1
|
Koka PS, Ramdass B. ISG15-LFA1 interactions in latent HIV clearance: mechanistic implications in designing antiviral therapies. Front Cell Dev Biol 2024; 12:1497964. [PMID: 39810915 PMCID: PMC11729345 DOI: 10.3389/fcell.2024.1497964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Interferon types-I/II (IFN-αβ/γ) secretions are well-established antiviral host defenses. The human immunodeficiency virus (HIV) particles are known to prevail following targeted cellular interferon secretion. CD4+ T-lymphocytes are the primary receptor targets for HIV entry, but the virus has been observed to hide (be latent) successfully in these cells through an alternate entry route via interactions with LFA1. HIV facilitates its post-entry latency-driven mode of hiding through these interactions to displace or inhibit ISG15 by forming the HIV1-LFA1 complex in lieu of ISG15-LFA1, which would at least transiently halt and bypass type-I IFN secretion. This could explain why the elimination of HIV from cellular hideouts is difficult. Hence, HIV clearance needs to be addressed to reverse its latency in LFA1+ T-lymphocytes and CD34+/CD133+ early progenitor stem cells. In the context of hematopoietic or endothelial stem-progenitor cells (HSPC/ESPC), we discuss the potential role of LFA1 in HIV permissiveness and latency in LFA1-CD34+/CD133+ versus LFA1+CD34+/CD133+ HSPCs/ESPCs. In HIV latency, the viral particles may remain engaged on the naïve-resting cells' LFA1, which are then unable to accommodate the ISG15 molecules owing to conformational changes induced upon occupation by the virus at the ISG15-LFA1 binding or interaction sites through halting of the subsequent downstream type-II IFN secretion. Viral binding to LFA1, including its transfer through activated-naïve cell-cell contacts may be a key step that needs to be addressed to prevent "transient or partial" virus-induced shutdown of type-I IFN secretion. This process allows an alternate viral entry and hideout site via LFA1. The subsequent administration of recombinant ISG15 may ensure sufficient type I/II IFN release to promote, enhance, or sustain the innate immune responses. Thus, combination antiviral therapies could potentially include exogenous ISG15 to maintain or sustain biologically and clinically relevant ISG15-LFA1 interactions. In addition to alternating with co-challenges of PKC-pro-LRA-drug modulators, this is administered post (antiretroviral therapy) and continued with periodic ART until permanent elimination of viral resurgence and latency is achieved in patients with HIV/AIDS. This triple-combination drug regimen is expected to pave the path for systemic virus clearance in vivo.
Collapse
Affiliation(s)
- Prasad S. Koka
- Biomedical Research Institute of Southern California, Oceanside, CA, United States
| | | |
Collapse
|
2
|
Lee YM. RUNX Family in Hypoxic Microenvironment and Angiogenesis in Cancers. Cells 2022; 11:cells11193098. [PMID: 36231060 PMCID: PMC9564080 DOI: 10.3390/cells11193098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
The tumor microenvironment (TME) is broadly implicated in tumorigenesis, as tumor cells interact with surrounding cells to influence the development and progression of the tumor. Blood vessels are a major component of the TME and are attributed to the creation of a hypoxic microenvironment, which is a common feature of advanced cancers and inflamed premalignant tissues. Runt-related transcription factor (RUNX) proteins, a transcription factor family of developmental master regulators, are involved in vital cellular processes such as differentiation, proliferation, cell lineage specification, and apoptosis. Furthermore, the RUNX family is involved in the regulation of various oncogenic processes and signaling pathways as well as tumor suppressive functions, suggesting that the RUNX family plays a strategic role in tumorigenesis. In this review, we have discussed the relevant findings that describe the crosstalk of the RUNX family with the hypoxic TME and tumor angiogenesis or with their signaling molecules in cancer development and progression.
Collapse
Affiliation(s)
- You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Lab of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-8566; Fax:+82-53-950-8557
| |
Collapse
|
3
|
Danek P, Kardosova M, Janeckova L, Karkoulia E, Vanickova K, Fabisik M, Lozano-Asencio C, Benoukraf T, Tirado-Magallanes R, Zhou Q, Burocziova M, Rahmatova S, Pytlik R, Brdicka T, Tenen DG, Korinek V, Alberich-Jorda M. β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood 2020; 136:2574-2587. [PMID: 32822472 PMCID: PMC7714095 DOI: 10.1182/blood.2019004664] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt signaling pathway is mediated by interaction of β-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of β-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates β-catenin-TCF/LEF interaction. Disruption of the β-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of β-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of β-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the β-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the β-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.
Collapse
Affiliation(s)
- Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslava Kardosova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | - Elena Karkoulia
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Vanickova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Carlos Lozano-Asencio
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Touati Benoukraf
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Qiling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Monika Burocziova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Rahmatova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Robert Pytlik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Tomas Brdicka
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | | | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Li Y, Liu Y, Juedes D, Drews F, Bunescu R, Welch L. Set cover-based methods for motif selection. Bioinformatics 2020; 36:1044-1051. [PMID: 31665223 PMCID: PMC7703758 DOI: 10.1093/bioinformatics/btz697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 08/13/2019] [Accepted: 09/13/2019] [Indexed: 11/14/2022] Open
Abstract
Motivation De novo motif discovery algorithms find statistically over-represented sequence motifs that may function as transcription factor binding sites. Current methods often report large numbers of motifs, making it difficult to perform further analyses and experimental validation. The motif selection problem seeks to identify a minimal set of putative regulatory motifs that characterize sequences of interest (e.g. ChIP-Seq binding regions). Results In this study, the motif selection problem is mapped to variants of the set cover problem that are solved via tabu search and by relaxed integer linear programing (RILP). The algorithms are employed to analyze 349 ChIP-Seq experiments from the ENCODE project, yielding a small number of high-quality motifs that represent putative binding sites of primary factors and cofactors. Specifically, when compared with the motifs reported by Kheradpour and Kellis, the set cover-based algorithms produced motif sets covering 35% more peaks for 11 TFs and identified 4 more putative cofactors for 6 TFs. Moreover, a systematic evaluation using nested cross-validation revealed that the RILP algorithm selected fewer motifs and was able to cover 6% more peaks and 3% fewer background regions, which reduced the error rate by 7%. Availability and implementation The source code of the algorithms and all the datasets are available at https://github.com/YichaoOU/Set_cover_tools. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yichao Li
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - Yating Liu
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - David Juedes
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - Frank Drews
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - Razvan Bunescu
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - Lonnie Welch
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
5
|
Kapoor S, Shenoy SP, Bose B. CD34 cells in somatic, regenerative and cancer stem cells: Developmental biology, cell therapy, and omics big data perspective. J Cell Biochem 2019; 121:3058-3069. [PMID: 31886574 DOI: 10.1002/jcb.29571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
The transmembrane phosphoglycoprotein protein CD34 has conventionally been regarded as a marker for hematopoietic progenitors. Its expression on these cells has been leveraged for cell therapy applications in various hematological disorders. More recently, the expression of CD34 has also been reported on cells of nonhematopoietic origin. The list includes somatic cells such as endothelial cells, fibrocytes and interstitial cells and regenerative stem cells such as corneal keratocytes, muscle satellite cells, and muscle-derived stem cells. Furthermore, its expression on some cancer stem cells (CSCs) has also been reported. Till date, the functional roles of this molecule have been implicated in a multitude of cellular processes including cell adhesion, signal transduction, and maintenance of progenitor phenotype. However, the complete understanding about this molecule including its developmental origins, its embryonic connection, and associated functions is far from complete. Here, we review our present understanding of the structure and putative functions of the CD34 molecule based upon our literature survey. We also probed various biological databases to retrieve data related to the expression and associated molecular functions of CD34. Such information, upon synthesis, is hence likely to provide the suitability of such cells for cell therapy. Moreover, we have also covered the existing cell therapy and speculated cell therapy applications of CD34+ cells isolated from various lineages. We have also attempted here to speculate the role(s) of CD34 on CSCs. Finally, we discuss number of large-scale proteomics and transcriptomics studies that have been performed using CD34+ cells.
Collapse
Affiliation(s)
- Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer P Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
6
|
Daniel MG, Sachs D, Bernitz JM, Fstkchyan Y, Rapp K, Satija N, Law K, Patel F, Gomes AM, Kim HS, Pereira CF, Chen B, Lemischka IR, Moore KA. Induction of human hemogenesis in adult fibroblasts by defined factors and hematopoietic coculture. FEBS Lett 2019; 593:3266-3287. [PMID: 31557312 DOI: 10.1002/1873-3468.13621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Transcription factor (TF)-based reprogramming of somatic tissues holds great promise for regenerative medicine. Previously, we demonstrated that the TFs GATA2, GFI1B, and FOS convert mouse and human fibroblasts to hemogenic endothelial-like precursors that generate hematopoietic stem progenitor (HSPC)-like cells over time. This conversion is lacking in robustness both in yield and biological function. Herein, we show that inclusion of GFI1 to the reprogramming cocktail significantly expands the HSPC-like population. AFT024 coculture imparts functional potential to these cells and allows quantification of stem cell frequency. Altogether, we demonstrate an improved human hemogenic induction protocol that could provide a valuable human in vitro model of hematopoiesis for disease modeling and a platform for cell-based therapeutics. DATABASE: Gene expression data are available in the Gene Expression Omnibus (GEO) database under the accession number GSE130361.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Sachs
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey M Bernitz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Yesai Fstkchyan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namita Satija
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Law
- Rocket Pharmaceuticals Ltd, New York, NY, USA
| | - Foram Patel
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andreia M Gomes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Huen-Suk Kim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos-Filipe Pereira
- Division of Molecular Medicine and Gene Therapy, Lund University, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | - Benjamin Chen
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, NY, USA
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Choo SY, Yoon SH, Lee DJ, Lee SH, Li K, Koo IH, Lee W, Bae SC, Lee YM. Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity. Int J Oncol 2019; 54:1327-1336. [PMID: 30968151 DOI: 10.3892/ijo.2019.4713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are bone marrow (BM)‑derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt‑related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM‑derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/‑) or wild‑type (WT) mice. The differentiation of EPCs from the BM‑derived HSCs of Rx3+/‑ mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony‑forming units. The migration and tube formation abilities of Rx3+/‑ EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/‑ mice. Hypoxia‑inducible factor (HIF)‑1α was upregulated in Rx3+/‑ EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/‑ mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/‑ mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/‑ mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF‑1α activity.
Collapse
Affiliation(s)
- So-Yun Choo
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Hyun Yoon
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Jin Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sun Hee Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kang Li
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Hye Koo
- National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wooin Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute of Tumor Research, Chungbuk National University, Chungju 28644, Republic of Korea
| | - You Mie Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Jia W, Liang D, Li N, Liu M, Dong Z, Li J, Dong X, Yue Y, Hu P, Yao J, Zhao Q. Zebrafish microRNA miR-210-5p inhibits primitive myelopoiesis by silencing foxj1b and slc3a2a mRNAs downstream of gata4/5/6 transcription factor genes. J Biol Chem 2018; 294:2732-2743. [PMID: 30593510 DOI: 10.1074/jbc.ra118.005079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/22/2018] [Indexed: 12/21/2022] Open
Abstract
Zebrafish gata4/5/6 genes encode transcription factors that lie on the apex of the regulatory hierarchy in primitive myelopoiesis. However, little is known about the roles of microRNAs in gata4/5/6-regulated processes. Performing RNA-Seq deep sequencing analysis of the expression changes of microRNAs in gata4/5/6-knockdown embryos, we identified miR-210-5p as a regulator of zebrafish primitive myelopoiesis. Knocking down gata4/5/6 (generating gata5/6 morphants) significantly increased miR-210-5p expression, whereas gata4/5/6 overexpression greatly reduced its expression. Consistent with inhibited primitive myelopoiesis in the gata5/6 morphants, miR-210-5p overexpression repressed primitive myelopoiesis, indicated by reduced numbers of granulocytes and macrophages. Moreover, knocking out miR-210 partially rescued the defective primitive myelopoiesis in zebrafish gata4/5/6-knockdown embryos. Furthermore, we show that the restrictive role of miR-210-5p in zebrafish primitive myelopoiesis is due to impaired differentiation of hemangioblast into myeloid progenitor cells. By comparing the set of genes with reduced expression levels in the gata5/6 morphants to the predicted target genes of miR-210-5p, we found that foxj1b and slc3a2a, encoding a forkhead box transcription factor and a solute carrier family 3 protein, respectively, are two direct downstream targets of miR-210-5p that mediate its inhibitory roles in zebrafish primitive myelopoiesis. In summary, our results reveal that miR-210-5p has an important role in the genetic network controlling zebrafish primitive myelopoiesis.
Collapse
Affiliation(s)
- Wenshuang Jia
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Dong Liang
- the Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, and
| | - Nan Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Meijing Liu
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Zhangji Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Jingyun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Xiaohua Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Yunyun Yue
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Ping Hu
- the Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, and
| | - Jihua Yao
- the State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qingshun Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061,
| |
Collapse
|
9
|
Lee SH, Manandhar S, Lee YM. Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:449-469. [PMID: 28299673 DOI: 10.1007/978-981-10-3233-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past two decades, Runt domain transcription factors (RUNX1, 2, and 3) have been investigated in regard to their function, structural elements, genetic variants, and roles in normal development and pathological conditions. The Runt family proteins are evolutionarily conserved from Drosophila to mammals, emphasizing their physiological importance. A hypoxic microenvironment caused by insufficient blood supply is frequently observed in developing organs, growing tumors, and tissues that become ischemic due to impairment or blockage of blood vessels. During embryonic development and tumor growth, hypoxia triggers a stress response that overcomes low-oxygen conditions by increasing erythropoiesis and angiogenesis and triggering metabolic changes. This review briefly introduces hypoxic conditions and cellular responses, as well as angiogenesis and its related signaling pathways, and then describes our current knowledge on the functions and molecular mechanisms of Runx family proteins in hypoxic responses, especially in angiogenesis.
Collapse
Affiliation(s)
- Sun Hee Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Sarala Manandhar
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - You Mie Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
10
|
A novel miR-200b-3p/p38IP pair regulates monocyte/macrophage differentiation. Cell Discov 2016; 2:15043. [PMID: 27462440 PMCID: PMC4860955 DOI: 10.1038/celldisc.2015.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023] Open
Abstract
Monocyte/macrophage differentiation represents a major branch of hematopoiesis and is a central event in the immune response, but the molecular mechanisms underlying are not fully delineated. Here we show that p38 mitogen-activated protein kinase (MAPK) interacting protein (p38IP) is downregulated during monocyte/macrophage differentiation in vitro. Overexpression of p38IP halted monocyte/macrophage differentiation, whereas forward knockdown of p38IP by RNA interference induced G1/S arrest and promoted monocyte differentiation into macrophages and the maturation of macrophages as well. Moreover, we found that miR-200b-3p was upregulated during monocyte/macrophage differentiation and mediated the downregulation of p38IP by binding to the 3′ untranslated terminal region of p38IP mRNA. Overexpression of a miR-200b-3p mimic resembled the effect of p38IP knockdown, whereas a miR-200b-3p inhibitor blocked monocyte/macrophage differentiation by enhancing p38IP expression. Further western blotting analysis revealed that p38IP downregulation enhanced the activity of p38 MAPK and the subsequent accumulation of cyclin-dependent kinase inhibitor p21, thus promoting G1/S arrest and monocyte/macrophage differentiation. Moreover, the decline of GCN5 acetyltransferase caused by p38IP downregulation was required but was not sufficient for monocyte/macrophage differentiation. This study demonstrated a new role for p38IP and a novel miR-200b-3p/p38IP pair in the regulation of monocyte/macrophage differentiation.
Collapse
|
11
|
Mehrotra M, Medeiros LJ, Luthra R, Sargent RL, Yao H, Barkoh BA, Singh R, Patel KP. Identification of putative pathogenic microRNA and its downstream targets in anaplastic lymphoma kinase–negative anaplastic large cell lymphoma. Hum Pathol 2014; 45:1995-2005. [DOI: 10.1016/j.humpath.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/10/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
|
12
|
Identification of KAP-1-associated complexes negatively regulating the Ey and β-major globin genes in the β-globin locus. J Proteomics 2013; 80:132-44. [PMID: 23291531 DOI: 10.1016/j.jprot.2012.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 12/11/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
Abstract
Deregulations of erythroid differentiation may lead to erythroleukemia and other hemoglobinopathies, yet the molecular mechanisms underlying these events are not fully understood. Here, we found that KAP-1-associated complexes contribute to the regulation of the β-globin locus, the key events of erythroid differentiation. We show that RNAi-mediated knockdown of KAP-1 in mouse erythroleukemia (MEL) cells increases expression of the Ey and β-major globin genes during hexamethylenebisacetamide (HMBA) induced differentiation process. This indicates that at least part of KAP-1-associated complexes negatively regulates β-globin gene expression during definitive erythroid differentiation. ChIP-PCR analysis revealed that one or more KAP-1-associated complexes are targeted to the promoter region of the Ey and beta-major globin genes. Since KAP-1 is only a scaffold molecule, there must be some transcriptional regulators allowing its targeted recruitment to the β-globin locus. To further discover these novel regulators, proteins interacting with KAP-1 were isolated by endogenous immunoprecipitation and identified by LC-ESI-MS/MS. Among the proteins identified, MafK and Zfp445 were studied further. We found that KAP-1 may contribute to the repression of Ey and β-major globin gene transcription through recruitment to the promoters of these two genes, mediated by the interaction of KAP-1 with either Zfp445 or MafK, respectively.
Collapse
|
13
|
Kranc KR, Schepers H, Rodrigues NP, Bamforth S, Villadsen E, Ferry H, Bouriez-Jones T, Sigvardsson M, Bhattacharya S, Jacobsen SE, Enver T. Cited2 is an essential regulator of adult hematopoietic stem cells. Cell Stem Cell 2010; 5:659-65. [PMID: 19951693 PMCID: PMC2828538 DOI: 10.1016/j.stem.2009.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/06/2009] [Accepted: 11/02/2009] [Indexed: 12/18/2022]
Abstract
The regulatory pathways necessary for the maintenance of adult hematopoietic stem cells (HSCs) remain poorly defined. By using loss-of-function approaches, we report a selective and cell-autonomous requirement for the p300/CBP-binding transcriptional coactivator Cited2 in adult HSC maintenance. Conditional deletion of Cited2 in the adult mouse results in loss of HSCs causing multilineage bone marrow failure and increased lethality. In contrast, conditional ablation of Cited2 after lineage specification in lymphoid and myeloid lineages has no impact on the maintenance of these lineages. Additional deletion of Ink4a/Arf (encoding p16(Ink4a) and p19(Arf)) or Trp53 (encoding p53, a downstream target of p19(Arf)) in a Cited2-deficient background restores HSC functionality and rescues mice from bone marrow failure. Furthermore, we show that the critical role of Cited2 in primitive hematopoietic cells is conserved in humans. Taken together, our studies provide genetic evidence that Cited2 selectively maintains adult HSC functions, at least in part, via Ink4a/Arf and Trp53.
Collapse
Affiliation(s)
- Kamil R Kranc
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The transcriptome of human CD34+ hematopoietic stem-progenitor cells. Proc Natl Acad Sci U S A 2009; 106:8278-83. [PMID: 19416867 DOI: 10.1073/pnas.0903390106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studying gene expression at different hematopoietic stages provides insights for understanding the genetic basis of hematopoiesis. We analyzed gene expression in human CD34(+) hematopoietic cells that represent the stem-progenitor population (CD34(+) cells). We collected >459,000 transcript signatures from CD34(+) cells, including the de novo-generated 3' ESTs and the existing sequences of full-length cDNAs, ESTs, and serial analysis of gene expression (SAGE) tags, and performed an extensive annotation on this large set of CD34(+) transcript sequences. We determined the genes expressed in CD34(+) cells, verified the known genes and identified the new genes of different functional categories involved in hematopoiesis, dissected the alternative gene expression including alternative transcription initiation, splicing, and adenylation, identified the antisense and noncoding transcripts, determined the CD34(+) cell-specific gene expression signature, and developed the CD34(+) cell-transcription map in the human genome. Our study provides a current view on gene expression in human CD34(+) cells and reveals that early hematopoiesis is an orchestrated process with the involvement of over half of the human genes distributed in various functions. The data generated from our study provide a comprehensive and uniform resource for studying hematopoiesis and stem cell biology.
Collapse
|
15
|
Bogunia-Kubik K, Gieryng A, Dlubek D, Lange A. The CXCL12-3'A allele is associated with a higher mobilization yield of CD34 progenitors to the peripheral blood of healthy donors for allogeneic transplantation. Bone Marrow Transplant 2009; 44:273-8. [PMID: 19252530 DOI: 10.1038/bmt.2009.30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interaction between CXCL12 and its receptor CXCR4 plays a crucial role in the homing and mobilization of haematopoietic progenitors. We investigated the putative association between a CXCL12 gene polymorphism, the G --> A transition at position 801 in the 3'-untranslated region (3'UTR), and the yield of CD34(+) progenitors in 65 healthy allogeneic transplant donors who received G-CSF. Importantly, in this setting, the analysis was not biased by background disease or chemotherapy. The 3'UTR CXCL12 G801A polymorphism was detected using a PCR-RFLP technique with the MspI restriction enzyme and the frequency of CD34(+) progenitors was assessed by flow cytometry. The frequency as well as the number of CD34(+) progenitor cells in the first leukapheresis product was significantly higher from donors with the CXCL12-3'A allele compared to GG homozygotes (P<0.05 in both cases), especially for subjects with the CXCL12-3'AA homozygous genotype (P<0.01 in both cases). Moreover, more leukaphereses were needed to obtain the required number of CD34(+) progenitors for transplantation from CXCL12-3'GG homozygous donors compared to the CXCL12-3'A carriers (P=0.003). In conclusion, the CXCL12-3'A allele was associated with a higher yield of CD34(+) cells from healthy donors of PBPC for allogeneic haematopoietic SCT.
Collapse
Affiliation(s)
- K Bogunia-Kubik
- L Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| | | | | | | |
Collapse
|
16
|
Cashen AF, Lazarus HM, Devine SM. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF? Bone Marrow Transplant 2007; 39:577-88. [PMID: 17369869 DOI: 10.1038/sj.bmt.1705616] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.
Collapse
Affiliation(s)
- A F Cashen
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | |
Collapse
|
17
|
Ivascu C, Wasserkort R, Lesche R, Dong J, Stein H, Thiel A, Eckhardt F. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas. Int J Biochem Cell Biol 2007; 39:1523-38. [PMID: 17433759 DOI: 10.1016/j.biocel.2007.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/22/2007] [Accepted: 02/02/2007] [Indexed: 01/06/2023]
Abstract
Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.
Collapse
MESH Headings
- 5' Untranslated Regions
- Cell Line, Tumor
- Cell Lineage
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Hematopoiesis
- Humans
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphocytes/cytology
- Lymphocytes/metabolism
- Lymphoma/metabolism
- Lymphoma/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Claudia Ivascu
- Epigenomics AG, Kleine Präsidentenstrasse 1, 10178 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Zohn IE, Li Y, Skolnik EY, Anderson KV, Han J, Niswander L. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 2006; 125:957-69. [PMID: 16751104 DOI: 10.1016/j.cell.2006.03.048] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/31/2005] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
During vertebrate gastrulation, an epithelial to mesenchymal transition (EMT) is necessary for migration of mesoderm from the primitive streak. We demonstrate that p38 MAP kinase and a p38-interacting protein (p38IP) are critically required for downregulation of E-cadherin during gastrulation. In an ENU-mutagenesis screen we identified the droopy eye (drey) mutation, which affects splicing of p38IP. p38IP(drey) mutant embryos display incompletely penetrant defects in neural tube closure, eye development, and gastrulation. A stronger allele (p38IP(RRK)) exhibits gastrulation defects in which mesoderm migration is defective due to deficiency in E-cadherin protein downregulation in the primitive streak. We show that p38IP binds directly to p38 and is required for p38 activation in vivo. Moreover, both p38 and p38IP are required for E-cadherin downregulation during gastrulation. Finally, p38 regulates E-cadherin protein expression downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by Fibroblast Growth Factor (Fgf) signaling and Snail.
Collapse
Affiliation(s)
- Irene E Zohn
- Howard Hughes Medical Institute, Department of Pediatrics, Section of Developmental Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Adult tissue-specific stem cells have the capacity to self-renew and generate functional differentiated cells that replenish lost cells throughout an organism's lifetime. Studies on stem cells from diverse systems have shown that stem cell function is controlled by extracellular cues from the niche and by intrinsic genetic programs within the stem cell. Here, we review the remarkable progress recently made in research regarding the stem cell niche. We compare the differences and commonalities of different stem cell niches in Drosophila ovary/testis and Caenorhabditis elegans distal tip, as well as in mammalian bone marrow, skin/hair follicle, intestine, brain, and testis. On the basis of this comparison, we summarize the common features, structure, and functions of the stem cell niche and highlight important niche signals that are conserved from Drosophila to mammals. We hope this comparative summary defines the basic elements of the stem cell niche, providing guiding principles for identification of the niche in other systems and pointing to areas for future studies.
Collapse
Affiliation(s)
- Linheng Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
20
|
Bao-Lei T, Zhu-Zhong M, Yi S, Jun-Jie Q, Yan D, Hua L, Bin L, Guo-Wei Z, Zhi-Xian S. Knocking down PML impairs p53 signaling transduction pathway and suppresses irradiation induced apoptosis in breast carcinoma cell MCF-7. J Cell Biochem 2006; 97:561-71. [PMID: 16215989 DOI: 10.1002/jcb.20584] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The promyelocytic leukemia (PML) can selectively and dynamically recruit a number of proteins including p53 to form a sub-nuclear multiprotein chamber named PML-NBs. In DNA damage response, p53 is recruited into PML-NBs and modified by phosphorylations and acetylations, which in turn potentiate its transcriptional and pro-apoptotic activities. In contrast, in carcinoma cells, the role of PML in the irradiation induced p53-mediated apoptosis is not precisely understood. In this study, we have used the breast carcinoma cell line, MCF-7, and stably suppressed the expression of PML. Inhibition of PML expression had no detectable effect on the expression of endogenous p53 at the mRNA level; however, a significant decrease of p53 protein was observed. There was also an increase in the p53-MDM2 complexes, which may facilitate p53 protein degradation by the ubiquitin-proteasome pathway, also in irradiation treated cells. The p53 transcriptional activity was attenuated both in unstressed and 10 Gy irradiation treated cells. Moreover, inhibition of PML expression in MCF-7 cells significantly reduced p53 downstream genes, cell cycle arrest gene p21(WAF/cip-1) and pro-apoptotic gene Bax expression, then irradiation-induced apoptosis. These results suggest that PML is a key regulator in the irradiation activated p53 apoptotic pathway in breast carcinoma cells.
Collapse
Affiliation(s)
- Tian Bao-Lei
- Beijing Institute of Radiation Medicine, Taiping Road #27, Haidian, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Paglieroni TG, Janatpour K, Gosselin R, Crocker V, Dwyre DM, MacKenzie MR, Holland PV, Larkin EC. Platelet function abnormalities in qualified whole-blood donors: effects of medication and recent food intake. Vox Sang 2004; 86:48-53. [PMID: 14984560 DOI: 10.1111/j.0042-9007.2004.00384.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Platelet function abnormalities have been reported in blood donors who have not consumed aspirin. Our objective was to identify factors other than aspirin that may contribute to impaired platelet function in qualified volunteer blood donors. MATERIALS AND METHODS Blood samples were obtained from 24 donors following routine blood donation. Donors completed a study questionnaire that included questions about recent food consumption, medication and medical history. Platelet activation was measured using monoclonal antibodies and flow cytometry. CD62P expression and PAC-1 binding on platelets were used as indicators of platelet activation. Platelet function was measured on a platelet function analyser (PFA-100) using both collagen/epinephrine (cEPI) and collagen/ADP (cADP) cartridges. RESULTS Fifty-four per cent of donors (13 of 24) had normal platelet function. Thirty-eight per cent (nine of 24) had prolonged cEPI closure times, of whom four (17%) had no cEPI closure (> 300 seconds). No closure was associated with aspirin use (two donors) or chocolate consumption (two donors) before donation. Two donors (8%) had either a shortened cEPI or cADP closure time. CONCLUSIONS Platelet dysfunction in qualified blood donors is underestimated. Platelet function screening can identify donors with diet-related platelet dysfunction or with poor recollection of aspirin use.
Collapse
Affiliation(s)
- T G Paglieroni
- BloodSource-Center for Blood Research, Sacramento, CA, USA University of California Davis Medical Center, Sacramento, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wagner W, Ansorge A, Wirkner U, Eckstein V, Schwager C, Blake J, Miesala K, Selig J, Saffrich R, Ansorge W, Ho AD. Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 2004; 104:675-86. [PMID: 15090461 DOI: 10.1182/blood-2003-10-3423] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms that regulate asymmetric divisions of hematopoietic progenitor cells (HPCs) are not yet understood. The slow-dividing fraction (SDF) of HPCs is associated with primitive function and self-renewal, whereas the fast-dividing fraction (FDF) predominantly proceeds to differentiation. CD34+/CD38- cells of human umbilical cord blood were separated into the SDF and FDF. Genomewide gene expression analysis of these populations was determined using the newly developed Human Transcriptome Microarray containing 51 145 cDNA clones of the Unigene Set-RZPD3. In addition, gene expression profiles of CD34+/CD38- cells were compared with those of CD34+/CD38+ cells. Among the genes showing the highest expression levels in the SDF were the following: CD133, ERG, cyclin G2, MDR1, osteopontin, CLQR1, IFI16, JAK3, FZD6, and HOXA9, a pattern compatible with their primitive function and self-renewal capacity. Furthermore, morphologic differences between the SDF and FDF were determined. Cells in the SDF have more membrane protrusions and CD133 is located on these lamellipodia. The majority of cells in the SDF are rhodamine-123dull. These results provide molecular evidence that the SDF is associated with primitive function and serves as basis for a detailed understanding of asymmetric division of stem cells.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gazitt Y. Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 2004; 18:1-10. [PMID: 14574330 DOI: 10.1038/sj.leu.2403173] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adhesion molecules and stromal cell-derived factor-1 (SDF-1)/CXCR4 signaling play key role in homing and mobilization of hematopoietic progenitor (HPC) and hematopoietic cancer clonogenic cells (HCC). High expression of VLA-4 is required for homing of HPC and HCC, whereas downregulation of these molecules is required for successful mobilization of HPC and HCC. Upregulation and activation of the SDF-1/CXCR4 signaling is required for homing of HPC and HCC, whereas disruption of the SDF-1 signaling is required for mobilization of HPC and HCC. Hence, mobilizations of HPC and HCC occur concurrently. It is proposed that drug resistance evolves as a result of repeated cycles of chemotherapy. Following each cycle of chemotherapy, HCC lose adhesion molecules and SDF-1 signaling. Surviving cells, released from tumor sites, circulate until re-expression of adhesion molecules and CXCR4 occurs, then homing to stroma of distal tissues occurs. Cytokines secreted by cells in the new microenvironment induce proliferation and drug resistance of HCC. This process is amplified in each cycle of chemotherapy resulting in disease progression. A novel model for treatment is proposed in which circulating HCC are the target for clinical intervention, and concurrent treatment with chemotherapy and antilineage-specific antibodies will result in abrogation of the 'vicious cycle' of conventional anticancer therapy.
Collapse
Affiliation(s)
- Y Gazitt
- University of Texas Health Science Center, San Antonio, TX 78284, USA
| |
Collapse
|
24
|
Pohar TT, Sun H, Davuluri RV. HemoPDB: Hematopoiesis Promoter Database, an information resource of transcriptional regulation in blood cell development. Nucleic Acids Res 2004; 32:D86-90. [PMID: 14681365 PMCID: PMC308790 DOI: 10.1093/nar/gkh056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hematopoiesis describes the process of the normal formation and development of blood cells, involving both proliferation and differentiation from stem cells. Abnormalities in this developmental program yield blood cell diseases, such as leukemia. Although, in recent years, extensive molecular research in normal hematopoietic development has characterized transcription factors and their binding sites in the target gene promoters, the information generated is highly fragmented. In order to integrate this important regulatory information with the corresponding genomic sequences, we have developed a new database called Hematopoiesis Promoter Database (HemoPDB). HemoPDB is a comprehensive resource focused on transcriptional regulation during hematopoietic development and associated aberrances that result in malignancy. HemoPDB (version 1.0) contains 246 promoter sequences and 604 experimentally known cis-regulatory elements of 187 different transcription factors, with links to published references. Orthologous promoters from different species are linked with each other and displayed in the same database record, accompanied by a visual image of the promoters and corresponding annotations of cis-regulatory elements. HemoPDB may be searched for the promoter of a specific gene, transcription factors and target genes, and genes that are expressed in a certain cell type or lineage, through a user-friendly web interface at http://bioinformatics.med.ohio-state.edu/HemoPDB. Links to the documentation and other technical details are provided on this website.
Collapse
Affiliation(s)
- Twyla T Pohar
- Division of Human Cancer Genetics, Comprehensive Cancer Center, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
25
|
Dorsam ST, Ferrell CM, Dorsam GP, Derynck MK, Vijapurkar U, Khodabakhsh D, Pau B, Bernstein H, Haqq CM, Largman C, Lawrence HJ. The transcriptome of the leukemogenic homeoprotein HOXA9 in human hematopoietic cells. Blood 2003; 103:1676-84. [PMID: 14604967 DOI: 10.1182/blood-2003-07-2202] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hematopoietic defects in HOXA9(-/-) mice demonstrate a key role for this homeoprotein in blood cell development. Conversely, enforced HOXA9 expression is leukemogenic in mice, and HOXA9 is frequently activated in human acute myeloid leukemia (AML). Although HOXA9 is thought to function as a transcription factor, few downstream targets have been identified. We searched for early HOXA9 target genes by using a transient overexpression strategy in 3 hematopoietic cell lines (2 myeloid, 1 lymphoid). cDNA microarray analyses identified 220 genes whose expression was modulated at least 2-fold. Expression signatures in myeloid and lymphoid cells demonstrated that HOXA9 functions as both an activator and repressor of a variety of genes in cell-specific patterns suggesting that the transcriptional effects of HOXA9 are largely dependent on the cell context. Transient transcription assays and target gene expression patterns in HOXA9(-/-) marrow cells imply that we have identified direct physiologic targets. Many target genes are expressed in CD34+ stem cells or are members of gene families involved in proliferation or myeloid differentiation. Expression of 14 HOXA9 target genes correlated with high-level HOXA9 expression in primary AML. These data suggest that many genes identified in this survey may mediate the biologic effects of HOXA9 in normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- Sheri Tinnell Dorsam
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kalev-Zylinska ML, Horsfield JA, Flores MVC, Postlethwait JH, Chau JYM, Cattin PM, Vitas MR, Crosier PS, Crosier KE. Runx3 is required for hematopoietic development in zebrafish. Dev Dyn 2003; 228:323-36. [PMID: 14579373 DOI: 10.1002/dvdy.10388] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We cloned zebrafish runx3/aml2/cbfa3 and examined its expression and function during embryogenesis. In the developing embryo, runx3 is dynamically expressed in hematopoietic, neuronal, and cartilaginous tissues. Hematopoietic expression of runx3 commences late in embryogenesis in the ventral tail intermediate cell mass and later colocalizes with spi1 and lyz in circulating blood cells. In the cloche mutant, hematopoietic expression was absent, suggesting that Runx3 functions downstream of cloche in a hematopoietic pathway. Neuronal tissues expressing runx3 include the trigeminal ganglia and Rohon-Beard neurons. Runx3 appears to contribute to normal development of primitive and definitive hematopoietic cells. When Runx3 function was compromised using morpholino oligonucleotides, a reduction in the number of mature blood cells was observed. Furthermore, Runx3 depletion decreased runx1 expression in the ventral wall of the dorsal aorta and reduced the number of spi1- and lyz-containing blood cells. Conversely, ubiquitous overexpression of runx3 led to an increase in primitive blood cell numbers, together with an increase in runx1-expressing cells in the ventral wall of the dorsal aorta. We propose a role for Runx3 in the regulation of blood cell numbers.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|