1
|
Chalmers JD, Metersky M, Aliberti S, Morgan L, Fucile S, Lauterio M, McDonald PP. Neutrophilic inflammation in bronchiectasis. Eur Respir Rev 2025; 34:240179. [PMID: 40174958 PMCID: PMC11962982 DOI: 10.1183/16000617.0179-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/11/2025] [Indexed: 04/04/2025] Open
Abstract
Noncystic fibrosis bronchiectasis, hereafter referred to as bronchiectasis, is a chronic, progressive lung disease that can affect people of all ages. Patients with clinically significant bronchiectasis have chronic cough and sputum production, as well as recurrent respiratory infections, fatigue and impaired health-related quality of life. The pathophysiology of bronchiectasis has been described as a vicious vortex of chronic inflammation, recurring airway infection, impaired mucociliary clearance and progressive lung damage that promotes the development and progression of the disease. This review describes the pivotal role of neutrophil-driven inflammation in the pathogenesis and progression of bronchiectasis. Delayed neutrophil apoptosis and increased necrosis enhance dysregulated inflammation in bronchiectasis and failure to resolve this contributes to chronic, sustained inflammation. The excessive release of neutrophil serine proteases, such as neutrophil elastase, cathepsin G and proteinase 3, promotes a protease-antiprotease imbalance that correlates with increased inflammation in bronchiectasis and contributes to disease progression. While there are currently no licensed therapies to treat bronchiectasis, this review will explore the evolving evidence for neutrophilic inflammation as a novel treatment target with meaningful clinical benefits.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Mark Metersky
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Clinical School, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
2
|
Wang G, Li J, Wang L, Yang Y, Wu J, Tang W, Lei H, Cheng L. Manganese-Doped Potassium Chloride Nanoelectrodes to Potentiate Electrochemical Immunotherapy. ACS NANO 2024; 18:10885-10901. [PMID: 38587876 DOI: 10.1021/acsnano.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Hypochlorous acid (HClO), as a powerful oxidizer, is obtained from the oxidation of Cl- ions during the electrochemical therapy (EChT) process for cancer therapy. However, the extracellular generated HClO is inadequate to inhibit effective tumor cell death. Herein, manganese-doped potassium chloride nanocubes (MPC NCs) fabricated and modified with amphipathic polymer PEG (PMPC NCs) to function as massive three-dimensional nanoelectrodes (NEs) were developed to enhance the generation of HClO for electrochemical immunotherapy under an alternating electric field. Under an square-wave alternating current (AC) electric field, the generation of HClO was boosted by PMPC NEs due to the enlarged active surface area, enhanced mass transfer rate, and improved electrocatalytic activity. Notably, PMPC NEs upregulated the intracellular HClO concentration to induce robust immunogenic cell death (ICD) under an AC electric field. Meanwhile, the electric-triggered release of Mn2+ effectively stimulated dendritic cells (DCs) maturation. In vivo results illustrated that PMPC-mediated EChT inhibited tumor growth and triggered the promotion of the immune response to regulate the tumor immune microenvironment. Based on the potent antitumor immunity, PMPC-mediated EChT was further combined with an immune checkpoint inhibitor (αCTLA-4) to realize combined EChT-immunotherapy, which demonstrated enhanced tumor inhibition of the primary tumors and an abscopal effect on distant tumors. To summarize, our work highlights the application of electrochemical-immunotherapy technology in tumor therapy.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Wang J, Su Y, Liu H, Li Y, Fang X, Yu X, Li Q, Han W. Association between the Reduced Expression of RECK and Neutrophilic Inflammation in Chronic Obstructive Pulmonary Disease. Int Arch Allergy Immunol 2024; 185:480-488. [PMID: 38387446 DOI: 10.1159/000536021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a recently discovered inhibitor of matrix metalloproteinase (MMP). There is a large number of chronic obstructive pulmonary disease (COPD) patients worldwide; however, the role of RECK on COPD has not been studied. This study explored the expression of RECK in COPD patients and its effect on neutrophil function to provide a new scientific basis for the prevention and treatment of COPD. METHOD Fifty patients with acute exacerbation of COPD and fifty healthy controls were enrolled in the study. RECK was detected in lung tissue, sputum, and plasma of subjects as well as in BEAS-2B cells stimulated with cigarette smoke extract (CSE) by immunohistochemistry, ELISA, and qRT-PCR. Meanwhile, lung function (FEV1%pred) and inflammatory cytokines (IL-6 and IL-8) were examined, and correlation analysis was performed with RECK expression. The effect of RECK on proliferation, apoptosis, migration, and inflammatory cytokines and its potential mechanism was further quantified by neutrophil stimulated with recombinant human RECK protein (rhRECK) combined with CSE using CCK8, flow cytometry, Transwell assay, qRT-PCR, ELISA, and Western analysis. RESULTS RECK was mainly expressed on airway epithelial cells in normal lung tissue and was significantly diminished in COPD patients. The levels of RECK in sputum and plasma were also significantly decreased in COPD patients. Pearson correlation analysis showed that RECK level in plasma was positively correlated with FEV1%pred (r = 0.458, p < 0.001) and negatively correlated with IL-6 and IL-8 (r = -0.386, -0.437; p = 0.006, 0.002) in COPD patients. The expression of RECK was decreased in BEAS-2B stimulated with CSE. The migration, inflammation, and MMP-9 expression of neutrophils were promoted by CSE, while inhibited by rhRECK. CONCLUSION RECK is low expressed in COPD patients and negatively correlated with inflammation. It may inhibit the inflammation and migration of neutrophils by downregulating MMP-9.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yi Su
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hong Liu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yongchun Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xuejie Fang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- School of Clinical Medicine, Shandong Second Medical University, Wei Fang, China
| | - Xinjuan Yu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qinghai Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
4
|
Babatunde KA, Datta R, Hendrikse NW, Ayuso JM, Huttenlocher A, Skala MC, Beebe DJ, Kerr SC. Naive primary neutrophils play a dual role in the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557892. [PMID: 37745595 PMCID: PMC10515919 DOI: 10.1101/2023.09.15.557892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells and extracellular matrix (ECM) in a hypoxic microenvironment. However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Thus, there is a need to investigate the interaction between primary neutrophils and natural killer cells and the resulting effects on tumor development. Here we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated extracellular cell matrix (ECM) bridge to elucidate how naive primary neutrophils respond to both patient derived tumor cells and tumor cell lines. Our data demonstrated that both patient derived head and neck squamous cell carcinoma (HNSCC) tumor cells and MDA-MB-231 breast cancer cells trigger cluster formation in neutrophils, and the swarm of neutrophils restricts tumor invasion through the generation of reactive oxygen species (ROS) and neutrophil extracellular trap (NETs) release within the neutrophil cluster. However, we also observed that the presence of neutrophils downregulates granzyme B in NK-92 cells and the resulting NETs can obstruct NK cells from penetrating the tumor mass in vitro suggesting a dual role for neutrophils in the TME. Further, using label-free optical metabolic imaging (OMI) we observed changes in the metabolic activities of primary neutrophils during the different swarming phases when challenged with tumor cells. Finally, our data demonstrates that neutrophils in direct contact, or in close proximity, with tumor cells exhibit greater metabolic activities (lower nicotinamide adenine dinucleotide phosphate (NAD(P)H) mean lifetime) compared to non-contact neutrophils.
Collapse
|
5
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563751. [PMID: 37961701 PMCID: PMC10634788 DOI: 10.1101/2023.10.24.563751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| |
Collapse
|
6
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
7
|
In Silico Analysis Revealed Five Novel High-Risk Single-Nucleotide Polymorphisms (rs200384291, rs201163886, rs193141883, rs201139487, and rs201723157) in ELANE Gene Causing Autosomal Dominant Severe Congenital Neutropenia 1 and Cyclic Hematopoiesis. ScientificWorldJournal 2022; 2022:3356835. [PMID: 35571273 PMCID: PMC9106522 DOI: 10.1155/2022/3356835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Single-nucleotide polymorphisms in the ELANE (Elastase, Neutrophil Expressed) gene are associated with severe congenital neutropenia, while the ELANE gene provides instructions for making a protein called neutrophil elastase. We identified disease susceptibility single-nucleotide polymorphisms (SNPs) in the ELANE gene using several computational tools. We used cutting-edge computational techniques to investigate the effects of ELANE mutations on the sequence and structure of the protein. Our study suggested that eight nsSNPs (rs28931611, rs57246956, rs137854448, rs193141883, rs201723157, rs201139487, rs137854451, and rs200384291) are the most deleterious in ELANE gene and disturb protein structure and function. The mutants F218L, R34W, G203S, R193W, and T175M have not yet been identified in patients suffering from SCN and cyclic hematopoiesis, while C71Y, P139R, C151Y, G214R, and G203C reported in our study are already associated with both of the disorders. These mutations are shown to destabilize structure and disrupt ELANE protein activation, splicing, and folding and might diminish trypsin-like serine protease efficiency. Prediction of posttranslation modifications highlighted the significance of deleterious nsSNPs because some of nsSNPs affect potential phosphorylation sites. Gene-gene interactions showed the relation of ELANE with other genes depicting its importance in numerous pathways and coexpressions. We identified the deleterious nsSNPs, constructed mutant protein structures, and evaluated the impact of mutation by employing molecular docking. This research sheds light on how ELANE failure upon mutation results in disease progression, including congenital neutropenia, and validation of these novel predicted nsSNPs is required through the wet lab.
Collapse
|
8
|
Ham HY, Kang SH, Song DK. Lysophosphatidylcholine induces azurophil granule translocation via Rho/Rho kinase/F-actin polymerization in human neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:175-182. [PMID: 35477545 PMCID: PMC9046897 DOI: 10.4196/kjpp.2022.26.3.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022]
Abstract
Translocation of azurophil granules is pivotal for bactericidal activity of neutrophils, the first-line defense cells against pathogens. Previously, we reported that lysophosphatidylcholine (LPC), an endogenous lipid, enhances bactericidal activity of human neutrophils via increasing translocation of azurophil granules. However, the precise mechanism of LPC-induced azurophil granule translocation was not fully understood. Treatment of neutrophil with LPC significantly increased CD63 (an azurophil granule marker) surface expression. Interestingly, cytochalasin B, an inhibitor of action polymerization, blocked LPC-induced CD63 surface expression. LPC increased F-actin polymerization. LPC-induced CD63 surface expression was inhibited by both a Rho specific inhibitor, Tat-C3 exoenzyme, and a Rho kinase (ROCK) inhibitor, Y27632 which also inhibited LPC-induced F-actin polymerization. LPC induced Rho-GTP activation. NSC23766, a Rac inhibitor, however, did not affect LPC-induced CD63 surface expression. Theses results suggest a novel regulatory mechanism for azurophil granule translocation where LPC induces translocation of azurophil granules via Rho/ROCK/F-actin polymerization pathway.
Collapse
Affiliation(s)
- Hwa-Yong Ham
- Department of Pharmacology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Shin-Hae Kang
- Department of Pharmacology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Dong-Keun Song
- Department of Pharmacology, Hallym University College of Medicine, Chuncheon 24252, Korea
| |
Collapse
|
9
|
Kapalavai SK, Ramachandran B, Krupanandan R, Sadasivam K. Usefulness of Urinary Neutrophil Gelatinase-associated Lipocalin as a Predictor of Acute Kidney Injury in Critically Ill Children. Indian J Crit Care Med 2022; 26:634-638. [PMID: 35719440 PMCID: PMC9160611 DOI: 10.5005/jp-journals-10071-24147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Sudeep K Kapalavai
- Department of Paediatric Intensive Care, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
- Sudeep K Kapalavai, Department of Paediatric Intensive Care, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India, Phone: +91 61432200475, e-mail:
| | - Bala Ramachandran
- Department of Paediatric Intensive Care, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | - Ravikumar Krupanandan
- Department of Paediatric Intensive Care, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | - Kalaimaran Sadasivam
- Department of Paediatric Intensive Care, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Shen M, Du Y, Ye Y. Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:222-243. [PMID: 37724296 PMCID: PMC10388790 DOI: 10.1515/mr-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Tumor-associated myeloid cells constitute a series of plastic and heterogeneous cell populations within the tumor microenvironment (TME), and exhibit different phenotypes and functions in response to various microenvironmental signals. In light of promising preclinical data indicating that myeloid-based therapy can effectively suppress tumor growth, a series of novel immune-based therapies and approaches are currently undergoing clinical evaluation. A better understanding of the diversity and functional roles of different myeloid cell subtypes and of how they are associated with TME remodeling may help to improve cancer therapy. Herein, we focus on myeloid cells and discuss how tumor cells can simultaneously reprogram these cells through tumor-derived factors and metabolites. In addition, we discuss the interactions between myeloid cells and other cells in the TME that have the potential to directly or indirectly regulate tumor initiation, invasion, or angiogenesis. We further discuss the current and future potential applications of myeloid cells in the development of focused therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Mingyi Shen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Bissinger S, Hage C, Wagner V, Maser IP, Brand V, Schmittnaegel M, Jegg AM, Cannarile M, Watson C, Klaman I, Rieder N, González Loyola A, Petrova TV, Cassier PA, Gomez-Roca C, Sibaud V, De Palma M, Hoves S, Ries CH. Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Sci Transl Med 2021; 13:13/598/eabd4550. [PMID: 34135110 DOI: 10.1126/scitranslmed.abd4550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) blockade abates tumor-associated macrophage (TAM) infiltrates and provides marked clinical benefits in diffuse-type tenosynovial giant cell tumors. However, facial edema is a common adverse event associated with TAM elimination in patients. In this study, we examined molecular and cellular events associated with edema formation in mice and human patients with cancer treated with a CSF1R blocking antibody. Extended antibody treatment of mice caused marked body weight gain, an indicator of enhanced body fluid retention. This was associated with an increase of extracellular matrix-remodeling metalloproteinases (MMPs), namely MMP2 and MMP3, and enhanced deposition of hyaluronan (HA) and proteoglycans, leading to skin thickening. Discontinuation of anti-CSF1R treatment or blockade of MMP activity restored unaltered body weight and normal skin morphology in the mice. In patients, edema developed at doses well below the established optimal biological dose for emactuzumab, a CSF1R dimerization inhibitor. Patients who developed edema in response to emactuzumab had elevated HA in peripheral blood. Our findings indicate that an early increase of peripheral HA can serve as a pharmacodynamic marker for edema development and suggest potential interventions based on MMP inhibition for relieving periorbital edema in patients treated with CSF1R inhibitors.
Collapse
Affiliation(s)
- Stefan Bissinger
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany.
| | - Carina Hage
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Vinona Wagner
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Ilona-Petra Maser
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Verena Brand
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Anna-Maria Jegg
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Michael Cannarile
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | | | - Irina Klaman
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Natascha Rieder
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Alejandra González Loyola
- Department of Oncology, University of Lausanne (UNIL) and Ludwig Institute for Cancer Research Lausanne (LICR), 1066 Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne (UNIL) and Ludwig Institute for Cancer Research Lausanne (LICR), 1066 Epalinges, Switzerland
| | | | - Carlos Gomez-Roca
- Institut Claudius Regaud/Institut Universitaire du Cancer, Toulouse Oncopole, 31300 Toulouse, France
| | - Vincent Sibaud
- Institut Claudius Regaud/Institut Universitaire du Cancer, Toulouse Oncopole, 31300 Toulouse, France
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sabine Hoves
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Carola H Ries
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany.
| |
Collapse
|
12
|
Abuaita BH, Sule GJ, Schultz TL, Gao F, Knight JS, O'Riordan MX. The IRE1α Stress Signaling Axis Is a Key Regulator of Neutrophil Antimicrobial Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:210-220. [PMID: 34145058 DOI: 10.4049/jimmunol.2001321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Activation of the endoplasmic reticulum stress sensor, IRE1α, is required for effective immune responses against bacterial infection and is associated with human inflammatory diseases in which neutrophils are a key immune component. However, the specific role of IRE1α in regulating neutrophil effector function has not been studied. In this study, we show that infection-induced IRE1α activation licenses neutrophil antimicrobial capacity, including IL-1β production, formation of neutrophil extracellular traps (NETs), and methicillin-resistant Staphylococcus aureus (MRSA) killing. Inhibition of IRE1α diminished production of mitochondrial reactive oxygen species and decreased CASPASE-2 activation, which both contributed to neutrophil antimicrobial activity. Mice deficient in CASPASE-2 or neutrophil IRE1α were highly susceptible to MRSA infection and failed to effectively form NETs in the s.c. abscess. IRE1α activation enhanced calcium influx and citrullination of histone H3 independently of mitochondrial reactive oxygen species production, suggesting that IRE1α coordinates multiple pathways required for NET formation. Our data demonstrate that the IRE1α-CASPASE-2 axis is a major driver of neutrophil activity against MRSA infection and highlight the importance of IRE1α in neutrophil antibacterial function.
Collapse
Affiliation(s)
- Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Gautam J Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Fushan Gao
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| |
Collapse
|
13
|
Capucetti A, Albano F, Bonecchi R. Multiple Roles for Chemokines in Neutrophil Biology. Front Immunol 2020; 11:1259. [PMID: 32733442 PMCID: PMC7363767 DOI: 10.3389/fimmu.2020.01259] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Chemokines are recognized as the most critical mediators for selective neutrophil recruitment during inflammatory conditions. Furthermore, they are considered fundamental regulators of neutrophil mobilization from the bone marrow (BM) to the bloodstream and for their homing back at the end of their life for apoptosis and clearance. However, chemokines are also important mediators of neutrophil effector functions including oxidative burst, degranulation, neutrophil extracellular trap (NET)osis, and production of inflammatory mediators. Neutrophils have been historically considered as a homogeneous population. In recent years, several maturation stages and subsets with different phenotypic profiles and effector functions were described both in physiological and pathological conditions such as infections, autoimmunity, and cancer. The aim of this review is to give an overview of the current evidence regarding the role of chemokines and chemokine receptors in neutrophil biology, including their possible role in neutrophil maturation, differentiation, and in defining emerging neutrophil subsets.
Collapse
Affiliation(s)
- Arianna Capucetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Francesca Albano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
14
|
Alhussien MN, Dang AK. Sensitive and rapid lateral-flow assay for early detection of subclinical mammary infection in dairy cows. Sci Rep 2020; 10:11161. [PMID: 32636460 PMCID: PMC7341798 DOI: 10.1038/s41598-020-68174-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 12/03/2022] Open
Abstract
Detection of subclinical mastitis (SCM) in its initial stage can save great economic losses, improve milk quality and animal welfare. We have developed a semiquantitative lateral flow assay for the detection of SCM in dairy cows targeting myeloperoxidase (MPO) enzyme of milk neutrophils. A competitive immunoassay format was used, and colloidal gold nanoparticles (GNP) were prepared and used as a labelling agent. Monoclonal anti-MPO antibodies were used and assessed for its quality by enzyme-linked immunosorbent assay and dot blot. Conjugation method for GNP and anti-MPO antibodies was standardised, and the conjugate was placed over the conjugate pad. MPO coupled with a carrier protein (OVA) and the species-specific secondary antibodies were placed on test and control lines, respectively. The developed assay was verified with 75 milk samples collected from healthy, SCM and clinical mastitis cows. It displayed a high sensitivity as it could detect MPO as low as 1.5 ng/ml, an accuracy greater than 97% and showed no crossreactivity when crosschecked with other milk proteins. The developed assay can be used as an alternative for SCM diagnostic tests where lab structure are available for obtaining the lysate of milk SCC.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Animal Production Division, Agricultural College, Aleppo University, Aleppo, Syrian Arab Republic.
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
15
|
Mauler M, Herr N, Schoenichen C, Witsch T, Marchini T, Härdtner C, Koentges C, Kienle K, Ollivier V, Schell M, Dorner L, Wippel C, Stallmann D, Normann C, Bugger H, Walther P, Wolf D, Ahrens I, Lämmermann T, Ho-Tin-Noé B, Ley K, Bode C, Hilgendorf I, Duerschmied D. Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation. Circulation 2019; 139:918-931. [PMID: 30586717 DOI: 10.1161/circulationaha.118.033942] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response. METHODS Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin. These studies were complemented by in vitro serotonin stimulation assays of platelets and leukocytes in mice and men, and by measuring plasma serotonin levels and leukocyte activation in patients with acute coronary syndrome. RESULTS Platelet-derived serotonin induced neutrophil degranulation with release of myeloperoxidase and hydrogen peroxide (H2O2) and increased expression of membrane-bound leukocyte adhesion molecule CD11b, leading to enhanced inflammation in the infarct area and reduced myocardial salvage. In patients hospitalized with acute coronary syndrome, plasmatic serotonin levels correlated with CD11b expression on neutrophils and myeloperoxidase plasma levels. Long-term serotonin reuptake inhibition-reported to protect patients with depression from cardiovascular events-resulted in the depletion of platelet serotonin stores in mice. These mice displayed a reduction in neutrophil degranulation and preserved cardiac function. In line, patients with depression using serotonin reuptake inhibition, presented with suppressed levels of CD11b surface expression on neutrophils and lower myeloperoxidase levels in blood. CONCLUSIONS Taken together, we identify serotonin as a potent therapeutic target in neutrophil-dependent thromboinflammation during myocardial reperfusion injury.
Collapse
Affiliation(s)
- Maximilian Mauler
- Faculty of Biology (M.M., K.K.), University of Freiburg, Germany.,Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Nadine Herr
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Claudia Schoenichen
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Thilo Witsch
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Timoteo Marchini
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Carmen Härdtner
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Christoph Koentges
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Korbinian Kienle
- Faculty of Biology (M.M., K.K.), University of Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics (K.K., T.L.), Germany
| | - Véronique Ollivier
- INSERM Unit 1148, University Paris Diderot (V.O., B.H-T-N.), France.,Laboratory for Vascular Translational Science, Sorbonne Paris Cité (V.O., B.H-T-N.), France
| | - Maximilian Schell
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Ludwig Dorner
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Christopher Wippel
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Daniela Stallmann
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Claus Normann
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Psychiatry, University Medical Center Freiburg (C.N.), Germany
| | - Heiko Bugger
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University; Ulm, Germany (P.W.)
| | - Dennis Wolf
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany.,La Jolla Institute for Allergy and Immunology, La Jolla, CA (D.W., K.L.)
| | - Ingo Ahrens
- Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics (K.K., T.L.), Germany
| | - Benoît Ho-Tin-Noé
- INSERM Unit 1148, University Paris Diderot (V.O., B.H-T-N.), France.,Laboratory for Vascular Translational Science, Sorbonne Paris Cité (V.O., B.H-T-N.), France
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA (D.W., K.L.)
| | - Christoph Bode
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Ingo Hilgendorf
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| | - Daniel Duerschmied
- Faculty of Medicine (M.M., N.H., C.S., T.W., T.M., C.H., C.K., M.S., L.D., C.W., D.S., C.N., H.B., D.W., C.B., I.H., D.D.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center (M.M., N.H., C.S., T.M., C.H., C.K., M.S., L.D., C.W., D.S., H.B., D.W., I.A., C.B., I.H., D.D.), University of Freiburg, Germany
| |
Collapse
|
16
|
de Jong NWM, van Kessel KPM, van Strijp JAG. Immune Evasion by Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0061-2019. [PMID: 30927347 PMCID: PMC11590434 DOI: 10.1128/microbiolspec.gpp3-0061-2019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
Affiliation(s)
- Nienke W M de Jong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
A myeloperoxidase precursor, pro-myeloperoxidase, is present in human plasma and elevated in cardiovascular disease patients. PLoS One 2018; 13:e0192952. [PMID: 29590135 PMCID: PMC5873943 DOI: 10.1371/journal.pone.0192952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/08/2018] [Indexed: 01/31/2023] Open
Abstract
Myeloperoxidase (MPO)-derived oxidants have emerged as a key contributor to tissue damage in inflammatory conditions such as cardiovascular disease. Pro-myeloperoxidase (pro-MPO), an enzymatically active precursor of myeloperoxidase (MPO), is known to be secreted from cultured bone marrow and promyelocytic leukemia cells, but evidence for the presence of pro-MPO in circulation is lacking. In the present study, we used a LC-MS/MS in addition to immunoblot analyses to show that pro-MPO is present in human blood plasma. Furthermore, we found that pro-MPO was more frequently detected in plasma from patients with myocardial infarction compared to plasma from control donors. Our study suggests that in addition to mature MPO, circulating pro-MPO may cause oxidative modifications of proteins thereby contributing to cardiovascular disease.
Collapse
|
18
|
The NADPH Oxidase and Microbial Killing by Neutrophils, With a Particular Emphasis on the Proposed Antimicrobial Role of Myeloperoxidase within the Phagocytic Vacuole. Microbiol Spectr 2017; 4. [PMID: 27726789 DOI: 10.1128/microbiolspec.mchd-0018-2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This review is devoted to a consideration of the way in which the NADPH oxidase of neutrophils, NOX2, functions to enable the efficient killing of bacteria and fungi. It includes a critical examination of the current dogma that its primary purpose is the generation of hydrogen peroxide as substrate for myeloperoxidase-catalyzed generation of hypochlorite. Instead, it is demonstrated that NADPH oxidase functions to optimize the ionic and pH conditions within the vacuole for the solubilization and optimal activity of the proteins released into this compartment from the cytoplasmic granules, which kill and digest the microbes. The general role of other NOX systems as electrochemical generators to alter the pH and ionic composition in compartments on either side of a membrane in plants and animals will also be examined.
Collapse
|
19
|
Abstract
The migration of neutrophils between tissue compartments is an important aspect of innate immune surveillance. This process is regulated by a cascade of cellular and molecular signals to avoid unnecessary crowding of neutrophils at the periphery, to allow rapid mobilization of neutrophils in response to inflammatory stimuli, and to return to a state of homeostasis after the response. Intravital microscopy approaches have been fundamental in unraveling many aspects of neutrophil behavior, providing important mechanistic information on the processes involved in basal and disease states. Here, we provide a broad overview of the current state of research on neutrophil biology, describing the processes in the typical life cycle of neutrophils, from their first appearance in the bone marrow until their eventual destruction. We will focus on novel aspects of neutrophil behavior, which had previously been elusive until their recent elucidation by advanced intravital microscopy techniques.
Collapse
Affiliation(s)
- Jackson LiangYao Li
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Biopolis, Singapore
| | | |
Collapse
|
20
|
Mizuguchi S, Stephen J, Bihari R, Markovic N, Suehiro S, Capretta A, Potter RF, Cepinskas G. CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase. Am J Physiol Heart Circ Physiol 2009; 297:H920-9. [PMID: 19561312 DOI: 10.1152/ajpheart.00305.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, it has been shown that carbon monoxide (CO)-releasing molecule (CORM)-released CO can suppress inflammation. In this study, we assessed the effects and potential mechanisms of a ruthenium-based water-soluble CO carrier [tricarbonylchloroglycinate-ruthenium(II) (CORM-3)] in the modulation of polymorphonuclear leukocyte (PMN) inflammatory responses in an experimental model of sepsis. Sepsis in mice was induced by cecal ligation and puncture. CORM-3 (3 mg/kg iv) was administered 15 min after the induction of cecal ligation and puncture. PMN accumulation in the lung (myeloperoxidase assay), bronchoalveolar lavage (BAL) fluid, and lung vascular permeability (protein content in BAL fluid) were assessed 6 h later. In in vitro experiments, human PMNs were primed with LPS (10 ng/ml) and subsequently stimulated with formyl-methionyl-leucylphenylalanine (fMLP; 100 nM). PMN production of ROS (L-012/dihydrorhodamine-123 oxidation), degranulation (release of elastase), and PMN rolling, adhesion, and migration to/across human umbilical vein endothelial cells (HUVECs) were assessed in the presence or absence of CORM-3 (1-100 muM). The obtained results indicated that systemically administered CORM-3 attenuates PMN accumulation and vascular permeability in the septic lung. Surprisingly, in in vitro experiments, treatment of PMNs with CORM-3 further augmented LPS/fMLP-induced ROS production and the release of elastase. The latter effects, however, were accompanied by an inability of PMNs to mobilize elastase to the cell surface (plasma membrane), an event required for efficient PMN transendothelial migration. The CORM-3-induced decrease in cell surface levels of elastase was followed by decreased PMN rolling/adhesion to HUVECs and complete prevention of PMN migration across HUVECs. In contrast, treatment of HUVECs with CORM-3 had no effect on PMN transendothelial migration. Taken together, these findings indicate that, in sepsis, CORM3-released CO, while further amplifying ROS production and degranulation of PMNs, concurrently reduces the levels of cell surface-bound elastase, which contributes to suppressed PMN transendothelial migration.
Collapse
Affiliation(s)
- Shinjiro Mizuguchi
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada N6A 4G4
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Huang LT, Paredes CJ, Papoutsakis ET, Miller WM. Gene expression analysis illuminates the transcriptional programs underlying the functional activity of ex vivo-expanded granulocytes. Physiol Genomics 2007; 31:114-25. [PMID: 17550995 DOI: 10.1152/physiolgenomics.00053.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Global gene expression analysis established the temporal expression patterns and programs underlying the development of functional activity of ex vivo-expanded (EXE) human granulocytes, as well as differences compared with peripheral blood (PB) granulocytes. CD34(+) progenitor cells were cultured for 3 wk to induce rapid expansion and granulocytic differentiation, with 40% CD15(+) cells by day 3 and 90% by day 12. Phagocytic and respiratory burst activity increased with the fraction of CD15(++)CD11b(+) cells (myelocytes to segmented) and peaked by day 17. However, only 25% of CD15(++)CD11b(+) cells were phagocytic, and respiratory burst activity was one-third that of PB granulocytes. EXE granulocytes from later days and PB granulocytes showed similar expression of Fc gamma receptors (-1A, -2A, -2C, -3A) and complement receptors (-1, -3, -4). Later downregulation of CD36 (expressed by macrophages) suggests lineage plasticity early in granulocytic differentiation. Expression in mature EXE and PB granulocytes was similar for most Fc gamma receptor-mediated phagocytosis signaling proteins, including high-level expression of Hck, Fgr, and the actin-related protein 2/3 complex. Lower expression of Lyn, Cdc42, pleckstrin, and PKC beta(I) by EXE granulocytes may explain decreased phagocytosis. PB and mature EXE granulocytes expressed similar levels of NADPH oxidase complex genes and receptors for fMLP-mediated respiratory burst. Lower burst activity by EXE granulocytes may result from lower expression of Raf1 and PKC zeta. Elevated expression of toll-like receptor (TLR)2, TLR1, and CD14 in mature EXE and PB granulocytes supports a role for the TLR2 and CD14 pathway in zymosan-mediated respiratory burst activity. Lower activity in EXE granulocytes may be due to greater expression of IRAK3, which inhibits TLR-mediated signaling.
Collapse
Affiliation(s)
- Li Ting Huang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|
22
|
Gougerot-Pocidalo MA, El Benna J, My-Chan Dang P, Elbim C. Quand les polynucléaires neutrophiles attrapent les agents pathogènes dans leurs filets. Med Sci (Paris) 2007; 23:464-5. [PMID: 17502056 DOI: 10.1051/medsci/2007235464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
23
|
Jog NR, Rane MJ, Lominadze G, Luerman GC, Ward RA, McLeish KR. The actin cytoskeleton regulates exocytosis of all neutrophil granule subsets. Am J Physiol Cell Physiol 2007; 292:C1690-700. [PMID: 17202227 DOI: 10.1152/ajpcell.00384.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comprehensive analysis of the role of the actin cytoskeleton in exocytosis of the four different neutrophil granule subsets had not been performed previously. Immunoblot analysis showed that, compared with plasma membrane, there was less actin associated with secretory vesicles (SV, 75%), gelatinase granules (GG, 40%), specific granules (SG, 10%), and azurophil granules (AG, 5%). Exocytosis of SV, SG, and AG was measured as increased plasma membrane expression of CD35, CD66b, and CD63, respectively, with flow cytometry, and GG exocytosis was measured as gelatinase release with an ELISA. N-formylmethionyl-leucyl-phenylalanine (FMLP) stimulated exocytosis of SV, GG, and SG with an ED(50) of 15, 31, and 28 nM, respectively, with maximal response at 10(-7) M FMLP by 5 min, while no exocytosis of AG was detected. Disruption of the actin cytoskeleton by latrunculin A and cytochalasin D induced a decrease in FMLP-stimulated CD35 expression after an initial increase. Both drugs enhanced the rate and extent of FMLP-stimulated GG, SG, and AG exocytosis, while the EC(50) for FMLP was not altered. We conclude that the actin cytoskeleton controls access of neutrophil granules to the plasma membrane, thereby limiting the rate and extent of exocytosis of all granule subsets. Differential association of actin with the four granule subsets was not associated with graded exocytosis.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | |
Collapse
|
24
|
Takeda A, Goolsby C, Yaseen NR. NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res 2006; 66:6628-37. [PMID: 16818636 DOI: 10.1158/0008-5472.can-06-0458] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NUP98-HOXA9, the chimeric protein resulting from the t(7;11)(p15;p15) chromosomal translocation, is a prototype of several NUP98 fusions that occur in myelodysplastic syndromes and acute myeloid leukemia. We examined its effect on differentiation, proliferation, and gene expression in primary human CD34+ hematopoietic cells. Colony-forming cell (CFC) assays in semisolid medium combined with morphologic examination and flow cytometric immunophenotyping revealed that NUP98-HOXA9 increased the numbers of erythroid precursors and impaired both myeloid and erythroid differentiation. In continuous liquid culture, cells transduced with NUP98-HOXA9 exhibited a biphasic growth curve with initial growth inhibition followed by enhanced long-term proliferation, suggesting an increase in the numbers of primitive self-renewing cells. This was confirmed by a dramatic increase in the numbers of long-term culture-initiating cells, the most primitive hematopoietic cells detectable in vitro. To understand the molecular mechanisms underlying the effects of NUP98-HOXA9 on hematopoietic cell proliferation and differentiation, oligonucleotide microarray analysis was done at several time points over 16 days, starting at 6 hours posttransduction. The early growth suppression was preceded by up-regulation of IFNbeta1 and accompanied by marked up-regulation of IFN-induced genes, peaking at 3 days posttransduction. In contrast, oncogenes such as homeobox transcription factors, FLT3, KIT, and WT1 peaked at 8 days or beyond, coinciding with increased proliferation. In addition, several putative tumor suppressors and genes associated with hematopoietic differentiation were repressed at later time points. These findings provide a comprehensive picture of the changes in proliferation, differentiation, and global gene expression that underlie the leukemic transformation of human hematopoietic cells by NUP98-HOXA9.
Collapse
Affiliation(s)
- Akiko Takeda
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
25
|
Dull RO, Dinavahi R, Schwartz L, Humphries DE, Berry D, Sasisekharan R, Garcia JGN. Lung endothelial heparan sulfates mediate cationic peptide-induced barrier dysfunction: a new role for the glycocalyx. Am J Physiol Lung Cell Mol Physiol 2003; 285:L986-95. [PMID: 12754183 DOI: 10.1152/ajplung.00022.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The endothelial glycocalyx is believed to play a major role in microvascular permeability. We tested the hypothesis that specific components of the glycocalyx, via cytoskeletal-mediated signaling, actively participate in barrier regulation. With the use of polymers of arginine and lysine as a model of neutrophil-derived inflammatory cationic proteins, we determined size- and dose-dependent responses of cultured bovine lung microvascular endothelial cell permeability as assessed by transendothelial electrical resistance (TER). Polymers of arginine and lysine >11 kDa produced maximal barrier dysfunction as demonstrated by a 70% decrease in TER. Monomers of l-arginine and l-lysine did not alter barrier function, suggesting a cross-linking requirement of cell surface "receptors". To test the hypothesis that glycosaminoglycans (GAGs) are candidate receptors for this response, we used highly selective enzymes to remove specific GAGs before polyarginine (PA) treatment and examined the effect on TER. Heparinase III attenuated PA-induced barrier dysfunction by 50%, whereas heparinase I had no effect. To link changes in barrier function with structural alterations, we examined actin organization and syndecan localization after PA. PA induced actin stress fiber formation and clustering of syndecan-1 and syndecan-4, which were significantly attenuated by heparinase III. PA-induced cytoskeletal rearrangement and barrier function did not involve myosin light chain kinase (MLCK) or p38 MAPK, as ML-7, a specific MLCK inhibitor, or SB-20358, a p38 MAPK inhibitor, did not alter PA-induced barrier dysfunction. In summary, lung endothelial cell heparan sulfate proteoglycans are key participants in inflammatory cationic peptide-induced signaling that links cytoskeletal reorganization with subsequent barrier dysfunction.
Collapse
Affiliation(s)
- Randal O Dull
- Anesthesiology and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Betsuyaku T, Tanino M, Nagai K, Nasuhara Y, Nishimura M, Senior RM. Extracellular matrix metalloproteinase inducer is increased in smokers' bronchoalveolar lavage fluid. Am J Respir Crit Care Med 2003; 168:222-7. [PMID: 12714350 DOI: 10.1164/rccm.200301-103oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN), also called basigin, is present in the lung during development, but its expression in normal adult lung is minimal. Increases of EMMPRIN have been found in various forms of experimental lung injury. To determine whether EMMPRIN might be involved in alveolar injury/repair associated with smoking, we developed an ELISA for EMMPRIN and applied it to bronchoalveolar lavage fluids from never-smokers (n = 7), former smokers (n = 16), and current smokers (n = 58). The smoker groups included subjects with emphysema, as determined by high-resolution chest computed tomography. EMMPRIN levels were significantly elevated in current and former smokers (315 +/- 20 and 175 +/- 15 pg/ml SEM, respectively, compared with 31 +/- 7 pg/ml in never-smokers), but the EMMPRIN levels of smokers with emphysema were not different from smokers without emphysema. Immunohistochemistry of smokers' lung tissue showed EMMPRIN in bronchiolar epithelium and alveolar macrophages, but EMMPRIN mRNA in alveolar macrophages was not different between current and never-smokers. Matrix metalloproteinase-1 was also detectable in the bronchoalveolar lavage fluid from some smokers but not in never-smokers. These findings indicate that smoking is associated with increased intrapulmonary EMMPRIN. Whether EMMPRIN is involved in smoking-induced lung pathology remains to be determined.
Collapse
Affiliation(s)
- Tomoko Betsuyaku
- First Department of Medicine, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Molldrem JJ, Kant S, Jiang W, Lu S. The basis of T-cell-mediated immunity to chronic myelogenous leukemia. Oncogene 2002; 21:8668-73. [PMID: 12476312 DOI: 10.1038/sj.onc.1206093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jeffrey J Molldrem
- Transplantation Immunology Section, Department of Blood and Marrow Transplantation, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
28
|
Nupponen I, Pesonen E, Andersson S, Mäkelä A, Turunen R, Kautiainen H, Repo H. Neutrophil activation in preterm infants who have respiratory distress syndrome. Pediatrics 2002; 110:36-41. [PMID: 12093944 DOI: 10.1542/peds.110.1.36] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To study neutrophil activation in circulation as a sign of systemic inflammation in preterm infants with respiratory distress syndrome. METHODS The study comprised very low birth weight preterm infants who had respiratory distress syndrome and required intubation and mechanical ventilation (n = 51), 1-day-old preterm infants who had no need for mechanical ventilation (n = 12), term infants (n = 47), and adult volunteers (n = 25). Neutrophil surface expression of CD11b was quantified with flow cytometry. RESULTS In preterm infants with respiratory distress syndrome, neutrophil CD11b expression during the first day of life was higher than in cord blood (mean: 165 relative fluorescence units [RFU] [standard deviation [SD]: 53], n = 29 vs 83 RFU [SD: 21], n = 11; 95% confidence interval [CI] for difference: 59-106) or in preterm infants without mechanical ventilation (106 RFU [SD: 33], n = 12; 95% CI for difference: 17-90). CD11b expression decreased by age of 10 days. CD11b expression was lower in preterm cord than in term cord blood (95% CI for difference: 5-53). However, in preterm infants with respiratory distress syndrome aged 2 to 5 days, it was higher than in term infants of that age. CONCLUSIONS The observations demonstrate an early transient postnatal neutrophil activation indicative of systemic inflammation that may contribute to the tissue injury in preterm infants with respiratory distress syndrome.
Collapse
Affiliation(s)
- Irmeli Nupponen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood 2000. [DOI: 10.1182/blood.v96.13.4261.h8004261_4261_4266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombohemorrhagic complications are a major cause of morbidity and mortality in patients with essential thrombocythemia (ET) and polycythemia vera (PV). The pathogenesis of these complications is not completely clarified. Several studies have described abnormalities of red blood cells and platelets in these patients. However, no studies are available on changes in the polymorphonuclear leukocytes (PMNs), which can play an important role in the activation of the hemostatic system. In patients with ET (n = 37) and PV (n = 34), a series of PMN activation parameters (PMN membrane CD11b and leukocyte alkaline phosphatase [LAP] antigen expression, cellular elastase content, plasma elastase, and myeloperoxidase levels) was evaluated simultaneously with the levels of plasma markers of endothelial damage (thrombomodulin and von Willebrand factor antigen) and hypercoagulation (thrombin-antithrombin complex, prothrombin fragment 1 + 2, and D-dimer). The results show the occurrence of PMN activation in both groups of patients compared with a control group of healthy subjects. An increase in CD11b and LAP expression by PMN membrane was observed, together with a significant increase in cellular elastase content, plasma elastase, and myeloperoxidase levels. In addition, patients had high plasma levels of endothelial and hypercoagulation markers compared with controls. For the first time, these data show that in ET and PV, 2 hematologic conditions that place patients at increased risk for thrombosis, an in vivo leukocyte activation occurs and is associated with laboratory signs of endothelium and coagulation system activation.
Collapse
|
30
|
Abstract
In recent years, the type 1 insulin-like growth factor receptor (IGF-IR) has emerged as a receptor that plays a very important role in the growth of cells, both in vivo and in vitro. The ability of the IGF-IR to induce mitogenesis and to promote survival of cells against a variety of apoptotic agents is well documented. Somewhat less known are other functions of the IGF-IR, like its ability to induce differentiation, to regulate cell size and to affect the organization of the cytoskeleton of cells. This review will focus on these lesser known functions of the IGF-IR. At the same time, we will emphasize how the IGF-IR can send contradictory signals, which depend on different domains of the receptor and the availability of downstream transducing molecules.
Collapse
Affiliation(s)
- R Baserga
- Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, 624 BLSB, Philadelphia, Pennsylvania, PA 19107, USA
| |
Collapse
|
31
|
Abstract
The innate immune system provides rapid and effective host defense against microbial invasion in a manner that is independent of prior exposure to a given pathogen.1 It has long been appreciated that the blood contains important elements that mediate rapid responses to infection. Thus, anatomic compartments with ample blood supply are less frequently infected and recover more readily once infected, whereas regions with poor perfusion are prone to severe infection and may require surgical débridement. Blood-borne innate immune mediators are either carried in circulating blood cells (ie, leukocytes and platelets) or in plasma after release from blood cells or on secretion by the liver.
Collapse
|
32
|
Abstract
Congenital neutropenia and cyclic neutropenia are disorders of neutrophil production predisposing patients to recurrent bacterial infections. Recently the locus for autosomal dominant cyclic neutropenia was mapped to chromosome 19p13.3, and this disease is now attributable to mutations of the gene encoding neutrophil elastase (the ELA2 gene). The authors hypothesized that congenital neutropenia is also due to mutations of neutrophil elastase. Patients with congenital neutropenia, cyclic neutropenia, or Shwachman-Diamond syndrome were referred to the Severe Chronic Neutropenia International Registry. Referring physicians provided hematologic and clinical data. Mutational analysis was performed by sequencing polymerase chain reaction (PCR)-amplified genomic DNA for each of the 5 exons of the neutrophil ELA2 gene and 20 bases of the flanking regions. RNA from bone marrow mononuclear cells was used to determine if the affected patients expressed both the normal and the abnormal transcript. Twenty-two of 25 patients with congenital neutropenia had 18 different heterozygous mutations. Four of 4 patients with cyclic neutropenia and 0 of 3 patients with Shwachman-Diamond syndrome had mutations. For 5 patients with congenital neutropenia having mutations predicted to alter RNA splicing or transcript structure, reverse transcriptase-PCR showed expression of both normal and abnormal transcripts. In cyclic neutropenia, the mutations appeared to cluster near the active site of the molecule, whereas the opposite face was predominantly affected by the mutations found in congenital neutropenia. This study indicates that mutations of the gene encoding neutrophil elastase are probably the most common cause for severe congenital neutropenia as well as the cause for sporadic and autosomal dominant cyclic neutropenia.
Collapse
|
33
|
Abstract
To understand the molecular basis of exocytosis in human neutrophils, the role of syntaxin 6 and SNAP-23 in neutrophil degranulation was examined. Human syntaxin 6 was cloned and identified as a 255-amino acid protein with a carboxy-terminal transmembrane region and two coiled-coil domains. Syntaxin 6 was localized mainly in the plasma membrane of human resting neutrophils, whereas SNAP-23 was located primarily in the mobilizable tertiary and specific granules. SNAP-23 was translocated to the cell surface, colocalizing with syntaxin 6, on neutrophil activation. In vitro binding studies established that SNAP-23 binds to syntaxin 6. Coimmunoprecipitation assays indicated that SNAP-23 interacts with syntaxin 6 in vivo, and this interaction was dramatically increased on neutrophil activation. Antibodies against SNAP-23 inhibited Ca++ and GTP-γ-S–induced exocytosis of CD67-enriched specific granules, but they hardly affected exocytosis of the CD63-enriched azurophilic granules, when introduced into electropermeabilized neutrophils. Anti–syntaxin 6 antibodies prevented exocytosis of both CD67- and CD63-enriched granules in electropermeabilized neutrophils. These data show that syntaxin 6 and SNAP-23 are involved in human neutrophil exocytosis, demonstrating that vesicle SNAP receptor-target SNAP receptor (v-SNARE– t-SNARE) interactions modulate neutrophil secretion. Syntaxin 6 acts as a target for secretion of specific and azurophilic granules, whereas SNAP-23 mediates specific granule secretion.
Collapse
|
34
|
Abstract
Idiopathic myelofibrosis (MF) is a myeloproliferative syndrome characterized by an increase in bone marrow collagen. Megakaryocytes (Mks), which store growth factors in their α granules, are known to be involved in the pathogenesis of MF. Previously, mice given bone marrow grafts infected with a retrovirus carrying murine thrombopoietin (TPO) complementary DNA developed a disease resembling human idiopathic MF. In this study, we used this murine model (TPO mice) to determine whether release of α granules is responsible for fibroblast activation and development of fibrosis. The intracellular trafficking of several α-granule proteins (von Willebrand factor, fibrinogen, and transforming growth factor β (TGFβ), which are stored in the granule matrix; and αIIbβ3 integrin and P-selectin (CD62p), which are located in the α-granule membrane) was studied with immune electron microscopy in bone marrow Mks from TPO mice. P-selectin immunolabeling increased consistently and was occasionally found lining the demarcation membrane system. Evidence of extensive emperipolesis was also found in TPO mouse Mks, involving almost exclusively neutrophil and eosinophil polymorphonuclear (PMN) cells with altered morphologic features. In parallel, the host Mks had myeloperoxidase-positive granules scattered in their cytoplasm, associated with marked ultrastructural cytoplasmic alterations and ruptured α-granule membranes. Similar observations were made in bone marrow biopsy specimens from 12 patients with idiopathic MF; indeed, there was an increased rate of emperipolesis involving mostly PMN cells, abnormal P-selectin expression, and mutual subcellular PMN and Mk alterations. This study indicates that in idiopathic MF, abnormal P-selectin distribution in Mks induces selective sequestration of PMN cells. This results in a release of α-granular proteins and growth factors, which in turn induces fibroblast activation and fibrosis deposition.
Collapse
|
35
|
Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. Ectosomes Released by Human Neutrophils Are Specialized Functional Units. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Here we show that human polymorphonuclear leukocytes (PMN) release ectosomes independently of complement attack during their activation both in vitro and at the site of inflammation in vivo. Patterns of biotinylated proteins on the surface of PMN and on PMN-derived ectosomes indicated a specific sorting of cell surface proteins into and out of ectosomes. Ectosomes expressed clusters of complement receptor 1 (CR1), which allowed them to bind efficiently to opsonized bacteria. Myeloperoxidase and human leukocyte elastase, both stored within the azurophilic granules of PMN, were found to colocalize on ectosomes with CR1. Furthermore, myeloperoxidase colocalized with human leukocyte elastase. In contrast, not present on CR1-expressing ectosomes were CD63, a selective marker for the azurophilic granules, and CD14, which is located within the same granules and the secretory vesicles as CR1. Of the other complement regulatory proteins expressed by PMN, only CD59 colocalized with CR1, while CD55 and CD46 were almost absent. Ectosomes released by activated PMN at the site of inflammation may function as a well organized element (ecto-organelle), designed to focus antimicrobial activity onto opsonized surfaces.
Collapse
Affiliation(s)
| | | | - Andreas Hefti
- †Interdivisional Electron Microscopy, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
36
|
Mócsai A, Ligeti E, Lowell CA, Berton G. Adhesion-Dependent Degranulation of Neutrophils Requires the Src Family Kinases Fgr and Hck. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Polymorphonuclear neutrophils (PMN) adherent to integrin ligands respond to inflammatory mediators by reorganizing their cytoskeleton and releasing reactive oxygen intermediates. As Src family tyrosine kinases are implicated in these responses, we investigated their possible role in regulating degranulation. Human PMN incubated on fibrinogen released lactoferrin in response to TNF-α and this response was inhibited by PP1, a Src family tyrosine kinase inhibitor. This drug had no effect on lactoferrin secretion induced by PMA, an adhesion-independent agonist of PMN degranulation. However, PP1 blocked secretion in PMN plated on plain tissue culture plastic, a surface inducing PMN spreading in the absence of any stimulus. Double knockout hck−/−fgr−/− PMN adherent to collagen or fibrinogen failed to release lactoferrin in response to TNF-α but responded to PMA as wild-type PMN. Degranulation induced by spreading over tissue culture plastic was also defective in hck−/−fgr−/− PMN. Defective adhesion-dependent degranulation required the absence of both kinases, because single knockout fgr−/− or hck−/− PMN responded as wild-type cells. Analysis of lactoferrin secretion in hck−/−fgr−/− or PP1-treated, suspended PMN showed that Src kinases are not implicated in degranulation dependent on activation of protein kinase C or increase in intracellular free Ca2+ but may play a role in the response to FMLP of cytochalasin B-treated PMN. These findings identify a role for Src family kinases in a signaling pathway leading to granule-plasma membrane fusion and suggest that Fgr and Hck would be targets for pharmacological control of adhesion-dependent degranulation in the inflammatory site.
Collapse
Affiliation(s)
- Attila Mócsai
- *Institute of General Pathology, University of Verona, Verona, Italy
- †Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University of Medicine, Budapest, Hungary; and
| | - Erzsébet Ligeti
- †Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University of Medicine, Budapest, Hungary; and
| | - Clifford A. Lowell
- ‡Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Giorgio Berton
- *Institute of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
37
|
N’Diaye EN, Darzacq X, Astarie-Dequeker C, Daffé M, Calafat J, Maridonneau-Parini I. Fusion of Azurophil Granules with Phagosomes and Activation of the Tyrosine Kinase Hck Are Specifically Inhibited During Phagocytosis of Mycobacteria by Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Pathogenic mycobacteria parasitize macrophages and reside within phagosomes, which do not fuse with lysosomal granules. Mycobacteria are also internalized by neutrophils, which possess at least two types of granules, specific and azurophil granules, the latter being specialized lysosomes. Here, we investigated the ability of mycobacteria to inhibit the fusion of these granules with their phagosomes in human neutrophils. It was found that when pathogenic (Mycobacterium kansasii and Mycobacterium avium) or nonpathogenic (Mycobacterium smegmatis and Mycobacterium phlei) mycobacteria were internalized by neutrophils, they induced the inhibition of azurophil granule fusion with phagosomes even when they were serum opsonized. In contrast, secretion of specific granule content and production of O2−, both of which contribute to the neutrophil bactericidal response, were triggered. Hck is a Src family tyrosine kinase associated with azurophil granules. During internalization of zymosan, azurophil granules fused with phagosomes and Hck was activated and translocated to the phagosomal membrane, whereas in neutrophils engulfing mycobacteria, Hck did not translocate and remained unactivated. The activation of the tyrosine kinase Fgr was not affected. These results indicate that 1) pathogenic and nonpathogenic mycobacteria trigger similar bactericidal responses in neutrophils, 2) phagocytosis and fusion of azurophil granules can be uncoupled by mycobacteria, and 3) Hck could be one of the key elements of the azurophil secretory pathway that are altered during phagocytosis of mycobacteria.
Collapse
Affiliation(s)
- Elsa-Noah N’Diaye
- *Institut de Pharmacologie et de Biologie Structurale–Centre National de la Recherche Scientifique, Unité Propre de Recherche 9062, Toulouse, France; and
| | - Xavier Darzacq
- *Institut de Pharmacologie et de Biologie Structurale–Centre National de la Recherche Scientifique, Unité Propre de Recherche 9062, Toulouse, France; and
| | - Catherine Astarie-Dequeker
- *Institut de Pharmacologie et de Biologie Structurale–Centre National de la Recherche Scientifique, Unité Propre de Recherche 9062, Toulouse, France; and
| | - Mamadou Daffé
- *Institut de Pharmacologie et de Biologie Structurale–Centre National de la Recherche Scientifique, Unité Propre de Recherche 9062, Toulouse, France; and
| | - Jero Calafat
- †The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Isabelle Maridonneau-Parini
- *Institut de Pharmacologie et de Biologie Structurale–Centre National de la Recherche Scientifique, Unité Propre de Recherche 9062, Toulouse, France; and
| |
Collapse
|
38
|
Abstract
PU.1 is an ets family transcription factor that is expressed specifically in hematopoietic lineages. Through gene disruption studies in mice we have previously shown that the expression of PU.1 is not essential for early myeloid lineage or neutrophil commitment, but is essential for monocyte/macrophage development. We have also shown that PU.1-null (deficient) neutrophils have neutrophil morphology and express neutrophil-specific markers such as Gr-1 and chloroacetate esterase both in vivo and in vitro. We now demonstrate that although PU.1-null mice develop neutrophils, these cells fail to terminally differentiate as shown by the absence of messages for neutrophil secondary granule components and the absence or deficiency of cellular responses to stimuli that normally invoke neutrophil function. Specifically, PU.1-deficient neutrophils fail to respond to selected chemokines, do not generate superoxide ions, and are ineffective at bacterial uptake and killing. The failure to produce superoxide could, in part, be explained by the absence of the gp91 subunit of nicotinamide adenine dinucleotide phosphate oxidase, as shown by our inability to detect messages for the gp91phoxgene. Incomplete maturation of PU.1-deficient neutrophils is cell autonomous and persists in cultured PU.1-deficient cells. Our results indicate that PU.1 is not necessary for neutrophil lineage commitment but is essential for normal development, maturation, and function of neutrophils.© 1998 by The American Society of Hematology.
Collapse
|
39
|
Abstract
The serine protease cathepsin G is synthesized during the promyelomonocytic stage of neutrophil and monocyte differentiation. After processing, including removal of an amino-terminal propeptide from the catalytically inactive proform, the active protease acquires a mature conformation and is stored in azurophil granules. To investigate the importance of the proform-conformation for targeting to granules, a cDNA encoding a double-mutant form of human preprocathepsin G lacking functional catalytic site and amino-terminal prodipeptide (CatG/Gly201/▵Gly19Glu20) was constructed, because we were not able to stably express a mutant lacking only the propeptide. Transfection of the cDNA to the rat basophilic leukemia RBL-1 and the murine myeloblast-like 32D cl3 cell lines resulted in stable, protein-expressing clones. In contrast to wild-type proenzyme, CatG/Gly201/▵Gly19Glu20 adopted a mature conformation cotranslationally, as judged by the early acquisition of affinity to the serine protease inhibitor aprotinin, appearing before the carboxyl-terminal processing and also in the presence of the Golgi-disrupting agent brefeldin A. The presence of a mature amino-terminus was confirmed by amino-terminal radiosequencing. As with wild-type proenzyme, CatG/Gly201/▵Gly19Glu20 was proteolytically processed carboxyl-terminally and glycosylated with asparagine-linked carbohydrates that were converted into complex forms. Furthermore, it was targeted to granules, as determined by subcellular fractionation. Our results show that the initial proform-conformation is not critical for intracellular sorting of human cathepsin G. Moreover, we demonstrate that double-mutant cathepsin G can achieve a mature conformation before carboxyl-terminal processing of the proform.© 1998 by The American Society of Hematology.
Collapse
|