1
|
Shariq M, Sahasrabuddhe V, Krishna S, Radha S, Nruthyathi, Bellampalli R, Dwivedi A, Cheramangalam R, Reizis B, Hébert J, Ghosh HS. Adult neural stem cells have latent inflammatory potential that is kept suppressed by Tcf4 to facilitate adult neurogenesis. SCIENCE ADVANCES 2021; 7:eabf5606. [PMID: 34020954 PMCID: PMC8139598 DOI: 10.1126/sciadv.abf5606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/01/2021] [Indexed: 02/04/2025]
Abstract
Inflammation is known to adversely affect adult neurogenesis, wherein the source of inflammation is largely thought to be extraneous to the neurogenic niche. Here, we demonstrate that the adult hippocampal neural progenitors harbor an inflammatory potential that is proactively suppressed by transcription factor 4 (Tcf4). Deletion of Tcf4 in hippocampal nestin-expressing progenitors causes loss of proliferative capacity and acquisition of myeloid inflammatory properties. This transformation abolishes their differentiation potential and causes production of detrimental factors that adversely affect niche cells, causing inflammation in the dentate gyrus. Thus, on one hand, Tcf4 deletion causes abrogation of proliferative progenitors leading to reduction of adult neurogenesis, while on the other, their accompanying inflammatory transformation inflicts inflammation in the niche. Taken together, we provide the first evidence for a latent inflammatory potential of adult hippocampal neural progenitors and identify Tcf4 as a critical regulator that facilitates adult neurogenesis via proactive suppression of this detrimental potential.
Collapse
Affiliation(s)
- Mohammad Shariq
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Vinaya Sahasrabuddhe
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Sreevatsan Krishna
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Swathi Radha
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Nruthyathi
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Ravishankara Bellampalli
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Anukriti Dwivedi
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Rajit Cheramangalam
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jean Hébert
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Hiyaa S Ghosh
- National Centre for Biological Science, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India.
| |
Collapse
|
2
|
Riether C, Radpour R, Kallen NM, Bürgin DT, Bachmann C, Schürch CM, Lüthi U, Arambasic M, Hoppe S, Albers CE, Baerlocher GM, Ochsenbein AF. Metoclopramide treatment blocks CD93-signaling-mediated self-renewal of chronic myeloid leukemia stem cells. Cell Rep 2021; 34:108663. [PMID: 33503440 DOI: 10.1016/j.celrep.2020.108663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/20/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Self-renewal is a key characteristic of leukemia stem cells (LSCs) responsible for the development and maintenance of leukemia. In this study, we identify CD93 as an important regulator of self-renewal and proliferation of murine and human LSCs, but not hematopoietic stem cells (HSCs). The intracellular domain of CD93 promotes gene transcription via the transcriptional regulator SCY1-like pseudokinase 1 independently of ligation of the extracellular domain. In a drug library screen, we identify the anti-emetic agent metoclopramide as an efficient blocker of CD93 signaling. Metoclopramide treatment reduces murine and human LSCs in vitro and prolongs survival of chronic myeloid leukemia (CML) mice through downregulation of pathways related to stemness and proliferation in LSCs. Overall, these results identify CD93 signaling as an LSC-specific regulator of self-renewal and proliferation and a targetable pathway to eliminate LSCs in CML.
Collapse
Affiliation(s)
- Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nils M Kallen
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Damian T Bürgin
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Chantal Bachmann
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christian M Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Miroslav Arambasic
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sven Hoppe
- Wirbelsäulenmedizin Bern, Hirslanden Salem-Spital, Bern, Switzerland; Department of Orthopedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph E Albers
- Department of Orthopedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gabriela M Baerlocher
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
DeAngelo DJ, George TI, Linder A, Langford C, Perkins C, Ma J, Westervelt P, Merker JD, Berube C, Coutre S, Liedtke M, Medeiros B, Sternberg D, Dutreix C, Ruffie PA, Corless C, Graubert TJ, Gotlib J. Efficacy and safety of midostaurin in patients with advanced systemic mastocytosis: 10-year median follow-up of a phase II trial. Leukemia 2017; 32:470-478. [PMID: 28744009 DOI: 10.1038/leu.2017.234] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/02/2017] [Accepted: 07/10/2017] [Indexed: 01/08/2023]
Abstract
Patients with advanced systemic mastocytosis (SM) (e.g. aggressive SM (ASM), SM with an associated hematologic neoplasm (SM-AHN) and mast cell leukemia (MCL)) have limited treatment options and exhibit reduced survival. Midostaurin is an oral multikinase inhibitor that inhibits D816V-mutated KIT, a primary driver of SM pathogenesis. We conducted a phase II trial of midostaurin 100 mg twice daily, administered as 28-day cycles, in 26 patients (ASM, n=3; SM-AHN, n= 17; MCL, n=6) with at least one sign of organ damage. During the first 12 cycles, the overall response rate was 69% (major/partial response: 50/19%) with clinical benefit in all advanced SM variants. With ongoing therapy, 2 patients achieved a complete remission of their SM. Midostaurin produced a ⩾50% reduction in bone marrow mast cell burden and serum tryptase level in 68% and 46% of patients, respectively. Median overall survival for the entire cohort was 40 months, and 18.5 months for MCL patients. Low-grade gastrointestinal side effects were common and manageable with antiemetics. The most frequent grade 3/4 nonhematologic and hematologic toxicities were asymptomatic hyperlipasemia (15%) and anemia (12%). With median follow-up of 10 years, no unexpected toxicities emerged. These data establish the durable activity and tolerability of midostaurin in advanced SM.
Collapse
Affiliation(s)
- D J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - T I George
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - A Linder
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - C Langford
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - C Perkins
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - J Ma
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - P Westervelt
- Division of Hematology/Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - J D Merker
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - C Berube
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - S Coutre
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - M Liedtke
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - B Medeiros
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - D Sternberg
- Novartis Pharmaceuticals, Florham Park, NJ, USA.,Novartis Pharmaceuticals, Basel, Switzerland
| | - C Dutreix
- Novartis Pharmaceuticals, Florham Park, NJ, USA.,Novartis Pharmaceuticals, Basel, Switzerland
| | - P-A Ruffie
- Novartis Pharmaceuticals, Florham Park, NJ, USA.,Novartis Pharmaceuticals, Basel, Switzerland
| | - C Corless
- Department of Pathology, Oregon Health and Sciences University, Portland, OR, USA
| | - T J Graubert
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - J Gotlib
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
4
|
Li Y, Yan CH, Han YL. CREG mediated adventitial fibroblast phenotype modulation: A possible therapeutic target for proliferative vascular disease. Med Hypotheses 2012; 79:95-7. [DOI: 10.1016/j.mehy.2012.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/03/2012] [Indexed: 11/16/2022]
|
5
|
YBX1 expression and function in early hematopoiesis and leukemic cells. Immunogenetics 2011; 63:337-50. [DOI: 10.1007/s00251-011-0517-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/07/2011] [Indexed: 12/27/2022]
|
6
|
Hoxa6 potentiates short-term hemopoietic cell proliferation and extended self-renewal. Exp Hematol 2009; 37:322-33.e3. [DOI: 10.1016/j.exphem.2008.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/10/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
7
|
Hiraoka A. Leukemia cell lines require self-secreted stem cell growth factor (SCGF) for their proliferation. Leuk Res 2008; 32:1623-5. [DOI: 10.1016/j.leukres.2008.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
8
|
Finstad SL, Rosenberg N, Levy LS. Diminished potential for B-lymphoid differentiation after murine leukemia virus infection in vivo and in EML hematopoietic progenitor cells. J Virol 2007; 81:7274-9. [PMID: 17428873 PMCID: PMC1933319 DOI: 10.1128/jvi.00250-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with a recombinant murine-feline gammaretrovirus, MoFe2, or with the parent virus, Moloney murine leukemia virus, caused significant reduction in B-lymphoid differentiation of bone marrow at 2 to 8 weeks postinfection. The suppression was selective, in that myeloid potential was significantly increased by infection. Analysis of cell surface markers and immunoglobulin H gene rearrangements in an in vitro model demonstrated normal B-lymphoid differentiation after infection but significantly reduced viability of differentiating cells. This reduction in viability may confer a selective advantage on undifferentiated lymphoid progenitors in the bone marrow of gammaretrovirus-infected animals and thereby contribute to the establishment of a premalignant state.
Collapse
Affiliation(s)
- Samantha L Finstad
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue SL-38, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
9
|
Chateauvieux S, Ichanté JL, Delorme B, Frouin V, Piétu G, Langonné A, Gallay N, Sensebé L, Martin MT, Moore KA, Charbord P. Molecular profile of mouse stromal mesenchymal stem cells. Physiol Genomics 2006; 29:128-38. [PMID: 17179208 DOI: 10.1152/physiolgenomics.00197.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We determined a transcriptional profile specific for clonal stromal mesenchymal stem cells from adult and fetal hematopoietic sites. To identify mesenchymal stem cell-like stromal cell lines, we evaluated the adipocytic, osteoblastic, chondrocytic, and vascular smooth muscle differentiation potential and also the hematopoietic supportive (stromal) capacity of six mouse stromal cell lines from adult bone marrow and day 14.5 fetal liver. We found that two lines were quadripotent and also supported hematopoiesis, BMC9 from bone marrow and AFT024 from fetal liver. We then ascertained the set of genes differentially expressed in the intersection set of AFT024 and BMC9 compared with those expressed in the union set of two negative control lines, 2018 and BFC012 (both from fetal liver); 346 genes were upregulated and 299 downregulated. Using Ingenuity software, we found two major gene networks with highly significant scores. One network contained downregulated genes that are known to be implicated in osteoblastic differentiation, proliferation, or transformation. The other network contained upregulated genes that belonged to two categories, cytoskeletal genes and genes implicated in the transcriptional machinery. The data extend the concept of stromal mesenchymal stem cells to clonal cell populations derived not only from bone marrow but also from fetal liver. The gene networks described should discriminate this cell type from other types of stem cells and help define the stem cell state.
Collapse
Affiliation(s)
- Sebastien Chateauvieux
- Institut National de la Santé et de la Recherche Médicale, Equipe-ESPRI/EA-3855, Université François Rabelais, Faculté de Médecine, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Leung KN, Mak NK, Fung MC. Cytokines in the differentiation therapy of leukemia: from laboratory investigations to clinical applications. Crit Rev Clin Lab Sci 2006; 42:473-514. [PMID: 16390682 DOI: 10.1080/10408360500295154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Differentiation therapy of leukemia is the treatment of leukemia cells with biological or chemical agents that induce the terminal differentiation of the cancer cells. It is regarded as a novel and targeted approach to leukemia treatment, based on our better understanding of the hematopoietic process and the mechanisms of its deregulation during leukemogenesis. Clinically, differentiation therapy has been most successful in acute promyelocytic leukemia using all-trans-retinoic acid as the inducer, either alone or in combination with chemotherapy. This review presents evidence that a number of hematopoietic cytokines play important roles in both normal and aberrant hematopoietic processes. In vitro laboratory investigations in the past two decades using well-characterized myeloid leukemic cell lines and primary blast cells from leukemia patients have revealed that many hematopoietic cytokines can trigger lineage-specific differentiation of leukemia cells, which may have important implications in the clinical setting. Moreover, our current understanding of cytokine interactions and the molecular mechanisms of cytokine-induced leukemic cell differentiation will be discussed in the light of recent findings. Finally, ways in which laboratory research on cytokines in the differentiation therapy of leukemia can lead to the improved design of protocols for future clinical applications to leukemia therapy will also be addressed.
Collapse
Affiliation(s)
- K N Leung
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | |
Collapse
|
11
|
Barbaric D, Byth K, Dalla-Pozza L, Byrne JA. Expression of tumor protein D52-like genes in childhood leukemia at diagnosis: clinical and sample considerations. Leuk Res 2006; 30:1355-63. [PMID: 16620967 DOI: 10.1016/j.leukres.2006.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/03/2006] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
The tumor protein D52 gene or protein is frequently overexpressed in several carcinomas, and has been identified as a B cell differentiation marker. D52-like genes are also differentially expressed in particular haematological malignancies, where transcript or protein levels may reflect cellular proliferative or differentiative status. We used RT-PCR to analyse the expression of three D52-like genes in bone marrow at the time of ALL or AML diagnosis in children. Whereas D53 transcripts were undetectable in all samples, D52 and D54 transcripts were frequently detected in ALL and AML, where they were frequently co-expressed. While D52 and D54 transcripts were detected in T-ALL and pre-B ALL at comparable frequencies, D52 was less frequently detected in ALL bone marrow with hyperdiploid karyotypes, compared with samples with normal karyotypes. We also found that total RNA yields significantly differed according to D52 and D54 expression status, and that bone marrow freezer storage time (up to 945 days) differed significantly according to D52 expression status. These results indicate that D52-like genes are not ubiquitously expressed in leukemic bone marrow in children, and that RNA sample parameters may influence measures of gene expression more than commonly appreciated.
Collapse
Affiliation(s)
- Draga Barbaric
- Molecular Oncology Laboratory, Oncology Research Unit, The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
| | | | | | | |
Collapse
|
12
|
Jacquelin B, Kortulewski T, Vaigot P, Pawlik A, Gruel G, Alibert O, Soularue P, Joubert C, Gidrol X, Tronik-Le Roux D. Novel pathway for megakaryocyte production after in vivo conditional eradication of integrin αIIb-expressing cells. Blood 2005; 106:1965-74. [PMID: 15947096 DOI: 10.1182/blood-2004-10-3975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Our knowledge of the molecular mechanisms that regulate hematopoiesis in physiologic and pathologic conditions is limited. Using a molecular approach based on cDNA microarrays, we demonstrated the emergence of an alternative pathway for mature bone marrow cell recovery after the programmed and reversible eradication of CD41+ cells in transgenic mice expressing a conditional toxigene targeted by the platelet αIIb promoter. The expression profile of the newly produced CD41+ cells showed high levels of transcripts encoding Ezh2, TdT, Rag2, and various immunoglobulin (Ig) heavy chains. In this context, we identified and characterized a novel population of Lin-Sca-1hic-Kit- cells, with a lymphoid-like expression pattern, potentially involved in the reconstitution process. Our study revealed novel transcriptional cross talk between myeloid and lymphoid lineages and identified gene expression modifications that occur in vivo under these particular stress conditions, opening important prospects for therapeutic applications.
Collapse
Affiliation(s)
- Beatrice Jacquelin
- Laboratoire de Génomique et Radiobiologie de l'Hématopoïèse, Service de Génomique Fonctionnelle, Commissariat à l'Energie Atomique, Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Perez-Iratxeta C, Palidwor G, Porter CJ, Sanche NA, Huska MR, Suomela BP, Muro EM, Krzyzanowski PM, Hughes E, Campbell PA, Rudnicki MA, Andrade MA. Study of stem cell function using microarray experiments. FEBS Lett 2005; 579:1795-801. [PMID: 15763554 DOI: 10.1016/j.febslet.2005.02.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 02/10/2005] [Accepted: 02/10/2005] [Indexed: 11/17/2022]
Abstract
DNA Microarrays are used to simultaneously measure the levels of thousands of mRNAs in a sample. We illustrate here that a collection of such measurements in different cell types and states is a sound source of functional predictions, provided the microarray experiments are analogous and the cell samples are appropriately diverse. We have used this approach to study stem cells, whose identity and mechanisms of control are not well understood, generating Affymetrix microarray data from more than 200 samples, including stem cells and their derivatives, from human and mouse. The data can be accessed online (StemBase; http://www.scgp.ca:8080/StemBase/).
Collapse
Affiliation(s)
- Carolina Perez-Iratxeta
- Ontario Genomics Innovation Centre, Ottawa Health Research Institute, Molecular Medicine Program, 501 Smyth Road, Ottawa, Canada K1H 8L6
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cord blood (CB) has served as a clinically beneficial source of hematopoietic stem (HSC) and progenitor (HPC) cells for transplantation and correction of a large number of malignant and non-malignant disorders. The capacity of CB to perform these functions is intimately related to the quality and quantity of HSC and HPC present in CB. This review covers the biology of HSC and HPC, efforts to expand these cells ex vivo for enhanced clinical utility that has thus far not been very successful, and recent studies on attempts to enhance the homing and engrafting capability of HSC as an alternative means for more effective use of the limited numbers of CB cells collected. This review also highlights the presence in CB of mesenchymal stem cells, unrestricted somatic stem cells, endothelial progenitor cells and immune cells. The presence and biology of these non-HSC/HPC may open up future possibilities for additional clinical benefit of CB, a product considered mainly for discard before its clinical transplantation potential was realized in the late 1980s.
Collapse
Affiliation(s)
- H E Broxmeyer
- Department of Microbiology and Immunology, and the Walther Oncology Center, Indiana univrsity School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Kluger HM, Kluger Y, Gilmore-Hebert M, DiVito K, Chang JT, Rodov S, Mironenko O, Kacinski BM, Perkins AS, Sapi E. cDNA microarray analysis of invasive and tumorigenic phenotypes in a breast cancer model. J Transl Med 2004; 84:320-31. [PMID: 14767486 DOI: 10.1038/labinvest.3700044] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The fms oncogene encodes the macrophage colony-stimulating factor receptor (CSF1R), a transmembrane tyrosine kinase receptor, which is abnormally expressed in breast cancer. Transfection of wild-type CSF1R into HC11 mammary epithelial cells (HC11-CSF1R) renders the transfectants capable of in vitro local invasion and in vivo tumorigenesis. Transfection with CSF1R mutated to express phe at the tyr-721 autophosphorylation site (HC11-CSF1R-721) creates a phenotype that lacks metastastic competence but maintains local invasiveness. Conversely, HC11 cells transfected with CSF1R mutated at tyr-807 (HC11-CSF1R-807) retain their metastatic competence, but are not locally invasive. Our aims were to determine which genes were differentially expressed with transfection of HC11 with wild-type CSF1R, and to determine the effect of mutation at the autophosphorylation sites on gene expression, using 4.6 K cDNA microarrays. Complementary DNA from HC11, HC11-CSF1R-721 and HC11-CSF1R-807 were each hybridized together with HC11-CSF1R on individual arrays. A principal component spectral method combined with prenormalization procedures was used for sample clustering. Differentially expressed genes were identified by the analysis of variance. Confirmation by Northern blotting was performed for MAP kinase phosphatase-1, WDNM1 (extracellular proteinase inhibitor), Trop 2 (tumor-associated calcium signal transducer-2), procollagen type IV alpha, secretory leukoprotease inhibitor, prenylated snare protein Ykt6, ceruloplasmin and chaperonin 10. Many of these genes have not previously been associated with tumor invasion and metastasis. We have successfully identified genes that can be linked to the invasive phenotypes or to tumorigenesis. These genes provide a basis for further studies of metastatic progression and local invasiveness, and can be evaluated as therapeutic targets.
Collapse
Affiliation(s)
- Harriet M Kluger
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hawley RG, Sobieski DA. Stem cell molecular blueprint: "life, the universe, and everything". Stem Cells 2003; 21:1-4. [PMID: 12529545 DOI: 10.1634/stemcells.21-1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Robert G Hawley
- Hematopoiesis Department, Holland Laboratory, American Red Cross.
| | | |
Collapse
|
17
|
Di Bacco A, Gill G. The secreted glycoprotein CREG inhibits cell growth dependent on the mannose-6-phosphate/insulin-like growth factor II receptor. Oncogene 2003; 22:5436-45. [PMID: 12934103 DOI: 10.1038/sj.onc.1206670] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secreted proteins and their cognate receptors are implicated in a myriad of activities that regulate cell proliferation, differentiation, and development. CREG, a cellular repressor of E1A-stimulated genes, is a secreted glycoprotein that antagonizes cellular transformation by E1A and ras. We have previously shown that CREG expression is induced very early during differentiation of pluripotent cells and, even in the absence of other inducers, CREG promotes neuronal differentiation of human teratocarcinoma NTERA-2 cells. Here we show that ectopic expression of CREG in NTERA-2 cells results in a delay of the G1/S phase transition of the cell cycle and growth inhibition. We show that CREG binds directly to the mannose-6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) dependent on CREG glycosylation. The M6P/IGF2R is a tumor suppressor that functions to control cell growth through interactions with multiple ligands. By analysing CREG activity in cells lacking M6P/IGF2R expression, we show that this receptor is required for CREG-induced growth inhibition. These studies reveal that CREG inhibits cell growth dependent on the M6P/IGF2R and suggest that interactions between CREG and a well-characterized tumor suppressor may contribute to regulation of proliferation and differentiation in multiple lineages.
Collapse
Affiliation(s)
- Alessandra Di Bacco
- Department of Pathology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
18
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447381 DOI: 10.1002/cfg.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|