1
|
Parascandolo A, Benincasa G, Corcione F, Laukkanen MO. ERK2 Is a Promoter of Cancer Cell Growth and Migration in Colon Adenocarcinoma. Antioxidants (Basel) 2024; 13:119. [PMID: 38247543 PMCID: PMC10812609 DOI: 10.3390/antiox13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
ERK1/2 phosphorylation is frequently downregulated in the early phase of colon tumorigenesis with subsequent activation of ERK5. In the current work, we studied the advantages of ERK1/2 downregulation for tumor growth by dissecting the individual functions of ERK1 and ERK2. The patient sample data demonstrated decreased ERK1/2 phosphorylation in the early phase of tumorigenesis followed by increased phosphorylation in late-stage colon adenocarcinomas with intratumoral invasion or metastasis. In vitro results indicated that SOD3-mediated coordination of small GTPase RAS regulatory genes inhibited RAS-ERK1/2 signaling. In vitro and in vivo studies suggested that ERK2 has a more prominent role in chemotactic invasion, collective migration, and cell proliferation than ERK1. Of note, simultaneous ERK1 and ERK2 expression inhibited collective cell migration and proliferation but tended to promote invasion, suggesting that ERK1 controls ERK2 function. According to the present data, phosphorylated ERK1/2 at the early phase of colon adenocarcinoma limits tumor mass expansion, whereas reactivation of the kinases at the later phase of colon carcinogenesis is associated with the initiation of metastasis. Additionally, our results suggest that ERK1 is a regulatory kinase that coordinates ERK2-promoted chemotactic invasion, collective migration, and cell proliferation. Our findings indicate that ROS, especially H2O2, are associated with the regulation of ERK1/2 phosphorylation in colon cancer by either increasing or decreasing kinase activity. These data suggest that ERK2 has a growth-promoting role and ERK1 has a regulatory role in colon tumorigenesis, which could lead to new avenues in the development of cancer therapy.
Collapse
Affiliation(s)
- Alessia Parascandolo
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
| | | | | | - Mikko O. Laukkanen
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
- Center for Experimental Endocrinology and Oncology (IEOS), CNR-IEOS, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Chakraborty S, Andrieux G, Kastl P, Adlung L, Altamura S, Boehm ME, Schwarzmüller LE, Abdullah Y, Wagner MC, Helm B, Gröne HJ, Lehmann WD, Boerries M, Busch H, Muckenthaler MU, Schilling M, Klingmüller U. Erythropoietin-driven dynamic proteome adaptations during erythropoiesis prevent iron overload in the developing embryo. Cell Rep 2022; 40:111360. [PMID: 36130519 DOI: 10.1016/j.celrep.2022.111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes. In the absence of the Epo receptor (EpoR) in embryos, we observe a lack of hemoglobin in CFU-E cells and massive iron overload of the fetal liver pointing to a miscommunication between liver and placenta. A reduction of iron-sulfur cluster-containing proteins involved in oxidative phosphorylation in these embryos leads to a metabolic shift toward glycolysis. This link connecting erythropoiesis with the regulation of iron homeostasis and metabolic reprogramming suggests that balancing these interactions is crucial for protection from iron intoxication and for survival.
Collapse
Affiliation(s)
- Sajib Chakraborty
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Systems Cell-Signalling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philipp Kastl
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lorenz Adlung
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Medicine & Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandro Altamura
- Center for Translational Biomedical Iron Research (CeTBI), Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin E Boehm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa E Schwarzmüller
- Division Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yomn Abdullah
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marie-Christine Wagner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Helm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wolf D Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg im Breisgau, Germany.
| | - Hauke Busch
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany.
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research (CeTBI), Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany; German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Pan J, Borné Y, Orho-Melander M, Nilsson J, Melander O, Engström G. The associations between red cell distribution width and plasma proteins in a general population. Clin Proteomics 2021; 18:12. [PMID: 33781199 PMCID: PMC8008679 DOI: 10.1186/s12014-021-09319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND High red cell distribution width (RDW) has been increasingly recognized as a risk factor for cardiovascular diseases (CVDs), but the underlying mechanisms remain unknown. Our aim was to explore the associations between RDW and plasma proteins implicated in the pathogenesis of CVD using a targeted proteomics panel. METHODS RDW and 88 plasma proteins were measured in a population-based cohort study (n = 4726), Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC). A random 2/3 of the cohort was used as discovery sample and remaining 1/3 was used for replication. Multiple linear regression was used to assess the associations between RDW and plasma proteins, with adjustments for age, sex, and other potential confounders. Proteins with Bonferroni-corrected significant associations with RDW in the discovery sub-cohort were validated in the replication cohort. RESULTS Thirteen of 88 plasma proteins had significant associations with RDW in the discovery sample, after multivariate adjustments. Eleven of them were also significant in the replication sample, including SIR2-like protein 2 (SIRT2), stem cell factor (SCF, inversely), melusin (ITGB1BP2), growth differentiation factor-15 (GDF-15), matrix metalloproteinase-7 (MMP-7), hepatocyte growth factor (HGF), chitinase-3-like protein 1 (CHI3L1), interleukin-8 (IL-8), CD40 ligand (CD40-L), urokinase plasminogen activator surface receptor (U-PAR) and matrix metalloproteinase-3 (MMP-3). CONCLUSIONS Several proteins from this targeted proteomics panel were associated with RDW in this cohort. These proteins could potentially be linked to the increased cardiovascular risk in individuals with high RDW.
Collapse
Affiliation(s)
- Jingxue Pan
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden.
| | - Yan Borné
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, CRC Hus 60 plan 13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| |
Collapse
|
4
|
Chen K, Tang P, Bao Z, He T, Xiang Y, Gong W, Yoshimura T, Le Y, Tessarollo L, Chen X, Wang JM. Deficiency in Fpr2 results in reduced numbers of Lin -cKit +Sca1 + myeloid progenitor cells. J Biol Chem 2018; 293:13452-13463. [PMID: 30018139 PMCID: PMC6120191 DOI: 10.1074/jbc.ra118.002683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The Lin-c-Kit+ Sca-1+ cell population in the bone marrow (BM) serves as the direct precursor for differentiation of myeloid cells. In this study, we report that deficiency in Fpr2, a G protein-coupled chemoattractant receptor in mice, is associated with reduced BM nucleated cells, including CD31+Ly6C+ (granulocytes and monocytes), CD31-/Ly6Cint (granuloid cells), and CD31-/Ly6Chigh (predominantly monocytes) cells. In particular, the number of Lin-c-Kit+Sca-1+ (LKS) cells was reduced in Fpr2-/- mouse BM. This was supported by observations of the reduced incorporation of intraperitoneally injected bromodeoxyuridine by cells in the c-Kit+ population from Fpr2-/- mouse BM. Purified c-Kit+ cells from Fpr2-/- mice showed reduced expansion when cultured in vitro with stem cell factor (SCF). SCF/c-Kit-mediated phosphorylation of P38, STAT1, Akt (Thr-308), and Akt (Ser-473) was also significantly reduced in c-Kit+ cells from Fpr2-/- mice. Furthermore, Fpr2 agonists enhanced SCF-induced proliferation of c-Kit+ cells. Colony-forming unit assays revealed that CFU-granulocyte-macrophage formation of BM cells from Fpr2-/- mice was significantly reduced. After heat-inactivated bacterial stimulation in the airway, the expansion of c-kit+ Sca-1+ cells in BM and recruitment of Ly6G+ cells to the lungs and CD11b+Ly6C+TNFα+ cells to the spleen of Fpr2-/- mice was significantly reduced. These results demonstrate an important role for Fpr2 in the development of myeloid lineage precursors in mouse BM.
Collapse
Affiliation(s)
| | - Peng Tang
- From the Cancer and Inflammation Program and
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhiyao Bao
- From the Cancer and Inflammation Program and
- the Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Tianzhen He
- the State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yi Xiang
- the Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wanghua Gong
- the Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Teizo Yoshimura
- the Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan, and
| | - Yingying Le
- the Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Xin Chen
- the State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | | |
Collapse
|
5
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:dev151423. [PMID: 29321181 PMCID: PMC5825862 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
6
|
|
7
|
McIver SC, Hewitt KJ, Gao X, Mehta C, Zhang J, Bresnick EH. Dissecting Regulatory Mechanisms Using Mouse Fetal Liver-Derived Erythroid Cells. Methods Mol Biol 2018; 1698:67-89. [PMID: 29076084 PMCID: PMC5842797 DOI: 10.1007/978-1-4939-7428-3_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multipotent hematopoietic stem cells differentiate into an ensemble of committed progenitor cells that produce the diverse blood cells essential for life. Physiological mechanisms governing hematopoiesis, and mechanistic aberrations underlying non-malignant and malignant hematologic disorders, are often very similar in mouse and man. Thus, mouse models provide powerful systems for unraveling mechanisms that control hematopoietic stem/progenitor cell (HSPC) function in their resident microenvironments in vivo. Ex vivo systems, involving the culture of HSPCs generated in vivo, allow one to dissociate microenvironment-based and cell intrinsic mechanisms, and therefore have considerable utility. Dissecting mechanisms controlling cellular proliferation and differentiation is facilitated by the use of primary cells, since mutations and chromosome aberrations in immortalized and cancer cell lines corrupt normal mechanisms. Primary erythroid precursor cells can be expanded or differentiated in culture to yield large numbers of progeny at discrete maturation stages. We described a robust method for isolation, culture, and analysis of primary mouse erythroid precursor cells and their progeny.
Collapse
Affiliation(s)
- Skye C McIver
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
| | - Xin Gao
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
| | - Jing Zhang
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, 53705, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 4009 WIMR, 1111 Highland Ave, Madison, WI, 53705, USA.
- UW-Madison Blood Research Program, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Dulmovits BM, Hom J, Narla A, Mohandas N, Blanc L. Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis. Curr Opin Hematol 2017; 24:159-166. [PMID: 28099275 PMCID: PMC5518670 DOI: 10.1097/moh.0000000000000328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The erythroid progenitors burst-forming unit-erythroid and colony-forming unit-erythroid have a critical role in erythropoiesis. These cells represent a heterogeneous and poorly characterized population with modifiable self-renewal, proliferation and differentiation capabilities. This review focuses on the current state of erythroid progenitor biology with regard to immunophenotypic identification and regulatory programs. In addition, we will discuss the therapeutic implications of using these erythroid progenitors as pharmacologic targets. RECENT FINDINGS Erythroid progenitors are classically characterized by the appearance of morphologically defined colonies in semisolid cultures. However, these prior systems preclude a more thorough understanding of the composite nature of progenitor populations. Recent studies employing novel flow cytometric and cell-based assays have helped to redefine hematopoiesis, and suggest that erythroid progenitors may arise from different levels of the hematopoietic tree. Moreover, the identification of cell surface marker patterns in human burst-forming unit-erythroid and colony-forming unit-erythroid enhance our ability to perform downstream functional and molecular analyses at the population and single cell level. Advances in these techniques have already revealed novel subpopulations with increased self-renewing capacity, roles for erythroid progenitors in globin gene expression, and insights into pharmacologic mechanisms of glucocorticoids and pomalidomide. SUMMARY Immunophenotypic and molecular characterization resolves the diversity of erythroid progenitors, and may ultimately lead to the ability to target these progenitors to ameliorate diseases of dyserythropoiesis.
Collapse
Affiliation(s)
- Brian M. Dulmovits
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| | - Jimmy Hom
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| | - Anupama Narla
- Stanford University School of Medicine, Department of Pediatric Hematology/Oncology, Stanford, CA
| | - Narla Mohandas
- Red Cell Physiology laboratory, New York Blood Center, New York, NY
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| |
Collapse
|
9
|
Sun KT, Huang YN, Palanisamy K, Chang SS, Wang IK, Wu KH, Chen P, Peng CT, Li CY. Reciprocal regulation of γ-globin expression by exo-miRNAs: Relevance to γ-globin silencing in β-thalassemia major. Sci Rep 2017; 7:202. [PMID: 28303002 PMCID: PMC5427890 DOI: 10.1038/s41598-017-00150-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022] Open
Abstract
Induction of fetal hemoglobin (HbF) is a promising strategy in the treatment of β-thalassemia major (β-TM). The present study shows that plasma exosomal miRNAs (exo-miRs) are involved in γ-globin regulation. Exosomes shuttle miRNAs and mediate cell-cell communication. MiRNAs are regulators of biological processes through post-transcriptional targeting. Compared to HD (Healthy Donor), β-TM patients showed increased levels of plasma exosomes and the majority of exosomes had cellular origin from CD34+ cells. Further, HD and β-TM exosomes showed differential miRNA expressions. Among them, deregulated miR-223-3p and miR-138-5p in β-TM exosomes and HD had specific targets for γ-globin regulator and repressor respectively. Functional studies in K562 cells showed that HD exosomes and miR-138-5p regulated γ-globin expression by targeting BCL11A. β-TM exosomes and miR-223-3p down regulated γ-globin expression through LMO2 targeting. Importantly, miR-223-3p targeting through sponge repression resulted in γ-globin activation. Further, hnRNPA1 bound to stem-loop structure of pre-miR-223 and we found that hnRNPA1 knockdown or mutagenesis at miR-223-3p stem-loop sequence resulted in less mature exo-miR-223-3p levels. Altogether, the study shows for the first time on the important clinical evidence that differentially expressed exo-miRNAs reciprocally control γ-globin expressions. Further, the hnRNPA1-exo-miR-223-LMO2 axis may be critical to γ-globin silencing in β-TM.
Collapse
Affiliation(s)
- Kuo-Ting Sun
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, 40402, Taiwan
- School of Dentistry, China Medical University, Taichung, 40402, Taiwan
| | - Yu-Nan Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40402, Taiwan
- Department of Hematology-oncology, Children's Hospital of China Medical University, Taichung, 40402, Taiwan
| | - Kalaiselvi Palanisamy
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
| | - Shih-Sheng Chang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Division of Nephrology, Department of Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Kang-Hsi Wu
- Department of Hematology-oncology, Children's Hospital of China Medical University, Taichung, 40402, Taiwan
| | - Ping Chen
- Thalassemia Research Institute, The First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ching-Tien Peng
- Department of Hematology-oncology, Children's Hospital of China Medical University, Taichung, 40402, Taiwan.
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan.
- Department of Anesthesiology, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
10
|
Liao YJ, Lee YH, Chang FL, Ho H, Huang CH, Twu YC. The SHP2-ERK2 signaling pathway regulates branched I antigen formation by controlling the binding of CCAAT/enhancer binding protein α to the IGnTC promoter region during erythroid differentiation. Transfusion 2016; 56:2691-2702. [PMID: 27600951 DOI: 10.1111/trf.13796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/20/2016] [Accepted: 06/25/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Phosphorylation status of the transcription factor CCAAT/enhancer binding protein α (C/EBPα) has been demonstrated in a human hematopoietic cell model to regulate the formation of branched I antigen by affecting its binding affinity to the promoter region of the IGnTC gene during erythroid and granulocytic differentiation. STUDY DESIGN AND METHODS The K-562 cell line was induced to differentiate into red blood cells (RBCs) or granulocytes by sodium butyrate or retinoic acid, respectively, to study the involvement of three MAP kinase pathways in I antigen synthesis. The regulatory effects of the extracellular signal-regulated kinase (ERK)2-Src homology region 2 domain-containing phosphatase 2 (SHP2) pathway on phosphorylation status and binding affinities of C/EBPα as well as the subsequent activation of IGnTC and synthesis of surface I formation were studied in wild-type K-562 cells and in mutant cells that overexpress ERK2 and SHP2. RESULTS We found that SHP2-ERK2 signaling regulates the phosphorylation status of C/EBPα to alter its binding affinity onto the IGnTC promoter region, thereby activating the synthesis of cell surface I antigen formation during erythropoiesis. CONCLUSION SHP2-ERK2 signaling acts upstream of C/EBPα as a regulator of cell surface I antigen synthesis. Such regulation is specific for RBC but not for granulocyte differentiation.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University
| | - Yen-Hua Lee
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Fu-Ling Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsun Ho
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Han Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
McIver SC, Katsumura KR, Davids E, Liu P, Kang YA, Yang D, Bresnick EH. Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. eLife 2016; 5. [PMID: 27543448 PMCID: PMC5040589 DOI: 10.7554/elife.17877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Since the highly conserved exosome complex mediates the degradation and processing of multiple classes of RNAs, it almost certainly controls diverse biological processes. How this post-transcriptional RNA-regulatory machine impacts cell fate decisions and differentiation is poorly understood. Previously, we demonstrated that exosome complex subunits confer an erythroid maturation barricade, and the erythroid transcription factor GATA-1 dismantles the barricade by transcriptionally repressing the cognate genes. While dissecting requirements for the maturation barricade in Mus musculus, we discovered that the exosome complex is a vital determinant of a developmental signaling transition that dictates proliferation/amplification versus differentiation. Exosome complex integrity in erythroid precursor cells ensures Kit receptor tyrosine kinase expression and stem cell factor/Kit signaling, while preventing responsiveness to erythropoietin-instigated signals that promote differentiation. Functioning as a gatekeeper of this developmental signaling transition, the exosome complex controls the massive production of erythroid cells that ensures organismal survival in homeostatic and stress contexts. DOI:http://dx.doi.org/10.7554/eLife.17877.001 Red blood cells supply an animal’s tissues with the oxygen they need to survive. These cells circulate for a certain amount of time before they die. To replenish the red blood cells that are lost, first a protein called stem cell factor (SCF) instructs stem cells and precursor cells to proliferate, and a second protein, known as erythropoietin, then signals to these cells to differentiate into mature red blood cells. It is important to maintain this balance between these two processes because too much proliferation can lead to cancer while too much differentiation will exhaust the supply of stem cells. Previous work has shown that a collection of proteins called the exosome complex can block steps leading towards mature red blood cells. The exosome complex controls several processes within cells by modifying or degrading a variety of messenger RNAs, the molecules that serve as intermediates between DNA and protein. However, it was not clear how the exosome complex sets up the differentiation block and whether it is somehow connected to the signaling from SCF and erythropoietin. McIver et al. set out to address this issue by isolating precursor cells with the potential to become red blood cells from mouse fetal livers and experimentally reducing the levels of the exosome complex. The experiments showed that these cells were no longer able to respond when treated with SCF in culture, whereas the control cells responded as normal. Further experiments showed that cells with less of the exosome complex also made less of a protein named Kit. Normally, SCF interacts with Kit to instruct cells to multiply. Lastly, although the experimental cells could no longer respond to these proliferation signals, they could react to erythropoietin, which promotes differentiation. Thus, normal levels of the exosome complex keep the delicate balance between proliferation and differentiation, which is crucial to the development of red blood cells. In future, it will be important to study the exosome complex in living mice and in human cells, and to see whether it also controls other signaling pathways. Furthermore, it is worth exploring whether this new knowledge can help efforts to produce red blood cells on an industrial scale, which could then be used to treat patients with conditions such as anemia. DOI:http://dx.doi.org/10.7554/eLife.17877.002
Collapse
Affiliation(s)
- Skye C McIver
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Koichi R Katsumura
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Elsa Davids
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Yoon-A Kang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - David Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, United States.,UW-Madison Blood Research Program, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, United States
| |
Collapse
|
12
|
Itamura H, Shindo T, Tawara I, Kubota Y, Kariya R, Okada S, Komanduri KV, Kimura S. The MEK inhibitor trametinib separates murine graft-versus-host disease from graft-versus-tumor effects. JCI Insight 2016; 1:e86331. [PMID: 27699218 PMCID: PMC5033881 DOI: 10.1172/jci.insight.86331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/31/2016] [Indexed: 01/21/2023] Open
Abstract
The efficacy of allogeneic hematopoietic stem cell transplantation for hematologic malignancies is limited by the difficulty in suppressing graft-versus-host disease (GVHD) without compromising graft-versus-tumor (GVT) effects. We previously showed that RAS/MEK/ERK signaling depends on memory differentiation in human T cells, which confers susceptibility to selective inhibition of naive T cells. Actually, antineoplastic MEK inhibitors selectively suppress alloreactive T cells, sparing virus-specific T cells in vitro. Here, we show that trametinib, a MEK inhibitor clinically approved for melanoma, suppresses GVHD safely without affecting GVT effects in vivo. Trametinib prolonged survival of GVHD mice and attenuated GVHD symptoms and pathology in the gut and skin. It inhibited ERK1/2 phosphorylation and expansion of donor T cells, sparing Tregs and B cells. Although high-dose trametinib inhibited myeloid cell engraftment, low-dose trametinib suppressed GVHD without severe adverse events. Notably, trametinib facilitated the survival of mice transplanted with allogeneic T cells and P815 tumor cells with no residual P815 cells observed in the livers and spleens, whereas tacrolimus resulted in P815 expansion. These results confirm that trametinib selectively suppresses GVHD-inducing T cells while sparing antitumor T cells in vivo, which makes it a promising candidate for translational studies aimed at preventing or treating GVHD.
Collapse
Affiliation(s)
- Hidekazu Itamura
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| | - Takero Shindo
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| | - Isao Tawara
- Department of Hematology/Oncology, Mie University School of Medicine, Tsu, Japan
| | - Yasushi Kubota
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Krishna V. Komanduri
- Adult Stem Cell Transplant Program and Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shinya Kimura
- Department of Hematology, Respiratory Medicine and Oncology, Saga University School of Medicine, Saga, Japan
| |
Collapse
|
13
|
Holtermann N, Kiupel M, Kessler M, Teske E, Betz D, Hirschberger J. Masitinib monotherapy in canine epitheliotropic lymphoma. Vet Comp Oncol 2015; 14 Suppl 1:127-35. [DOI: 10.1111/vco.12157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 04/19/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Affiliation(s)
- N. Holtermann
- Medizinische Kleintierklinik; Ludwig Maximilians University Munich; Munich Germany
| | - M. Kiupel
- Department of Pathology and Diagnostic Investigations, College of Veterinary Medicine, Michigan State University; Diagnostic Center for Population and Animal Health; Lansing MI USA
| | - M. Kessler
- Tierklinik Hofheim; Im Langgewann 9; 65719 Hofheim/Taunus Germany
| | - E. Teske
- Department of Clinical Sciences of Companion Animals, Veterinary Faculty; Utrecht University; Utrecht The Netherlands
| | - D. Betz
- Klinik für Kleintiere; Tierärztliche Hochschule Hannover; Hannover Germany
| | - J. Hirschberger
- Medizinische Kleintierklinik; Ludwig Maximilians University Munich; Munich Germany
| |
Collapse
|
14
|
Forster L, McCooke J, Bellgard M, Joske D, Finlayson J, Ghassemifar R. Differential gene expression analysis in early and late erythroid progenitor cells in β-thalassaemia. Br J Haematol 2015; 170:257-67. [DOI: 10.1111/bjh.13432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Luke Forster
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
| | - John McCooke
- Centre for Comparative Genomics; Murdoch University; Murdoch WA Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics; Murdoch University; Murdoch WA Australia
| | - David Joske
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| | - Jill Finlayson
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| | - Reza Ghassemifar
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| |
Collapse
|
15
|
Kit transduced signals counteract erythroid maturation by MAPK-dependent modulation of erythropoietin signaling and apoptosis induction in mouse fetal liver. Cell Death Differ 2014; 22:790-800. [PMID: 25323585 DOI: 10.1038/cdd.2014.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
Abstract
Signaling by the stem cell factor receptor Kit in hematopoietic stem and progenitor cells is functionally associated with the regulation of cellular proliferation, differentiation and survival. Expression of the receptor is downregulated upon terminal differentiation in most lineages, including red blood cell terminal maturation, suggesting that omission of Kit transduced signals is a prerequisite for the differentiation process to occur. However, the molecular mechanisms by which Kit signaling preserves the undifferentiated state of progenitor cells are not yet characterized in detail. In this study, we generated a mouse model for inducible expression of a Kit receptor carrying an activating mutation and studied its effects on fetal liver hematopoiesis. We found that sustained Kit signaling leads to expansion of erythroid precursors and interferes with terminal maturation beyond the erythroblast stage. Primary KIT(D816V) erythroblasts stimulated to differentiate fail to exit cell cycle and show elevated rates of apoptosis because of insufficient induction of survival factors. They further retain expression of progenitor cell associated factors c-Myc, c-Myb and GATA-2 and inefficiently upregulate erythroid transcription factors GATA-1, Klf1 and Tal1. In KIT(D816V) erythroblasts we found constitutive activation of the mitogen-activated protein kinase (MAPK) pathway, elevated expression of the src kinase family member Lyn and impaired Akt activation in response to erythropoietin. We demonstrate that the block in differentiation is partially rescued by MAPK inhibition, and completely rescued by the multikinase inhibitor Dasatinib. These results show that a crosstalk between Kit and erythropoietin receptor signaling cascades exists and that continuous Kit signaling, partly mediated by the MAPK pathway, interferes with this crosstalk.
Collapse
|
16
|
Zhao W, Zou K, Farasyn T, Ho WT, Zhao ZJ. Generation and characterization of a JAK2V617F-containing erythroleukemia cell line. PLoS One 2014; 9:e99017. [PMID: 25036984 PMCID: PMC4103785 DOI: 10.1371/journal.pone.0099017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/09/2014] [Indexed: 01/01/2023] Open
Abstract
The JAK2V617F mutation is found in the majority of patients with myeloproliferative neoplasms (MPNs). Transgenic expression of the mutant gene causes MPN-like phenotypes in mice. We have produced JAK2V617F mice with p53 null background. Some of these mice developed acute erythroleukemia. From one of these mice, we derived a cell line designated J53Z1. J53Z1 cells were stained positive for surface markers CD71 and CD117 but negative for Sca-1, TER-119, CD11b, Gr-1, F4/80, CD11c, CD317, CD4, CD8a, CD3e, B220, CD19, CD41, CD42d, NK-1.1, and FceR1. Real time PCR analyses demonstrated expressions of erythropoietin receptor EpoR, GATA1, and GATA2 in these cells. J53Z1 cells grew rapidly in suspension culture containing fetal bovine serum with a doubling time of ∼18 hours. When transplanted into C57Bl/6 mice, J53Z1 cells induced acute erythroleukemia with massive infiltration of tumor cells in the spleen and liver. J53Z1 cells were responsive to stimulation with erythropoietin and stem cell factor and were selectively inhibited by JAK2 inhibitors which induced apoptosis of the cells. Together, J53Z1 cells belong to the erythroid lineage, and they may be useful for studying the role of JAK2V617F in proliferation and differentiation of erythroid cells and for identifying potential therapeutic drugs targeting JAK2.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/enzymology
- Cell Line, Tumor/transplantation
- Crosses, Genetic
- Drug Screening Assays, Antitumor
- Erythropoiesis/drug effects
- Gene Expression Profiling
- Genes, p53
- Hematopoietic Cell Growth Factors/pharmacology
- Humans
- Janus Kinase 2/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Liver/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mutation, Missense
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Point Mutation
- Protein Kinase Inhibitors/pharmacology
- Spleen/pathology
Collapse
Affiliation(s)
- Wanke Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kang Zou
- Oklahoma School of Science and Mathematics, Oklahoma City, Oklahoma, United States of America
| | - Taleah Farasyn
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wanting Tina Ho
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci 2014; 15:10296-333. [PMID: 24918289 PMCID: PMC4100153 DOI: 10.3390/ijms150610296] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mawadda Alnaeeli
- Department of Biological Sciences, Ohio University, Zanesville, OH 43701, USA.
| | - Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Heather Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ruifeng Teng
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Aguilar C, Aguilar C, Lopez-Marure R, Jiménez-Sánchez A, Rocha-Zavaleta L. Co-stimulation with stem cell factor and erythropoietin enhances migration of c-Kit expressing cervical cancer cells through the sustained activation of ERK1/2. Mol Med Rep 2014; 9:1895-902. [PMID: 24626629 DOI: 10.3892/mmr.2014.2044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 02/17/2014] [Indexed: 11/06/2022] Open
Abstract
The cytokines erythropoietin (Epo) and stem cell factor (SCF), coupled with the cooperation between their receptors (EpoR and c-Kit), are essential components of normal physiological erythropoiesis. In earlier studies, we demonstrated the expression of c-Kit and EpoR in cervical cancer cells. It was identified that SCF is a survival factor, whereas Epo promotes cell proliferation. Cooperation between EpoR and SCF in cervical cancer has rarely been studied, despite the fact that cell migration and anchorage independent growth are considered initial steps in metastasis. Thus, the aim of this study was to analyse the effect of SCF and Epo alone, or in combination, on the migration and anchorage independent growth of two cervical cancer-derived cell lines. First, we demonstrated the expression of EpoR and c-Kit in the cell lines. Next, we evaluated anchorage independent growth, and identified that Epo and SCF produced a modest number of colonies, whereas the combination Epo/SCF induced a significantly higher number of colonies. Migration was then evaluated in Boyden chambers. Co-stimulation with Epo/SCF induced a significantly higher number of migrating cells than either cytokine alone. SCF-, Epo- and Epo/SCF-induced migration was inhibited by blocking phosphorylation of Janus kinase 2 (JAK2). Accordingly, western blot analysis demonstrated that the JAK2/signal transducer and activator of transcription-5 (STAT5) axis was activated in all cases. By contrast, inhibition of extracellular signal-related kinase (ERK) 1/2 abrogated migration induced by SCF and Epo/SCF only. Concurrently, Epo induced a modest, transient activation of ERK1/2, whereas SCF and Epo/SCF prompted a strong, sustained phosphorylation of ERK1/2. The results from this study have revealed that co-stimulation with Epo/SCF promotes migration and anchorage independent cell growth, and that co-signalling from EpoR and c-Kit converge on JAK2/STAT5 activation. Furthermore, SCF- and Epo/SCF-induced migration depends on the sustained activation of ERK1/2. These results indicate that co-signalling from different cytokine receptors induces migration, and this suggests that migratory behaviour may be regulated by the cooperative activity of Epo and SCF in cells expressing their cognate receptors.
Collapse
Affiliation(s)
- Cristina Aguilar
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Cecilia Aguilar
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Rebeca Lopez-Marure
- Instituto Nacional de Cardiología 'Ignacio Chávez', Departamento de Biología Celular, Colonia Sección 16, Tlalpan, C.P. 14080, Mexico City, Mexico
| | - Alejandro Jiménez-Sánchez
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Leticia Rocha-Zavaleta
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, UNAM, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| |
Collapse
|
19
|
Chu HC, Lee HY, Huang YS, Tseng WL, Yen CJ, Cheng JC, Tseng CP. Erythroid differentiation is augmented in Reelin-deficient K562 cells and homozygous reeler mice. FEBS Lett 2013; 588:58-64. [PMID: 24239537 DOI: 10.1016/j.febslet.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
Reelin is an extracellular glycoprotein that is highly conserved in mammals. In addition to its expression in the nervous system, Reelin is present in erythroid cells but its function there is unknown. We report in this study that Reelin is up-regulated during erythroid differentiation of human erythroleukemic K562 cells and is expressed in the erythroid progenitors of murine bone marrow. Reelin deficiency promotes erythroid differentiation of K562 cells and augments erythroid production in murine bone marrow. In accordance with these findings, Reelin deficiency attenuates AKT phosphorylation of the Ter119(+)CD71(+) erythroid progenitors and alters the cell number and frequency of the progenitors at different erythroid differentiation stages. A regulatory role of Reelin in erythroid differentiation is thus defined.
Collapse
Affiliation(s)
- Hui-Chun Chu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Hsing-Ying Lee
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Yen-Shu Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Wei-Lien Tseng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ching-Ju Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ju-Chien Cheng
- Department of Medical Laboratory Sciences and Biotechnology, China Medical University, Taichung 404, Taiwan, ROC.
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|
20
|
Phan THH, Saraf P, Kiparissides A, Mantalaris A, Song H, Lim M. An in silico erythropoiesis model rationalizing synergism between stem cell factor and erythropoietin. Bioprocess Biosyst Eng 2013; 36:1689-702. [PMID: 23605055 DOI: 10.1007/s00449-013-0944-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/18/2013] [Indexed: 10/26/2022]
Abstract
Stem cell factor (SCF) and erythropoietin (EPO) are two most recognized growth factors that play in concert to control in vitro erythropoiesis. However, exact mechanisms underlying the interplay of these growth factors in vitro remain unclear. We developed a mathematical model to study co-signaling effects of SCF and EPO utilizing the ERK1/2 and GATA-1 pathways (activated by SCF and EPO) that drive the proliferation and differentiation of erythroid progenitors. The model was simplified and formulated based on three key features: synergistic contribution of SCF and EPO on ERK1/2 activation, positive feedback effects on proliferation and differentiation, and cross-inhibition effects of activated ERK1/2 and GATA-1. The model characteristics were developed to correspond with biological observations made known thus far. Our simulation suggested that activated GATA-1 has a more dominant cross-inhibition effect and stronger positive feedback response on differentiation than the proliferation pathway, while SCF contributed more to the activation of ERK1/2 than EPO. A sensitivity analysis performed to gauge the dynamics of the system was able to identify the most sensitive model parameters and illustrated a contribution of transient activity in EPO ligand to growth factor synergism. Based on theoretical arguments, we have successfully developed a model that can simulate growth factor synergism observed in vitro for erythropoiesis. This hypothesized model can be applied to further computational studies in biological systems where synergistic effects of two ligands are seen.
Collapse
Affiliation(s)
- Tran Hong Ha Phan
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Block N1. 3, Level B5-01, 70 Nanyang Drive, Singapore, 637457, Singapore
| | | | | | | | | | | |
Collapse
|
21
|
Wang W, Akbarian V, Audet J. Biochemical measurements on single erythroid progenitor cells shed light on the combinatorial regulation of red blood cell production. MOLECULAR BIOSYSTEMS 2012; 9:234-45. [PMID: 23168618 DOI: 10.1039/c2mb25348h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult bone marrow (BM) erythrocyte colony-forming units (CFU-Es) are important cellular targets for the treatment of anemia and also for the manufacture of red blood cells (RBCs) ex vivo. We obtained quantitative biochemical measurements from single and small numbers of CFU-Es by isolating and analyzing c-Kit(+)CD71(high)Ter119(-) cells from adult mouse BM and this allowed us to identify two mechanisms that can be manipulated to increase RBC production. As expected, maximum RBC output was obtained when CFU-Es were stimulated with a combination of Stem Cell Factor (SCF) and Erythropoietin (EPO) mainly because SCF supports a transient CFU-E expansion and EPO promotes the survival and terminal differentiation of erythroid progenitors. However, we found that one of the main factors limiting the output in RBCs was that EPO induces a downregulation of c-Kit expression which limits the transient expansion of CFU-Es. In the presence of SCF, the EPO-mediated downregulation of c-Kit on CFU-Es is delayed but still significant. Moreover, treatment of CFU-Es with 1-Naphthyl PP1 could partially inhibit the downregulation of c-Kit induced by EPO, suggesting that this process is dependent on a Src family kinase, v-Src and/or c-Fyn. We also found that CFU-E survival and proliferation was dependent on the level of time-integrated extracellular-regulated kinase (ERK) activation in these cells, all of which could be significantly increased when SCF and EPO were combined with mouse fetal liver-derived factors. Taken together, these results suggest two novel molecular strategies to increase RBC production and regeneration.
Collapse
Affiliation(s)
- Weijia Wang
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, 164 College Street, Rm 407, Toronto, ON, Canada M5S 3G9
| | | | | |
Collapse
|
22
|
Sütterlin P, Williams EJ, Chambers D, Saraf K, von Schack D, Reisenberg M, Doherty P, Williams G. The molecular basis of the cooperation between EGF, FGF and eCB receptors in the regulation of neural stem cell function. Mol Cell Neurosci 2012; 52:20-30. [PMID: 23085403 DOI: 10.1016/j.mcn.2012.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/18/2012] [Accepted: 10/10/2012] [Indexed: 01/29/2023] Open
Abstract
Adult neurogenesis relies on EGF and FGF receptor (EGFR/FGFR) function and endocannabinoid (eCB) signalling. Here we have used a neural stem cell (NSC) line to determine how these systems cooperate to regulate neurogenesis. The results show the EGFR to be solely responsible for maintaining PI3K activation explaining its dominant role in promoting NSC survival. The EGFR and FGFR synergistically regulate the ERK/MAPK pathway, and this explains the requirement for both for optimal cell proliferation. The eCB receptors did not contribute to activation of the PI3K or ERK/MAPK pathways, highlighting the importance of another major proliferation pathway. The EGFR plays the dominant role in maintaining the transcriptome, with significant changes in the expression of over 3500 transcripts seen within hours of inhibition or activation of this receptor. The FGFR has a more modest effect on transcription with evidence for nodal integration with EGFR signalling at the level of the ERK/MAPK pathway. A common set of transcripts are regulated by the CB1 and CB2 receptors, with cooperation between these receptors and the EGFR apparent in the regulation of a pool of transcripts, most likely representing signal integration downstream from an as yet to be identified node. Finally, a first level molecular analysis of the transcriptional response shows regulation of a number of key growth factors, growth factor receptors and GPCRs to be under the control of the EGFR.
Collapse
Affiliation(s)
- Philipp Sütterlin
- The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Varricchio L, Tirelli V, Masselli E, Ghinassi B, Saha N, Besmer P, Migliaccio AR. The expression of the glucocorticoid receptor in human erythroblasts is uniquely regulated by KIT ligand: implications for stress erythropoiesis. Stem Cells Dev 2012; 21:2852-65. [PMID: 22533504 PMCID: PMC3623384 DOI: 10.1089/scd.2011.0676] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 04/25/2012] [Indexed: 12/20/2022] Open
Abstract
Studies in mice indicated that activation of the erythroid stress pathway requires the presence of both soluble KIT ligand (KITL) and the glucocorticoid receptor (GR). To clarify the relative role of KITL and GR in stress erythropoiesis in humans, the biological activities of soluble full length- (fl-, 26-190 aa), carboxy-terminus truncated (tr-, 26-162 aa) human (hKITL) and murine (mKITL) KITL in cultures of cord blood (CB) mononuclear cells (MNCs) and CD34(pos) cells that mimic either steady state (growth factors alone) or stress (growth factors plus dexamethasone [DXM]) erythropoeisis were investigated. In steady state cultures, the KITLs investigated were equally potent in sustaining growth of hematopoietic colonies and expansion of megakaryocytes (MK) and erythroid precursors (EBs). By contrast, under stress erythropoiesis conditions, fl-hKITL generated greater numbers of EBs (fold increase [FI]=140) than tr-hKITL or mKITL (FI=20-40). Flow cytometric analyses indicated that only EBs generated with fl-hKITL remained immature (>70% CD36(pos)/CD235a(neg/low)), and therefore capable to proliferate, until day 8-12 in response to DXM. Signaling studies indicated that all KITLs investigated induced EBs to phosphorylate signal transducer and activator of transcription 5 (STAT5) but that extracellular-signaling-regulated-kinases (ERK) activation was observed mainly in the presence of fl-hKITL. EBs exposed to fl-hKITL also expressed higher levels of GRα than those exposed to mKITL (and tr-hKITL) which were reduced upon exposure to the ERK inhibitor U0126. These data reveal a unique requirement for fl-hKITL in the upregulation of GRα and optimal EB expansion in cultures that mimic stress erythropoiesis.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Valentina Tirelli
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - Elena Masselli
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Barbara Ghinassi
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Nayanendu Saha
- Structural Biology and Developmental Biology Program, Sloan Kettering Institute, New York, New York
| | - Peter Besmer
- Structural Biology and Developmental Biology Program, Sloan Kettering Institute, New York, New York
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| |
Collapse
|
24
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 485] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
25
|
Tounkara FK, Dumont N, Fournier S, Boyer L, Nadeau P, Pineault N. Mild hyperthermia promotes and accelerates development and maturation of erythroid cells. Stem Cells Dev 2012; 21:3197-208. [PMID: 22564002 DOI: 10.1089/scd.2012.0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hyperthermia treatment has at times been associated with increased platelet levels in humans. The heat shock protein HSP70, which can be induced by hyperthermia in megakaryocytes and erythrocytes, was recently shown to protect GATA-1 from degradation and to be required for erythroid differentiation. Based on these findings, we hypothesize that mild hyperthermia (MH), such as fever (39°C), could impact the differentiation of hematopoietic progenitors into erythrocytes and their subsequent maturation. Cell growth and erythroid differentiation increased dramatically in cord blood CD34(+) cell cultures incubated under MH. Erythroid maturation was also strongly promoted, which resulted in an increased proportion of hemoglobinized and enucleated erythroids. The rise in erythroid development was traced to a strong synergistic activity between MH and erythropoietin (EPO). The molecular basis for this potent synergy appears to originate from the capacity of MH to increase the basal activation of several signaling molecules downstream of the EPO receptor and the transcriptional activity of GATA-1. Moreover, the potent impact of MH on erythroid development was found be dependent on increased intracellular levels of reactive oxygen species. Thus, fever-like temperatures can promote the differentiation of progenitors along the erythroid lineage and accelerate their maturation through normal regulatory circuitry.
Collapse
|
26
|
Celebi B, Mantovani D, Pineault N. Insulin-like growth factor binding protein-2 and neurotrophin 3 synergize together to promote the expansion of hematopoietic cells ex vivo. Cytokine 2012; 58:327-31. [PMID: 22459634 DOI: 10.1016/j.cyto.2012.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/02/2012] [Accepted: 02/20/2012] [Indexed: 12/12/2022]
Abstract
Co-culture of Umbilical Cord Blood (UCB) CD34+ cells with irradiated Mesenchymal Stem Cells (MSCs) without contact increase the expansion of Hematopoietic Progenitor Cells (HPC). Neurotrophin-3 (NT-3) and insulin-like growth factor binding protein-2 (IGFBP-2) are two factors whose expressions were significantly elevated in conditioned media derived from irradiated MSCs. To determine whether these factors are partly responsible for the growth promoting potential of MSCs, we investigated their impact on the growth and differentiation of UCB-CD34+ cells. Addition of either factor alone had little impact on cell growth, however both factors synergized together to increase the expansion of total nucleated cells, erythroids, megakaryocytes (Mk) and CD34+ cells. However, in contrast to MSCs they failed to significantly improve the expansion of hematopoietic progenitors. Consistent with the impact of these factors on hematopoietic cells, both synergized to activate ERK1/2 and AKT in primary human UCB cells. In conclusion, the study demonstrates for the first time that a neurotrophin factor can synergize with IGFBP-2 to promote hematopoietic cell expansion.
Collapse
Affiliation(s)
- Betül Celebi
- Hema-Quebec, Research & Development Department, Quebec City, PQ, Canada.
| | | | | |
Collapse
|
27
|
Disrupted erythropoietin signalling promotes obesity and alters hypothalamus proopiomelanocortin production. Nat Commun 2011; 2:520. [PMID: 22044999 PMCID: PMC3542973 DOI: 10.1038/ncomms1526] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/03/2011] [Indexed: 12/30/2022] Open
Abstract
While erythropoietin is the cytokine known that regulates erythropoiesis, erythropoietin receptor (EpoR) expression and associated activity beyond hematopoietic tissue remain uncertain. Here we show that mice with EpoR expression restricted to hematopoietic tissues (Tg) develop obesity and insulin resistance. Tg-mice exhibit a decrease in energy expenditure and an increase in white fat mass and adipocyte number. Conversely, erythropoietin treatment of wild-type mice increases energy expenditure and reduces food intake and fat mass accumulation but showed no effect in body weight of Tg-mice. EpoR is expressed at a high level in white adipose tissue and in the proopiomelanocortin neurons of the hypothalamus. While Epo treatment in wild-type mice induces the expression of the polypeptide hormone precursor gene, proopiomelanocortin, mice lacking EpoR show reduced levels of proopiomelanocortin in the hypothalamus. This study provides the first evidence that mice lacking EpoR in nonhematopoietic tissue become obese and insulin resistant with loss of erythropoietin regulation of energy homeostasis.
Collapse
|
28
|
Chung E, Kondo M. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res 2011; 49:248-68. [PMID: 21170740 DOI: 10.1007/s12026-010-8187-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent research on hematological malignancies has shown that malignant cells often co-opt physiological pathways to promote their growth and development. Bone marrow homeostasis requires a fine balance between cellular differentiation and self-renewal; cell survival and apoptosis; and cellular proliferation and senescence. The Ras/Raf/MEK/ERK pathway has been shown to be important in regulating these biological functions. Moreover, the Ras/Raf/MEK/ERK pathway has been estimated to be mutated in 30% of all cancers, thus making it the focus of many scientific studies which have lead to a deeper understanding of cancer development and help to elucidate potential weaknesses that can be targeted by pharmacological agents [1]. In this review, we specifically focus on the role of this pathway in physiological hematopoiesis and how augmentation of the pathway may lead to hematopoietic malignancies. We also discuss the challenges and success of targeting this pathway.
Collapse
Affiliation(s)
- Eva Chung
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
29
|
Leecharoenkiat A, Wannatung T, Lithanatudom P, Svasti S, Fucharoen S, Chokchaichamnankit D, Srisomsap C, Smith DR. Increased oxidative metabolism is associated with erythroid precursor expansion in β0-thalassaemia/Hb E disease. Blood Cells Mol Dis 2011; 47:143-57. [PMID: 21783389 DOI: 10.1016/j.bcmd.2011.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
Erythropoiesis in β0-thalassaemia/Hb E patients, the most common variant form of β-thalassaemia in Southeast Asia, is characterized by accelerated differentiation and over-expansion of erythroid precursor cells. The mechanism driving this accelerated expansion and differentiation remain unknown. To address this issue a proteomic analysis was undertaken to firstly identify proteins differentially expressed during erythroblast differentiation and a second analysis was undertaken to identify proteins differentially expressed between β0-thalassaemia/Hb E erythroblasts and control erythroblasts. The majority of proteins identified as being differentially expressed between β0-thalassaemia/Hb E and control erythroblasts were constituents of the glycolysis/TCA pathway and levels of oxidative stress correlated with the degree of erythroid expansion. A model was constructed linking these observations with previous studies showing increased phosphorylation of ERK1/2 in thalassemic erythroblasts which predicted the increased activation of PKA, PKB and PKC which Western analysis confirmed. Inhibition of PKA or PKC reduced β0-thalassaemia/Hb E erythroblast differentiation and/or expansion. We propose that increased expansion and differentiation of β0-thalassaemia/Hb E erythroblasts occur as a result of feedback loops acting through increased oxidative metabolism.
Collapse
Affiliation(s)
- Amporn Leecharoenkiat
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gambone JE, Dusaban SS, Loperena R, Nakata Y, Shetzline SE. The c-Myb target gene neuromedin U functions as a novel cofactor during the early stages of erythropoiesis. Blood 2011; 117:5733-43. [PMID: 21378276 PMCID: PMC3110030 DOI: 10.1182/blood-2009-09-242131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/02/2011] [Indexed: 11/20/2022] Open
Abstract
The requirement of c-Myb during erythropoiesis spurred an interest in identifying c-Myb target genes that are important for erythroid development. Here, we determined that the neuropeptide neuromedin U (NmU) is a c-Myb target gene. Silencing NmU, c-myb, or NmU's cognate receptor NMUR1 expression in human CD34(+) cells impaired burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) formation compared with control. Exogenous addition of NmU peptide to NmU or c-myb siRNA-treated CD34(+) cells rescued BFU-E and yielded a greater number of CFU-E than observed with control. No rescue of BFU-E and CFU-E growth was observed when NmU peptide was exogenously added to NMUR1 siRNA-treated cells compared with NMUR1 siRNA-treated cells cultured without NmU peptide. In K562 and CD34(+) cells, NmU activated protein kinase C-βII, a factor associated with hematopoietic differentiation-proliferation. CD34(+) cells cultured under erythroid-inducing conditions, with NmU peptide and erythropoietin added at day 6, revealed an increase in endogenous NmU and c-myb gene expression at day 8 and a 16% expansion of early erythroblasts at day 10 compared to cultures without NmU peptide. Combined, these data strongly support that the c-Myb target gene NmU functions as a novel cofactor for erythropoiesis and expands early erythroblasts.
Collapse
Affiliation(s)
- Julia E Gambone
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
31
|
Tokunaga M, Ezoe S, Tanaka H, Satoh Y, Fukushima K, Matsui K, Shibata M, Tanimura A, Oritani K, Matsumura I, Kanakura Y. BCR-ABL but not JAK2 V617F inhibits erythropoiesis through the Ras signal by inducing p21CIP1/WAF1. J Biol Chem 2010; 285:31774-82. [PMID: 20663870 DOI: 10.1074/jbc.m110.118653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BCR-ABL is a causative tyrosine kinase (TK) of chronic myelogenous leukemia (CML). In CML patients, although myeloid cells are remarkably proliferating, erythroid cells are rather decreased and anemia is commonly observed. This phenotype is quite different from that observed in polycythemia vera (PV) caused by JAK2 V617F, whereas both oncogenic TKs activate common downstream molecules at the level of hematopoietic stem cells (HSCs). To clarify this mechanism, we investigated the effects of BCR-ABL and JAK2 V617F on erythropoiesis. Enforced expression of BCR-ABL but not of JAK2 V617F in murine LSK (Lineage(-)Sca-1(hi)CD117(hi)) cells inhibited the development of erythroid cells. Among several signaling molecules downstream of BCR-ABL, an active mutant of N-Ras (N-RasE12) but not of STAT5 or phosphatidylinositol 3-kinase (PI3-K) inhibited erythropoiesis, while N-RasE12 enhanced the development of myeloid cells. BCR-ABL activated Ras signal more intensely than JAK2 V617F, and inhibition of Ras by manumycin A, a farnesyltransferase inhibitor, ameliorated erythroid colony formation of CML cells. As for the mechanisms of Ras-induced suppression of erythropoiesis, we found that GATA-1, an erythroid-specific transcription factor, blocked Ras-mediated mitogenic signaling at the level of MEK through the direct interaction. Furthermore, enforced expression of N-RasE12 in LSK cells derived from p53-, p16(INK4a)/p19(ARF)-, and p21(CIP1/WAF1)-null/wild-type mice revealed that suppressed erythroid cell growth by N-RasE12 was restored only by p21(CIP1/WAF1) deficiency, indicating that a cyclin-dependent kinase (CDK) inhibitor, p21(CIP1/WAF1), plays crucial roles in Ras-induced suppression of erythropoiesis. These data would, at least partly, explain why respective oncogenic TKs cause different disease phenotypes.
Collapse
Affiliation(s)
- Masahiro Tokunaga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Audet J. Adventures in time and space: Nonlinearity and complexity of cytokine effects on stem cell fate decisions. Biotechnol Bioeng 2010; 106:173-82. [PMID: 20198618 DOI: 10.1002/bit.22708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cytokines are central factors in the control of stem cell fate decisions and, as such, they are invaluable to those interested in the manipulation of stem and progenitor cells for clinical or research purposes. In their in vivo niches or in optimized cultures, stem cells are exposed to multiple cytokines, matrix proteins and other cell types that provide individual and combinatorial signals that influence their self-renewal, proliferation and differentiation. Although the individual effects of cytokines are well-characterized in terms of increases or decreases in stem cell expansion or in the production of specific cell lineages, their interactions are often overlooked. Factorial design experiments in association with multiple linear regression is a powerful multivariate approach to derive response-surface models and to obtain a quantitative understanding of cytokine dose and interactions effects. On the other hand, cytokine interactions detected in stem cell processes can be difficult to interpret due to the fact that the cell populations examined are often heterogeneous, that cytokines can exhibit pleiotropy and redundancy and that they can also be endogenously produced. This perspective piece presents a list of possible biological mechanisms that can give rise to positive and negative two-way factor interactions in the context of in vivo and in vitro stem cell-based processes. These interpretations are based on insights provided by recent studies examining intra- and extra-cellular signaling pathways in adult and embryonic stem cells. Cytokine interactions have been classified according to four main types of molecular and cellular mechanisms: (i) interactions due to co-signaling; (ii) interactions due to sequential actions; (iii) interactions due to high-dose saturation and inhibition; and (iv) interactions due to intercellular signaling networks. For each mechanism, possible patterns of regression coefficients corresponding to the cytokine main effects, quadratic effects and two-way interactions effects are provided. Finally, directions for future mechanistic studies are presented.
Collapse
Affiliation(s)
- Julie Audet
- Institute of Biomaterials and Biomedical Engineering and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, RS 407, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Abstract
The mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 (ERK1) and ERK2 are among the main signal transduction molecules, but little is known about their isoform-specific functions in vivo. We have examined the role of ERK1 in adult hematopoiesis with ERK1(-/-) mice. Loss of ERK1 resulted in an enhanced splenic erythropoiesis, characterized by an accumulation of erythroid progenitors in the spleen, without any effect on the other lineages or on bone marrow erythropoiesis. This result suggests that the ablation of ERK1 induces a splenic stress erythropoiesis phenotype. However, the mice display no anemia. Deletion of ERK1 did not affect erythropoietin (EPO) serum levels or EPO/EPO receptor signaling and was not compensated by ERK2. Splenic stress erythropoiesis response has been shown to require bone morphogenetic protein 4 (BMP4)-dependent signaling in vivo and to rely on the expansion of a resident specialized population of erythroid progenitors, termed stress erythroid burst-forming units (BFU-Es). A great expansion of stress BFU-Es and increased levels of BMP4 mRNA were found in ERK1(-/-) spleens. The ERK1(-/-) phenotype can be transferred by bone marrow cells. These findings show that ERK1 controls a BMP4-dependent step, regulating the steady state of splenic erythropoiesis.
Collapse
|
34
|
Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm 2010; 2009:405016. [PMID: 20204172 PMCID: PMC2830572 DOI: 10.1155/2009/405016] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 12/17/2009] [Indexed: 12/26/2022] Open
Abstract
Anemia of cancer and chronic inflammatory diseases is a frequent complication affecting quality of life. For cancer patients it represents a particularly bad prognostic. Low level of erythropoietin is considered as one of the causes of anemia in these pathologies. The deficiency in erythropoietin production results from pro-inflammatory cytokines effect. However, few data is available concerning molecular mechanisms involved in cytokine-mediated anemia. Some recent publications have demonstrated the direct effect of pro-inflammatory cytokines on cell differentiation towards erythroid pathway, without erythropoietin defect. This suggested that pro-inflammatory cytokine-mediated signaling pathways affect erythropoietin activity. They could interfere with erythropoietin-mediated signaling pathways, inducing early apoptosis and perturbing the expression and regulation of specific transcription factors involved in the control of erythroid differentiation. In this review we summarize the effect of tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand (TRAIL), and interferon (IFN)-γ on erythropoiesis with a particular interest for molecular feature.
Collapse
|
35
|
Mathematical study of feedback control roles and relevance in stress erythropoiesis. J Theor Biol 2010; 263:303-16. [PMID: 20043921 DOI: 10.1016/j.jtbi.2009.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/26/2009] [Accepted: 12/23/2009] [Indexed: 11/20/2022]
Abstract
This work is devoted to mathematical modelling of erythropoiesis. We propose a new multi-scale model, in which we bring together erythroid progenitor dynamics and intracellular regulatory network that determines erythroid cell fate. All erythroid progenitors are divided into several sub-populations according to their maturity. Two intracellular proteins, Erk and Fas, are supposed to be determinant for regulation of self-renewal, differentiation and apoptosis. We consider two growth factors, erythropoietin and glucocorticoids, and describe their dynamics. Several feedback controls are introduced in the model. We carry out computer simulations of anaemia and compare the obtained results with available experimental data on induced anaemia in mice. The main objective of this work is to evaluate the roles of the feedback controls in order to provide more insights into the regulation of erythropoiesis. Feedback by Epo on apoptosis is shown to be determinant in the early stages of the response to anaemia, whereas regulation through intracellular regulatory network, based on Erk and Fas, appears to operate on a long-term scale.
Collapse
|
36
|
Kiykim AA, Genctoy G, Horoz M, Tiftik NE, Gok E, Altun B, Arici M, Haznedaroglu I. Serum Stem Cell Factor Level in Renal Transplant Recipients With Posttransplant Erythrocytosis. Artif Organs 2009; 33:1086-90. [DOI: 10.1111/j.1525-1594.2009.00823.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Huang X, Pierce LJ, Chen GL, Chang KT, Spangrude GJ, Prchal JT. Erythropoietin receptor signaling regulates both erythropoiesis and megakaryopoiesis in vivo. Blood Cells Mol Dis 2009; 44:1-6. [PMID: 19836979 DOI: 10.1016/j.bcmd.2009.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
Transgenic expression of a gain-of-function truncated mouse erythropoietin receptor gene (EpoR) leads to expansion of the HSC pool in response to human erythropoietin (Epo). We have re-examined this observation using a knock-in mouse model, wherein the mouse EpoR gene was replaced in its proper genetic locus by a single copy of either a wild-type human or a polycythemia-inducing truncated human EPOR gene. Bone marrow cells obtained from knock-in mice were transplanted together with competitor bone marrow cells in a model that allows tracking of erythroid, platelet, and leukocyte contributions by each genotype. Secondary transplants were also performed. Stem/progenitor cells were identified phenotypically and isolated for colony-forming assays to evaluate cytokine responsiveness by cells with the wild-type human or truncated human EPOR gene. Augmented Epo signaling increased erythroid repopulation post-transplant as expected, but had no effect on short-term or long-term leukocyte repopulation. However, the wild-type human EPOR knock-in mouse showed decreases in both erythroid and platelet repopulation compared to marrow cells from the mutant human EPOR knock-in mouse or normal B6 animals. These results provide evidence supporting a role for Epo signaling in megakaryopoiesis in vivo and suggest a role for Epo signaling early in hematopoietic development.
Collapse
Affiliation(s)
- Xiaosong Huang
- Department of Pathology, University of Utah, Salt Lake City, UT 84132-2408, USA
| | | | | | | | | | | |
Collapse
|
38
|
Wannatung T, Lithanatudom P, Leecharoenkiat A, Svasti S, Fucharoen S, Smith DR. Increased erythropoiesis of beta-thalassaemia/Hb E proerythroblasts is mediated by high basal levels of ERK1/2 activation. Br J Haematol 2009; 146:557-68. [PMID: 19594742 DOI: 10.1111/j.1365-2141.2009.07794.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Beta-thalassaemia is one of the most common inherited anaemias, arising from a partial or complete loss of beta-globin chain synthesis. In severe cases, marked bone marrow erythroid hyperplasia, believed to result from erythropoietin (EPO)-mediated feedback from the anaemic condition is common, however, as yet, no study has investigated EPO-mediated signal transduction in thalassaemic erythroid cells. Using proerythroblasts generated from peripheral blood circulating CD34+ haematopoietic progenitor cells, the activation of the mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERKs) pathway was examined under conditions of steady state growth, cytokine deprivation and post-EPO stimulation. Levels of cellular cyclic adenosine monophosphate (cAMP) and Ca2+ were determined as was the degree of erythroid expansion. A significantly higher basal level of phosphorylation of ERK1/2 was observed in beta-thalassaemia/Hb E proerythroblasts as compared to normal controls, which was coupled with significantly higher levels of both cAMP and Ca2+. Modulation of either cAMP or Ca2+ or direct inhibition of MAPK/ERK kinase (MEK) reduced basal levels of ERK1/2 phosphorylation, as well as significantly reducing the level of erythroid expansion. These results suggest that, in contrast to current models, hyper proliferation of beta-thalassaemia/Hb E proerythroblasts is an intrinsic process driven by higher basal levels of ERK1/2 phosphorylation resulting from deregulation of levels of cAMP and Ca2+.
Collapse
Affiliation(s)
- Tirawat Wannatung
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom, Thailand
| | | | | | | | | | | |
Collapse
|
39
|
Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, Eckstein V, Ho AD, Wagner W. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med 2009; 14:337-50. [PMID: 19432817 PMCID: PMC3837622 DOI: 10.1111/j.1582-4934.2009.00776.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Co-culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34(+)CD38(-) fraction. Without co-culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up-regulated after some cell divisions and then diminished in fast proliferating cells. Co-culture with MSC maintained a primitive immunophenotype (CD34(+), CD133(+) and CD38(-)) for more population doublings, whereas up-regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen-activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long-term culture initiating cells. siRNA knockdown of N-cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self-renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC-MSC interaction might further enhance cord blood expansion on MSC.
Collapse
Affiliation(s)
- Thomas Walenda
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun ZK, Yang HQ, Pan J, Zhen H, Wang ZQ, Chen SD, Ding JQ. Protective effects of erythropoietin on tau phosphorylation induced by beta-amyloid. J Neurosci Res 2008; 86:3018-27. [PMID: 18512763 DOI: 10.1002/jnr.21745] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuropathological studies have demonstrated that the presence of neurofibrillary tangles (NFTs) is one of the most prominent pathologic characteristics of Alzheimer's disease (AD). The microtubule-associated protein tau is the major component of NFTs, and its abnormal hyperphosphorylation leads to the destabilization of microtubules, impaired axonal transport, and eventual death of the neurons. The hematopoietic cytokine erythropoietin (Epo) is now considered as a viable agent with regard to central nervous system injury in a variety of cellular systems. Here we report that Epo prevented tau hyperphosphorylation in SH-SY5Y cells exposed to the beta-amyloid peptide and that this effect may depend on the PI3K/Akt-GSK-3beta pathway. This study provides new molecular insight into the neuroprotective effect of Epo and suggests its possible therapeutic role in the management of AD.
Collapse
Affiliation(s)
- Zhi-Kun Sun
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Insulin-like growth factor-1 (IGF-1) and erythropoietin (EPO) are induced in brain cells after brain ischemia and show synergistic neuroprotective effects. In LN215 astrocytoma cells, IGF-1 induced the activation of hypoxia-inducible factor-1, leading to increases in EPO mRNA levels and the secretion of EPO. Interestingly, blocking the potential action of secreted EPO on LN215 cells with EPO antibody, EPO receptor antibody, and soluble EPO receptor significantly suppressed the effect of IGF-1 on the biosynthesis of EPO. Synergistic action between IGF-1 and recombinant human EPO in the astrocytic production of EPO was observed. These data suggest that the IGF-1-EPO production/secretion process initiates a positive feedback loop of EPO biosynthesis in astrocytes, providing a molecular link between the two neuroprotective cytokines.
Collapse
|
42
|
Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ. The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol 2008; 67:39-61. [PMID: 18434185 DOI: 10.1016/j.critrevonc.2008.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/25/2008] [Accepted: 03/19/2008] [Indexed: 01/27/2023] Open
Abstract
The hormone erythropoietin (EPO) is essential for the survival, proliferation and differentiation of the erythrocytic progenitors. The EPO receptor (EPO-R) of erythrocytic cells belongs to the cytokine class I receptor family and signals through various protein kinases and STAT transcription factors. The EPO-R is also expressed in many organs outside the bone marrow, suggesting that EPO is a pleiotropic anti-apoptotic factor. The controversial issue as to whether the EPO-R is functional in tumor tissue is critically reviewed. Importantly, most studies of EPO-R detection in tumor tissue have provided falsely positive results because of the lack of EPO-R specific antibodies. However, endogenous EPO appears to be necessary to maintain the viability of endothelial cells and to promote tumor angiogenesis. Although there is no clinical proof that the administration of erythropoiesis stimulating agents (ESAs) promotes tumor growth and mortality, present recommendations are that (i) ESAs should be administered at the lowest dose sufficient to avoid the need for red blood cell transfusions, (ii) ESAs should not be used in patients with active malignant disease not receiving chemotherapy or radiotherapy, (iii) ESAs should be discontinued following the completion of a chemotherapy course, (iv) the target Hb should be 12 g/dL and not higher and (v) the risks of shortened survival and tumor progression have not been excluded when ESAs are dosed to target Hb <12 g/dL.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
| | | | | | | |
Collapse
|
43
|
KIT associated intracellular tyrosines play an essential role in EpoR co-signaling. Cell Signal 2008; 20:1513-20. [PMID: 18538998 DOI: 10.1016/j.cellsig.2008.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/20/2008] [Accepted: 04/07/2008] [Indexed: 02/04/2023]
Abstract
KIT and erythropoietin receptor (EpoR) mediated co-signaling is essential for normal erythroid cell expansion, however the intracellular signals that contribute to cooperative signaling are poorly understood. Here, we examined the role of intracellular tyrosine residues in KIT and EpoR cooperation by co-expressing tyrosine (Y) to phenylalanine (F) and deletion mutants of KIT and EpoR in 32D cells. Of the four EpoR mutants examined, only EpoR-Y343 induced proliferation to near wildtype EpoR levels. A modest increase in the growth was also observed in 32D cells expressing the EpoR-Y343F; however neither EpoR-W282R nor EpoR-F8 showed any increase in growth over baseline. Biochemical analysis revealed that EpoR-Y343 induced the activation of Stat5, PI-3Kinase/Akt and MAP kinase Erk1/2 to near wildtype EpoR levels, while the remaining mutants failed to activate any of these signals. Interestingly, none of the EpoR mutants cooperated with WT KIT, although EpoR-Y343 showed a modest increase in co-signaling. Loss of seven tyrosine residues in KIT (KIT-F7) completely abrogated EpoR induced co-signaling. Restoring the Src kinase binding sites in KIT-F7 alone or together with the PI3Kinase binding site restored KIT induced signals as well as co-signals with WT EpoR, although restoring the Src kinase binding sites along with the PLC-gamma binding site repressed both KIT induced signaling as well as co-signaling with WT EpoR. Taken together, these results suggest that KIT and EpoR mediated co-signaling requires intracellular tyrosine residues and tyrosine residues that bind Src kinases in the KIT receptor appear to be sufficient for restoring both KIT signaling as well as co-signaling with EpoR. In contrast, restoration of the PLC-gamma binding site in the context of Src binding sites appears to antagonize the positive signals induced via the Src kinase binding sites in the KIT receptor.
Collapse
|
44
|
Wang W, Horner DN, Chen WLK, Zandstra PW, Audet J. Synergy between erythropoietin and stem cell factor during erythropoiesis can be quantitatively described without co-signaling effects. Biotechnol Bioeng 2008; 99:1261-72. [DOI: 10.1002/bit.21677] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Sharma S, Gurudutta GU, Satija NK, Pati S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP. Stem cell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells Dev 2007; 15:755-78. [PMID: 17253940 DOI: 10.1089/scd.2006.15.755] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess a distinct ability to perpetuate through self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. A better understanding of the molecular mechanisms by which HSCs replicate and differentiate from the perspective of developing new approaches for HSC transplantation is necessary for further advances. The interaction of the receptor tyrosine kinase--c-KIT--with its ligand stem cell factor plays a key role in HSC survival, mitogenesis, proliferation, differentiation, adhesion, homing, migration, and functional activation. Evidence that activating site-directed point mutations in the c-KIT gene contributes to its ligand-independent constitutive activation, which induces enhanced proliferation of HSCs, is accumulating. Similarly, and equally important, self-renewal is a process by which HSCs generate daughter cells via division. Self-renewal is necessary for retaining the HSC pool. Therefore, elucidating the molecular machinery that governs self-renewal is of key importance. The transcription factor, HOXB4 is a key molecule that has been reported to induce the in vitro expansion of HSCs via self-renewal. However, critical downstream effector molecules of HOXB4 remain to be determined. This concisely reviewed information on c-KIT and HOXB4 helps us to update our understanding of their function and mechanism of action in self-renewal, proliferation, and differentiation of HSCs, particularly modulation by c-KIT mutant interactions, and HOXB4 overexpression showing certain therapeutic implications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Delhi, India-110054
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dolgachev V, Thomas M, Berlin A, Lukacs NW. Stem cell factor-mediated activation pathways promote murine eosinophil CCL6 production and survival. J Leukoc Biol 2007; 81:1111-9. [PMID: 17234680 DOI: 10.1189/jlb.0906595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophil activation during allergic diseases has a detrimental role in the generation of pathophysiologic responses. Stem cell factor (SCF) has recently shown an inflammatory, gene-activating role on eosinophils and contributes to the generation of pathophysiologic changes in the airways during allergic responses. The data in the present study outline the signal transduction events that are induced by SCF in eosinophils and further demonstrate that MEK-mediated signaling pathways are crucial for SCF-induced CCL6 chemokine activation and eosinophil survival. SCF-mediated eosinophil activation was demonstrated to include PI-3K activation as well as MEK/MAPK phosphorylation pathways. Subsequent analysis of CCL6 gene activation and production induced by SCF in the presence or absence of rather specific inhibitors for certain pathways demonstrated that the MEK/MAPK pathway but not the PI-3K pathway was crucial for the SCF-induced CCL6 gene activation. These same signaling pathways were shown to initiate antiapoptotic events and promote eosinophil survival, including up-regulation of BCL2 and BCL3. Altogether, SCF appears to be a potent eosinophil activation and survival factor.
Collapse
Affiliation(s)
- Vladislav Dolgachev
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 4618, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
47
|
Da Silva CA, Reber L, Frossard N. Stem cell factor expression, mast cells and inflammation in asthma. Fundam Clin Pharmacol 2006; 20:21-39. [PMID: 16448392 DOI: 10.1111/j.1472-8206.2005.00390.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Kit ligand SCF or stem cell factor (SCF) is a multipotent growth factor, acting as an important growth factor for human mast cells. SCF induces chemotaxis and survival of the mast cell, as well as proliferation and differentiation of immature mast cells from CD34(+) progenitors. Additionally, SCF enhances antigen-induced degranulation of human lung-derived mast cells, and induces a mast cell hyperplasia after subcutaneous administration. SCF expression increases in the airways of asthmatic patients, and this is reversed after treatment with glucocorticoids. A role for SCF may thus be hypothesized in diseases associated with a local increase in the number and/or activation of mast cells, as occurring in the airways in asthma. SCF will be reviewed as a potential therapeutic target in asthma, to control the regulation of mast cell number and activation. We here report the main pathways of SCF synthesis and signalling, and its potential role on airway function and asthma.
Collapse
Affiliation(s)
- Carla A Da Silva
- EA3771, Inflammation and Environment in Asthma, Faculté de Pharmacie, BP 24, 67401 Illkirch cedex, France
| | | | | |
Collapse
|
48
|
Heinemann A, Sturm GJ, Ofner M, Sturm EM, Weller C, Peskar BA, Hartnell A. Stem cell factor stimulates the chemotaxis, integrin upregulation, and survival of human basophils. J Allergy Clin Immunol 2005; 116:820-6. [PMID: 16210056 DOI: 10.1016/j.jaci.2005.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 05/31/2005] [Accepted: 06/10/2005] [Indexed: 12/01/2022]
Abstract
BACKGROUND Little is known about the mechanisms that regulate the selective recruitment of basophils to sites of allergic inflammation. OBJECTIVE Here we examine the role of stem cell factor (SCF) in the regulation of basophil function. METHODS Human basophils were isolated from peripheral blood, and their migration was investigated in chemotaxis assays. Apoptosis was detected by means of annexin V and propidium iodide staining. The expression of cell-surface molecules was measured by means of flow cytometry. RESULTS SCF amplified the chemotactic responsiveness of human peripheral blood basophils to the chemoattractants eotaxin, monocyte chemotactic protein 2 and macrophage inflammatory protein 1alpha, and C5a, without being chemotactic or chemokinetic by itself. SCF synergized with chemoattractants in causing basophil upregulation of the integrin CD11b, and this effect was inhibited by a c-kit antibody, the tyrosine kinase inhibitor imatinib mesylate (STI-571), and a phosphatidylinositol 3 kinase inhibitor but not by inhibitors of p38 mitogen-activated protein kinase or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase. Basophils bound fluorescence-labeled SCF and expressed its receptor, c-kit, which was markedly upregulated in culture for 24 to 48 hours in the presence of IL-3. Moreover, SCF prolonged basophil survival in concert with IL-3 by delaying apoptosis. These effects of SCF were selective for basophils because chemotaxis and CD11b upregulation of eosinophils or neutrophils were unchanged. CONCLUSION SCF might be an important selective modulator of basophil function through a phosphatidylinositol 3 kinase-dependent pathway.
Collapse
Affiliation(s)
- Akos Heinemann
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
49
|
Arcasoy MO, Jiang X. Co-operative signalling mechanisms required for erythroid precursor expansion in response to erythropoietin and stem cell factor. Br J Haematol 2005; 130:121-9. [PMID: 15982354 DOI: 10.1111/j.1365-2141.2005.05580.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regeneration of circulating red blood cells in response to anaemia associated with blood loss or haemolysis involves an increased rate of erythropoiesis and expansion of proerythroblasts, the bone marrow precursor cells that terminally differentiate into mature erythrocytes. This study investigated the mechanisms by which erythropoietin (Epo) and stem cell factor (Scf) modulate the expansion of proerythroblasts. Homogenous populations of primary human proerythroblasts were generated in liquid cultures of CD34(+) cells. In serum-free cultures, proerythroblasts failed to survive in the presence of Epo or Scf alone, but exhibited synergistic proliferation in response to combined Epo and Scf treatment, exhibiting one-log expansion in 5 d. Intracellular signal transduction in response to Epo and Scf revealed that tyrosine phosphorylation of signal transducers and activators of transcription (Stat) 5, a downstream target for the non-receptor tyrosine kinase, Janus kinase 2 (Jak2), was mediated by Epo but not Scf. The mitogen-activated protein kinases (MAPKs) extracellular regulated kinase (Erk) 1-2 were phosphorylated in response to either Epo or Scf. Phosphorylation of Akt, a signalling molecule downstream of phosphatidylinositol 3-kinase (PI3K), was observed following Scf but not Epo treatment. To determine the contribution of specific signalling pathways to synergistic expansion of proerythroblasts in response to co-operative effects of Epo and Scf, cells were treated with kinase inhibitors targeting Jak2, PI3K and MAPK kinase. There was a significant, dose-dependent inhibition of proerythroblast expansion in response to all three kinase inhibitors. In conclusion, Epo- and Scf-mediated co-operative, synergistic expansion of primary erythroid precursors requires selective activation of multiple signalling pathways, including the Jak-Stat, PI3K and MAPK pathways.
Collapse
Affiliation(s)
- Murat O Arcasoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
50
|
Abstract
Cancer has a negative systemic impact on its host in addition to its local or metastatic effects, and no cancer complication is more ubiquitous than anaemia, a condition for which there is now a specific remedy, the recombinant growth factor erythropoietin. This is not a trivial therapeutic consideration, because cancer-associated anaemia has an adverse influence on survival regardless of tumour type. However, the pharmacological correction of anaemia with recombinant erythropoietin could promote tumour growth, whereas the use of tumour-necrosis factor-alpha (TNFalpha) and TNF-related apoptosis-inducing ligand as antitumour agents could exacerbate anaemia, thereby perpetuating tissue hypoxia and tumour progression.
Collapse
Affiliation(s)
- Jerry L Spivak
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21210, USA.
| |
Collapse
|