1
|
Wu J, Zhang F, Li Z, Gan L, Cao H, Cao H, Hao C, Sun Z, Wang W. Multiple omics-based machine learning reveals specific macrophage sub-clusters in renal ischemia-reperfusion injury and constructs predictive models for transplant outcomes. Comput Biol Chem 2025; 117:108421. [PMID: 40086342 DOI: 10.1016/j.compbiolchem.2025.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is closely associated with numerous severe postoperative complications, including acute rejection, delayed graft function (DGF) and graft failure. Macrophages are central to modulating the aseptic inflammatory response during the IRI process. The objective of this study is to conduct an analysis of the developmental and differentiation characteristics of macrophages in IRI, identify distinct molecules subtypes of IRI, and establish robust predictive strategies for DGF and graft survival. METHOD We analyzed scRNA-Seq data from GEO database to identify macrophage sub-clusters specific to renal IRI, and use the hdWGCNA algorithm to screen gene modules closely associated with this sub-cluster. Integrating these module genes with the results from bulk RNA-Seq differential analysis to obtain hub genes, and delineating the different IRI molecular subtypes through consensus clustering based on the expression profiles of hub genes. Innovatively, the gene expression matrix was transformed into a unique graphic pixel module and applied advanced computer vision processing algorithms to construct a DGF predictive model. Additionally, we also employed 111 combinations of 10 machine learning algorithms to develop a predictive signature for graft survival. Finally, we validated the expression of the key gene ANXA1 in a mouse IRI model using qRT-PCR, WB, and IHC. RESULT This study successfully identified a subset of macrophages closely associated with renal IRI, and cell communication and pseudo-time analysis implied that they may be instrumental in both the maintenance and exacerbation of the IRI process. Utilizing the expression patterns of hub genes, recipients can be clustered into two subtypes (CI and C2) with unique clinical and molecular features. We innovatively applied deep learning algorithms to construct a model for DGF prediction, which can effectively mitigate batch effects among IRI recipients. Compared to other existing models, our model demonstrated superior performance with AUC of 0.816 and 0.845 in the training and validation set. Furthermore, we also used the random survival forest algorithm to develop a high-precision predictive signature for graft failure. The mouse IRI model confirmed a marked upregulation of ANXA1 mRNA and protein expression in renal tissue following IRI. CONCLUSION This study successfully revealed the macrophage sub-cluster closely associated with renal IRI. Two distinct IRI subgroups with different characteristics were identified and robust strategies were constructed for predicting DGF and graft survival, which can offer potential therapeutic targets for the treatment of IRI and reference for early prevention of various postoperative complications.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Zhen Li
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Lijian Gan
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Haoyuan Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Changzhen Hao
- Department of Urology, Peking University International Hospital, Beijing, China.
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Perucci LO, Carneiro FS, Souza JC, Grossi LC, Souza JAM, Zaidan I, Cardoso C, Lara ES, Felix FB, Baik N, Tavares LP, Soriani FM, Teixeira MM, Parmer RJ, Miles LA, Sousa LP. Plasminogen and plasmin induce specialized proresolving mediators and promote efferocytosis via 5-lipoxygenase. J Thromb Haemost 2025; 23:1988-1995. [PMID: 40147777 DOI: 10.1016/j.jtha.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/03/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The plasminogen (Plg)/plasmin (Pla) system has been recognized for its proresolving actions, such as promoting efferocytosis. However, the role of specialized proresolving mediators (SPMs) in these Plg/Pla effects remains unexplored. OBJECTIVES To investigate whether Plg/Pla promotes SPMs production in macrophages and to elucidate the role of the 5-lipoxygenase (5-LO) pathway in Pla-induced efferocytosis. METHODS Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Plg knockout (KO) mice were treated or not with Plg/Pla, with or without leupeptin (protease inhibitor) and tranexamic acid (lysine analog), for 24 hours. SPMs and leukotriene B4 production and the messenger RNA expression of 5-, 12-, and 15-LO (SPMs biosynthetic enzymes) were assessed in WT-BMDMs. Additionally, 12/15-LO expression was analyzed in pleural macrophages from Pla-injected mice. Efferocytosis of apoptotic neutrophils was examined in Pla-injected WT and 5-LO KO mice and by using the 5-LO inhibitor MK886 in Pla-stimulated BMDMs. RESULTS Plg/Pla enhanced the production of lipoxin A4, maresin 1, and resolvin D1, as well as the mRNA expression of 5-, 12-, and 15-LO in macrophages, a process dependent on proteolytic activity and lysine binding sites. Macrophages from Plg KO mice produced lower lipoxin A4 levels, while leukotriene B4 levels remained comparable to WT cells. Pla injection promoted macrophage recruitment to the pleural cavity alongside 12/15-LO protein upregulation. Furthermore, Pla increased the efferocytosis of apoptotic neutrophils in WT mice but not in 5-LO KO mice, and pharmacologic inhibition of 5-LO reduced Pla-induced efferocytosis in vitro. CONCLUSION In summary, Plg/Pla proresolving actions are associated with SPMs production in macrophages and a 5-LO-dependent pro-efferocytosis mechanism.
Collapse
Affiliation(s)
- Luiza O Perucci
- Department of Molecular and Cell Biology, Scripps Research, La Jolla, California, USA; Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda S Carneiro
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Josiane C Souza
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laís C Grossi
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jessica A M Souza
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Zaidan
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cardoso
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Edvaldo S Lara
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Franciel B Felix
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nagyung Baik
- Department of Molecular and Cell Biology, Scripps Research, La Jolla, California, USA
| | - Luciana P Tavares
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frederico M Soriani
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robert J Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, University of California, San Diego, California, USA
| | - Lindsey A Miles
- Department of Molecular and Cell Biology, Scripps Research, La Jolla, California, USA
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Soliman AM, Soliman M, Shah SSH, Baig HA, Gouda NS, Alenezi BT, Alenezy A, Hegazy AMS, Jan M, Eltom EH. Molecular dynamics of inflammation resolution: therapeutic implications. Front Cell Dev Biol 2025; 13:1600149. [PMID: 40406415 PMCID: PMC12095172 DOI: 10.3389/fcell.2025.1600149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
Inflammation is a critical part of innate immune response that is essential for exclusion of harmful stimuli and restoration of tissue homeostasis. Nonetheless, failure to resolve inflammation results in chronic inflammatory conditions, including autoimmune diseases. Conventionally, resolution of inflammation was deemed a passive process; however, evidence indicates that it entails active, highly regulated molecular and cellular events involving efferocytosis-driven macrophage reprogramming, post-transcriptional regulatory mechanisms and the production of specialized pro-resolving mediators (SPMs). These processes collectively restore tissue homeostasis and prevent chronic inflammation. Emerging therapeutic approaches targeting these pathways demonstrate promising results in preclinical studies and clinical trials, enhancing resolution and improving overall disease outcome. This resulted in a paradigm shift from conventional anti-inflammatory strategies to resolution-focused treatment. Yet, challenges remain due to the complexity of resolution mechanisms and tissue-specific differences. This review summarizes current advances in inflammation resolution, emphasizing emerging concepts of resolution pharmacology. By employing endogenous mechanisms facilitating resolution, novel therapeutic applications can effectively manage several chronic inflammatory disorders.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Syed Sajid Hussain Shah
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Habeeb Ali Baig
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Nawal Salama Gouda
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Bandar Theyab Alenezi
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Awwad Alenezy
- Department of Family and Community Medicine, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ahmed M. S. Hegazy
- Department of Anatomy, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Muhammad Jan
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Elhassan Hussein Eltom
- Department of Pharmacology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
4
|
Mao S, Li Q, Yang Y, Liu Z, Zhang L. Potential Crosstalk Between ANXA1+ Epithelial Cells and FABP4+ TAM Cells of Ferroptosis-Related Molecular Clusters Promotes an Immunosuppressive Microenvironment in Non-Small Cell Lung Cancer. Mol Carcinog 2025; 64:936-950. [PMID: 40040274 DOI: 10.1002/mc.23899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 03/06/2025]
Abstract
The tumor microenvironment (TME) affects tumor initiation, invasion, metastasis, and therapies. Recently, increasing evidence has demonstrated that ferroptosis plays important regulatory roles in tumourigenesis and progression. It is unclear how ferroptosis affects non-small cell lung cancer (NSCLC) progression by remodeling the TME. In this study, the single-cell RNA sequencing (scRNA-seq) data (85,562 cells, n = 18) were employed to reveal the heterogeneity of ferroptosis activation in NSCLC, and identified six ferroptosis-related molecular clusters. We found that ANXA1+ epithelial and FABP4 + TAM subpopulations were key factors in lung cancer progression and TME remodeling. In addition, the cell-cell communication analysis showed that ANXA1-FPR2/FPR1 receptor-ligand pair contributed to the formation of an immunosuppressive TME. Furthermore, we established a novel signature based on ferroptosis-related molecular clusters, and the risk score model may predict survival and response to immunotherapy. We also found that compared with responder, the expression of ANXA1 and FABP4 is higher in progressor, which indicating a higher expression of ANXA1 and FABP4 was associated with a worse response to immunotherapy. Therefore, we concluded that the molecular clusters associated with ferroptosis served as potential prognostic markers and therapeutic targets for NSCLC patients.
Collapse
Affiliation(s)
- Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyan Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Yang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhiqiang Liu
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Federti E, Mattoscio D, Recchiuti A, Matte A, Monti M, Cozzolino F, Iezzi M, Ceci M, Ghigo A, Tolosano E, Siciliano A, Ceolan J, Riccardi V, Gremese E, Brugnara C, De Franceschi L. 17(R)-Resolvin D1 protects against sickle cell-related inflammatory cardiomyopathy in humanized mice. Blood 2025; 145:1915-1928. [PMID: 39928855 PMCID: PMC12060164 DOI: 10.1182/blood.2024024768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/12/2025] Open
Abstract
ABSTRACT Cardiovascular disease has been recognized as the main cause of death in adults with sickle cell disease (SCD). Although the exact mechanism linking SCD to cardiomyopathy remains elusive, a possible role of subclinical acute transient myocardial ischemia during acute sickle cell-related vaso-occlusive crises (VOCs) has been suggested. We approached SCD cardiomyopathy by integrated omics using humanized SS mice exposed to hypoxia/reoxygenation (H/R; 10 hours hypoxia followed by 3 hours reoxygenation) stress, mimicking acute VOCs. In sickle cell (SS) mice exposed to H/R, a neutrophil-driven cardiac hypertrophic response is initiated by cardiac proinflammatory pathways, intersecting proteins and micro RNA involved in profibrotic signaling. This response may be facilitated by local unresolved inflammation. We then examined the effect of 17(R)-resolvin D1 (17R-RvD1), a member of the specialized proresolving lipid mediator superfamily, administration on H/R-activated profibrotic and proangiogenic pathways. In SS mice, we found that 17R-RvD1 (1) modulates miRNAome; (2) prevents the activation of NF-κB p65; (3) protects against the H/R-induced activation of both platelet derived growth factor receptor and transforming growth factor (TGF)-β1/Smad2-3 canonical pathways; (4) reduces the expression of hypoxia-inducible factor-dependent proangiogenic signaling; and (5) decreases the H/R-induced proapoptotic cell signature. The protective role of 17R-RvD1 against H/R-induced maladaptive heart remodeling was supported by the reduction of galectin-3, procollagen C-proteinase enhancer-1, and endothelin-1 expression and perivascular fibrosis in SS mice at 3 days after H/R stress compared with vehicle-treated SS animals. Collectively, our data support the novel role of unresolved inflammation in pathologic heart remodeling in SCD mice in response to H/R stress. Our study provides new evidence for protective effects of 17R-RvD1 against SCD-related cardiovascular disease.
Collapse
Affiliation(s)
- Enrica Federti
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral, and Biotechnology Science; Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti, Pescara, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science; Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti, Pescara, Italy
| | - Alessandro Matte
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria Monti
- Dipartimento Scienze Chimiche, Università degli studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Flora Cozzolino
- Dipartimento Scienze Chimiche, Università degli studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti, Pescara, Italy
| | - Martina Ceci
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology, G. d’Annunzio University of Chieti, Pescara, Italy
| | - Alessandra Ghigo
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center Guido Tarone, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center Guido Tarone, University of Torino, Torino, Italy
| | - Angela Siciliano
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Jacopo Ceolan
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Veronica Riccardi
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Elisa Gremese
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-Istituto di Ricovero e Cura a Carattere Scientifico, Università Cattolica del Sacro Cuore, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Brugnara
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Lucia De Franceschi
- Department of Engineering for Innovative Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
6
|
Du Y, Gu B, Shi L, She Y, Zhao Q, Gao S. Data-Driven Molecular Typing: A New Frontier in Esophageal Cancer Management. Cancer Med 2025; 14:e70730. [PMID: 40018789 PMCID: PMC11868787 DOI: 10.1002/cam4.70730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a predominant and highly lethal form of esophageal cancer, with a five-year survival rate below 20%. Despite advancements, most patients are diagnosed at advanced stages, limiting effective treatment options. Multi-omics integration, encompassing somatic genomic alterations, inherited genetic mutations, transcriptomics, proteomics, metabolomics, and single-cell sequencing, has enabled the identification of distinct molecular subtypes of ESCC. METHOD This article systematically reviewed the current status of molecular subtyping of ESCC based on big data, summarized unique subtypes with differing treatment responses and prognostic outcomes. RESULT Key findings included subtype-specific genetic mutations, signaling pathway alterations, and metabolomic profiles, which offer novel biomarkers and therapeutic targets. Furthermore, this review discusses the link between molecular subtypes and immunotherapy efficacy, chemotherapy response, and drug development. CONCLUSION These insights highlight the potential of omics-based molecular typing to transform ESCC management and facilitate personalized treatment strategies.
Collapse
Affiliation(s)
- Yue Du
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Bianli Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Yong She
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| |
Collapse
|
7
|
Tang C, Lan R, Ma DR, Zhao M, Zhang Y, Li HY, Liu S, Li BY, Yang JL, Yang HJ, Zhang ZQ. Annexin A1: The dawn of ischemic stroke (Review). Mol Med Rep 2025; 31:62. [PMID: 39749707 PMCID: PMC11726294 DOI: 10.3892/mmr.2024.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke is a prevalent clinical condition that poses a significant global challenge. Developing innovative strategies to address this issue is crucial. Annexin A1 (ANXA1), a key member of the annexin superfamily, performs various functions, such as inhibiting inflammatory factor release, promoting phagocytosis, and blocking leukocyte migration. Evidence indicates that ANXA1 plays a pivotal role in the pathogenesis of ischemic stroke. The present article reviews involvement of ANXA1 in anti‑atherosclerosis, inflammatory processes, blood‑brain barrier protection, platelet aggregation and anti‑apoptotic mechanisms. The potential applications of ANXA1 in treating ischemic stroke are also explored.
Collapse
Affiliation(s)
- Chen Tang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Rui Lan
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Dong-Rui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Min Zhao
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yong Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hong-Yu Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Shuang Liu
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Bo-Yang Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Jie-Li Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Hui-Jie Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
8
|
Sennett C, Pula G. Trapped in the NETs: Multiple Roles of Platelets in the Vascular Complications Associated with Neutrophil Extracellular Traps. Cells 2025; 14:335. [PMID: 40072064 PMCID: PMC11898727 DOI: 10.3390/cells14050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Neutrophil extracellular traps (NETs) have received significant attention in recent years for their role in both the immune response and the vascular damage associated with inflammation. Platelets have been described as critical components of NETs since the initial description of this physio-pathological response of neutrophils. Platelets have been shown to play a dual role as responders and also as stimulators of NETs. The direct interaction with DNA leads to the entrapment of platelets into NETs, a phenomenon that significantly contributes to the thrombotic complications of inflammation and neutrophil activation, while the direct and paracrine stimulation of neutrophils by platelets has been shown to initiate the process of NET formation. In this review, we provide a comprehensive description of our current understanding of the molecular mechanisms underlying the entrapping of platelets into NETs and, in parallel, the platelet-driven cellular responses promoting NET formation. We then illustrate established examples of the contribution of NETs to vascular pathologies, describe the important questions that remain to be answered regarding the contribution of platelets to NET formation and NET-dependent cardiovascular complication, and highlight the fundamental steps taken towards the application of our understanding of platelets' contribution to NETs for the development of novel cardiovascular therapies.
Collapse
Affiliation(s)
| | - Giordano Pula
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
9
|
Sun C, Li L, Li D, Wang Z. Discovery of Endothelial-Monocyte Crosstalk in Ischemic-Reperfusion Injury Following Liver Transplantation Based on Integration of Single-Cell RNA and Transcriptome RNA Sequencing. J Cell Mol Med 2025; 29:e70336. [PMID: 39993960 PMCID: PMC11850096 DOI: 10.1111/jcmm.70336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/26/2025] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) commonly complicates liver transplantation (LT). However, the precise mechanisms underlying hepatic IRI remain incompletely understood. We acquired single-cell RNA sequencing (scRNA-seq) and transcriptome RNA sequencing data of LT patients from the GEO database. Employing scRNA-seq, we delved into the interplay between non-immune and immune cells in hepatic IRI, pinpointing genes exhibiting altered expression patterns. Integrating insights gleaned from scRNA-seq and transcriptome RNA sequencing datasets, we deepened our comprehension of cellular interactions and underlying mechanisms in hepatic IRI. Additionally, we conducted preliminary validation of identified gene expression alterations using immunofluorescence techniques. Using scRNA-seq, we detected significant changes in the populations of liver sinusoidal endothelial cells (LSECs) and monocytes after hepatic ischemia-reperfusion injury (IRI). By integrating scRNA-seq with bulk transcriptome RNA sequencing data, we identified key genes with dysregulated expression in LSECs (ICAM1, SOCS3, NFKBIZ, JUND, TNFRSF12A and HSPA6) and monocytes (SOCS3, JUND, FPR2 and NR4A2). Our analysis of cell communication indicated that the ANXA1-FPR2 axis might be a pivotal signature in mediating interactions between LSECs and monocytes. We then established a mouse model for IRI, and further analyses using flow cytometry and immunofluorescence showed a significant increase in monocyte proportion post-IR (p < 0.01). Consistently, Western Blot also revealed significant upregulation of ANXA1 and FPR2 (p < 0.01). Our study elucidated the cellular interactions and signalling pathways following IRI. The interplay between LSECs and monocytes likely triggers a cascade of events, promoting monocyte infiltration and amplifying inflammatory responses, thus worsening the deleterious effects of IRI.
Collapse
Affiliation(s)
- Chao Sun
- Liver Transplantation Center, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Organ TransplantationFudan UniversityShanghaiChina
| | - Li Li
- Liver Transplantation Center, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Organ TransplantationFudan UniversityShanghaiChina
| | - Dan Li
- Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhengxin Wang
- Liver Transplantation Center, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Organ TransplantationFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Huang JJ, Zhuo JY, Wang Q, Sun Y, Qi JX, Wu JJ, Zhang Y, Chen G, Jiang PF, Fan YY. The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age. Forensic Sci Med Pathol 2024; 20:1155-1165. [PMID: 38652217 DOI: 10.1007/s12024-024-00818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.
Collapse
Affiliation(s)
- Jun-Jie Huang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Ying Zhuo
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Qian Wang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yue Sun
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Xin Qi
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Juan-Juan Wu
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yu Zhang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Peng-Fei Jiang
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
| | - Yan-Yan Fan
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China.
| |
Collapse
|
11
|
Qi M, Huang H, Li Z, Quan J, Wang J, Huang F, Zhang X, Chen P, Liu A, Gao Z, Bai R, Chen C, Su X, Kong X. Qingxin Jieyu Granule alleviates myocardial infarction through inhibiting neutrophil extracellular traps via activating ANXA1/FPR2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156147. [PMID: 39418972 DOI: 10.1016/j.phymed.2024.156147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Myocardial infarction (MI), representing the most severe manifestation of coronary artery disease (CAD), stands as a primary concern in the prevention and management of cardiovascular diseases. Clinical evidence demonstrates that Qingxin Jieyu Granule (QXJYG) is efficacious in treatment of MI patients. However, the mechanisms underlying its therapeutic effects remain to be elucidated. PURPOSE This study aimed to evaluate the effects of QXJYG on MI and investigate its underlying mechanisms. MATERIALS AND METHODS The MI model in rats was developed through ligating the left anterior descending (LAD) artery. The effect of QXJYG on cardiac function impairment in MI rats was assessed by echocardiography, while the improvement of cardiomyocyte morphology and myocardial fibrosis after treatment with QXJYG was evaluated through hematoxylin-eosin (H&E) staining and Masson staining. The chemical constituents of QXJYG in blood were identified by using the UPLC-Q-TOF/MS technique. Furthermore, the molecular mechanism underlying the QXJYG therapeutic effect in MI was postulated based on the disease gene-drug target network analysis. Other technical methods such as ELISA, immunohistochemical staining, Western Blot analysis and application of pharmacological inhibitors were employed to verify the effectiveness of QXJYG in treating MI and explore its potential molecular targets. RESULTS The cardiac function in experimental rats post-MI was significantly impaired, as evidenced by an enlarged infarction area, disordered arrangement of cardiomyocytes, and aggravated myocardial fibrosis. QXJYG treatment significantly enhanced the cardiac function and reduced the pathological damage of the cardiac tissue in MI rats. Through the network pharmacology analysis, we identified that FPR2 might be a potential target of QXJYG in its cardiac protection role. QXJYG markedly downregulated the level of neutrophil extracellular traps (NETs) in MI rats, specifically manifested as a significant reduction in the Histone-DNA level and expression of myeloperoxidase (MPO) and citrullinated histone H3 (CitH3) proteins. Furthermore, QXJYG upregulated the levels of ANXA1 and FPR2 proteins in MI rats. The level of FPR2 was markedly reduced in MI rats upon administration of WRW4, a specific inhibitor of FPR2, which was associated with exacerbated MI injury and an elevated level of NETs. When WRW4 was co-administered with QXJYG, the cardioprotective effects of QXJYG on MI were significantly diminished. However, the addition of DNase I did not result in significant changes of the outcomes in MI rats after QXJYG intervention. CONCLUSION QXJYG treatment alleviates cardiac tissue injury in MI rats by inhibiting NETs through activating the ANXA1/FPR2 axis. The findings extend our understanding of the therapeutic effectiveness of QXJYG and offer a scientific foundation for the clinical utilization of QXJYG.
Collapse
Affiliation(s)
- Mingzhu Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Helan Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuohang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianye Quan
- Medical Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingbo Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengyu Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinzhuo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peiping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
12
|
Jiang Y, Bei W, Li W, Huang Y, He S, Zhu X, Zheng L, Xia W, Dong S, Liu Q, Zhang C, Lv S, Xie C, Xiang Y, Liu G. Single-cell transcriptome analysis reveals evolving tumour microenvironment induced by immunochemotherapy in nasopharyngeal carcinoma. Clin Transl Med 2024; 14:e70061. [PMID: 39415331 PMCID: PMC11483602 DOI: 10.1002/ctm2.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Combinatory therapeutic strategy containing immunochemotherapy as part of induction therapy components is one of the current trends in the treatment of high-risk metastatic locally advanced nasopharyngeal carcinoma (NPC). However, the mechanism underlying the heterogeneity of response at the single-cell level has not been underexplored. METHODS 18 bulks and 11 single-cell RNA sequencing from paired before-treatment and on-treatment samples in patients with treatment-naive high-risk metastatic locally advanced NPCs were obtained. Following quality control, a total of 87 191 cells were included in the subsequence bioinformatics analysis. RESULTS Immunochemotherapy was associated with on-treatment tumour microenvironment (TME) remodelling, including upregulation of anti-TMEs signatures, downregulation of pro-TMEs signatures, reversing CD8+ T exhaustion, and repolarizing proinflammatory TAMs. For the patients achieving a complete response, the cytotoxic activity of CD8+ T cells was stimulated and more interferon-gamma was provided, which would be the key for TAMs proinflammatory repolarization and eventually promote the CD8+ T cells maturation in turn. Among patients who did not reach complete response, differentiation and hypoxia signatures for endothelial cells were elevated after therapy. These patients exhibited higher levels of immune checkpoint genes in malignant cells at the baseline (before treatment), and decreased tumour antigen presentation activity, which may underlie the resistance mechanism to therapy. CONCLUSIONS This study pictures a map of TME modulation following immunochemotherapy-based combination induction therapy and provides potential future approaches. HIGHLIGHTS Immunochemotherapy remodeled T cell phenotypes. For the patients achieving complete response, more interferon gamma was provided by CD8+ T cells after therapy, which would be the key for TAMs pro-inflammatory repolarization and eventually promote the CD8+ T cells maturation in turns. Among patients who did not reach complete response, malignant cells exhibited higher level of immune checkpoint genes before therapy, and decreased tumor antigen presentation activity, which may underlie the resistance mechanism to therapy.
Collapse
Affiliation(s)
- Yaofei Jiang
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of Oncologythe First Affiliated Hospital of NanChang UniversityNanChangChina
| | - Weixin Bei
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wangzhong Li
- Department of Thoracic Surgery and OncologyThe First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthGuangzhouChina
| | - Ying Huang
- Department of RadiotherapySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Shuiqing He
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xiaobin Zhu
- Thoracic and GI Malignancies BranchNational Cancer Institute, National Institutes of HealthBethesdaUSA
| | - Lisheng Zheng
- Department of PathologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Weixiong Xia
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Shuhui Dong
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Qin Liu
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Chuanrun Zhang
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Shuhui Lv
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Changqing Xie
- Department of PathologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Yanqun Xiang
- Department of Nasopharyngeal CarcinomaState Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Guoying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Radiation OncologyMedical Research CenterSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
13
|
Hou M, Wu J, Li J, Zhang M, Yin H, Chen J, Jin Z, Dong R. Immunothrombosis: A bibliometric analysis from 2003 to 2023. Medicine (Baltimore) 2024; 103:e39566. [PMID: 39287275 PMCID: PMC11404911 DOI: 10.1097/md.0000000000039566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Immunothrombosis is a physiological process that constitutes an intravascular innate immune response. Abnormal immunothrombosis can lead to thrombotic disorders. With the outbreak of COVID-19, there is increasing attention to the mechanisms of immunothrombosis and its critical role in thrombotic events, and a growing number of relevant research papers are emerging. This article employs bibliometrics to discuss the current status, hotspots, and trends in research of this field. METHODS Research papers relevant to immunothrombosis published from January 1, 2003, to May 29, 2023, were collected from the Web of Science Core Collection database. VOSviewer and the R package "Bibliometrix" were employed to analyze publication metrics, including the number of publications, authors, countries, institutions, journals, and keywords. The analysis generated visual results, and trends in research topics and hotspots were examined. RESULTS A total of 495 target papers were identified, originating from 58 countries and involving 3287 authors from 1011 research institutions. Eighty high-frequency keywords were classified into 5 clusters. The current key research topics in the field of immunothrombosis include platelets, inflammation, neutrophil extracellular traps, Von Willebrand factor, and the complement system. Research hotspots focus on the mechanisms and manifestations of immunothrombosis in COVID-19, as well as the discovery of novel treatment strategies targeting immunothrombosis in cardiovascular and cerebrovascular diseases. CONCLUSION Bibliometric analysis summarizes the main achievements and development trends in research on immunothrombosis, offering readers a comprehensive understanding of the field and guiding future research directions.
Collapse
Affiliation(s)
- Mengyu Hou
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingxuan Wu
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiangshuo Li
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meijuan Zhang
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hang Yin
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingcheng Chen
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhili Jin
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruihua Dong
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Lou X, Chen H, Chen S, Ji H, He T, Chen H, Zhu R, Le Y, Sang A, Yu Y. LL37/FPR2 regulates neutrophil mPTP promoting the development of neutrophil extracellular traps in diabetic retinopathy. FASEB J 2024; 38:e23697. [PMID: 38842874 DOI: 10.1096/fj.202400656r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.
Collapse
Affiliation(s)
- Xueying Lou
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hongliang Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Songwei Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Haixia Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tianzhen He
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Hui Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Aimin Sang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ying Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Zhang M, Liu Y, Afzali H, Graves DT. An update on periodontal inflammation and bone loss. Front Immunol 2024; 15:1385436. [PMID: 38919613 PMCID: PMC11196616 DOI: 10.3389/fimmu.2024.1385436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Periodontal disease is a chronic inflammatory condition that affects the supporting structures of the teeth, including the periodontal ligament and alveolar bone. Periodontal disease is due to an immune response that stimulates gingivitis and periodontitis, and its systemic consequences. This immune response is triggered by bacteria and may be modulated by environmental conditions such as smoking or systemic disease. Recent advances in single cell RNA-seq (scRNA-seq) and in vivo animal studies have provided new insight into the immune response triggered by bacteria that causes periodontitis and gingivitis. Dysbiosis, which constitutes a change in the bacterial composition of the microbiome, is a key factor in the initiation and progression of periodontitis. The host immune response to dysbiosis involves the activation of various cell types, including keratinocytes, stromal cells, neutrophils, monocytes/macrophages, dendritic cells and several lymphocyte subsets, which release pro-inflammatory cytokines and chemokines. Periodontal disease has been implicated in contributing to the pathogenesis of several systemic conditions, including diabetes, rheumatoid arthritis, cardiovascular disease and Alzheimer's disease. Understanding the complex interplay between the oral microbiome and the host immune response is critical for the development of new therapeutic strategies for the prevention and treatment of periodontitis and its systemic consequences.
Collapse
Affiliation(s)
- Mingzhu Zhang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, School of Stomatology, Kunming, China
| | - Yali Liu
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, School of Stomatology, Kunming, China
| | - Hamideh Afzali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Mattè A, Federti E, Recchiuti A, Hamza M, Ferri G, Riccardi V, Ceolan J, Passarini A, Mazzi F, Siciliano A, Bhatt DL, Coughlan D, Climax J, Gremese E, Brugnara C, De Franceschi L. Epeleuton, a novel synthetic ω-3 fatty acid, reduces hypoxia/ reperfusion stress in a mouse model of sickle cell disease. Haematologica 2024; 109:1918-1932. [PMID: 38105727 PMCID: PMC11141675 DOI: 10.3324/haematol.2023.284028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Inflammatory vasculopathy is critical in sickle cell disease (SCD)-associated organ damage. An imbalance between pro-inflammatory and pro-resolving mechanisms in response to different triggers such as hypoxia/reoxygenation or infections has been proposed to contribute to the progression of SCD. Administration of specialized pro-resolving lipid mediators may provide an effective therapeutic strategy to target inflammatory vasculopathy and to modulate inflammatory response. Epeleuton (15 hydroxy eicosapentaenoic acid ethyl ester) is a novel, orally administered, second-generation ω-3 fatty acid with a favorable clinical safety profile. In this study we show that epeleuton re-programs the lipidomic pattern of target organs for SCD towards a pro-resolving pattern. This protects against systemic and local inflammatory responses and improves red cell features, resulting in reduced hemolysis and sickling compared with that in vehicle-treated SCD mice. In addition, epeleuton prevents hypoxia/reoxygenation-induced activation of nuclear factor-κB with downregulation of the NLRP3 inflammasome in lung, kidney, and liver. This was associated with downregulation of markers of vascular activation in epeleuton-treated SCD mice when compared to vehicle-treated animals. Collectively our data support the potential therapeutic utility of epeleuton and provide the rationale for the design of clinical trials to evaluate the efficacy of epeleuton in patients with SCD.
Collapse
Affiliation(s)
- Alessandro Mattè
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Enrica Federti
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science, "G. d'Annunzio"University Chieti - Pescara
| | | | - Giulia Ferri
- Department of Medical, Oral, and Biotechnology Science, "G. d'Annunzio"University Chieti - Pescara
| | - Veronica Riccardi
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Jacopo Ceolan
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Alice Passarini
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Filippo Mazzi
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Angela Siciliano
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Elisa Gremese
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy; Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Department of Pathology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
17
|
You Q, Ke Y, Chen X, Yan W, Li D, Chen L, Wang R, Yu J, Hong H. Loss of Endothelial Annexin A1 Aggravates Inflammation-Induched Vascular Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307040. [PMID: 38358087 PMCID: PMC11022713 DOI: 10.1002/advs.202307040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Chronic inflammation is increasingly considered as the most important component of vascular aging, contributing to the progression of age-related cardiovascular diseases. To delay the process of vascular aging, anti-inflammation may be an effective measure. The anti-inflammatory factor annexin A1 (ANXA1) is shown to participate in several age-related diseases; however, its function during vascular aging remains unclear. Here, an ANXA1 knockout (ANXA1-/-) and an endothelial cell-specific ANXA1 deletion mouse (ANXA1△EC) model are used to investigate the role of ANXA1 in vascular aging. ANXA1 depletion exacerbates vascular remodeling and dysfunction while upregulates age- and inflammation-related protein expression. Conversely, Ac2-26 (a mimetic peptide of ANXA1) supplementation reverses this phenomenon. Furthermore, long-term tumor necrosis factor-alpha (TNF-α) induction of human umbilical vein endothelial cells (HUVECs) increases cell senescence. Finally, the senescence-associated secretory phenotype and senescence-related protein expression, rates of senescence-β-galactosidase positivity, cell cycle arrest, cell migration, and tube formation ability are observed in both ANXA1-knockdown HUVECs and overexpressed ANXA1-TNF-α induced senescent HUVECs. They also explore the impact of formyl peptide receptor 2 (a receptor of ANXA1) in an ANXA1 overexpression inflammatory model. These data provide compelling evidence that age-related inflammation in arteries contributes to senescent endothelial cells that promote vascular aging.
Collapse
Affiliation(s)
- Qinyi You
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Yilang Ke
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Xiaofeng Chen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Wanhong Yan
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Dang Li
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Lu Chen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Run Wang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Jie Yu
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Medical University Union Hospital, Fujian Key Laboratory of Vascular Aging (Fujian Medical University), Fujian Institute of Geriatrics, Department of Cardiology, Fujian Heart Disease Center, Fujian Clinical Research Center for Vascular and Brain Aging, Fuzhou, Fujian, 350001, China
| |
Collapse
|
18
|
Shi H, Gao L, Kirby N, Shao B, Shan X, Kudo M, Silasi R, McDaniel JM, Zhou M, McGee S, Jing W, Lupu F, Cleuren A, George JN, Xia L. Clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in sickle cell anemia mice. Blood 2024; 143:1293-1309. [PMID: 38142410 PMCID: PMC10997916 DOI: 10.1182/blood.2023021583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Although it is caused by a single-nucleotide mutation in the β-globin gene, sickle cell anemia (SCA) is a systemic disease with complex, incompletely elucidated pathologies. The mononuclear phagocyte system plays critical roles in SCA pathophysiology. However, how heterogeneous populations of hepatic macrophages contribute to SCA remains unclear. Using a combination of single-cell RNA sequencing and spatial transcriptomics via multiplexed error-robust fluorescence in situ hybridization, we identified distinct macrophage populations with diversified origins and biological functions in SCA mouse liver. We previously found that administering the von Willebrand factor (VWF)-cleaving protease ADAMTS13 alleviated vaso-occlusive episode in mice with SCA. Here, we discovered that the ADAMTS13-cleaved VWF was cleared from the circulation by a Clec4f+Marcohigh macrophage subset in a desialylation-dependent manner in the liver. In addition, sickle erythrocytes were phagocytized predominantly by Clec4f+Marcohigh macrophages. Depletion of macrophages not only abolished the protective effect of ADAMTS13 but exacerbated vaso-occlusive episode in mice with SCA. Furthermore, promoting macrophage-mediated VWF clearance reduced vaso-occlusion in SCA mice. Our study demonstrates that hepatic macrophages are important in the pathogenesis of SCA, and efficient clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in SCA mice.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nicole Kirby
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Mariko Kudo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - John Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Wei Jing
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - James N. George
- Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
19
|
Ricotta TQN, Dos Santos LM, Oliveira LG, Souza-Testasicca MC, Nascimento FC, Vago JP, Carvalho AFS, Queiroz-Junior CM, Sousa LP, Fernandes AP. Annexin A1 improves immune responses and control of tissue parasitism during Leishmania amazonensis infection in BALB/c mice. Biomed Pharmacother 2024; 172:116254. [PMID: 38340398 DOI: 10.1016/j.biopha.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Leishmaniases, a group of diseases caused by the species of the protozoan parasite Leishmania, remains a significant public health concern worldwide. Host immune responses play a crucial role in the outcome of Leishmania infections, and several mediators that regulate inflammatory responses are potential targets for therapeutic approaches. Annexin A1 (AnxA1), an endogenous protein endowed with anti-inflammatory and pro-resolving properties, has emerged as a potential player. We have shown that during L. braziliensis infection, deficiency of AnxA1 exacerbates inflammatory responses but does not affect parasite burden. Here, we have investigated the role of AnxA1 in L. amazonensis infection, given the non-healing and progressive lesions characteristic of this infectious model. Infection of AnxA1 KO BALB/c mice resulted in increased lesion size and tissue damage associated with higher parasite burdens and enhanced inflammatory response. Notably, therapeutic application of the AnxA1 peptidomimetic Ac2-26 improves control of parasite replication and increases IL-10 production in vivo and in vitro, in both WT and AnxA1 KO mice. Conversely, administration of WRW4, an inhibitor of FPR2/3, resulted in larger lesions and decreased production of IL-10, suggesting that the effects of AnxA1 during L. amazonensis infection are associated with the engagement of these receptors. Our study illuminates the role of AnxA1 in L. amazonensis infection, demonstrating its impact on the susceptibility phenotype of BALB/c mice. Furthermore, our results indicate that targeting the AnxA1 pathway by using the Ac2-26 peptide could represent a promising alternative for new treatments for leishmaniasis.
Collapse
Affiliation(s)
- Tiago Queiroga Nery Ricotta
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Liliane Martins Dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Leandro Gonzaga Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | - Frederico Crepaldi Nascimento
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Juliana P Vago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Antônio Felipe S Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
20
|
Gerke V, Gavins FNE, Geisow M, Grewal T, Jaiswal JK, Nylandsted J, Rescher U. Annexins-a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat Commun 2024; 15:1574. [PMID: 38383560 PMCID: PMC10882027 DOI: 10.1038/s41467-024-45954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Annexins are cytosolic proteins with conserved three-dimensional structures that bind acidic phospholipids in cellular membranes at elevated Ca2+ levels. Through this they act as Ca2+-regulated membrane binding modules that organize membrane lipids, facilitating cellular membrane transport but also displaying extracellular activities. Recent discoveries highlight annexins as sensors and regulators of cellular and organismal stress, controlling inflammatory reactions in mammals, environmental stress in plants, and cellular responses to plasma membrane rupture. Here, we describe the role of annexins as Ca2+-regulated membrane binding modules that sense and respond to cellular stress and share our view on future research directions in the field.
Collapse
Affiliation(s)
- Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| | - Felicity N E Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UK
| | - Michael Geisow
- The National Institute for Medical Research, Mill Hill, London, UK
- Delta Biotechnology Ltd, Nottingham, UK
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Research and Innovation Campus, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jesper Nylandsted
- Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
- Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21-25, Odense, Denmark
| | - Ursula Rescher
- Research Group Cellular Biochemistry, Institute of Molecular Virology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| |
Collapse
|
21
|
Flores J, Tang J. Role of N-formyl peptide receptor 2 in germinal matrix hemorrhage: an intrinsic review of a hematoma resolving pathway. Neural Regen Res 2024; 19:350-354. [PMID: 37488889 PMCID: PMC10503603 DOI: 10.4103/1673-5374.379040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Germinal matrix hemorrhage is one of the leading causes of morbidity, mortality, and acquired infantile hydrocephalus in preterm infants in the United States, with little progress made in its clinical management. Blood clots have been shown to elicit secondary brain injury after germinal matrix hemorrhage, by disrupting normal cerebrospinal fluid circulation and absorption after germinal matrix hemorrhage causing post-hemorrhagic hydrocephalus development. Current evidence suggests that rapid hematoma resolution is necessary to improve neurological outcomes after hemorrhagic stroke. Various articles have demonstrated the beneficial effects of stimulating the polarization of microglia cells into the M2 phenotype, as it has been suggested that they play an essential role in the rapid phagocytosis of the blood clot after hemorrhagic models of stroke. N-formyl peptide receptor 2 (FPR2), a G-protein-coupled receptor, has been shown to be neuroprotective after stroke. FPR2 activation has been associated with the upregulation of phagocytic macrophage clearance, yet its mechanism has not been fully explored. Recent literature suggests that FPR2 may play a role in the stimulation of scavenger receptor CD36. Scavenger receptor CD36 plays a vital role in microglia phagocytic blood clot clearance after germinal matrix hemorrhage. FPR2 has been shown to phosphorylate extracellular-signal-regulated kinase 1/2 (ERK1/2), which then promotes the transcription of the dual-specificity protein phosphatase 1 (DUSP1) gene. In this review, we present an intrinsic outline of the main components involved in FPR2 stimulation and hematoma resolution after germinal matrix hemorrhage.
Collapse
Affiliation(s)
- Jerry Flores
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
22
|
Cheng B, Li L, Wu Y, Luo T, Tang C, Wang Q, Zhou Q, Wu J, Lai Y, Zhu D, Du T, Huang H. The key cellular senescence related molecule RRM2 regulates prostate cancer progression and resistance to docetaxel treatment. Cell Biosci 2023; 13:211. [PMID: 37968699 PMCID: PMC10648385 DOI: 10.1186/s13578-023-01157-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Prostate cancer is a leading cause of cancer-related deaths among men worldwide. Docetaxel chemotherapy has proven effective in improving overall survival in patients with castration-resistant prostate cancer (CRPC), but drug resistance remains a considerable clinical challenge. METHODS We explored the role of Ribonucleotide reductase subunit M2 (RRM2), a gene associated with senescence, in the sensitivity of prostate cancer to docetaxel. We evaluated the RRM2 expression, docetaxel resistance, and ANXA1 expression in prostate cancer cell lines and tumour xenografts models. In addition, We assessed the impact of RRM2 knockdown, ANXA1 over-expression, and PI3K/AKT pathway inhibition on the sensitivity of prostate cancer cells to docetaxel. Furthermore, we assessed the sensitivity of prostate cancer cells to the combination treatment of COH29 and docetaxel. RESULTS Our results demonstrated a positive association between RRM2 expression and docetaxel resistance in prostate cancer cell lines and tumor xenograft models. Knockdown of RRM2 increased the sensitivity of prostate cancer cells to docetaxel, suggesting its role in mediating resistance. Furthermore, we observed that RRM2 stabilizes the expression of ANXA1, which in turn activates the PI3K/AKT pathway and contributes to docetaxel resistance. Importantly, we found that the combination treatment of COH29 and docetaxel resulted in a synergistic effect, further augmenting the sensitivity of prostate cancer cells to docetaxel. CONCLUSION Our findings suggest that RRM2 regulates docetaxel resistance in prostate cancer by stabilizing ANXA1-mediated activation of the PI3K/AKT pathway. Targeting RRM2 or ANXA1 may offer a promising therapeutic strategy to overcome docetaxel resistance in prostate cancer.
Collapse
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lingfeng Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongxin Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chen Tang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 511430, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jilin Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Tao Du
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
23
|
Perucci LO, Vago JP, Miles LA, Sousa LP. Crosstalk between the plasminogen/plasmin system and inflammation resolution. J Thromb Haemost 2023; 21:2666-2678. [PMID: 37495082 PMCID: PMC10792525 DOI: 10.1016/j.jtha.2023.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
The plasminogen/plasmin (Plg/Pla) system, best known for its classical role in thrombolysis, has been recently highlighted as a regulator of other biological processes in mammals, including key steps involved in the resolution of inflammation. Inflammation resolution is a complex process coordinated by different cellular effectors, notably leukocytes, and active mediators, and is initiated shortly after the inflammatory response begins. Once the inflammatory insult is eliminated, an effective and timely engagement of proresolution programs prevents persistent inflammation, thereby avoiding excessive tissue damage, fibrosis, and the development of autoimmunity. Interestingly, recent studies demonstrate that Plg/Pla and their receptor, plasminogen receptor KT (Plg-RKT), regulate key steps in inflammation resolution. The number of studies investigating the involvement of the Plg/Pla system in these and other aspects of inflammation, including degradation of extracellular matrices, immune cell migration, wound healing, and skeletal growth and maintenance, highlights key roles of the Plg/Pla system during physiological and pathologic conditions. Here, we discuss robust evidence in the literature for the emerging roles of the Plg/Pla system in key steps of inflammation resolution. These findings suggest that dysregulation in Plg production and its activation plays a role in the pathogenesis of inflammatory diseases. Elucidating central mechanisms underlying the role of Plg/Pla in key steps of inflammation resolution either in preclinical models of inflammation or in human inflammatory conditions, can provide a rationale for the development of new pharmacologic interventions to promote resolution of inflammation, and open new pathways for the treatment of thromboinflammatory conditions.
Collapse
Affiliation(s)
- Luiza O Perucci
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lindsey A Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Song Z, Wang X, Liu X, Luo Y, Qiu J, Yin A, Liu Y, Yi H, Xiao Z, Li A. Targeting of Annexin A1 in Tumor-associated Macrophages as a therapeutic strategy for hepatocellular carcinoma. Biochem Pharmacol 2023; 213:115612. [PMID: 37209858 DOI: 10.1016/j.bcp.2023.115612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common aggressive, malignant tumor with limited treatment options. Currently, immunotherapies have low success rates in the treatment of HCC. Annexin A1 (ANXA1) is a protein related to inflammation, immunity and tumorigenesis. However, the role of ANXA1 in liver tumorigenesis remains unknown. Therefore, we sought to explore the feasibility of ANXA1 as a therapeutic target for HCC. Here, we analyzed ANXA1 expression and localization by HCC microarray and immunofluorescence experiments. Using an in vitro culture system, monocytic cell lines and primary macrophages were employed to investigate the biological functions of cocultured HCC cells and cocultured T cells. In vivo, Ac2-26, human recombinant ANXA1 (hrANXA1), and cell depletion (macrophages or CD8 + T cells) experiments were further conducted to investigate the role of ANXA1 in the tumor microenvironment (TME). We found that ANXA1 was overexpressed in mesenchymal cells, especially macrophages, in human liver cancer. Moreover, the expression of ANXA1 in mesenchymal cells was positively correlated with programmed death-ligand 1 expression. Knockdown of ANXA1 expression inhibited HCC cell proliferation and migration by increasing the M1/M2 macrophage ratio and promoting T-cell activation. hrANXA1 promoted malignant growth and metastasis in mice by increasing the infiltration and M2 polarization of tumor-associated macrophages (TAMs), generating an immunosuppressive TME and suppressing the antitumor CD8 + T-cell response. Together, our findings reveal that ANXA1 may be an independent prognostic factor for HCC and demonstrate the clinical translational significance of ANXA1 for tumor immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhenghui Song
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Xue Wang
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinhui Liu
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yue Luo
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jieya Qiu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Aiqi Yin
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong 518028, China
| | - Yun Liu
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou 423000, China
| | - Hong Yi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhiqiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Aimin Li
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
25
|
Gao J, Su Y, Wang Z. Lung Inflammation Resolution by RvD1 and RvD2 in a Receptor-Dependent Manner. Pharmaceutics 2023; 15:pharmaceutics15051527. [PMID: 37242769 DOI: 10.3390/pharmaceutics15051527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammation resolution is an active process via specialized pro-resolving mediators (SPMs) to fight invading microbes and repair tissue injury. RvD1 and RvD2 are SPMs produced from DHA during inflammation responses and show a benefit in treating inflammation disorders, but it is not completely understood how they act on vasculature and immune cells in the lung to promote inflammation resolution programs. Here, we studied how RvD1 and RvD2 regulated the interactions between endothelial cells and neutrophils in vitro and in vivo. In an acute lung inflammation (ALI) mouse model, we found that RvD1 and RvD2 resolved lung inflammation via their receptors (ALX/GPR32 or GPR18) and enhanced the macrophage phagocytosis of apoptotic neutrophils, which may be the molecular mechanism of lung inflammation resolution. Interestingly, we observed the higher potency of RvD1 over RvD2, which may be associated with unique downstream signaling pathways. Together, our studies suggest that the targeted delivery of these SPMs into inflammatory sites may be novel strategies with which to treat a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Yujie Su
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| |
Collapse
|
26
|
Dhanesha N, Ansari J, Pandey N, Kaur H, Virk C, Stokes KY. Poststroke venous thromboembolism and neutrophil activation: an illustrated review. Res Pract Thromb Haemost 2023; 7:100170. [PMID: 37274177 PMCID: PMC10236222 DOI: 10.1016/j.rpth.2023.100170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/06/2023] Open
Abstract
Patients with acute ischemic stroke are at a high risk of venous thromboembolism (VTE), such as deep vein thrombosis (DVT), estimated to affect approximately 80,000 patients with stroke each year in the United States. The prevalence of symptomatic DVT after acute stroke is approximately 10%. VTE is associated with increased rates of in-hospital death and disability, with higher prevalence of in-hospital complications and increased 1-year mortality in patients with stroke. Current guidelines recommend the use of pharmacologic VTE prophylaxis in patients with acute ischemic stroke. However, thromboprophylaxis prevents only half of expected VTE events and is associated with high risk of bleeding, suggesting the need for targeted alternative treatments to reduce VTE risk in these patients. Neutrophils are among the first cells in blood to respond after ischemic stroke. Importantly, coordinated interactions among neutrophils, platelets, and endothelial cells contribute to the development of DVT. In case of stroke and other related immune disorders, such as antiphospholipid syndrome, neutrophils potentiate thrombus propagation through the formation of neutrophil-platelet aggregates, secreting inflammatory mediators, complement activation, releasing tissue factor, and producing neutrophil extracellular traps. In this illustrated review article, we present epidemiology and management of poststroke VTE, preclinical and clinical evidence of neutrophil hyperactivation in stroke, and mechanisms for neutrophil-mediated VTE in the context of stroke. Given the hyperactivation of circulating neutrophils in patients with stroke, we propose that a better understanding of molecular mechanisms leading to neutrophil activation may result in the development of novel therapeutics to reduce the risk of VTE in this patient population.
Collapse
Affiliation(s)
- Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Junaid Ansari
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Harpreet Kaur
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Chiranjiv Virk
- Division of Vascular Surgery and Endovascular Surgery, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Karen Y. Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| |
Collapse
|
27
|
Vago JP, Zaidan I, Perucci LO, Brito LF, Teixeira LC, Silva CMS, Miranda TC, Melo EM, Bruno AS, Queiroz-Junior CM, Sugimoto MA, Tavares LP, Grossi LC, Borges IN, Schneider AH, Baik N, Schneider AH, Talvani A, Ferreira RG, Alves-Filho JC, Nobre V, Teixeira MM, Parmer RJ, Miles LA, Sousa LP. Plasmin and plasminogen prevent sepsis severity by reducing neutrophil extracellular traps and systemic inflammation. JCI Insight 2023; 8:e166044. [PMID: 36917195 PMCID: PMC10243804 DOI: 10.1172/jci.insight.166044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.
Collapse
Affiliation(s)
- Juliana P. Vago
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Isabella Zaidan
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Luiza O. Perucci
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Larissa Froede Brito
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Lívia C.R. Teixeira
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Camila Meirelles Souza Silva
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaís C. Miranda
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Eliza M. Melo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre S. Bruno
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A. Sugimoto
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P. Tavares
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís C. Grossi
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Isabela N. Borges
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ayda H. Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Talvani
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Raphael G. Ferreira
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José C. Alves-Filho
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vandack Nobre
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System and University of California, San Diego, California, USA
| | - Lindsey A. Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Lirlândia P. Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| |
Collapse
|
28
|
Sparkenbaugh EM, Henderson MW, Miller-Awe M, Abrams C, Ilich A, Trebak F, Ramadas N, Vital S, Bohinc D, Bane KL, Chen C, Patel M, Wallisch M, Renné T, Gruber A, Cooley B, Gailani D, Kasztan M, Vercellotti GM, Belcher JD, Gavins FE, Stavrou EX, Key NS, Pawlinski R. Factor XII contributes to thrombotic complications and vaso-occlusion in sickle cell disease. Blood 2023; 141:1871-1883. [PMID: 36706361 PMCID: PMC10122107 DOI: 10.1182/blood.2022017074] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
A hypercoagulable state, chronic inflammation, and increased risk of venous thrombosis and stroke are prominent features in patients with sickle cell disease (SCD). Coagulation factor XII (FXII) triggers activation of the contact system that is known to be involved in both thrombosis and inflammation, but not in physiological hemostasis. Therefore, we investigated whether FXII contributes to the prothrombotic and inflammatory complications associated with SCD. We found that when compared with healthy controls, patients with SCD exhibit increased circulating biomarkers of FXII activation that are associated with increased activation of the contact pathway. We also found that FXII, but not tissue factor, contributes to enhanced thrombin generation and systemic inflammation observed in sickle cell mice challenged with tumor necrosis factor α. In addition, FXII inhibition significantly reduced experimental venous thrombosis, congestion, and microvascular stasis in a mouse model of SCD. Moreover, inhibition of FXII attenuated brain damage and reduced neutrophil adhesion to the brain vasculature of sickle cell mice after ischemia/reperfusion induced by transient middle cerebral artery occlusion. Finally, we found higher FXII, urokinase plasminogen activator receptor, and αMβ2 integrin expression in neutrophils of patients with SCD compared with healthy controls. Our data indicate that targeting FXII effectively reduces experimental thromboinflammation and vascular complications in a mouse model of SCD, suggesting that FXII inhibition may provide a safe approach for interference with inflammation, thrombotic complications, and vaso-occlusion in patients with SCD.
Collapse
Affiliation(s)
- Erica M. Sparkenbaugh
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael W. Henderson
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Megan Miller-Awe
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christina Abrams
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fatima Trebak
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nirupama Ramadas
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shantel Vital
- Louisiana State University Health Sciences Center, Shreveport, LA
| | - Dillon Bohinc
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Kara L. Bane
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Margi Patel
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | | | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Brian Cooley
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Malgorzata Kasztan
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Gregory M. Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - John D. Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Felicity E. Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, United Kingdom
| | - Evi X. Stavrou
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Medicine, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, OH
| | - Nigel S. Key
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
29
|
Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan W, Lin L, Xiang T, Yang J, Zhao X, Xi Y, Ma Y, Cheng G, Lin D, Wu C. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell 2023; 41:903-918.e8. [PMID: 36963399 DOI: 10.1016/j.ccell.2023.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
Esophageal squamous-cell carcinoma (ESCC) develops through multistage epithelial cancer formation, i.e., from normal epithelium, low- and high-grade intraepithelial neoplasia to invasive carcinoma. However, how the precancerous lesions progress to carcinoma remains elusive. Here, we report a comprehensive single-cell RNA sequencing and spatial transcriptomic study of 79 multistage esophageal lesions from 29 patients with ESCC. We reveal a gradual and significant loss of ANXA1 expression in epithelial cells due to its transcription factor KLF4 suppression along the lesion progression. We demonstrate that ANXA1 is a ligand to formyl peptide receptor type 2 (FPR2) on fibroblasts that maintain fibroblast homeostasis. Loss of ANXA1 leads to uncontrolled transformation of normal fibroblasts into cancer-associated fibroblasts (CAFs), which can be enhanced by secreted TGF-β from malignant epithelial cells. Given the role of CAFs in cancer, our study underscores ANXA1/FPR2 signaling as an important crosstalk mechanism between epithelial cells and fibroblasts in promoting ESCC.
Collapse
Affiliation(s)
- Yamei Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenyi Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
30
|
Cao Y, Chen J, Liu F, Qi G, Zhao Y, Xu S, Wang J, Zhu T, Zhang Y, Jia Y. Formyl peptide receptor 2 activation by mitochondrial formyl peptides stimulates the neutrophil proinflammatory response via the ERK pathway and exacerbates ischemia-reperfusion injury. Cell Mol Biol Lett 2023; 28:4. [PMID: 36658472 PMCID: PMC9854225 DOI: 10.1186/s11658-023-00416-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an inevitable process in renal transplantation that significantly increases the risk of delayed graft function, acute rejection, and even graft loss. Formyl peptide receptor 2 (FPR2) is an important receptor in multiple septic and aseptic injuries, but its functions in kidney IRI are still unclear. This study was designed to reveal the pathological role of FPR2 in kidney IRI and its functional mechanisms. METHODS To explore the mechanism of FPR2 in kidney IRI, the model rats were sacrificed after IRI surgery. Immunofluorescence, enzyme-linked immunosorbent assays, and western blotting were used to detect differences in the expression of FPR2 and its ligands between the IRI and control groups. WRW4 (WRWWWW-NH2), a specific antagonist of FPR2, was administered to kidney IRI rats. Kidney function and pathological damage were detected to assess kidney injury and recovery. Flow cytometry was used to quantitatively compare neutrophil infiltration among the experimental groups. Mitochondrial formyl peptides (mtFPs) were synthesized and administered to primary rat neutrophils together with the specific FPR family antagonist WRW4 to verify our hypothesis in vitro. Western blotting and cell function assays were used to examine the functions and signaling pathways that FPR2 mediates in neutrophils. RESULTS FPR2 was activated mainly by mtFPs during the acute phase of IRI, mediating neutrophil migration and reactive oxygen species production in the rat kidney through the ERK1/2 pathway. FPR2 blockade in the early phase protected rat kidneys from IRI. CONCLUSIONS mtFPs activated FPR2 during the acute phase of IRI and mediated rat kidney injury by activating the migration and reactive oxygen species generation of neutrophils through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Yirui Cao
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Juntao Chen
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Feng Liu
- grid.411405.50000 0004 1757 8861Department of Integrative Medicine, Huashan Hospital Fudan University, Shanghai, People’s Republic of China
| | - Guisheng Qi
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Zhao
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Shihao Xu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiyan Wang
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yi Zhang
- grid.413087.90000 0004 1755 3939Zhongshan Hospital Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichen Jia
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Pan S, Li Y, He H, Cheng S, Li J, Pathak JL. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis. Front Pharmacol 2023; 13:1098851. [PMID: 36686646 PMCID: PMC9852864 DOI: 10.3389/fphar.2022.1098851] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Periodontitis is a chronic inflammatory oral disease that destroys soft and hard periodontal support tissues. Multiple cell death modes including apoptosis, necroptosis, pyroptosis, and ferroptosis play a crucial role in the pathogenicity of inflammatory diseases. This study aimed to identify genes associated with ferroptosis, necroptosis, and pyroptosis in different cells present in the periodontium of periodontitis patients. Methods: Gingival tissues' mRNA sequencing dataset GSE173078 of 12 healthy control and 12 periodontitis patients' and the microarray dataset GSE10334 of 63 healthy controls and 64 periodontitis patients' were obtained from Gene Expression Omnibus (GEO) database. A total of 910 differentially expressed genes (DEGs) obtained in GSE173078 were intersected with necroptosis, pyroptosis, and ferroptosis-related genes to obtain the differential genes associated with cell death (DCDEGs), and the expression levels of 21 differential genes associated with cell death were verified with dataset GSE10334. Results: Bioinformatic analysis revealed 21 differential genes associated with cell death attributed to ferroptosis, pyroptosis, and necroptosis in periodontitis patients compared with healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that 21 differential genes associated with cell death were related to various cellular and immunological pathways including inflammatory responses, necroptosis, and osteoclast differentiation. Additionally, the single-cell RNA (scRNA) sequencing data GSE171213 of 4 healthy controls and 5 periodontitis patients' periodontal tissue was analyzed to obtain cell clustering and cell types attributed to differential genes associated with cell death. We found that among 21 DCDEGs, SLC2A3, FPR2, TREM1, and IL1B were mainly upregulated in neutrophils present in the periodontium of periodontitis patients. Gene overlapping analysis revealed that IL-1B is related to necroptosis and pyroptosis, TREM1 and FPR2 are related to pyroptosis, and SLC2A3 is related to ferroptosis. Finally, we utilized the CIBERSORT algorithm to assess the association between DCDEGs and immune infiltration phenotypes, based on the gene expression profile of GSE10334. The results revealed that the upregulated SLC2A3, FPR2, TREM1, and IL1B were positively correlated with neutrophil infiltration in the periodontium. Discussion: The findings provide upregulated SLC2A3, FPR2, TREM1, and IL1B in neutrophils as a future research direction on the mode and mechanism of cell death in periodontitis and their role in disease pathogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Li
- *Correspondence: Janak L. Pathak, ; Jiang Li,
| | | |
Collapse
|
32
|
de Gaetano M. Development of synthetic lipoxin-A4 mimetics (sLXms): New avenues in the treatment of cardio-metabolic diseases. Semin Immunol 2023; 65:101699. [PMID: 36428172 DOI: 10.1016/j.smim.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.
Collapse
Affiliation(s)
- Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
33
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands. Front Endocrinol (Lausanne) 2023; 14:1119227. [PMID: 36817589 PMCID: PMC9935590 DOI: 10.3389/fendo.2023.1119227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Originally, it was thought that a single serum amyloid A (SAA) protein was involved in amyloid A amyloidosis, but in fact, SAA represents a four-membered family wherein SAA1 and SAA2 are acute phase proteins (A-SAA). SAA is highly conserved throughout evolution within a wide range of animal species suggestive of an important biological function. In fact, A-SAA has been linked to a number of divergent biological activities wherein a number of these functions are mediated via the G protein-coupled receptor (GPCR), formyl peptide receptor (FPR) 2. For instance, through the activation of FPR2, A-SAA has been described to regulate leukocyte activation, atherosclerosis, pathogen recognition, bone formation and cell survival. Moreover, A-SAA is subject to post-translational modification, primarily through proteolytic processing, generating a range of A-SAA-derived peptides. Although very little is known regarding the biological effect of A-SAA-derived peptides, they have been shown to promote neutrophil and monocyte migration through FPR2 activation via synergy with other GPCR ligands namely, the chemokines CXCL8 and CCL3, respectively. Within this review, we provide a detailed analysis of the FPR2-mediated functions of A-SAA. Moreover, we discuss the potential role of A-SAA-derived peptides as allosteric modulators of FPR2.
Collapse
|
34
|
Jing Y, Hu S, Song J, Dong X, Zhang Y, Sun X, Wang D. Association between polymorphisms in miRNAs and ischemic stroke: A meta-analysis. Medicine (Baltimore) 2022; 101:e32078. [PMID: 36596006 PMCID: PMC9803434 DOI: 10.1097/md.0000000000032078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis remains a predominant cause of ischemic stroke (IS). Four miRNA polymorphisms associated with arteriosclerosis mechanism were meta-analyzed to explore whether they had predictive significance for IS. METHODS PubMed, Excerpta Medica database, Web of Science, Cochrane Library, Scopus, China National Knowledge Infrastructure, and China Wanfang Database were searched for relevant case-control studies published before September 2022. Two researchers independently reviewed the studies and extracted the data. Data synthesis was carried out on eligible studies. Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias analysis were performed using Stata software 16.0. RESULTS Twenty-two studies were included, comprising 8879 cases and 12,091 controls. The results indicated that there were no significant associations between miR-146a C>G (rs2910164), miR-196a2 T>C (rs11614913) and IS risk in the overall analyses, but miR-149 T>C (rs2292832) and miR-499 A>G (rs3746444) increased IS risk under the allelic model, homozygote model and recessive model. The subgroup analyses based on Trial of Org 101072 in Acute Stroke Treatment classification indicated that rs2910164 increased small artery occlusion (SAO) risk under the allelic model, heterozygote model and dominant model; rs11614913 decreased the risk of SAO under the allelic model, homozygote model, heterozygote model and dominant model. CONCLUSION This Meta-analysis showed that all 4 single nucleotide polymorphisms were associated with the risk of IS or SAO, even though the overall and subgroup analyses were not entirely consistent.
Collapse
Affiliation(s)
- Yunnan Jing
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siya Hu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Song
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Dong
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dongyan Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- * Correspondence: Dongyan Wang, Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Dajie, Nangang District, Harbin City, Heilongjiang Province 150000, China (e-mail: )
| |
Collapse
|
35
|
Xia Q, Gao S, Han T, Mao M, Zhan G, Wang Y, Li X. Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1. J Neuroinflammation 2022; 19:301. [PMID: 36517900 PMCID: PMC9753274 DOI: 10.1186/s12974-022-02665-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microglia-induced excessive neuroinflammation plays a crucial role in the pathophysiology of multiple neurological diseases, such as ischaemic stroke. Controlling inflammatory responses is considered a promising therapeutic approach. Sirtuin 5 (SIRT5) mediates lysine desuccinylation, which is involved in various critical biological processes, but its role in ischaemic stroke remains poorly understood. This research systematically explored the function and potential mechanism of SIRT5 in microglia-induced neuroinflammation in ischaemic stroke. METHODS Mice subjected to middle cerebral artery occlusion were established as the animal model, and primary cultured microglia treated with oxygen-glucose deprivation and reperfusion were established as the cell model of ischaemic stroke. SIRT5 short hairpin RNA, adenovirus and adeno-associated virus techniques were employed to modulate SIRT5 expression in microglia both in vitro and in vivo. Coimmunoprecipitation, western blot and quantitative real-time PCR assays were performed to reveal the molecular mechanism. RESULTS In the current study, we showed that SIRT5 expression in microglia was increased in the early phase of ischaemic stroke. SIRT5 interacts with and desuccinylates Annexin A1 (ANXA1) at K166, which in turn decreases its SUMOylation level. Notably, the desuccinylation of ANXA1 blocks its membrane recruitment and extracellular secretion, resulting in the hyperactivation of microglia and excessive expression of proinflammatory cytokines and chemokines, ultimately leading to neuronal cell damage after ischaemic stroke. Further investigation showed that microglia-specific forced overexpression of SIRT5 worsened ischaemic brain injury, whereas downregulation of SIRT5 exhibited neuroprotective and cognitive-preserving effects against ischaemic brain injury, as proven by the decreased infarct area, reduced neurological deficit scores, and improved cognitive function. CONCLUSIONS Collectively, these data identify SIRT5 as a novel regulator of microglia-induced neuroinflammation and neuronal damage after cerebral ischaemia. Interventions targeting SIRT5 expression may represent a potential therapeutic target for ischaemic stroke.
Collapse
Affiliation(s)
- Qian Xia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuai Gao
- grid.263452.40000 0004 1798 4018Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Tangrui Han
- grid.263452.40000 0004 1798 4018Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Meng Mao
- grid.460080.aDepartment of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 China
| | - Gaofeng Zhan
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yonghong Wang
- grid.263452.40000 0004 1798 4018Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Xing Li
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
36
|
Sugimoto MA, Perucci LO, Tavares LP, Teixeira MM, Sousa LP. Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation. Curr Drug Targets 2022; 23:1578-1592. [PMID: 36221881 DOI: 10.2174/1389450123666221011102250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Medicine, University College London, London, UK.,Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza O Perucci
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nucleus of Research on Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
37
|
Huang K, Wang Z, He Z, Li Y, Li S, Shen K, Zhu G, Liu Z, Lv S, Zhang C, Yang H, Yang X, Liu S. Downregulated formyl peptide receptor 2 expression in the epileptogenic foci of patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Immun Inflamm Dis 2022; 10:e706. [PMID: 36301030 PMCID: PMC9597500 DOI: 10.1002/iid3.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC) show persistent neuroinflammation, which promotes epileptogenesis and epilepsy progression, suggesting that endogenous resolution of inflammation is inadequate to relieve neuronal network hyperexcitability. To explore the potential roles of formyl peptide receptor 2 (FPR2), which is a key regulator of inflammation resolution, in epilepsy caused by FCDIIb and TSC, we examined the expression and cellular distribution of FPR2. METHOD The expression of FPR2 and nuclear factor-κB (NF-κB) signaling pathway was examined by real-time PCR, western blots, and analyzed via one-way analysis of variance. The distribution of FPR2 was detected using immunostaining. The expression of resolvin D1 (RvD1, the endogenous ligand of FPR2) was observed via enzyme-linked immunosorbent assay. Pearson's correlation test was used to evaluate the correlation between the expression levels of FPR2 and RvD1 and the clinical variants. RESULTS The expression of FPR2 was significantly lower in FCDIIb (p = .0146) and TSC (p = .0006) cortical lesions than in controls, as was the expression of RvD1 (FCDIIb: p = .00431; TSC: p = .0439). Weak FPR2 immunoreactivity was observed in dysmorphic neurons (DNs), balloon cells (BCs), and giant cells (GCs) in FCDIIb and TSC tissues. Moreover, FPR2 was mainly distributed in dysplastic neurons; it was sparse in microglia and nearly absent in astrocytes. The NF-κB pathway was significantly activated in patients with FCDIIb and TSC, and the protein level of NF-κB was negatively correlated with the protein level of FPR2 (FCDIIb: p = .00395; TSC: p = .0399). In addition, the protein level of FPR2 was negatively correlated with seizure frequency in FCDIIb (p = .0434) and TSC (p = .0351) patients. CONCLUSION In summary, these results showed that the expression and specific distribution of FPR2 may be involved in epilepsy caused by FCDIIb and TSC, indicating that downregulation of FPR2 mediated the dysfunction of neuroinflammation resolution in FCDIIb and TSC.
Collapse
Affiliation(s)
- Kaixuan Huang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zhongke Wang
- Department of NeurosurgeryArmed Police Hospital of ChongqingChongqingChina
| | - Zeng He
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yang Li
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shujing Li
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Kaifeng Shen
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Gang Zhu
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zhonghong Liu
- Department of NeurosurgeryArmed Police Hospital of ChongqingChongqingChina
| | - Shengqing Lv
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chunqing Zhang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaolin Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shiyong Liu
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
38
|
Tackling inflammation in atherosclerosis: Are we there yet and what lies beyond? Curr Opin Pharmacol 2022; 66:102283. [PMID: 36037627 DOI: 10.1016/j.coph.2022.102283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a lipid-driven disease of the artery characterized by chronic non-resolving inflammation. Despite availability of excellent lipid-lowering therapies, atherosclerosis remains the leading cause of disability and death globally. The demonstration that suppressing inflammation prevents the adverse clinical manifestations of atherosclerosis in recent clinical trials has led to heightened interest in anti-inflammatory therapies. In this review, we briefly highlight some key anti-inflammatory and pro-resolution pathways, which could be targeted to modulate pathogenesis and stall atherosclerosis progression. We also highlight key challenges that must be overcome to turn the concept of inflammation targeting therapies into clinical reality for atherosclerotic heart disease.
Collapse
|
39
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
40
|
Becker F, Kebschull L, Rieger C, Mohr A, Heitplatz B, Van Marck V, Hansen U, Ansari J, Reuter S, Strücker B, Pascher A, Brockmann JG, Castor T, Alexander JS, Gavins FNE. Bryostatin-1 Attenuates Ischemia-Elicited Neutrophil Transmigration and Ameliorates Graft Injury after Kidney Transplantation. Cells 2022; 11:cells11060948. [PMID: 35326400 PMCID: PMC8946580 DOI: 10.3390/cells11060948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a form of sterile inflammation whose severity determines short- and long-term graft fates in kidney transplantation. Neutrophils are now recognized as a key cell type mediating early graft injury, which activates further innate immune responses and intensifies acquired immunity and alloimmunity. Since the macrolide Bryostatin-1 has been shown to block neutrophil transmigration, we aimed to determine whether these findings could be translated to the field of kidney transplantation. To study the effects of Bryostatin-1 on ischemia-elicited neutrophil transmigration, an in vitro model of hypoxia and normoxia was equipped with human endothelial cells and neutrophils. To translate these findings, a porcine renal autotransplantation model with eight hours of reperfusion was used to study neutrophil infiltration in vivo. Graft-specific treatment using Bryostatin-1 (100 nM) was applied during static cold storage. Bryostatin-1 dose-dependently blocked neutrophil activation and transmigration over ischemically challenged endothelial cell monolayers. When applied to porcine renal autografts, Bryostatin-1 reduced neutrophil graft infiltration, attenuated histological and ultrastructural damage, and improved renal function. Our novel findings demonstrate that Bryostatin-1 is a promising pharmacological candidate for graft-specific treatment in kidney transplantation, as it provides protection by blocking neutrophil infiltration and attenuating functional graft injury.
Collapse
Affiliation(s)
- Felix Becker
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Linus Kebschull
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Constantin Rieger
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Annika Mohr
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Barbara Heitplatz
- Gerhard Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany; (B.H.); (V.V.M.)
| | - Veerle Van Marck
- Gerhard Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany; (B.H.); (V.V.M.)
| | - Uwe Hansen
- Department of Molecular Medicine, Institute for Musculoskeletal Medicine, University Hospital Münster, 48149 Münster, Germany;
| | - Junaid Ansari
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, 48149 Münster, Germany;
| | - Benjamin Strücker
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | - Jens G. Brockmann
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, 48149 Münster, Germany; (F.B.); (L.K.); (C.R.); (A.M.); (B.S.); (A.P.); (J.G.B.)
| | | | - J. Steve Alexander
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
- Correspondence: (J.S.A.); (F.N.E.G.)
| | - Felicity N. E. Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge UB8 3PH, UK
- Correspondence: (J.S.A.); (F.N.E.G.)
| |
Collapse
|
41
|
Tavares LP, Melo EM, Sousa LP, Teixeira MM. Pro-resolving therapies as potential adjunct treatment for infectious diseases: Evidence from studies with annexin A1 and angiotensin-(1-7). Semin Immunol 2022; 59:101601. [PMID: 35219595 DOI: 10.1016/j.smim.2022.101601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023]
Abstract
Infectious diseases, once believed to be an eradicable public health threat, still represent a leading cause of death worldwide. Environmental and social changes continuously favor the emergence of new pathogens and rapid dissemination around the world. The limited availability of anti-viral therapies and increased antibiotic resistance has made the therapeutic management of infectious disease a major challenge. Inflammation is a primordial defense to protect the host against invading microorganisms. However, dysfunctional inflammatory responses contribute to disease severity and mortality during infections. In recent years, a few studies have examined the relevance of resolution of inflammation in the context of infections. Inflammation resolution is an active integrated process transduced by several pro-resolving mediators, including Annexin A1 and Angiotensin-(1-7). Here, we examine some of the cellular and molecular circuits triggered by pro-resolving molecules and that may be beneficial in the context of infectious diseases.
Collapse
Affiliation(s)
- Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eliza Mathias Melo
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
42
|
Ansari J, Gavins FNE. Neutrophils and Platelets: Immune Soldiers Fighting Together in Stroke Pathophysiology. Biomedicines 2021; 9:biomedicines9121945. [PMID: 34944761 PMCID: PMC8698717 DOI: 10.3390/biomedicines9121945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Neutrophils and platelets exhibit a diverse repertoire of functions in thromboinflammatory conditions such as stroke. Most cerebral ischemic events result from longstanding chronic inflammation secondary to underlying pathogenic conditions, e.g., hypertension, diabetes mellitus, obstructive sleep apnea, coronary artery disease, atrial fibrillation, morbid obesity, dyslipidemia, and sickle cell disease. Neutrophils can enable, as well as resolve, cerebrovascular inflammation via many effector functions including neutrophil extracellular traps, serine proteases and reactive oxygen species, and pro-resolving endogenous molecules such as Annexin A1. Like neutrophils, platelets also engage in pro- as well as anti-inflammatory roles in regulating cerebrovascular inflammation. These anucleated cells are at the core of stroke pathogenesis and can trigger an ischemic event via adherence to the hypoxic cerebral endothelial cells culminating in aggregation and clot formation. In this article, we review and highlight the evolving role of neutrophils and platelets in ischemic stroke and discuss ongoing preclinical and clinical strategies that may produce viable therapeutics for prevention and management of stroke.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Neurology, Louisiana State University Health Shreveport, Shreveport, LA 71130, USA
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| | - Felicity N. E. Gavins
- The Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| |
Collapse
|
43
|
Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology 2021; 165:22-43. [PMID: 34704249 DOI: 10.1111/imm.13423] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Apurwa Singhal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
44
|
Maciuszek M, Ortega-Gomez A, Maas SL, Garrido-Mesa J, Ferraro B, Perretti M, Merritt A, Nicolaes GAF, Soehnlein O, Chapman TM. Design, synthesis, and biological evaluation of novel pyrrolidinone small-molecule Formyl peptide receptor 2 agonists. Eur J Med Chem 2021; 226:113805. [PMID: 34536667 DOI: 10.1016/j.ejmech.2021.113805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
A series of Formyl peptide receptor 2 small molecule agonists with a pyrrolidinone scaffold, derived from a combination of pharmacophore modelling and docking studies, were designed and synthesized. The GLASS (GPCR-Ligand Association) database was screened using a pharmacophore model. The most promising novel ligand structures were chosen and then tested in cellular assays (calcium mobilization and β-arrestin assays). Amongst the selected ligands, two pyrrolidinone compounds (7 and 8) turned out to be the most active. Moreover compound 7 was able to reduce the number of adherent neutrophils in a human neutrophil static adhesion assay which indicates its anti-inflammatory and proresolving properties. Further exploration and optimization of new ligands showed that heterocyclic rings, e.g. pyrazole directly connected to the pyrrolidinone scaffold, provide good stability and a boost in the agonistic activity. The compounds of most interest (7 and 30) were tested in an ERK phosphorylation assay, demonstrating selectivity towards FPR2 over FPR1. Compound 7 was examined in an in vivo mouse pharmacokinetic study. Compound 7 may be a valuable in vivo tool and help improve understanding of the role of the FPR2 receptor in the resolution of inflammation process.
Collapse
Affiliation(s)
- Monika Maciuszek
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK; The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Munich, Germany
| | - Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Munich, Germany
| | - Jose Garrido-Mesa
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Bartolo Ferraro
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Munich, Germany
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Andy Merritt
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK
| | - Gerry A F Nicolaes
- CARIM - School for Cardiovascular Sciences Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Munich, Germany; Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden; Institute for Experimental Pathology (ExPat), Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Timothy M Chapman
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK
| |
Collapse
|
45
|
Reeves BN, Moliterno AR. Thrombosis in myeloproliferative neoplasms: update in pathophysiology. Curr Opin Hematol 2021; 28:285-291. [PMID: 34183535 DOI: 10.1097/moh.0000000000000664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review summarizes high-impact research in myeloproliferative neoplasms (MPN) from the last 18 months, with a particular focus on basic science findings. RECENT FINDINGS A pseudo-hypoxia state with stabilization of hypoxia-inducible factor (HIFα exists that is central to cell growth, cell renewal, inflammation, and thrombotic potential in MPN hematopoietic cells. SUMMARY HIFα and inflammatory pathways are new therapeutic targets in MPN, with the potential to ameliorate thrombotic risk and perhaps eradicate mutant progenitor cells.
Collapse
Affiliation(s)
- Brandi N Reeves
- Hematology Division, Department of Medicine, Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alison R Moliterno
- Hematology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Resolving thromboinflammation. Blood 2021; 137:1444-1446. [PMID: 33734338 DOI: 10.1182/blood.2020010627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Iffah R, Gavins FNE. Thromboinflammation in coronavirus disease 2019: The clot thickens. Br J Pharmacol 2021; 179:2100-2107. [PMID: 34128218 PMCID: PMC8444860 DOI: 10.1111/bph.15594] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Since the start of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic, a disease that has become one of the world's greatest global health challenges, the role of the immune system has been at the forefront of scientific studies. The pathophysiology of coronavirus disease 2019 (COVID‐19) is complex, which is evident in those at higher risk for poor outcome. Multiple systems contribute to thrombosis and inflammation seen in COVID‐19 patients, including neutrophil and platelet activation, and endothelial dysfunction. Understanding how the immune system functions in different patient cohorts (particularly given recent emerging events with the Oxford/AstraZeneca vaccine) is vital to understanding the pathophysiology of this devastating disease and for the subsequent development of novel therapeutic targets and to facilitate possible drug repurposing strategies that could benefit society on a global scale.
Collapse
Affiliation(s)
- Raayma Iffah
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, London, UK
| | - Felicity N E Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, London, UK
| |
Collapse
|
48
|
Xia Q, Mao M, Zeng Z, Luo Z, Zhao Y, Shi J, Li X. Inhibition of SENP6 restrains cerebral ischemia-reperfusion injury by regulating Annexin-A1 nuclear translocation-associated neuronal apoptosis. Am J Cancer Res 2021; 11:7450-7470. [PMID: 34158860 PMCID: PMC8210613 DOI: 10.7150/thno.60277] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Annexin-A1 (ANXA1) has previously been proposed to play a crucial role in neuronal apoptosis during ischemic stroke injury. Our recent study demonstrated that ANXA1 was modified by SUMOylation, and that this modification was greatly weakened after cerebral ischemia, but its effect on neuronal death and the underlying mechanism have not been fully elucidated. Methods: Mice subjected to middle cerebral artery occlusion were established as the animal model and primary cultured neurons treated with oxygen-glucose deprivation and reperfusion was established as the cell model of ischemic stroke. The Ni2+-NTA agarose affinity pull-down assay was carried out to determine the SUMOylation level of ANXA1. Co-immunoprecipitation assays was utilized to explore the protein interaction. Immunoblot analysis, quantitative real-time PCR, Luciferase reporter assay were performed to identify the regulatory mechanism. LDH release and TUNEL staining was performed to investigate the neuronal cytotoxicity and apoptosis, respectively. Results: In this study, we identified the deSUMOylating enzyme sentrin/SUMO-specific protease 6 (SENP6) as a negative regulator of ANXA1 SUMOylation. Notably, we found that SENP6-mediated deSUMOylation of ANXA1 induced its nuclear translocation and triggered neuronal apoptosis during cerebral ischemic injury. A mechanistic study demonstrated that SENP6-mediated deSUMOylation of ANXA1 promoted TRPM7- and PKC-dependent phosphorylation of ANXA1. Furthermore, blocking the deSUMOylation of ANXA1 mediated by SENP6 inhibited the transcriptional activity of p53, decreased Bid expression, suppressed caspase-3 pathway activation and reduced the apoptosis of primary neurons subjected to oxygen-glucose deprivation and reperfusion. More importantly, SENP6 inhibition by overexpression of a SENP6 catalytic mutant in neurons resulted in significant improvement in neurological function in the mouse model of ischemic stroke. Conclusions: Taken together, the results of this study identified a previously unidentified function of SENP6 in neuronal apoptosis and strongly indicated that SENP6 inhibition may provide therapeutic benefits for cerebral ischemia.
Collapse
|
49
|
Ansari J, Gavins FNE. The impact of thrombo-inflammation on the cerebral microcirculation. Microcirculation 2021; 28:e12689. [PMID: 33638262 DOI: 10.1111/micc.12689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
The intertwined processes of thrombosis and inflammation (termed "thrombo-inflammation") are significant drivers of cerebrovascular diseases, and as such, they represent prime targets for drug discovery programs focusing on treatment and management of cerebrovascular diseases. Most cerebrovascular events result from chronic systemic microcirculatory dysfunction due to underlying conditions, for example, hypertension, diabetes mellitus, coronary artery disease, dyslipidemia, and sickle cell disease. Immune cells especially neutrophils play a critical role in the onset and maintenance of neuroinflammatory responses in the microcirculation. Neutrophils have the ability to drive both inflammatory and anti-inflammatory/pro-resolution effects depending on the underlying vascular state (physiological vs. pathological). In this article, we highlight the pathophysiological role of neutrophils in stroke and discuss ongoing pharmacotherapeutic strategies that are focused on identifying potential therapeutic targets for enhancing neuroprotection, mitigating inflammatory pathways, and enabling resolution.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Felicity N E Gavins
- Department of Life Sciences, The Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, Middlesex, UK
| |
Collapse
|