU in the murine small bowel (SB). Bone marrow (BM) transplant studies demonstrated that BM-derived Gipr-expressing cells suppress 5FU-induced gut inflammation in the context of global Gipr deficiency. Within the gut, Gipr was localized to nonimmune cells, specifically stromal CD146+ cells. Hence, the extrapancreatic actions of GIPR signaling extend to the attenuation of gut inflammation, findings with potential translational relevance for clinical strategies modulating GIPR action in people with type 2 diabetes or obesity.
Collapse
Affiliation(s)
- Rola Hammoud
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Kiran Deep Kaur
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline A. Koehler
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Laurie L. Baggio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Katie E. Advani
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Bernardo Yusta
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Irina Efimova
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Fiona M. Gribble
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, United Kingdom
| | - Sigal Fishman
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
11
|
Minden MD, Audiger C, Chabot-Roy G, Lesage S, Delisle JS, Biemans B, Dimitriadou V. The Long-Acting Glucagon-Like Peptide-2 Analog Apraglutide Enhances Intestinal Protection and Survival After Chemotherapy and Allogeneic Transplantation in Mice. Ann Transplant 2024; 29:e945249. [PMID: 39497378 PMCID: PMC11549896 DOI: 10.12659/aot.945249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 11/11/2024] Open
Abstract
BACKGROUND The gastrointestinal (GI) barrier can be damaged by chemotherapy or radiation therapy, causing fatigue, malnutrition, sepsis, dose-limiting toxicity, and, occasionally, death. Glucagon-like peptide-2 (GLP-2) promotes mucosal epithelium growth and repair in the GI tract. Here, we examined the GI-protective effects of apraglutide, a long-acting peptide GLP-2 analog, in murine models of chemotherapy, and total body irradiation followed by allogeneic transplantation. MATERIAL AND METHODS The impact of apraglutide on cytarabine or melphalan chemotherapy-induced intestinal damage was assessed in BALB/c mice, and the effect on allogeneic transplantation in BALB/cJ and C57BL/6J mice. Outcomes included survival, and changes in body weight, intestinal function and morphology, including colon length and bacterial composition of the intestinal microbiota. RESULTS Adding apraglutide to chemotherapy significantly improved survival rates and reduced weight loss, with no impact on leukocyte counts (and, therefore, no effect on chemotherapy-induced immunosuppression), compared with chemotherapy alone in mice. These benefits were associated with preservation of the morphological integrity of the GI mucosa, attenuation of the negative impact of cytarabine on the intestinal microbiota, and significant improvement in plasma levels of citrulline. In addition, in a model of irradiation followed by allogeneic transplantation, mice in groups receiving apraglutide had improved survival, reduced weight loss, and increased colon length compared with those that did not. CONCLUSIONS Apraglutide protects intestinal function and improves survival in mice following allogeneic transplantation or chemotherapy with cytarabine or melphalan. The potential effect of apraglutide on chemotherapy efficacy and on engraftment following allogeneic transplantation has been investigated in a parallel manuscript.
Collapse
Affiliation(s)
- Mark D. Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Cindy Audiger
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | | | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Sébastien Delisle
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Departement of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
12
|
Wenger V, Zeiser R. Deciphering the role of the major histocompatibility complex, the intestinal microbiome and metabolites in the pathogenesis of acute graft-versus-host disease. Best Pract Res Clin Haematol 2024; 37:101567. [PMID: 39396261 DOI: 10.1016/j.beha.2024.101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Allogeneic hematologic stem cell transplantation is a cornerstone in modern hematological treatment, yet its efficacy is compromised by acute Graft-versus-Host Disease. In acute Graft-versus-Host Disease, conditioning regimen induced epithelial damage leads to release of damage and pathogen associated molecular patters which in turns triggers activation of alloreactive donor T cells, ultimately resulting in destruction of healthy tissue. Advances in major histocompatibility complex typing and preclinical studies using tissue specific major histocompatibility complex deletion have illuminated the contributions of both, hematopoietic and non-hematopoietic cells to acute Graft-versus-Host Disease pathophysiology. Concurrently, high-throughput sequencing techniques have enabled researchers to recognize the significant impact of the intestinal microbiome and newly discovered metabolites in the pathophysiology of acute Graft-versus-Host Disease. In this review, we discuss the implications of major histocompatibility complex expression on hematopoietic and non-hematopoietic cells, the effect on the intestinal microbiome and the metabolic alterations that contribute to acute Graft-versus-Host Disease. By combining these findings, we hope to untangle the complexity of acute Graft-versus-Host Disease, ultimately paving the way for the development of novel and more effective treatmen options in patients.
Collapse
Affiliation(s)
- Valentin Wenger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
13
|
Kim NH, Hamadani M, Abedin S. New investigational drugs for steroid-refractory acute graft-versus-host disease: a review of the literature. Expert Opin Investig Drugs 2024; 33:791-799. [PMID: 38973782 PMCID: PMC11305901 DOI: 10.1080/13543784.2024.2377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Steroid-refractory acute graft-versus-host disease (SR-aGVHD) remains a formidable obstacle in the field of allogeneic hematopoietic cell transplantation (allo-HCT), significantly contributing to patient morbidity and mortality. The current therapeutic landscape for SR-aGVHD is limited, often yielding suboptimal results, thereby emphasizing the urgent need for innovative and effective treatments. AREAS COVERED In light of the pivotal REACH2 trial, ruxolitinib phosphate, a Janus kinase inhibitor, has gained prominence as the standard treatment for SR-aGVHD. Nevertheless, a considerable number of patients either do not respond to or cannot tolerate this therapy. This review delves into emerging treatments for SR-aGVHD, including mesenchymal stromal cells (MSCs), fecal microbiota transplantation (FMT), CD3/CD7 blockade, neihulizumab, begelomab, tocilizumab, and vedolizumab. While some of these agents have shown encouraging results in early-phase trials, issues such as treatment-related toxicities and inconsistent responses in larger studies highlight the necessity for ongoing research. EXPERT OPINION Current trials exploring new agents and combination therapies offer hope for fulfilling the unmet clinical needs in SR-aGVHD, potentially leading to more effective and precise treatment strategies.
Collapse
Affiliation(s)
- Na Hyun Kim
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Sameem Abedin
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| |
Collapse
|
14
|
Scott JS, Li A, Wardill HR. Role of mucositis in predicting gut microbiota composition in people with cancer. Curr Opin Support Palliat Care 2024; 18:73-77. [PMID: 38652454 DOI: 10.1097/spc.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Disruption of the precious ecosystem of micro-organisms that reside in the gut - the gut microbiota - is rapidly emerging as a key driver of the adverse side effects/toxicities caused by numerous anti-cancer agents. Although the contribution of the gut microbiota to these toxicities is understood with ever increasing precision, the cause of microbial disruption (dysbiosis) remains poorly understood. Here, we discuss current evidence on the cause(s) of dysbiosis after cancer therapy, positioning breakdown of the intestinal mucosa (mucositis) as a central cause. RECENT FINDINGS Dysbiosis in people with cancer has historically been attributed to extensive antibiotic use. However, evidence now suggests that certain antibiotics have minimal impacts on the microbiota. Indeed, recent evidence shows that the type of cancer therapy predicts microbiota composition independently of antibiotics. Given most anti-cancer drugs have modest effects on microbes directly, this suggests that their impact on the gut microenvironment, in particular the mucosa, which is highly vulnerable to cytotoxicity, is a likely cause of dysbiosis. Here, we outline evidence that support this hypothesis, and discuss the associated clinical implications/opportunities. SUMMARY The concept that mucositis dictates microbiota compositions provides two important implications for clinical practice. Firstly, it reiterates the importance of prioritising the development of novel mucoprotectants that preserve mucosal integrity, and indirectly support microbial stability. Secondly, it provides an opportunity to identify dysbiotic events and associated consequences using readily accessible, minimally invasive biomarkers of mucositis such as plasma citrulline.
Collapse
Affiliation(s)
- Jacqui S Scott
- Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Anna Li
- Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hannah R Wardill
- Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
15
|
Ramos KN, Leino D, Luebbering N, Grimley MS, Badia P, Davies SM, Khandelwal P. Use of Teduglutide in the Management of Gastrointestinal Graft-versus-Host Disease in Children and Young Adults. Transplant Cell Ther 2024; 30:454.e1-454.e6. [PMID: 38311212 DOI: 10.1016/j.jtct.2024.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Loss of intestinal L cells and reduced levels of glucagon-like peptide-2 (GLP-2) have been implicated in acute graft-versus-host disease (GVHD) in murine models. Teduglutide, a human recombinant GLP-2 analog, may be beneficial in acute gastrointestinal (GI) GVHD owing to its known tissue protective and regenerative functions. We retrospectively reviewed patients who received teduglutide for treatment of GI GVHD. Endoscopy was performed at diagnosis and at completion of the teduglutide course. GLP-1 immunohistochemistry (IHC) was performed at diagnosis and the end of teduglutide therapy in 2 patients to evaluate L cells. We initiated daily teduglutide 0.05 mg/kg subcutaneously as adjunctive therapy in 3 pediatric patients with refractory GI GVHD. All 3 patients had resolution of GI GVHD following completion of the teduglutide course, as evidenced by reduced apoptosis and regenerative changes on post-treatment endoscopy. Reportable GLP-1 IHC in 2 patients demonstrated increased L cells at the end of teduglutide treatment compared to at diagnosis. No adverse effects to teduglutide were observed. Teduglutide is a promising adjunctive and non-immune suppressive agent for managing acute GI GVHD.
Collapse
Affiliation(s)
- Kristie N Ramos
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics University of Cincinnati, Cincinnati, Ohio
| | - Daniel Leino
- Department of Pediatrics University of Cincinnati, Cincinnati, Ohio; Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nathan Luebbering
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics University of Cincinnati, Cincinnati, Ohio
| | - Michael S Grimley
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics University of Cincinnati, Cincinnati, Ohio
| | - Priscila Badia
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics University of Cincinnati, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics University of Cincinnati, Cincinnati, Ohio
| | - Pooja Khandelwal
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
16
|
Chen J, Dai XY, Zhao BC, Xu XW, Kang JX, Xu YR, Li JL. Role of the GLP2-Wnt1 axis in silicon-rich alkaline mineral water maintaining intestinal epithelium regeneration in piglets under early-life stress. Cell Mol Life Sci 2024; 81:126. [PMID: 38470510 PMCID: PMC10933158 DOI: 10.1007/s00018-024-05162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2-Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/β-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5+ ISC cell cycle passage through the G1-S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP23-33) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2-Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2-Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiang-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jian-Xun Kang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
17
|
Czech M, Schneider S, Peltokangas N, El Khawanky N, Ghimire S, Andrieux G, Hülsdünker J, Krausz M, Proietti M, Braun LM, Rückert T, Langenbach M, Schmidt D, Martin I, Wenger V, de Vega E, Haring E, Pourjam M, Pfeifer D, Schmitt-Graeff A, Grimbacher B, Aumann K, Kircher B, Tilg H, Raffatellu M, Thiele Orberg E, Häcker G, Duyster J, Köhler N, Holler E, Nachbaur D, Boerries M, Gerner RR, Grün D, Zeiser R. Lipocalin-2 expression identifies an intestinal regulatory neutrophil population during acute graft-versus-host disease. Sci Transl Med 2024; 16:eadi1501. [PMID: 38381845 DOI: 10.1126/scitranslmed.adi1501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), for which therapeutic options are limited. Strategies to promote intestinal tissue tolerance during aGVHD may improve patient outcomes. Using single-cell RNA sequencing, we identified a lipocalin-2 (LCN2)-expressing neutrophil population in mice with intestinal aGVHD. Transfer of LCN2-overexpressing neutrophils or treatment with recombinant LCN2 reduced aGVHD severity, whereas the lack of epithelial or hematopoietic LCN2 enhanced aGVHD severity and caused microbiome alterations. Mechanistically, LCN2 induced insulin-like growth factor 1 receptor (IGF-1R) signaling in macrophages through the LCN2 receptor SLC22A17, which increased interleukin-10 (IL-10) production and reduced major histocompatibility complex class II (MHCII) expression. Transfer of LCN2-pretreated macrophages reduced aGVHD severity but did not reduce graft-versus-leukemia effects. Furthermore, LCN2 expression correlated with IL-10 expression in intestinal biopsies in multiple cohorts of patients with aGVHD, and LCN2 induced IGF-1R signaling in human macrophages. Collectively, we identified a LCN2-expressing intestinal neutrophil population that reduced aGVHD severity by decreasing MHCII expression and increasing IL-10 production in macrophages. This work provides the foundation for administration of LCN2 as a therapeutic approach for aGVHD.
Collapse
Affiliation(s)
- Marie Czech
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sophia Schneider
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nina Peltokangas
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Nadia El Khawanky
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Department of Medicine III, University Hospital rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, 81675 Munich, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, Haematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Jan Hülsdünker
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Máté Krausz
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany
- RESIST-Cluster of Excellence 2155, Hannover Medical School, 30625 Hannover, Germany
| | - Lukas M Braun
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tamina Rückert
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marlene Langenbach
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Dominik Schmidt
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ina Martin
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Valentin Wenger
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Enrique de Vega
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eileen Haring
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Mohsen Pourjam
- Core Facility Microbiome, ZIEL Institute of Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, 79106 Freiburg, Germany
- RESIST-Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Konrad Aumann
- Department of Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Brigitte Kircher
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology and Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Manuela Raffatellu
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, CA 92123-0735, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
| | - Erik Thiele Orberg
- Department of Internal Medicine III, Haematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, 81675 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Haematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - David Nachbaur
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Romana R Gerner
- Department of Medicine III, University Hospital rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, 85354 Freising-Weihenstephan, Germany
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg Germany
| |
Collapse
|
18
|
Thiele Orberg E, Meedt E, Hiergeist A, Xue J, Heinrich P, Ru J, Ghimire S, Miltiadous O, Lindner S, Tiefgraber M, Göldel S, Eismann T, Schwarz A, Göttert S, Jarosch S, Steiger K, Schulz C, Gigl M, Fischer JC, Janssen KP, Quante M, Heidegger S, Herhaus P, Verbeek M, Ruland J, van den Brink MRM, Weber D, Edinger M, Wolff D, Busch DH, Kleigrewe K, Herr W, Bassermann F, Gessner A, Deng L, Holler E, Poeck H. Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation. NATURE CANCER 2024; 5:187-208. [PMID: 38172339 PMCID: PMC12063274 DOI: 10.1038/s43018-023-00669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.
Collapse
Affiliation(s)
- Erik Thiele Orberg
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Elisabeth Meedt
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Paul Heinrich
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Oriana Miltiadous
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Lindner
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Melanie Tiefgraber
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Sophia Göldel
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Tina Eismann
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Alix Schwarz
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Sascha Göttert
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julius C Fischer
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar TUM, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar TUM, Munich, Germany
| | - Michael Quante
- Department of Internal Medicine II, University Medical Center, Freiburg, Germany
| | - Simon Heidegger
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Herhaus
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Mareike Verbeek
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Jürgen Ruland
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Daniela Weber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Florian Bassermann
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany.
| |
Collapse
|
19
|
Liu J, Wang X, Zhang W, Liao G, Shao Z, Brosius J, Deng C, Lai S, Long E. Evolution of GCGR family ligand-receptor extensive cross-interaction systems suggests a therapeutic direction for hyperglycemia in mammals. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1855-1863. [PMID: 37969012 PMCID: PMC10753361 DOI: 10.3724/abbs.2023133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 11/17/2023] Open
Abstract
Glucose is essential to the physiological processes of vertebrates. Mammalian physiological stability requires a relatively stable blood glucose level (~5 mM), whereas other vertebrates have greater flexibility in regulating blood glucose (0.5-25 mM). GCGR family receptors play an important role in vertebrate glucose regulation. Here, we examine the evolution of the GCGR family ligand-receptor systems in different species. Comparatively, we discover that the conserved sequences among GCG family ligands lead to the non-specific activation of ligands across species. In particular, we observe that glucagon-like peptide 1 receptor (GLP1R), glucagon-like peptide 2 receptor (GLP2R), and glucagon-like receptor (GCGLR, also called GCRPR) are arbitrarily activated by other members of the ligand family in birds. Moreover, we reveal that Gallus gallus GLP2 (gGLP2) effectively activates mammalian GLP1R and improves glucose tolerance in diabetic mice. Our study has important implications for understanding blood glucose stabilization in vertebrates and demonstrates that gGLP2 may be a potential drug for treating type 2 diabetes.
Collapse
Affiliation(s)
- Jian Liu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Xue Wang
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Wenli Zhang
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Guangneng Liao
- Sichuan University West China HospitalDepartment of Experimental Animal CenterWest China Hospital of Sichuan UniversityChengdu610041China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research InstituteState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Juergen Brosius
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Enwu Long
- Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySichuan Provincial People’s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
| |
Collapse
|
20
|
Teshima T, Hashimoto D. Separation of GVL from GVHD -location, location, location. Front Immunol 2023; 14:1296663. [PMID: 38116007 PMCID: PMC10728488 DOI: 10.3389/fimmu.2023.1296663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for various hematologic malignancies. However, alloimmune response is a double-edged sword that mediates both beneficial graft-versus-leukemia (GVL) effects and harmful graft-versus-host disease (GVHD). Separation of GVL effects from GVHD has been a topic of intense research to improve transplant outcomes, but reliable clinical strategies have not yet been established. Target tissues of acute GVHD are the skin, liver, and intestine, while leukemic stem cells reside in the bone marrow. Tissue specific effector T-cell migration is determined by a combination of inflammatory and chemotactic signals that interact with specific receptors on T cells. Specific inhibition of donor T cell migration to GVHD target tissues while preserving migration to the bone marrow may represent a novel strategy to separate GVL from GVHD. Furthermore, tissue specific GVHD therapy, promoting tissue tolerance, and targeting of the tumor immune microenvironment may also help to separate GVHD and GVL.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | |
Collapse
|
21
|
Weisdorf D, El Jurdi N, Holtan SG. The best GVHD prophylaxis: Or at least progress towards finding it. Best Pract Res Clin Haematol 2023; 36:101520. [PMID: 38092477 DOI: 10.1016/j.beha.2023.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Options for GVHD prophylaxis after allogeneic hematopoietic cell transplantation can best be chosen by understanding the pathophysiology of GVHD. Interventions to limit T cell activation, expansion and subsequent tissue injury can each be utilized in designing successful GVHD prevention strategies Depleting, tolerizing or blunting T cells or host antigen presenting cells (APCs), blocking co-stimulation or more broadly suppressing inflammation have all been used. Interventions which spare regulatory T cells (Tregs) may prevent GVHD and facilitate controlled allo-responses and not compromise subsequent relapse risks. Graft manipulations and pharmacologic interventions each have potential to limit the morbidity of GVHD while permitting the immunocompetence to prevent infection or relapse.
Collapse
Affiliation(s)
- Daniel Weisdorf
- University of Minnesota, Hematology, Oncology and Transplantation, Department of Medicine, MMC 480, Minneapolis, MN, 55455, USA.
| | - Najla El Jurdi
- University of Minnesota, Hematology, Oncology and Transplantation, Department of Medicine, MMC 480, Minneapolis, MN, 55455, USA
| | - Shernan G Holtan
- University of Minnesota, Hematology, Oncology and Transplantation, Department of Medicine, MMC 480, Minneapolis, MN, 55455, USA
| |
Collapse
|
22
|
Tian F, Chen T, Xu W, Fan Y, Feng X, Huang Q, Chen J. Curcumin Compensates GLP-1 Deficiency via the Microbiota-Bile Acids Axis and Modulation in Functional Crosstalk between TGR5 and FXR in ob/ob Mice. Mol Nutr Food Res 2023; 67:e2300195. [PMID: 37712101 DOI: 10.1002/mnfr.202300195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Indexed: 09/16/2023]
Abstract
SCOPE Glucagon-like peptide-1 (GLP-1) deficiency occurs in obesity-related pathologies due to defects in the intestinal lumen. And expanding the L-cell population has emerged as a promising avenue to elevate GLP-1 secretion to tackle metabolic disorders. Curcumin (Cur), the principal active component of spice turmeric, possesses well-established anti-obesity properties. To clarify, the study investigates whether Cur promotes GLP-1 secretion built upon the L-cell expansion. METHODS AND RESULTS Cur (60 mg kg-1 ) is administered orally to male ob/ob mice for 8 weeks. Cur ameliorates obesity and impaires glucose tolerance through increasing energy expenditure in ob/ob mice, accompanied by the maintenance of crypt architecture and gut permeability. It refines the microbial structure and bile acid (BA) profiles, resulting in deoxycholic acid (DCA) accumulation by weakening the enrichment of Lactobacillus. Further analyses show radically different properties of Cur on the intestine function of TGR5 and FXR (i.e., activation and repression). Cur amplifies L-cell number to promote GLP-1 secretion in ob/ob mice. CONCLUSIONS The findings suggest that Cur may act as a natural TGR5 agonist and FXR antagonist to improve obesity by enhancing GLP-1 release from L-cell expansion via the gut microbiota-BAs-TGR5/FXR axis, and it may serve as a promising therapeutic agent to compensate obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Fengyuan Tian
- General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Tianxi Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Wangda Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Yichang Fan
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Xiaohong Feng
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Qi Huang
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Jie Chen
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| |
Collapse
|
23
|
Xiao L, Warner B, Mallard CG, Chung HK, Shetty A, Brantner CA, Rao JN, Yochum GS, Koltun WA, To KB, Turner DJ, Gorospe M, Wang JY. Control of Paneth cell function by HuR regulates gut mucosal growth by altering stem cell activity. Life Sci Alliance 2023; 6:e202302152. [PMID: 37696579 PMCID: PMC10494932 DOI: 10.26508/lsa.202302152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Rapid self-renewal of the intestinal epithelium requires the activity of intestinal stem cells (ISCs) that are intermingled with Paneth cells (PCs) at the crypt base. PCs provide multiple secreted and surface-bound niche signals and play an important role in the regulation of ISC proliferation. Here, we show that control of PC function by RNA-binding protein HuR via mitochondria affects intestinal mucosal growth by altering ISC activity. Targeted deletion of HuR in mice disrupted PC gene expression profiles, reduced PC-derived niche factors, and impaired ISC function, leading to inhibited renewal of the intestinal epithelium. Human intestinal mucosa from patients with critical surgical disorders exhibited decreased levels of tissue HuR and PC/ISC niche dysfunction, along with disrupted mucosal growth. HuR deletion led to mitochondrial impairment by decreasing the levels of several mitochondrial-associated proteins including prohibitin 1 (PHB1) in the intestinal epithelium, whereas HuR enhanced PHB1 expression by preventing microRNA-195 binding to the Phb1 mRNA. These results indicate that HuR is essential for maintaining the integrity of the PC/ISC niche and highlight a novel role for a defective PC/ISC niche in the pathogenesis of intestinal mucosa atrophy.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bridgette Warner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol Shetty
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine A Brantner
- Electron Microscopy Core Imaging Facility, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Gregory S Yochum
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Walter A Koltun
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kathleen B To
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Mizutani Y, Kawamoto S, Takahashi M, Doi H, Wakida K, Tabuchi S, Tanda M, Soga A, Chijiki R, Takakura H, Kawaguchi K, Higashime A, Watanabe M, Ichikawa H, Matsumoto S, Sakai R, Goto H, Kurata K, Kakiuchi S, Miyata Y, Uryu K, Inui Y, Kitao A, Yakushijin K, Matsuoka H, Minami H. Efficacy and Safety of Synbiotics in Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation: A Randomized, Double-blinded, Placebo-controlled Pilot Study. Intern Med 2023; 62:2949-2958. [PMID: 36792187 PMCID: PMC10641206 DOI: 10.2169/internalmedicine.1314-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/26/2022] [Indexed: 02/16/2023] Open
Abstract
Objective High-dose chemotherapy with autologous hematopoietic stem cell transplantation (auto-HSCT) is an effective treatment option for relapsed and refractory aggressive malignant lymphoma. However, patients frequently experience treatment-induced gastrointestinal symptoms. Synbiotics, including live microorganisms and nondigestible food ingredients, reportedly ameliorate chemotherapy-induced mucosal damage. In this study, we assessed the efficacy and safety of synbiotics in patients undergoing auto-HSCT. Methods This randomized, double-blinded study included patients with malignant lymphoma eligible for auto-HSCT. The patients were randomly assigned to either a synbiotic group receiving Bifidobacterium longum (BB536) and guar gum or a placebo group receiving a placebo containing dextrin. The supplements were administered twice daily from the start of conditioning chemotherapy up to 28 days after auto-HSCT. The primary endpoint was the duration of total parenteral nutrition (TPN). Results In total, 12 patients were included and randomized. The median duration of TPN was 15 (range, 12-33) days in the synbiotic group and 17.5 (range, 0-32) days in the placebo group. The median duration of grade ≥3 diarrhea was shorter in the synbiotic group than in then placebo group (2.5 vs. 6.5 days), as was the duration of hospital stay (31.5 vs. 43 days). The oral intake and quality of life regarding diarrhea and anorexia improved in the synbiotic group after engraftment. Synbiotic infections, including bacteremia, were not observed. Conclusion Synbiotics may reduce gastrointestinal toxicity, thereby reducing nutritional problems and improving the quality of life of patients undergoing auto-HSCT, without severe adverse events.
Collapse
Affiliation(s)
- Yu Mizutani
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Shinichiro Kawamoto
- Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, Japan
| | | | - Hisayo Doi
- Division of Nursing, Kobe University Hospital, Japan
| | - Kumiko Wakida
- Division of Nutrition, Kobe University Hospital, Japan
| | | | - Masaaki Tanda
- Department of Pharmacy, Kobe University Hospital, Japan
| | - Akihiro Soga
- Department of Pharmacy, Kobe University Hospital, Japan
| | - Ruri Chijiki
- Department of Medical Oncology/Hematology, Kobe University Hospital, Japan
| | - Hidetomo Takakura
- Department of Medical Oncology/Hematology, Kobe University Hospital, Japan
| | - Koji Kawaguchi
- Department of Medical Oncology/Hematology, Kobe University Hospital, Japan
| | - Ako Higashime
- Department of Medical Oncology/Hematology, Kobe University Hospital, Japan
| | - Marika Watanabe
- Department of Medical Oncology/Hematology, Kobe University Hospital, Japan
| | - Hiroya Ichikawa
- Department of Medical Oncology/Hematology, Kobe University Hospital, Japan
| | - Sakuya Matsumoto
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Rina Sakai
- Department of Medical Oncology/Hematology, Kobe University Hospital, Japan
| | - Hideaki Goto
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Keiji Kurata
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Seiji Kakiuchi
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Yoshiharu Miyata
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Kiyoaki Uryu
- Department of Medical Oncology/Hematology, Kobe University Hospital, Japan
| | - Yumiko Inui
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Akihito Kitao
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine and Hospital, Japan
| |
Collapse
|
25
|
Jamy O, Zeiser R, Chen YB. Novel developments in the prophylaxis and treatment of acute GVHD. Blood 2023; 142:1037-1046. [PMID: 37471585 DOI: 10.1182/blood.2023020073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a major life-threatening complication after allogeneic hematopoietic cell transplant. Traditional standard prophylaxis for aGVHD has included a calcineurin inhibitor plus an antimetabolite, whereas treatment has relied mainly on corticosteroids, followed by multiple nonstandard second-line options. In the past decade, this basic framework has been reshaped by approval of antithymocyte globulin products, the emergence of posttransplant cyclophosphamide, and recent pivotal trials studying abatacept and vedolizumab for GVHD prophylaxis, whereas ruxolitinib was approved for corticosteroid-refractory aGVHD treatment. Because of this progress, routine acute GVHD prophylaxis and treatment practices are starting to shift, and results of ongoing trials are eagerly awaited. Here, we review recent developments in aGVHD prevention and therapy, along with ongoing and future planned clinical trials in this space, outlining what future goals should be and the limitations of current clinical trial designs and end points.
Collapse
Affiliation(s)
- Omer Jamy
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Farhan S, Holtan SG. Graft-versus-host disease: teaching old drugs new tricks at less cost. Front Immunol 2023; 14:1225748. [PMID: 37600820 PMCID: PMC10435076 DOI: 10.3389/fimmu.2023.1225748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a major cause of morbidity and mortality after allogeneic stem cell transplantation (SCT). Currently, more patients can receive SCT. This is attributed to the use of reduced intensity regimens and the use of different GVHD prophylaxis that breaks the barrier of human leukocyte antigen, allowing an increase in the donor pool. Once an area with relatively few clinical trial options, there has been an increase in interest in GVHD prophylaxis and treatment, which has led to many US Food and Drug Administration (FDA) approvals. Although there is considerable excitement over novel therapies, many patients may not have access to them due to geographical or other resource constraints. In this review article, we summarize the latest evidence on how we can continue to repurpose drugs for GVHD prophylaxis and treatment. Drugs covered by our review include those that have been FDA approved for other uses for at least 15 years (since 2008); thus, they are likely to have generic equivalents available now or in the near future.
Collapse
Affiliation(s)
- Shatha Farhan
- Stem Cell Transplant and Cellular Therapy, Henry Ford Health, Detroit, MI, United States
| | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Bolognani F, Kruithof AC, Schulthess P, Machacek M, de Kam ML, Bergmann KR, van Gent M, Moerland M, Crenn P, Greig G, Gal P. Characterization of the Pharmacokinetic and Pharmacodynamic Profile of Apraglutide, a Glucagon-Like Peptide-2 Analog, in Healthy Volunteers. J Pharmacol Exp Ther 2023; 386:129-137. [PMID: 37316329 DOI: 10.1124/jpet.123.001582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
Apraglutide (FE 203799) is a glucagon-like peptide-2 (GLP-2) analog under development for the treatment of intestinal failure associated with short bowel syndrome (SBS-IF) and graft-versus-host disease (GvHD). Compared with native GLP-2, apraglutide has slower absorption, reduced clearance, and higher protein binding, enabling once-weekly dosing. This study evaluated the pharmacokinetic (PK) and pharmacodynamic (PD) profile of apraglutide in healthy adults. Healthy volunteers were randomized to receive 6 weekly subcutaneous administrations of 1, 5, or 10 mg apraglutide or placebo. PK and citrulline (an enterocyte mass PD marker) samples were collected at multiple time points. Kinetic parameters of apraglutide and citrulline were calculated using noncompartmental analysis; repeated PD measures were analyzed with a mixed model of covariance. A population PK/PD model was developed that also included data from a previous phase 1 study in healthy volunteers. Twenty-four subjects were randomized; 23 received all study drug administrations. Mean estimated apraglutide clearance was 16.5-20.7 l/day, and mean volume of distribution was 55.4-105.0 liters. A dose-dependent increase in citrulline plasma concentration was observed, with 5-mg and 10-mg doses inducing higher citrulline levels than 1-mg doses and placebo. PK/PD analysis showed that weekly 5-mg apraglutide induced the maximal citrulline response. Increased plasma citrulline levels were sustained for 10-17 days after the final apraglutide administration. Apraglutide displays predictable dose-dependent PK and PD profiles, with a 5-mg dose showing significant PD effects. Results suggest that apraglutide has early and enduring effects on enterocyte mass and supports the continued development of weekly subcutaneous apraglutide for SBS-IF and GvHD patient populations. SIGNIFICANCE STATEMENT: Once-weekly subcutaneous apraglutide results in dose-dependent elevations of plasma citrulline (an enterocyte mass pharmacodynamic marker) with parameters suggesting that apraglutide has lasting effects on enterocyte mass and the potential to provide therapeutic benefits. This is the first report of a model relating glucagon-like peptide-2 (GLP-2) agonism and its effects in intestinal mucosa, affording not only the ability to predict pharmacologic effects of GLP-2 analogs but also the exploration of optimal dosing regimens for this drug class across populations with different body weights.
Collapse
Affiliation(s)
- Federico Bolognani
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Annelieke C Kruithof
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Pascal Schulthess
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Matthias Machacek
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Marieke L de Kam
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Kirsten R Bergmann
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Max van Gent
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Matthijs Moerland
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Pascal Crenn
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Gérard Greig
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Pim Gal
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| |
Collapse
|
28
|
Zorzetti N, Marino IR, Sorrenti S, Navarra GG, D'Andrea V, Lauro A. Small bowel transplant - novel indications and recent progress. Expert Rev Gastroenterol Hepatol 2023; 17:677-690. [PMID: 37264646 DOI: 10.1080/17474124.2023.2221433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Advances in the management of intestinal failure have led to a reduction in the number of intestinal transplants. The number of bowel transplants has been mainly stable even though a slight increase has been observed in the last 5 years. AREAS COVERED Standard indication includes patients with a reasonable life expectancy. Recent progress can be deduced by the increased number of intestine transplants in adults: this is due to the continuous improvement of 1-year graft survival worldwide (without differences in 3- and 5-year) associated with better abdominal wall closure techniques. This review aims to provide an update on new indications and changes in trends of pediatric and adult intestine transplantation. This analysis, which stretches through the past 5 years, is based on a collection of related manuscripts from PubMed. EXPERT COMMENTARY Intestinal transplants should be solely intended for a group of individuals for whom indications for transplantation are clear and both medical and surgical rehabilitations have failed. Nevertheless, many protocols developed over the years have not yet solved the key question represented by the over-immunosuppression. Novel indications and recent progress in the bowel transplant field, minimal yet consistent, represent a pathway to be followed.
Collapse
Affiliation(s)
- Noemi Zorzetti
- General Surgery, Ospedale Civile "A. Costa", Alto Reno Terme, Bologna, Italy
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Salvatore Sorrenti
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Vito D'Andrea
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Augusto Lauro
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Socié G, Niederwieser D, von Bubnoff N, Mohty M, Szer J, Or R, Garrett J, Prahallad A, Wilke C, Zeiser R. Prognostic value of blood biomarkers in steroid-refractory or steroid-dependent acute graft-versus-host disease: a REACH2 analysis. Blood 2023; 141:2771-2779. [PMID: 36827620 PMCID: PMC10646803 DOI: 10.1182/blood.2022018579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Systemic steroids are the standard first-line treatment for acute graft-versus-host disease (aGVHD), but ∼50% of patients become steroid-refractory or dependent (SR/D). Ruxolitinib is the only Food and Drug Administration- and European Medicines Agency-approved therapy for patients with SR/D aGVHD. In the phase 3 REACH2 trial (NCT02913261), ruxolitinib demonstrated superior efficacy in SR/D aGVHD, with a significantly higher overall response rate (ORR) on day 28, durable ORR on day 56, and longer median overall survival compared with the best available therapy (BAT). Identifying biomarkers and clinical characteristics associated with increased probability of response can guide treatment decisions. In this exploratory analysis of the REACH2 study (first biomarker study), we developed baseline (pretreatment) and day 14 models to identify patient characteristics and biomarkers (12 aGVHD-associated cytokines/chemokines, 6 immune cell types, and 3 inflammatory proteins) before and during treatment, which affected the probability of response at day 28. Treatment with ruxolitinib, conditioning, skin involvement, and age were strongly associated with an increased likelihood of response in the ≥1 model. Lower levels of most aGVHD and immune cell markers at baseline were associated with an increased probability of response. In the day 14 model, levels of aGVHD markers at day 14, rather than changes from baseline, affected the probability of response. For both models, the bias-corrected area under the receiver operating characteristic values (baseline, 0.73; day 14, 0.80) indicated a high level of correspondence between the fitted and actual outcomes. Our results suggest potential prognostic value of selected biomarkers and patient characteristics.
Collapse
Affiliation(s)
- Gerard Socié
- Assistance Publique Hôpitaux de Paris, Hématologie-Transplantation, Hôpital St Louis, Université de Paris-Cité, Paris, France and INSERM Unité Mixte de Recherche 976, Paris, France
| | | | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mohamad Mohty
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France, Université Sorbonne, Paris, France and INSERM Unité Mixte de Recherche 938, Paris, France
| | - Jeff Szer
- Clinical Haematology, Peter MacCallum Cancer Centre & The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Reuven Or
- Cancer Immunotherapy and Immunobiology Research Center, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - REACH2 investigators
- Assistance Publique Hôpitaux de Paris, Hématologie-Transplantation, Hôpital St Louis, Université de Paris-Cité, Paris, France and INSERM Unité Mixte de Recherche 976, Paris, France
- Division of Hematology and Oncology, University of Leipzig, Leipzig, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France, Université Sorbonne, Paris, France and INSERM Unité Mixte de Recherche 938, Paris, France
- Clinical Haematology, Peter MacCallum Cancer Centre & The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Cancer Immunotherapy and Immunobiology Research Center, Hadassah University Hospital, Jerusalem, Israel
- Novartis Pharmaceuticals Corporation, Cambridge, MA
- Novartis Pharma AG, Basel, Switzerland
- Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
31
|
de Dreuille B, Nuzzo A, Bataille J, Mailhat C, Billiauws L, Le Gall M, Joly F. Post-Marketing Use of Teduglutide in a Large Cohort of Adults with Short Bowel Syndrome-Associated Chronic Intestinal Failure: Evolution and Outcomes. Nutrients 2023; 15:nu15112448. [PMID: 37299413 DOI: 10.3390/nu15112448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Teduglutide, a GLP-2 analogue, has been available in France since 2015 to treat short-bowel-syndrome (SBS)-associated chronic intestinal failure (CIF) but it remains very expensive. No real-life data on the number of potential candidates are available. The aim of this real-life study was to assess teduglutide initiation and outcomes in SBS-CIF patients. All SBS-CIF patients cared for in an expert home parenteral support (PS) center between 2015 and 2020 were retrospectively included. Patients were divided into two subpopulations: prevalent patients, already cared for in the center before 2015, and incident patients, whose follow-up started between 2015 and 2020. A total of 331 SBS-CIF patients were included in the study (156 prevalent and 175 incident patients). Teduglutide was initiated in 56 patients (16.9% of the cohort); in 27.9% of prevalent patients and in 8.0% of incident patients, with a mean annual rate of 4.3% and 2.5%, respectively. Teduglutide allowed a reduction in the PS volume by 60% (IQR: 40-100), with a significantly higher reduction in incident versus prevalent patients (p = 0.02). The two- and five-year treatment retention rates were 82% and 64%. Among untreated patients, 50 (18.2%) were considered ineligible for teduglutide for non-medical reasons. More than 25% of prevalent SBS patients were treated with teduglutide compared to 8% of incident patients. The treatment retention rate was >80% at 2 years, which could be explained by a careful selection of patients. Furthermore, this real-life study confirmed the long-term efficacy of teduglutide and showed a better response to teduglutide in incident patients, suggesting a benefit in early treatment.
Collapse
Affiliation(s)
- Brune de Dreuille
- Department of Gastroenterology and Nutrition Support, Hôpital Beaujon (AP-HP), 92110 Clichy, France
- Inserm UMR 1149, Centre de Recherche sur l'Inflammation, Université Paris Cité, 75018 Paris, France
| | - Alexandre Nuzzo
- Department of Gastroenterology and Nutrition Support, Hôpital Beaujon (AP-HP), 92110 Clichy, France
- Inserm UMR 1148, Laboratoire de Recherche Vasculaire Translationnelle, Université Paris Cité, 75018 Paris, France
| | - Julie Bataille
- Pharmacy Department, Hôpital Beaujon (AP-HP), 92110 Clichy, France
| | - Charlotte Mailhat
- GETAID (Groupe d'Étude Thérapeutique des Affections Inflammatoires du Tube Digestif), 75009 Paris, France
| | - Lore Billiauws
- Department of Gastroenterology and Nutrition Support, Hôpital Beaujon (AP-HP), 92110 Clichy, France
- Inserm UMR 1149, Centre de Recherche sur l'Inflammation, Université Paris Cité, 75018 Paris, France
| | - Maude Le Gall
- Inserm UMR 1149, Centre de Recherche sur l'Inflammation, Université Paris Cité, 75018 Paris, France
| | - Francisca Joly
- Department of Gastroenterology and Nutrition Support, Hôpital Beaujon (AP-HP), 92110 Clichy, France
- Inserm UMR 1149, Centre de Recherche sur l'Inflammation, Université Paris Cité, 75018 Paris, France
| |
Collapse
|
32
|
Liu L, Zhang L, Li C, Qiu Z, Kuang T, Wu Z, Deng W. Effects of hormones on intestinal stem cells. Stem Cell Res Ther 2023; 14:105. [PMID: 37101229 PMCID: PMC10134583 DOI: 10.1186/s13287-023-03336-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
The maintenance of intestinal renewal and repair mainly depends on intestinal stem cells (ISCs), which can also contribute to the growth of intestinal tumours. Hormones, which are vital signalling agents in the body, have various effects on the growth and replacement of intestinal stem cells. This review summarises recent progress in the identification of hormones associated with intestinal stem cells. Several hormones, including thyroid hormone, glucagon-like peptide-2, androgens, insulin, leptin, growth hormone, corticotropin-releasing hormone and progastrin, promote the development of intestinal stem cells. However, somatostatin and melatonin are two hormones that prevent the proliferation of intestinal stem cells. Therefore, new therapeutic targets for the diagnosis and treatment of intestinal illnesses can be identified by examining the impact of hormones on intestinal stem cells.
Collapse
Affiliation(s)
- Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongkai Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
33
|
Zeiser R, Chen YB, Youssef NN, Ayuk F. Pathophysiology of gastrointestinal acute graft-versus-host disease and the potential role of glucagon-like peptide 2. Br J Haematol 2023; 201:620-627. [PMID: 36965050 DOI: 10.1111/bjh.18778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a life-threatening complication after allogeneic haematopoietic cell transplantation, with gastrointestinal (GI) tract involvement (GI aGVHD) being one of the leading causes of morbidity and mortality. Whilst systemic steroids are the standard first-line treatment for aGVHD, approximately 50% of patients become steroid refractory (SR), which is associated with poor outcomes. Existing options for SR-GVHD are limited, and there is a significant unmet need for new non-immunosuppressive treatment approaches in patients with GI aGVHD. Here, we review newer concepts in the pathogenesis of GI aGVHD and present the evidence for the role of glucagon-like peptide 2 (GLP-2) in maintaining and protecting GI epithelial cells, including the enterocytes, intestinal stem cells and Paneth cells, which are direct targets of aGVHD. Finally, we discuss the therapeutic rationale for GLP-2 treatment as a tissue regeneration approach and the potential use of the novel GLP-2 analogue apraglutide as an adjunctive treatment for GI aGVHD.
Collapse
Affiliation(s)
- Robert Zeiser
- Faculty of Medicine, Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Front Immunol 2023; 14:1115552. [PMID: 36993974 PMCID: PMC10040535 DOI: 10.3389/fimmu.2023.1115552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn’s disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
35
|
Chi M, Jiang T, He X, Peng H, Li Y, Zhang J, Wang L, Nian Q, Ma K, Liu C. Role of Gut Microbiota and Oxidative Stress in the Progression of Transplant-Related Complications following Hematopoietic Stem Cell Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3532756. [PMID: 37113743 PMCID: PMC10129428 DOI: 10.1155/2023/3532756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplantation, has curative potential for various hematologic malignancies but is associated with risks such as graft-versus-host disease (GvHD), severe bloodstream infection, viral pneumonia, idiopathic pneumonia syndrome (IPS), lung fibrosis, and sinusoidal obstruction syndrome (SOS), which severely deteriorate clinical outcomes and limit the wide application of HSCT. Recent research has provided important insights into the effects of gut microbiota and oxidative stress (OS) on HSCT complications. Therefore, based on recent studies, we describe intestinal dysbiosis and OS in patients with HSCT and review recent molecular findings underlying the causal relationships of gut microbiota, OS, and transplant-related complications, focusing particularly on the involvement of gut microbiota-mediated OS in postengraftment complications. Also, we discuss the use of antioxidative and anti-inflammatory probiotics to manipulate gut microbiota and OS, which have been associated with promising effects in improving HSCT outcomes.
Collapse
Affiliation(s)
- Mingxuan Chi
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Jiang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610072, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunlong Li
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chi Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| |
Collapse
|
36
|
Abstract
Acute and chronic graft-versus-host disease (GVHD) continue to present a significant challenge to physicians, accounting for considerable haematopoietic stem cell transplant (HSCT)-related morbidity and mortality, particularly those patients with steroid-refractory disease. In this review, we discuss recent advances in understanding the underlying pathophysiology, prevention and management of acute and chronic GVHD. Barriers to progress include the difficulty in obtaining high-quality evidence with sufficient patient numbers to identify optimal preventative and treatment strategies, with the heterogeneity of multiple patient, donor, graft and transplant-related factors, in addition to limited availability of human tissue to study the underlying pathophysiology, particularly in steroid-refractory disease. Continued collaborative efforts to improve our understanding of the pathophysiology involved, particularly in steroid-refractory disease, identification of biomarkers to permit risk stratification, and further well-designed randomised clinical trials are essential to help physicians determine optimal GVHD preventative and treatment strategies for each individual patient.
Collapse
Affiliation(s)
- Aisling M Flinn
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Great North Children’s Hospital, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Great North Children’s Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
van Lier YF, Vos J, Blom B, Hazenberg MD. Allogeneic hematopoietic cell transplantation, the microbiome, and graft-versus-host disease. Gut Microbes 2023; 15:2178805. [PMID: 36794370 PMCID: PMC9980553 DOI: 10.1080/19490976.2023.2178805] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Many patients with hematological malignancies, such as acute myeloid leukemia, receive an allogeneic hematopoietic cell transplantation (HCT) to cure their underlying condition. Allogeneic HCT recipients are exposed to various elements during the pre-, peri- and post-transplant period that can disrupt intestinal microbiota, including chemo- and radiotherapy, antibiotics, and dietary changes. The dysbiotic post-HCT microbiome is characterized by low fecal microbial diversity, loss of anaerobic commensals, and intestinal domination, particularly by Enterococcus species, and is associated with poor transplant outcomes. Graft-versus-host disease (GvHD) is a frequent complication of allogeneic HCT caused by immunologic disparity between donor and host cells and results in tissue damage and inflammation. Microbiota injury is particularly pronounced in allogeneic HCT recipients who go on to develop GvHD. At present, manipulation of the microbiome for example, via dietary interventions, antibiotic stewardship, prebiotics, probiotics, or fecal microbiota transplantation, is widely being explored to prevent or treat gastrointestinal GvHD. This review discusses current insights into the role of the microbiome in GvHD pathogenesis and summarizes interventions to prevent and treat microbiota injury.
Collapse
Affiliation(s)
- Yannouck F. van Lier
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Jaël Vos
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Mette D. Hazenberg
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands,CONTACT Mette D. Hazenberg Department of Hematology, Amsterdam UMC, Meibergdreef 9, Amsterdam1105 AZ, The Netherlands
| |
Collapse
|
38
|
Socie G, Michonneau D. Milestones in acute GVHD pathophysiology. Front Immunol 2022; 13:1079708. [PMID: 36544776 PMCID: PMC9760667 DOI: 10.3389/fimmu.2022.1079708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
In the past 65 years, over 25 000 referenced articles have been published on graft-versus-host disease (GVHD). Although this included clinically orientated papers or publications on chronic GVHD, the conservative estimate of scientific publications still contains several thousands of documents on the pathophysiology of acute GVHD. Thus, summarizing what we believe are prominent publications that can be considered milestones in our knowledge of this disease is a challenging and inherently biased task. Here we review from a historical perspective what can be regarded as publications that have made the field move forward. We also included several references of reviews on aspects we could not cover in detail.
Collapse
Affiliation(s)
- Gerard Socie
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| | - David Michonneau
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| |
Collapse
|
39
|
Assessment of the Gut Microbiota during Juice Fasting with and without Inulin Supplementation: A Feasibility Study in Healthy Volunteers. Foods 2022; 11:foods11223673. [PMID: 36429265 PMCID: PMC9689797 DOI: 10.3390/foods11223673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Prebiotic inulin consumption provides health benefits to the host and has also been associated with a reduction in hunger cravings. We conducted a pilot crossover study to investigate the feasibility of a juice fasting intervention with and without inulin supplementation. We also examined trends of how the microbial community in the human gut adapts to juice fasting as well as to inulin intake during juice fasting. Six healthy volunteers were fasting for three consecutive days consuming a total of 300 kcal daily provided by vegetable juices, framed by two days with a total daily calorie intake of 800 kcal, respectively. During one fasting period, participants consumed additionally 24 g of inulin daily. Stool samples were collected for the analysis of the microbial composition using 16S rRNA gene sequencing. Although no significant uniform changes were observed on the microbiome, quantitative changes in the microbial composition suggest a stronger decrease in alpha-diversity after fasting compared to the fasting intervention with additional inulin intake. The intake of inulin did not affect compliance for the fasting intervention but appeared to increase relative abundance of Bifidobacteria in participants who tolerated it well. Further studies with a larger sample size to overcome inter-individual microbiota differences are warranted to verify our observations.
Collapse
|
40
|
Gao Y, Ma X, Zhou Y, Li Y, Xiang D. Dietary supplementation of squalene increases the growth performance of early-weaned piglets by improving gut microbiota, intestinal barrier, and blood antioxidant capacity. Front Vet Sci 2022; 9:995548. [PMID: 36406080 PMCID: PMC9669083 DOI: 10.3389/fvets.2022.995548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the effects of dietary squalene (SQ) supplementation on the growth performance of early-weaned piglets. Twenty early-weaned piglets were randomly divided into two groups, the squalene group (SQ) and the control group (CON). The CON group was fed a basal diet, and the SQ group was fed a basal diet with 250 mg/kg squalene. The feeding period lasted 21 days. The results showed that SQ significantly increased the final body weight (FWB, P < 0.05), average daily gain (ADG, P < 0.05), and average daily feed intake (ADFI, P < 0.05) and significantly decreased the F/G ratio (feed intake/gain, P < 0.05) and diarrhea index (DI, P < 0.05). In terms of blood biochemical indicators, SQ significantly increased anti-inflammatory factors such as transforming growth factor-β (TGF-β, P < 0.001), interleukin-10 (IL-10, P < 0.001), and interferon-γ (IFN-γ, P < 0.01), and decreased pro-inflammatory factors such as tumor necrosis factor-α (TFN-α, P < 0.001) and interleukin-6 (IL-6, P < 0.001). Furthermore, SQ significantly increased blood antioxidant indexes (P < 0.001) such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC) and significantly decreased the level of malondialdehyde (MDA) (P < 0.001). The villus height (P < 0.001) and V/C ratio (villus height/crypt depth, P < 0.001) of the jejunum were significantly increased in the SQ group, while the crypt depth (P < 0.01) was decreased compared to the CON group. The intestinal permeability indexes, namely diamine oxidase (DAO), D-lactic acid (D-Lac), regenerative insulin-derived protein 3 (REG-3), and FITC-Dextran 4 (FD4), significantly decreased the concentrations in the treatment group (P < 0.001), and the antioxidant indexes of the jejunum, such as SOD, GSH-Px, CAT, and MDA, were improved by adding SQ. The qPCR results showed that adding SQ could significantly increase the mRNA expression of jejunal tight-junction proteins, such as zonula occludens-1 (ZO-1, P < 0.001), Occludin (P < 0.001), Claudin (P < 0.001), glucagon-like peptide-2 (GLP-2, P < 0.001), and insulin-like growth factor-1 (IGF-1, P < 0.001). Then, we used Western blotting experiments to further confirm the qPCR results. In addition, it was found that adding SQ increased the abundance of beneficial bacteria such as Gemmiger (P < 0.01) and decreased the abundance of harmful bacteria such as Alloprevotella (P < 0.05), Desulfovibrio (P < 0.05), and Barnesiella (P < 0.05). It was interesting that there was a very close correlation among the fecal microbes, growth performance parameters, intestinal barrier, and blood biochemical indicators. In conclusion, the data suggest that SQ supplementation could effectively improve the growth performance of early-weaned piglets by improving the gut microbiota, intestinal barrier, and antioxidant capacity of the blood and jejunal mucosa.
Collapse
Affiliation(s)
- Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, China
- *Correspondence: Yang Gao
| | - Xue Ma
- College of Life Science, Baicheng Normal University, Baicheng, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yingqing Zhou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Yongqiang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dong Xiang
- Muyuan Joint Stock Company, Nanyang, China
| |
Collapse
|
41
|
Abdalqadir N, Adeli K. GLP-1 and GLP-2 Orchestrate Intestine Integrity, Gut Microbiota, and Immune System Crosstalk. Microorganisms 2022; 10:2061. [PMID: 36296337 PMCID: PMC9610230 DOI: 10.3390/microorganisms10102061] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The intestine represents the body's largest interface between internal organs and external environments except for its nutrient and fluid absorption functions. It has the ability to sense numerous endogenous and exogenous signals from both apical and basolateral surfaces and respond through endocrine and neuronal signaling to maintain metabolic homeostasis and energy expenditure. The intestine also harbours the largest population of microbes that interact with the host to maintain human health and diseases. Furthermore, the gut is known as the largest endocrine gland, secreting over 100 peptides and other molecules that act as signaling molecules to regulate human nutrition and physiology. Among these gut-derived hormones, glucagon-like peptide 1 (GLP-1) and -2 have received the most attention due to their critical role in intestinal function and food absorption as well as their application as key drug targets. In this review, we highlight the current state of the literature that has brought into light the importance of GLP-1 and GLP-2 in orchestrating intestine-microbiota-immune system crosstalk to maintain intestinal barrier integrity, inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Nyan Abdalqadir
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah 46001, Iraq
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
42
|
Royston L, Isnard S, Perrin N, Sinyavskaya L, Berini C, Lin J, Trottier B, Baril JG, Chartrand-Lefebvre C, Tremblay C, Durand M, Routy JP. Growth differentiation factor-15 as a biomarker of atherosclerotic coronary plaque: Value in people living with and without HIV. Front Cardiovasc Med 2022; 9:964650. [PMID: 36093162 PMCID: PMC9458883 DOI: 10.3389/fcvm.2022.964650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIncreased rates of cardiovascular diseases (CVD) and larger subclinical high-risk coronary plaques in coronary CT angiography have been observed in people living with HIV (PLWH) treated with antiretroviral therapy (ART) compared to HIV-uninfected people. Growth differentiation factor-15 (GDF-15) is a cytokine emerging as an optimal marker for CVD in the general population.MethodsWe cross-sectionally analyzed plasma of 95 PLWH on ART and 52 controls. We measured GDF-15, fibroblast growth factor-21 (FGF-21), glucagon-like peptide-2 (GLP-2), soluble urokinase plasminogen activator receptor (suPAR), CRP, and anti-CMV and anti-EBV IgG levels. All participants had no clinical CVD and underwent coronary CT angiography with the 3D reconstruction of coronary artery atherosclerotic plaques. Total plaque volume (TPV) and low attenuation plaque volume (LAPV, defined as density <30 Hounsfield Units) were calculated (mm3).ResultsIn both PLWH and controls, GDF-15 levels were increased in participants with presence of coronary plaque vs. without (p = 0.04 and p < 0.001, respectively) and correlated with TPV (r = 0.27, p = 0.009 and r = 0.62, p < 0.001, respectively) and LAPV (r = 0.28, p = 0.008, r = 0.60, p < 0.001, respectively). However, in a multivariate model, GDF-15 was independently associated with LAPV in controls only (adjusted OR 35.1, p = 0.04) and not in PLWH, mainly due to confounding by smoking. Other markers were not independently associated with plaque volume, except for anti-EBV IgGs in controls (adjusted OR 3.51, p = 0.02).ConclusionIn PLWH, GDF-15 and smoking seemed to synergistically contribute to coronary plaque volume. Conversely, increased GDF-15 levels were associated with the presence of coronary artery plaques in people without HIV, independently of CV risk factors.
Collapse
Affiliation(s)
- Léna Royston
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
- Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
- Léna Royston
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Nils Perrin
- Structural Heart Intervention Program, Montreal Heart Institute, Montreal, QC, Canada
| | - Liliya Sinyavskaya
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Carolina Berini
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Benoit Trottier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jean-Guy Baril
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Carl Chartrand-Lefebvre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Cecile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Jean-Pierre Routy
| |
Collapse
|
43
|
Biavasco F, Ihorst G, Wäsch R, Wehr C, Bertz H, Finke J, Zeiser R. Therapy response of glucocorticoid-refractory acute GVHD of the lower intestinal tract. Bone Marrow Transplant 2022; 57:1500-1506. [PMID: 35768570 PMCID: PMC9532244 DOI: 10.1038/s41409-022-01741-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a major life-threatening complication of allogeneic hematopoietic cell transplantation. While most studies report therapy-response of aGVHD including a cumulative grade of skin, liver and intestinal tract manifestations, there is a lack of information specifically on lower gastrointestinal tract aGVHD (GI-GVHD) therapy-response, which is highly relevant in light of novel therapies that target intestinal regeneration such as IL-22, R-spondin or GLP-2. Here we retrospectively analyzed patients who developed GI-GVHD over a 6-year period. A total of 144 patients developed GI-GVHD and 82 (57%) were resistant to glucocorticoid-therapy (SR). The most commonly used second-line therapy was ruxolitinib (74%). Overall and complete response (CR) to ruxolitinib on day 28 were 44.5% and 13%, respectively. SR-GVHD patients experienced a lower 5-year overall survival (OS) (34.8 vs 53.3%, p = 0.0014) and higher incidence of 12-months non-relapse-mortality (39.2 vs 14.3%, p = 0.016) compared to glucocorticoid-sensitive patients. SR-GI-GVHD patients, that achieved a CR on day 28 after ruxolitinib start, experienced a higher OS compared to non-CR patients (p = 0.04). These findings indicate that therapy response of SR-GI-GVHD to different immunosuppressive approaches is still low, and that novel therapies specifically aiming at enhanced intestinal regeneration should be tested in clinical trials.
Collapse
Affiliation(s)
- Francesca Biavasco
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Center Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Claudia Wehr
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Hartmut Bertz
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Jürgen Finke
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany. .,German Cancer Consortium (DKTK), Freiburg, Germany. .,Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
44
|
A Promising Insight: The Potential Influence and Therapeutic Value of the Gut Microbiota in GI GVHD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2124627. [PMID: 35571252 PMCID: PMC9098338 DOI: 10.1155/2022/2124627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HSCT) is a reconstruction process of hematopoietic and immune functions that can be curative in patients with hematologic malignancies, but it carries risks of graft-versus-host disease (GVHD), thrombotic microangiopathy (TMA), Epstein–Barr virus (EBV) infection, cytomegalovirus infection, secondary hemophagocytic lymphohistiocytosis (sHLH), macrophage activation syndrome (MAS), bronchiolitis obliterans, and posterior reversible encephalopathy syndrome (PRES). Gastrointestinal graft-versus-host disease (GI GVHD), a common complication of allo-HSCT, is one of the leading causes of transplant-related death because of its high treatment difficulty, which is affected by preimplantation, antibiotic use, dietary changes, and intestinal inflammation. At present, human trials and animal studies have proven that a decrease in intestinal bacterial diversity is associated with the occurrence of GI GVHD. Metabolites produced by intestinal bacteria, such as lipopolysaccharides, short-chain fatty acids, and secondary bile acids, can affect the development of GVHD through direct or indirect interactions with immune cells. The targeted damage of GVHD on intestinal stem cells (ISCs) and Paneth cells results in intestinal dysbiosis or dysbacteriosis. Based on the effect of microbiota metabolites on the gastrointestinal tract, the clinical treatment of GI GVHD can be further optimized. In this review, we describe the mechanisms of GI GVHD and the damage it causes to intestinal cells and we summarize recent studies on the relationship between intestinal microbiota and GVHD in the gastrointestinal tract, highlighting the role of intestinal microbiota metabolites in GI GVHD. We hope to elucidate strategies for immunomodulatory combined microbiota targeting in the clinical treatment of GI GVHD.
Collapse
|
45
|
Zhu C, Li Y. An updated overview of glucagon-like peptide-2 analog trophic therapy for short bowel syndrome in adults. J Int Med Res 2022; 50:3000605221086145. [PMID: 35343263 PMCID: PMC8966062 DOI: 10.1177/03000605221086145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Short bowel syndrome (SBS) is a clinical condition characterized by a failure to achieve optimal intestinal adaptation, which is necessary to maintain oral/enteral autonomy. At present, the treatment options for SBS are primarily intestinal replacement and rehabilitation. Intestinal rehabilitation mainly includes non-transplantation surgery and intestinal rehabilitation measures. In recent years, intestinal rehabilitation in patients with SBS using nutritional intestinal hormones, especially glucagon-like peptide-2 analogs, has made great progress. Many high-quality studies have provided evidence-based medical findings to support the development of clinical guidelines. This article reviews the latest research advancements regarding the use of glucagon-like peptide-2 analogs (teduglutide, glepaglutide, and apraglutide) in the treatment of SBS.
Collapse
Affiliation(s)
- Changzhen Zhu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yuanxin Li
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|
46
|
Zeiser R, Warnatz K, Rosshart S, Sagar, Tanriver Y. GVHD, IBD and primary immunodeficiencies: The gut as a target of immunopathology resulting from impaired immunity. Eur J Immunol 2022; 52:1406-1418. [PMID: 35339113 DOI: 10.1002/eji.202149530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
The intestinal tract is the largest immunological organ in the body and has a central function of regulating local immune responses, as the intestinal epithelial barrier is a location where the immune system interacts with the gut microbiome including bacteria, fungi and viruses. Impaired immunity in the intestinal tract can lead to immunopathology, which manifests in different diseases such as inflammatory bowel disease (IBD) or intestinal graft-versus-host disease (GVHD). A disturbed communication between epithelial cells, immune cells and microbiome will shape pathogenic immune responses to antigens, which need to be counterbalanced by tolerogenic mechanisms and repair mechanisms. Here, we review how impaired intestinal immune function leads to immunopathology with a specific focus on innate immune cells, the role of the microbiome and the resulting clinical manifestations including intestinal GVHD, IBD and enteropathy in primary immunodeficiency. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV (Nephrology and Primary Care), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Microbiology and Hygiene, Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Abstract
The interest in fermented food products has been increasing in recent years. Details about their microbial composition and the effects of their consumption on the human gut microbiome are of particular interest. However, evidence regarding their potential to increase gut microbial diversity, a measure likely associated with health, is lacking. To address this, we analyzed the microbial composition of commercially available fermented vegetables using 16S rRNA sequencing. We also conducted a pilot study to assess the feasibility of studying the effects of regular consumption of fermented vegetables on the gut microbiome. Six healthy male volunteers participated in a randomized crossover trial, with two two-week intervention phases. Volunteers consumed 150 g/d of either sauerkraut or a variety of six different commercially available fermented vegetables. This study is registered at the German Clinical Trials Register (DRKS-ID: DRKS00014840). Lactobacillales was the dominant family in all fermented vegetables studied. However, the alpha diversity, richness and evenness of the microbiota differed substantially among the different products. The number of species per product varied between 20 and 95. After consumption of both sauerkraut and the selection of fermented vegetables, we observed a slight increase in alpha diversity. Specifically, the amount of the genus Prevotella decreased while the amount of Bacteroides increased after both interventions. However, these initial observations need to be confirmed in larger studies. This pilot study demonstrates the feasibility of this type of research.
Collapse
|
48
|
Tang Y, Feng M, Zhu X, Long J, Zhou Z, Liu S. WR-GLP2, a glucagon-like peptide 2 from hybrid crucian carp that protects intestinal mucosal barrier and inhibits bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:29-37. [PMID: 35085736 DOI: 10.1016/j.fsi.2022.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells. The main biological actions of GLP2 in mammals are related to regulating energy absorption and maintaining the morphology, integrity of intestinal mucosa. However, the in vivo function of fish GLP2 in intestinal barrier and immune defense is essentially unknown. With an aim to elucidate the antimicrobial mechanism of GLP2 in fish, we in this study examined the function of GLP2 from hybrid crucian carp. Hybrid crucian carp GLP2 (WR-GLP2) possesses the conserved glucagon like hormones 2 domain. WR-GLP2 is mainly expressed in the intestine and is significantly upregulated after Aeromonas hydrophila infection. AB-PAS staining analysis showed WR-GLP2 significantly increased the number of goblet cells in intestine. WR-GLP2 induced significant inductions in the expression of the antimicrobial molecules (MUC2, Lyzl-1, Hepcidin-1 and LEAP-2) and tight junctions (ZO-1, Occludin and Claudin-4). In addition, WR-GLP2 significantly alleviated the intestinal apoptosis, thereby enhancing host's resistance against Aeromonas hydrophila infection. Together these results indicate that WR-GLP2 is involved in intestinal mucosal barrier and immune defense against pathogen infection.
Collapse
Affiliation(s)
- Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Mengzhe Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xianyu Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jinjing Long
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
49
|
Song Q, Nasri U, Zeng D. Steroid-Refractory Gut Graft-Versus-Host Disease: What We Have Learned From Basic Immunology and Experimental Mouse Model. Front Immunol 2022; 13:844271. [PMID: 35251043 PMCID: PMC8894323 DOI: 10.3389/fimmu.2022.844271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal graft-versus-host disease (Gut-GVHD) is one of the major causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While systemic glucocorticoids (GCs) comprise the first-line treatment option, the response rate for GCs varies from 30% to 50%. The prognosis for patients with steroid-refractory acute Gut-GVHD (SR-Gut-aGVHD) remains dismal. The mechanisms underlying steroid resistance are unclear, and apart from ruxolitinib, there are no approved treatments for SR-Gut-aGVHD. In this review, we provide an overview of the current biological understanding of experimental SR-Gut-aGVHD pathogenesis, the advanced technology that can be applied to the human SR-Gut-aGVHD studies, and the potential novel therapeutic options for patients with SR-Gut-aGVHD.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Qingxiao Song,
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
50
|
How does transfusion-associated graft-versus-host disease compare to hematopoietic cell transplantation-associated graft-versus-host disease? Transfus Apher Sci 2022; 61:103405. [DOI: 10.1016/j.transci.2022.103405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|