1
|
Li Y, Luo Y, Ran Y, Lu F, Qin Y. Biomarkers of inflammation and colorectal cancer risk. Front Oncol 2025; 15:1514009. [PMID: 39980561 PMCID: PMC11839431 DOI: 10.3389/fonc.2025.1514009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Globally, colorectal malignancy ranks among the most prevalent forms of cancer and stands as the third principal cause of cancer-associated mortality. Recent studies indicate that inflammatory processes play a significant role in the initiation and advancement of various malignancies, colorectal cancer included. It explores inflammatory biomarkers, with C-reactive protein (CRP) being a key focus. While CRP's elevation during inflammation is linked to tumorigenesis, studies on its association with CRC risk are inconsistent, showing gender and methodological differences. Interleukin-6 (IL-6), TNF - α, and their receptors also play roles in CRC development, yet research findings vary. Adiponectin and leptin, secreted by adipocytes, have complex associations with CRC, with gender disparities noted. In terms of screening, non-invasive methods like fecal occult blood tests (FOBTs) are widely used, and combining biomarkers with iFOBT shows potential. Multi-omics techniques, including genomics and microbiomics, offer new avenues for CRC diagnosis. Overall, while evidence highlights the significance of inflammatory biomarkers in CRC risk prediction, larger prospective studies are urgently needed to clarify their roles due to existing inconsistencies and methodological limitations.
Collapse
Affiliation(s)
- Yuting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yuexin Luo
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Ran
- Second Clinic School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Furong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R, Doğan T. DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci 2020; 11:2531-2557. [PMID: 33209251 PMCID: PMC7643205 DOI: 10.1039/c9sc03414e] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of physical interactions between drug candidate compounds and target biomolecules is an important process in drug discovery. Since conventional screening procedures are expensive and time consuming, computational approaches are employed to provide aid by automatically predicting novel drug-target interactions (DTIs). In this study, we propose a large-scale DTI prediction system, DEEPScreen, for early stage drug discovery, using deep convolutional neural networks. One of the main advantages of DEEPScreen is employing readily available 2-D structural representations of compounds at the input level instead of conventional descriptors that display limited performance. DEEPScreen learns complex features inherently from the 2-D representations, thus producing highly accurate predictions. The DEEPScreen system was trained for 704 target proteins (using curated bioactivity data) and finalized with rigorous hyper-parameter optimization tests. We compared the performance of DEEPScreen against the state-of-the-art on multiple benchmark datasets to indicate the effectiveness of the proposed approach and verified selected novel predictions through molecular docking analysis and literature-based validation. Finally, JAK proteins that were predicted by DEEPScreen as new targets of a well-known drug cladribine were experimentally demonstrated in vitro on cancer cells through STAT3 phosphorylation, which is the downstream effector protein. The DEEPScreen system can be exploited in the fields of drug discovery and repurposing for in silico screening of the chemogenomic space, to provide novel DTIs which can be experimentally pursued. The source code, trained "ready-to-use" prediction models, all datasets and the results of this study are available at ; https://github.com/cansyl/DEEPscreen.
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering , METU , Ankara , 06800 , Turkey . ; Tel: +903122105576
- Department of Computer Engineering , İskenderun Technical University , Hatay , 31200 , Turkey
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Esra Nalbat
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Volkan Atalay
- Department of Computer Engineering , METU , Ankara , 06800 , Turkey . ; Tel: +903122105576
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory , European Bioinformatics Institute (EMBL-EBI) , Hinxton , Cambridge , CB10 1SD , UK
| | - Rengul Cetin-Atalay
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
- Section of Pulmonary and Critical Care Medicine , The University of Chicago , Chicago , IL 60637 , USA
| | - Tunca Doğan
- Department of Computer Engineering , Hacettepe University , Ankara , 06800 , Turkey . ; Tel: +903122977193/117
- Institute of Informatics , Hacettepe University , Ankara , 06800 , Turkey
| |
Collapse
|
3
|
Freeman ML, Shive CL, Nguyen TP, Younes SA, Panigrahi S, Lederman MM. Cytokines and T-Cell Homeostasis in HIV Infection. J Infect Dis 2017; 214 Suppl 2:S51-7. [PMID: 27625431 DOI: 10.1093/infdis/jiw287] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Untreated human immunodeficiency virus (HIV) infection is characterized by progressive CD4(+) T-cell depletion and CD8(+) T-cell expansion, and CD4(+) T-cell depletion is linked directly to the risk for opportunistic infections and infection-associated mortality. With suppression of HIV replication by antiretroviral therapy, circulating CD4(+) Tcell numbers typically improve while CD8(+) T-cell expansion persists, and both CD4(+) T-cell cytopenia and CD8(+) T-cell expansion are associated with morbidity and mortality. In this brief review, we report on the role that selected homeostatic and inflammatory cytokines may play both in the failure of CD4(+) T-cell restoration and the CD8(+) T-cell expansion that characterize HIV infection.
Collapse
Affiliation(s)
- Michael L Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| | - Carey L Shive
- Department of Veterans Affairs, Cleveland VA Medical Center, Ohio
| | - Thao P Nguyen
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| | - Soumya Panigrahi
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| | - Michael M Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, University Hospitals/Case Medical Center
| |
Collapse
|
4
|
Xin J, Zhang Z, Su X, Wang L, Zhang Y, Yang R. Epigenetic Component p66a Modulates Myeloid-Derived Suppressor Cells by Modifying STAT3. THE JOURNAL OF IMMUNOLOGY 2017; 198:2712-2720. [PMID: 28193828 DOI: 10.4049/jimmunol.1601712] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
STAT3 plays a critical role in myeloid-derived suppressor cell (MDSC) accumulation and activation. Most studies have probed underlying mechanisms of STAT3 activation. However, epigenetic events involved in STAT3 activation are poorly understood. In this study, we identified several epigenetic-associated proteins such as p66a (Gatad2a), a novel protein transcriptional repressor that might interact with STAT3 in functional MDSCs, by using immunoprecipitation and mass spectrometry. p66a could regulate the phosphorylation and ubiquitination of STAT3. Silencing p66a promoted not only phosphorylation but also K63 ubiquitination of STAT3 in the activated MDSCs. Interestingly, p66a expression was significantly suppressed by IL-6 both in vitro and in vivo during MDSC activation, suggesting that p66a is involved in IL-6-mediated differentiation of MDSCs. Indeed, silencing p66a could promote MDSC accumulation, differentiation, and activation. Tumors in mice injected with p66a small interfering RNA-transfected MDSCs also grew faster, whereas tumors in mice injected with p66a-transfected MDSCs were smaller as compared with the control. Thus, our data demonstrate that p66a may physically interact with STAT3 to suppress its activity through posttranslational modification, which reveals a novel regulatory mechanism controlling STAT3 activation during myeloid cell differentiation.
Collapse
Affiliation(s)
- Jiaxuan Xin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhiqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Liyang Wang
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; .,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; and.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Bellemore SM, Nikoopour E, Krougly O, Lee‐Chan E, Fouser LA, Singh B. Pathogenic T helper type 17 cells contribute to type 1 diabetes independently of interleukin-22. Clin Exp Immunol 2016; 183:380-8. [PMID: 26496462 PMCID: PMC4750601 DOI: 10.1111/cei.12735] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 12/12/2022] Open
Abstract
We have shown that pathogenic T helper type 17 (Th17) cells differentiated from naive CD4(+) T cells of BDC2·5 T cell receptor transgenic non-obese diabetic (NOD) mice by interleukin (IL)-23 plus IL-6 produce IL-17, IL-22 and induce type 1 diabetes (T1D). Neutralizing interferon (IFN)-γ during the polarization process leads to a significant increase in IL-22 production by these Th17 cells. We also isolated IL-22-producing Th17 cells from the pancreas of wild-type diabetic NOD mice. IL-27 also blocked IL-22 production from diabetogenic Th17 cells. To determine the functional role of IL-22 produced by pathogenic Th17 cells in T1D we neutralized IL-22 in vivo by using anti-IL-22 monoclonal antibody. We found that blocking IL-22 did not alter significantly adoptive transfer of disease by pathogenic Th17 cells. Therefore, IL-22 is not required for T1D pathogenesis. The IL-22Rα receptor for IL-22 however, increased in the pancreas of NOD mice during disease progression and based upon our and other studies we suggest that IL-22 may have a regenerative and protective role in the pancreatic islets.
Collapse
Affiliation(s)
- S. M. Bellemore
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - E. Nikoopour
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - O. Krougly
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - E. Lee‐Chan
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - L. A. Fouser
- Inflammation and ImmunologyBiotherapeutics Research and Development, Pfizer Inc.CambridgeMA02140USA
| | - B. Singh
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| |
Collapse
|
6
|
Smani Y, Docobo-Pérez F, McConnell MJ, Pachón J. Acinetobacter baumannii-induced lung cell death: role of inflammation, oxidative stress and cytosolic calcium. Microb Pathog 2011; 50:224-32. [PMID: 21288481 DOI: 10.1016/j.micpath.2011.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/21/2011] [Accepted: 01/24/2011] [Indexed: 12/25/2022]
Abstract
A growing body of evidence supports the notion that susceptible Acinetobacter baumannii strain ATCC 19606 induces human epithelial cells death. However, most of the cellular and molecular mechanisms associated with this cell death remain unknown, and also the degree of the cytotoxic effects of a clinical panresistant strain compared with a susceptible strain has never been studied. Due to the role of proinflammatory cytokine release, oxidative stress and cytosolic calcium increase in the cell death-induced by other Gram-negative bacteria, we investigated whether these intracellular targets were involved in the cell death induced by clinical panresistant 113-16 and susceptible ATCC 19606 strains. Data presented here show that 113-16 and ATCC 19606 induce time-dependent cell death of lung epithelial cells involving a perturbation of cytosolic calcium homeostasis with subsequent calpain and caspase-3 activation. Prevention of this cell death by TNF-α and interleukin-6 blockers and antioxidant highlights the involvement of proinflammatory cytokines and oxidative stress in this phenomenon. These results demonstrate the involvement of calpain calcium-dependent in cell death induced by A. baumannii and the impact of proinflammatory cytokines and oxidative stress in this cell death; it is noteworthy to stress that some mechanisms are less induced by the panresistant strain.
Collapse
Affiliation(s)
- Younes Smani
- Service of Infectious Diseases, Institute of Biomedicine of Sevilla, University Hospital Virgen del Rocío/CSIC/University of Sevilla, Av. Manuel Siurot s/n, 41013 Sevilla, Spain.
| | | | | | | |
Collapse
|
7
|
Tasaka S, Inoue KI, Miyamoto K, Nakano Y, Kamata H, Shinoda H, Hasegawa N, Miyasho T, Satoh M, Takano H, Ishizaka A. Role of interleukin-6 in elastase-induced lung inflammatory changes in mice. Exp Lung Res 2010; 36:362-72. [PMID: 20653471 DOI: 10.3109/01902141003678590] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interleukin-6 (IL-6) is known to be involved in the pathogenesis of various inflammatory diseases, but its role in the development of pulmonary emphysema remains unclear. Wild-type (WT) and IL-6-deficient mice received either phosphate-buffered saline (PBS) or porcine pancreatic elastase (PPE) intratracheally. The development of emphysema was determined by measuring the mean linear intercept (Lm). The lung specimens were also subjected to immunohistochemistry for single-stranded DNA to detect apoptotic cells. Lung mechanics and airway responsiveness to inhaled methacholine were analyzed. Bronchoalveolar lavage (BAL) fluid was subjected to evaluation of inflammatory cell accumulation and cytokine measurement. PPE treatment caused significant increases in Lm and lung compliance, which was attenuated by IL-6 deficiency. The increases in apoptotic cells in the lung were attenuated in IL-6 null mice. Airway responsiveness was not affected by PPE challenge or IL-6 deficiency. Intratracheal PPE increased the cell counts in BAL fluid throughout the observation, which was suppressed in IL-6 null mice. In BAL fluid, PPE-induced increases in the levels of macrophage inflammatory protein (MIP)-1alpha and eotaxin were mitigated by IL-6 deficiency. PPE-induced up-regulation of matrix metalloproteinase (MMP)-12 in the lung was attenuated by IL-6 deficiency. These results indicate that IL-6 may play an important role in the development of elastase-induced lung inflammatory changes.
Collapse
Affiliation(s)
- Sadatomo Tasaka
- Division of Pulmonary Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation. Oncogene 2010; 29:5135-45. [PMID: 20622897 PMCID: PMC2940981 DOI: 10.1038/onc.2009.279] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epidermal Growth Factor Receptor (EGFR) is frequently over-expressed in head and neck squamous cell carcinoma (HNSCC) where aberrant signaling downstream of this receptor contributes to tumor growth. EGFR variant III (EGFRvIII) is the most commonly altered form of EGFR and contains a truncated ligand-binding domain. We previously reported that EGFRvIII is expressed in up to 40% of HNSCC tumors where it is associated with increased proliferation, tumor growth and chemoresistance to anti-tumor drugs including the EGFR targeting monoclonal antibody cetuximab. Cetuximab was FDA-approved in 2006 for HNSCC but has not been shown to prevent invasion or metastasis. The present study was undertaken to evaluate the mechanisms of EGFRvIII-mediated cell motility and invasion in HNSCC. We found that EGFRvIII induced HNSCC cell migration and invasion in conjunction with increased STAT3 activation, which was not abrogated by cetuximab treatment. Further investigation demonstrated that EGF-induced expression of the STAT3 target gene HIF1-α, was abolished by cetuximab in HNSCC cells expressing wild-type EGFR under hypoxic conditions, but not in EGFRvIII-expressing HNSCC cells. These results suggest that EGFRvIII mediates HNSCC cell migration and invasion via increased STAT3 activation and induction of HIF1-α, which contribute to cetuximab resistance in EGFRvIII-expressing HNSCC tumors.
Collapse
|
9
|
Guazzone VA, Jacobo P, Theas MS, Lustig L. Cytokines and chemokines in testicular inflammation: A brief review. Microsc Res Tech 2009; 72:620-8. [PMID: 19263422 DOI: 10.1002/jemt.20704] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A wide spectrum of data in the literature shows the relevance of cytokines as paracrine regulators of spermatogenesis and steroidogenesis in the normal testis. In this brief review, we highlight the relevance of cytokines in the testis during inflammation. This phenomenon involves complex and multiple interactions among immune and germ cells generally resulting in the alteration of spermatogenesis. The complexity of these cell interactions is multiplied because Sertoli and Leydig cells are also producers of pro- and anti-inflammatory cytokines and chemokines. Also, cytokines are pleiotropic and they exert opposite and/or redundant effects in different conditions. However, in spite of this bidirectional immunoregulatory function of cytokines, the mass of the data, reported from experiments of acute testicular inflammation, shows upregulation of interleukin (IL)-1beta, IL-1alpha, IL-6, and tumor necrosis factor alpha (TNF-alpha), which induce adverse effects on germ cells. In autoimmune orchitis, a chronic testicular inflammation, chemokines such as CCL2, CCL3, and CCL4 induce attraction and extravasation of immune cells within the testicular interstitium. These cells alter the normal immunosuppressor microenvironment principally through the secretion of proinflammatory cytokines, interferon-gamma initially, and IL-6 and TNF-alpha thereafter. Germ cells expressing TNFR1, IL-6R, and Fas increase in number and undergo apoptosis, through the TNF-alpha/TNFR1, IL-6/IL-6R, and Fas/Fas L systems. The knowledge of immune-germ and somatic testicular cell interactions will contribute to the understanding of the mechanisms by which chronic inflammatory conditions of the testis can disrupt the process of spermatogenesis.
Collapse
Affiliation(s)
- Vanesa Anabella Guazzone
- Institute for Research in Reproduction, School of Medicine, University of Buenos Aires, Paraguay 2155 P10, C1121ABG Buenos Aires, Argentina
| | | | | | | |
Collapse
|
10
|
Liu T, Zhang M, Zhang H, Sun C, Yang X, Deng Y, Ji W. Combined antitumor activity of cucurbitacin B and docetaxel in laryngeal cancer. Eur J Pharmacol 2008; 587:78-84. [DOI: 10.1016/j.ejphar.2008.03.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 02/28/2008] [Accepted: 03/13/2008] [Indexed: 12/01/2022]
|
11
|
Uddin MN, Horvat D, Glaser SS, Mitchell BM, Puschett JB. Examination of the cellular mechanisms by which marinobufagenin inhibits cytotrophoblast function. J Biol Chem 2008; 283:17946-53. [PMID: 18434301 DOI: 10.1074/jbc.m800958200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Marinobufagenin (MBG) is an endogenous mammalian cardiotonic steroid involved in the inhibition of Na(+)/K(+)-ATPase. Increased plasma levels have been reported in patients with volume expansion-related hypertension. We have recently demonstrated that MBG impairs first trimester cytotrophoblast (CTB) cell proliferation, migration, and invasion, which may play a role in the development of preeclampsia. However, whether apoptosis contributes to altered CTB cell function by MBG remains unknown. Using the human extravillous CTB cell line SGHPL-4, we examined the effect of MBG and a similar Na(+)/K(+)-ATPase inhibitor, ouabain, on the phosphorylation status of Jnk, p38, and Src. Additionally, we measured apoptosis by caspase 9 and 3/7 activity and by annexin-V staining. We also investigated interleukin-6 (IL-6) secretion with or without p38 and Jnk inhibition. MBG significantly increased the phosphorylation of Jnk, p38, and Src and increased the expression of caspase 9 and 3/7 indicating the activation of apoptosis. MBG treatment also stimulated the expression of the early apoptosis marker, annexin-V, which was prevented by Jnk and p38 inhibition. MBG also stimulated the secretion of IL-6, which was attenuated by p38 inhibition. Ouabain had similar effects to those of MBG, suggesting that the apoptotic effects on CTB cells may be mediated by inhibition of Na(+)/K(+)-ATPase. In conclusion, the MBG-induced impairment of CTB function occurs via activation of Jnk, p38, and Src leading to increased apoptosis and IL-6 secretion. These observations may have clinical applicability with respect to the therapy of preeclampsia.
Collapse
Affiliation(s)
- Mohammad N Uddin
- Division of Nephrology and Hypertension, Department of Medicine, Texas A&M Health Science Center, Scott and White Clinic, Temple, TX 76508, USA
| | | | | | | | | |
Collapse
|
12
|
Suemoto H, Muragaki Y, Nishioka K, Sato M, Ooshima A, Itoh S, Hatamura I, Ozaki M, Braun A, Gustafsson E, Fässler R. Trps1 regulates proliferation and apoptosis of chondrocytes through Stat3 signaling. Dev Biol 2007; 312:572-81. [PMID: 17997399 DOI: 10.1016/j.ydbio.2007.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 09/14/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Mutations in the TRPS1 gene lead to the tricho-rhino-phalangeal syndrome, which is characterized by skeletal defects and abnormal hair development. The TRPS1 gene encodes an atypical member of the GATA-type family of transcription factors. Here we show that mice with a disrupted Trps1 gene develop a chondrodysplasia characterized by diminished chondrocyte proliferation and decreased apoptosis in growth plates. Our analyses revealed that Trps1 is a repressor of Stat3 expression, which in turn controls chondrocyte proliferation and survival by regulating the expression of cyclin D1 and Bcl2. Our conclusion is supported (i) by siRNA-mediated depletion of Stat3 in Trps1-deficient chondrocytes, which normalized the expression of cyclin D1 and Bcl2, (ii) by overexpression of Trps1 in ATDC5 chondrocytes, which diminished Stat3 levels and increased proliferation and apoptosis, and (iii) by mutational analysis of the GATA-binding sites in the Stat3 gene, which revealed that their integrity is critical for the direct association with Trps1 and for Trps1-mediated repression of Stat3. Altogether our findings identify Trps1 as a novel regulator of chondrocytes proliferation and survival through the control of Stat3 expression.
Collapse
Affiliation(s)
- Hiroki Suemoto
- Department of Pathology I, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0011, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Leeman RJ, Lui VWY, Grandis JR. STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther 2006; 6:231-41. [PMID: 16503733 DOI: 10.1517/14712598.6.3.231] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The signal transducer and activator of transcription (STAT) proteins relay signals from cytokine receptors and receptor tyrosine kinases on the cell surface to the nucleus, where they affect the transcription of genes involved in normal cell functions, including growth, apoptosis and differentiation. STAT3 has been found to be constitutively active in head and neck squamous cell carcinoma (HNSCC) as well as in other epithelial malignancies. In HNSCC, STAT3 alters the cell cycle, prevents apoptosis, and mediates the proliferation and survival of tumour cells. Several therapeutic approaches are being developed to target STAT3, including molecules that block either dimerisation or DNA binding by STAT3, strategies to decrease STAT3 expression and drugs that inhibit STAT3 function. Strategies that block STAT3 may prove efficacious for cancer treatment.
Collapse
Affiliation(s)
- Rebecca J Leeman
- Department of Otolaryngology, The Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
14
|
Rival C, Theas MS, Guazzone VA, Lustig L. Interleukin-6 and IL-6 receptor cell expression in testis of rats with autoimmune orchitis. J Reprod Immunol 2006; 70:43-58. [PMID: 16458979 DOI: 10.1016/j.jri.2005.10.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 08/30/2005] [Accepted: 10/18/2005] [Indexed: 01/24/2023]
Abstract
Experimental autoimmune orchitis (EAO) is an organ-specific model of autoimmunity characterized by an interstitial lymphomononuclear cell infiltrate as well as sloughing and apoptosis of germ cells. EAO was induced in adult male Sprague-Dawley rats by active immunization with testicular homogenate and adjuvants. Rats injected with saline solution and adjuvants were used as control group. The aim of this work was to study the expression of interleukin-6 (IL-6) and its receptor (IL-6R) in the testis of rats with EAO and analyze whether IL-6 could be involved in germ cell apoptosis. By immunohistochemistry, we detected IL-6 expression in testicular macrophages and Leydig cells of control and EAO rats. Sertoli cells showed IL-6 immunoreactivity in most of the seminiferous tubules of control rats, while a few IL-6+ Sertoli cells were found in the testis of rats with EAO. IL-6R immunoreactivity was observed in macrophages, Leydig and germ cells. A significant increase was noted in the number of IL-6R+ germ cells in rats with EAO compared to control rats. The content of IL-6 (ELISA) in the conditioned media obtained from testicular macrophages of rats with orchitis was significantly higher than in the control group. By immunofluorescence performed on isolated testicular macrophages, IL-6 was shown to be expressed by monocytes recently arrived from circulation (ED1+ cells), while resident macrophages (ED2+ cells) were negative. In vitro experiments (trypan blue and MTS assays) showed that IL-6 (50 ng/ml) reduced germ cell viability. We demonstrated also using the TUNEL technique that IL-6 added to cultures of seminiferous tubule segments induced apoptosis of germ cells. Our results suggest that IL-6 and IL-6R may be involved in the pathogenesis of autoimmune orchitis by promoting testicular inflammation and germ cell apoptosis.
Collapse
Affiliation(s)
- Claudia Rival
- Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 10, C1121 ABG Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
15
|
Sadlier DM, Ouyang X, McMahon B, Mu W, Ohashi R, Rodgers K, Murray D, Nakagawa T, Godson C, Doran P, Brady HR, Johnson RJ. Microarray and bioinformatic detection of novel and established genes expressed in experimental anti-Thy1 nephritis. Kidney Int 2006; 68:2542-61. [PMID: 16316330 DOI: 10.1111/j.1523-1755.2005.00661.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Microarray technology is a powerful tool that can probe the molecular pathogenesis of renal injury. In this present study microarray analysis was used to monitor serial changes in the renal transcriptome of a rat model of mesangial proliferative glomerulonephritis. Administration of anti-Thy1 antibody results in phases of acute mesangial injury (day 2), cell proliferation (day 5), matrix expansion (days 5 and 7), and subsequent healing (day 14). METHODS Using Affymetrix (RAE230A) microarrays coupled with sequential primary biologic function-focused and secondary "baited" global cluster analysis, a cohort of established and putative novel modulators of mesangial cell turnover was identified. RESULTS Cluster analysis of proliferative genes identified a number of gene expression profiles. The most striking pattern was increased gene expression at day 5, a cluster that included platelet-derived growth factor (PDGF), cyclins and transforming growth factor-beta (TGF-beta). The gene expression patterns identified by primary focused cluster analysis were used as bioinformatic bait and resulted in the identification of novel families of genes such as the S100 family. The expression of established and novel genes was confirmed using reverse transcription-polymerase chain reaction (RT-PCR). Next, in vivo gene expression was compared to PDGF-stimulated mesangial cells in vitro revealing similar patterns of dysregulation. CONCLUSION Transcriptomic analysis defined both known and novel molecules involved in mesangial cell proliferation in vitro and in vivo and defined a panel of molecules that are potential contributors to mesangial cell dysfunction in glomerular disease.
Collapse
Affiliation(s)
- Denise M Sadlier
- Department of Medicine and Therapeutics, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Qabar A, Nelson M, Guzman J, Corun C, Hwang BJ, Steinberg M. Modulation of sulfur mustard induced cell death in human epidermal keratinocytes using IL-10 and TNF-α. J Biochem Mol Toxicol 2005; 19:213-25. [PMID: 16173061 DOI: 10.1002/jbt.20089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We compared the effects of overexpressing a tightly regulated anti-inflammatory cytokine, interleukin 10 (IL-10), and the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) on sulfur mustard induced cytotoxicity in human epidermal keratinocytes. Both cytokines were overexpressed when compared with the cells transfected with the empty vector as determined by quantitative ELISA. Cells overexpressing interleukin 10 suppressed the pro-inflammatory cytokines interleukin 8 and interleukin 6 following exposure to 50-300 microM sulfur mustard. These cells exhibited delayed onset of sulfur mustard induced cell death. On the other hand, cells overexpressing tumor necrosis factor alpha induced a sustained elevation in both interleukin 6 and 8 expression following exposure to 50-300 microM sulfur mustard. These cells were sensitized to the effects of sulfur mustard that resulted in an increased sulfur mustard induced cell death. Normal human epidermal keratinocytes treated with sulfur mustard exhibited elevated levels of tumor necrosis factor alpha expression and increased activity of nuclear factor kappa B. Gene array data indicated that cells overexpressing interleukin 10 induced several genes that are involved in growth promotion and cell-fate determination. We, therefore, identify IL-10 and TNF-alpha signal transduction pathways and their components as possible candidates for early therapeutic intervention against sulfur mustard induced cell injury.
Collapse
Affiliation(s)
- Aziz Qabar
- US Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Kok SH, Cheng SJ, Hong CY, Lee JJ, Lin SK, Kuo YS, Chiang CP, Kuo MYP. Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett 2005; 217:43-52. [PMID: 15596295 DOI: 10.1016/j.canlet.2004.07.045] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/05/2004] [Accepted: 07/15/2004] [Indexed: 11/30/2022]
Abstract
Norcantharidin (NCTD), the demethylated analogue of cantharidin, has been used to treat human cancers in China since 1984. It was recently found to be capable of inducing apoptosis in human colon carcinoma, hepatoma and glioblastoma cells by way of an elusive mechanism. In this study, we demonstrated that NCTD also induces apoptosis in human oral cancer cell lines SAS (p53 wild-type phenotype) and Ca9-22 (p53 mutant) as evidenced by nuclear condensation, TUNEL labeling, DNA fragmentation and cleavage of PARP. Apoptosis induced by NCTD was both dose- and time-dependent. We found NCTD did not induce Fas and FasL, implying that it activated other apoptosis pathways. Our data showed that NCTD caused accumulation of cytosolic cytochrome c and activation of caspase-9, suggesting that apoptosis occurred via the mitochondria mediated pathway. NCTD enhanced the expression of Bax in SAS cells consistent with their p53 status. Moreover, we showed that NCTD downregulated the expression of Bcl-2 in Ca9-22 and Bcl-XL in SAS. Our results suggest that NCTD-induced apoptosis in oral cancer cells may be mediated by an increase in the ratios of proapoptotic to antiapoptotic proteins. Since oral cancer cells with mutant p53 or elevated Bcl-XL levels showed resistance to multiple chemotherapeutic agents, NCTD may overcome the chemoresistance of these cells and provide potential new avenues for treatment.
Collapse
Affiliation(s)
- Sang-Heng Kok
- School of Dentistry, College of Medicine, National Taiwan University, 1 Chang-Te Street, Taipei 10016, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pu YS, Hour TC, Chuang SE, Cheng AL, Lai MK, Kuo ML. Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate 2004; 60:120-9. [PMID: 15162378 DOI: 10.1002/pros.20057] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Interleukin (IL)-6-mediated anti-apoptotic effects and drug-resistance mechanisms in prostate cancer cells were investigated. METHODS IL-6 levels of PC-3 and LNCaP cells were studied by using ELISA. Protective effects of IL-6 on cytotoxic agent-induced apoptosis were studied by exogenous IL-6 in serum-starved PC-3 cells and by anti-sense IL-6 strategy. Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) were used to determine IL-6 effects on Bcl-2 family proteins. Tetracycline-regulated Bcl-xL expression system and dominant negative STAT3 transfectants were used to study IL-6 signaling pathways and its anti-apoptosis effects. RESULTS Exogenous IL-6 and anti-sense IL-6 oligonucleotide treatment conferred resistance to cytotoxic agent-induced apoptosis. Among Bcl-2 family proteins, only Bcl-xL was evidently increased by IL-6 stimulation. The anti-apoptotic effect of IL-6 can be significantly attenuated by anti-sense bcl-xL transfection and partially abrogated in dominant negative STAT3 transfectants. CONCLUSIONS IL-6 is a survival factor against cytotoxic agent-induced apoptosis through both STAT3 and bcl-xL pathways in prostate cancer cells.
Collapse
Affiliation(s)
- Yeong-Shiau Pu
- Department of Urology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Moodley YP, Misso NLA, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA. Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol 2003; 29:490-8. [PMID: 12714376 DOI: 10.1165/rcmb.2002-0262oc] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibroblast apoptosis is crucial to the resolution of fibrosis. However, the mechanisms by which these cells undergo apoptosis are not well known. Because interleukin (IL)-6 and IL-11 may alter repair and remodeling processes, we hypothesized that they may play a role in idiopathic pulmonary fibrosis (IPF). We investigated the effects of these cytokines on Fas-induced apoptosis using primary lung fibroblasts from three patients with IPF (IPF-Fb) and three subjects without lung disease (normal-Fb). IPF-Fb were resistant to Fas-induced apoptosis compared with normal-Fb (P < 0.01). Using RNase protection assays, we showed that IL-6 enhanced Fas-induced apoptosis and expression of Bax in normal-Fb, but inhibited apoptosis and induced expression of Bcl-2 in IPF-Fb. Densitometry of Western blots revealed a Bcl-2/Bax ratio 0.15 +/- 0.01 in normal-Fb compared with 12.05 +/- 1.0 in IPF-Fb. Upregulation of Bcl-2 in normal-Fb and Bax in IPF-Fb were both STAT-3-dependent. Inhibition of extracellular signal-regulated kinase had no effect in normal-Fb, but reversed the antiapoptotic effect of IL-6 in IPF-Fb. IL-11 inhibited Fas-induced apoptosis and increased Bcl-2 expression in both normal-Fb and IPF-Fb. These results suggest that altered IL-6 signaling in IPF-Fb may enhance the resistance of these cells to apoptosis and contribute to a profibrotic effect of IL-6 in IPF.
Collapse
Affiliation(s)
- Yuben P Moodley
- Asthma & Allergy Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Matsui T, Kinoshita T, Hirano T, Yokota T, Miyajima A. STAT3 down-regulates the expression of cyclin D during liver development. J Biol Chem 2002; 277:36167-73. [PMID: 12147685 DOI: 10.1074/jbc.m203184200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
As the expression of cyclin D1 is induced during liver regeneration and also in hepatic tumor cells, cyclin D1 is likely to play an important role in the proliferation and transformation of hepatocytes. However, the role of cyclin D1 in liver development remains unknown. Here we show that the expression of D-type cyclins including cyclin D1, D2, and D3 is down-regulated along with liver development. In addition, oncostatin M (OSM), an interleukin-6 family cytokine, down-regulated the expression of cyclin D1 and D2 in a primary culture of fetal hepatocytes in which OSM induces hepatic differentiation. Ectopic expression of receptor mutants defective in the activation of either STAT3 or SHP-2/Ras indicated that the down-regulation of D1 and D2 cyclins by OSM was mediated by STAT3 but not by SHP-2/Ras. Consistently, expression of dominant negative STAT3 but not Ras relieved OSM-induced suppression of cyclin D expression. Activation of STAT3 in fetal hepatocytes of transgenic mice expressing the STAT3-estrogen receptor fusion protein by 4-hydroxytamoxifen resulted in the suppression of cyclin D1 and D2 expression. These results indicate that STAT3 activation is necessary and sufficient for down-regulation of D1 and D2 cyclins in fetal hepatocytes. Furthermore, STAT3-C, a constitutively active form of STAT3, suppressed transcription of the cyclin D1 promoter in fetal hepatocytes, whereas it activated the transcription in hepatic tumor cells, huH7 and HepG2. Thus, STAT3-mediated down-regulation of cyclin D expression is rather specific to fetal hepatocytes that are undergoing maturation processes including a reduction of their proliferation potential.
Collapse
Affiliation(s)
- Takaaki Matsui
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
21
|
Oritani K, Kincade PW, Zhang C, Tomiyama Y, Matsuzawa Y. Type I interferons and limitin: a comparison of structures, receptors, and functions. Cytokine Growth Factor Rev 2001; 12:337-48. [PMID: 11544103 DOI: 10.1016/s1359-6101(01)00009-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The type I interferon (IFN) family includes IFN-alpha, IFN-beta, IFN-pi, and IFN-tau. These molecules are clustered according to sequence homologies, use of the same cell surface receptor, and similar functions. IFN-alpha and IFN-beta have a globular structure composed of five a-helices. Their receptors, IFNAR1 and IFNAR2, belong to the class II cytokine receptor family for a-helical cytokines. Information about structure-function relationships between these and other IFNs is being provided by comparative sequence analysis, reference to a prototypic three-dimensional structure, analysis with monoclonal antibodies, construction of hybrid molecules and site directed mutagenesis. While much remains to be done, it should someday be possible to understand differences among IFNs in terms of how they interact with their corresponding receptors. Our recently identified IFN-like molecule, limitin, has weak sequence homology to IFN-alpha, IFN-beta, and IFN-omega and displays its biological functions through the same IFN-alpha/beta receptors. While limitin has antiproliferative, immunomodulatory, and antiviral effects like IFN-alpha and IFN-beta, it is unique in lacking influence on myeloid and erythroid progenitors. Further analysis of this functionally unique cytokine should be informative about complex IFN-receptor interactions. Furthermore, a human homologue or synthetic variant might be superior for clinical applications as an IFN without myelosuppressive properties.
Collapse
Affiliation(s)
- K Oritani
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
22
|
Usuda J, Okunaka T, Furukawa K, Tsuchida T, Kuroiwa Y, Ohe Y, Saijo N, Nishio K, Konaka C, Kato H. Increased cytotoxic effects of photodynamic therapy in IL-6 gene transfected cells via enhanced apoptosis. Int J Cancer 2001; 93:475-80. [PMID: 11477550 DOI: 10.1002/ijc.1374] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PDT has been reported to induce cancer cell expression of cytokines, such as IL-6 and TNF-alpha, but it has been unclear whether cytokine expression by cancer cells is directly related to the antitumor effect of PDT. We treated Lewis lung carcinoma (LLC) cells with a new photosensitizer, mono-L-aspartyl chlorin e6 (NPe6) and light from a diode laser and found that expression of the mRNA of IL-2, IL-6, and TNF-alpha was increased by NPe6-mediated-PDT 6 hr later. To elucidate the mechanism of the direct anti-tumor effect of cytokine expression, we examined the photosensitivity of cytokine-gene-transfected cells, namely LLC-IL-2, LLC-IL-6, and LLC-TNF-alpha cells, by MTT assay. The IL-6 gene transfected, LLC-IL-6 cells were significantly more sensitive to cytotoxic effects than the parent LLC cells and other cytokine gene-transfected cells. This finding indicates that IL-6 expression modulates cellular sensitivity to PDT and that IL-2 and TNF-alpha expressions does not. In addition, the apoptosis of LLC-IL-6 cells induced by NPe6-PDT was greater than in the other cells as determined by DNA fragmentation and staining of apoptotic nuclei. Because IL-6 has been reported to induce apoptosis by downregulating expression of Bcl-2, we analyzed the expression of apoptosis-related Bcl-2, Bax, and cytochrome C by Western blot analysis. Decreased expression of Bcl-2 and cytochrome C was observed in both LLC cells and LLC-IL-6 cells. Bax protein increased in a time-dependent manner, and the ratio of Bax to Bcl-2 rose markedly after PDT in LLC-IL-6 cells. These results suggest that the increased sensitivity of LLC-IL-6 cells to PDT-induced cytotoxicity results from the high ratio of Bax to Bcl-2 in the IL-6-dependent apoptotic pathway. In conclusion, IL-6 expression plays a role in cellular sensitivity to PDT, and combination of IL-6 and PDT may provide a new strategy for cancer treatment.
Collapse
Affiliation(s)
- J Usuda
- Department of Surgery and Intractable Disease Research Center, Tokyo Medical University, Nishishinjuku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mishima K, Otani H, Tanabe T, Kawasaki H, Oshiro A, Saito N, Ogawa R, Inagaki C. Molecular mechanisms for alpha2-adrenoceptor-mediated regulation of synoviocyte populations. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:214-26. [PMID: 11325013 DOI: 10.1254/jjp.85.214] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The sympathetic nervous system has been indicated to influence the severity of inflammatory disease including rheumatoid arthritis. In this study, we elucidated the effects of catecholamine on the synovial cell populations. Stimulation with epinephrine or norepinephrine for 1-2 weeks dose- and time-dependently increased the number of synovial A (macrophage-like) cells but decreased that of B (fibroblast-like) cells. These responses in A and B cells were inhibited by the alpha2-antagonist yohimbine, the G-protein inactivator pertussis toxin and the phospholipase C (PLC) inhibitor U-73122. Furthermore, the protein kinase C (PKC) inhibitor calphostin C and mitogen-activated protein (MAP) kinase inhibitors PD98059 and wortmannin also abolished the norepinephrine effects on A and B cell numbers. In A cells cloned from an A and B cell mixture, norepinephrine also increased the cell number. In immunoblotting and immunocytostaining analyses, among the PKC isozymes, only PKC betaII immunoreactivity was observed in the cytoplasm of unstimulated A and B cells. After alpha2-adrenoceptor stimulation, PKC betaII immunoreactivity increased in the plasma membranes of both A and B cells with decreases in the cytoplasm. These findings indicated that alpha2-adrenoceptor stimulation of type A and B synoviocytes produced an increase and a decrease in the respective cell number, probably through Gi-coupled PLC activation and the resulting stimulation of the PKC betaII/MAP kinase.
Collapse
Affiliation(s)
- K Mishima
- Department of Pharmacology, Kansai Medical University, Moriguchi City, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Galun E, Zeira E, Pappo O, Peters M, Rose-John S. Liver regeneration induced by a designer human IL-6/sIL-6R fusion protein reverses severe hepatocellular injury. FASEB J 2000; 14:1979-87. [PMID: 11023982 DOI: 10.1096/fj.99-0913com] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cytokine IL-6 plays a significant role in liver regeneration in conjunction with additional growth factors (HGF, TNF-alpha, and TGF-alpha). Many IL-6 effects depend on a naturally occurring soluble IL-6 receptor (sIL-6R). Here, the chimeric protein hyper-IL-6, constructed from the human IL-6 protein fused to a truncated form of its receptor, was found to have superagonistic IL-6 properties, and as such, enhanced liver cell regeneration. Hyper-IL-6 reversed the state of hepatotoxicity and enhanced the survival rates of rats suffering from fulminant hepatic failure after D-galactosamine administration. The hyper-IL-6 protein has a significant potential for use in the treatment of severe human liver diseases.
Collapse
Affiliation(s)
- E Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
25
|
Hutt JA, O'Rourke JP, DeWille J. Signal transducer and activator of transcription 3 activates CCAAT enhancer-binding protein delta gene transcription in G0 growth-arrested mouse mammary epithelial cells and in involuting mouse mammary gland. J Biol Chem 2000; 275:29123-31. [PMID: 10867011 DOI: 10.1074/jbc.m004476200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT enhancer-binding protein (C/EBP) family of transcription factors is implicated in the regulation of cell proliferation and differentiation in a variety of tissues. C/EBPdelta is involved in regulating G(0) growth arrest and apoptosis of mouse mammary epithelial cells. This study shows that activation of signal transducer and activator of transcription 3 (Stat3), but not activation of Stat1 or Stat5, occurs concurrently with G(0) growth arrest of HC11 mouse mammary epithelial cells, but not NIH 3T3 fibroblasts. Promoter analysis demonstrates that the C/EBPdelta promoter fragment involved in transcriptional activation during G(0) growth arrest contains a Stat3 binding site and that mutation of this site eliminates the G(0) growth arrest inducibility of the C/EBPdelta promoter. Overexpression of Stat3 increases C/EBPdelta promoter activity during G(0) growth arrest of HC11 cells, whereas dominant negative Stat3 decreases C/EBPdelta promoter activity under the same conditions. Neither Stat3 overexpression nor dominant negative Stat3 expression influences C/EBPdelta promoter activity in growing HC11 cells or G(0) growth-arrested NIH3T3 cells, demonstrating that the effect is specific to G(0) growth arrest of mammary epithelial cells. Band shift assays and antibody interference assays demonstrate specific binding of Stat3 to the acute phase response element in the C/EBPdelta promoter in G(0) growth-arrested HC11 cell extracts and 24 h involuting mouse mammary gland extracts. These data indicate that Stat3 activates C/EBPdelta transcription in G(0) growth-arrested mouse mammary epithelial cells and binds to the C/EBPdelta promoter during involution. An autocrine mechanism of Stat3 activation is proposed.
Collapse
Affiliation(s)
- J A Hutt
- Department of Veterinary Biosciences and Division of Molecular Biology and Cancer Genetics, Ohio State Comprehensive Cancer Center and the Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, 43210, USA
| | | | | |
Collapse
|
26
|
Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000. [DOI: 10.1182/blood.v96.5.1723] [Citation(s) in RCA: 889] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractWe investigated the functions of adiponectin, an adipocyte-specific secretory protein and a new member of the family of soluble defense collagens, in hematopoiesis and immune responses. Adiponectin suppressed colony formation from colony-forming units (CFU)—granulocyte-macrophage, CFU-macrophage, and CFU-granulocyte, whereas it had no effect on that of burst-forming units—erythroid or mixed erythroid-myeloid CFU. In addition, adiponectin inhibited proliferation of 4 of 9 myeloid cell lines but did not suppress proliferation of erythroid or lymphoid cell lines except for one cell line. These results suggest that adiponectin predominantly inhibits proliferation of myelomonocytic lineage cells. At least one mechanism of the growth inhibition is induction of apoptosis because treatment of acute myelomonocytic leukemia lines with adiponectin induced the appearance of subdiploid peaks and oligonucleosomal DNA fragmentation. Aside from inhibiting growth of myelomonocytic progenitors, adiponectin suppressed mature macrophage functions. Treatment of cultured macrophages with adiponectin significantly inhibited their phagocytic activity and their lipopolysaccharide-induced production of tumor necrosis factor α. Suppression of phagocytosis by adiponectin is mediated by one of the complement C1q receptors, C1qRp, because this function was completely abrogated by the addition of an anti-C1qRp monoclonal antibody. These observations suggest that adiponectin is an important negative regulator in hematopoiesis and immune systems and raise the possibility that it may be involved in ending inflammatory responses through its inhibitory functions.
Collapse
|
27
|
Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000. [DOI: 10.1182/blood.v96.5.1723.h8001723_1723_1732] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the functions of adiponectin, an adipocyte-specific secretory protein and a new member of the family of soluble defense collagens, in hematopoiesis and immune responses. Adiponectin suppressed colony formation from colony-forming units (CFU)—granulocyte-macrophage, CFU-macrophage, and CFU-granulocyte, whereas it had no effect on that of burst-forming units—erythroid or mixed erythroid-myeloid CFU. In addition, adiponectin inhibited proliferation of 4 of 9 myeloid cell lines but did not suppress proliferation of erythroid or lymphoid cell lines except for one cell line. These results suggest that adiponectin predominantly inhibits proliferation of myelomonocytic lineage cells. At least one mechanism of the growth inhibition is induction of apoptosis because treatment of acute myelomonocytic leukemia lines with adiponectin induced the appearance of subdiploid peaks and oligonucleosomal DNA fragmentation. Aside from inhibiting growth of myelomonocytic progenitors, adiponectin suppressed mature macrophage functions. Treatment of cultured macrophages with adiponectin significantly inhibited their phagocytic activity and their lipopolysaccharide-induced production of tumor necrosis factor α. Suppression of phagocytosis by adiponectin is mediated by one of the complement C1q receptors, C1qRp, because this function was completely abrogated by the addition of an anti-C1qRp monoclonal antibody. These observations suggest that adiponectin is an important negative regulator in hematopoiesis and immune systems and raise the possibility that it may be involved in ending inflammatory responses through its inhibitory functions.
Collapse
|
28
|
Oritani K, Medina KL, Tomiyama Y, Ishikawa J, Okajima Y, Ogawa M, Yokota T, Aoyama K, Takahashi I, Kincade PW, Matsuzawa Y. Limitin: An interferon-like cytokine that preferentially influences B-lymphocyte precursors. Nat Med 2000; 6:659-66. [PMID: 10835682 DOI: 10.1038/76233] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have identified an interferon-like cytokine, limitin, on the basis of its ability to arrest the growth of or kill lympho-hematopoietic cells. Limitin strongly inhibited B lymphopoiesis in vitro and in vivo but had little influence on either myelopoiesis or erythropoiesis. Because limitin uses the interferon alpha/beta receptors and induces interferon regulatory factor-1, it may represent a previously unknown type I interferon prototype. However, preferential B-lineage growth inhibition and activation of Janus kinase 2 in a myelomonocytic leukemia line have not been described for previously known interferons.
Collapse
Affiliation(s)
- K Oritani
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Greenberger JS. Expression of hematopoietic growth factor receptors on early hematopoietic precursors: detection and regulation. Curr Opin Hematol 2000; 7:161-7. [PMID: 10786653 DOI: 10.1097/00062752-200005000-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Since the original isolation of colony-stimulating factors from human serum, conditioned medium of murine or human cell lines, or freshly isolated human mononuclear cells, a revolutionary explosion of ideas has occurred in our understanding of molecular controls of the hematopoietic stem cell self-renewal and differentiation. With the availability of techniques of molecular cloning in the early 1 980s, the first hematopoietically activated cytokines led to molecular clones expressed in bacteria, yeast, or mammalian cellular systems. There then followed a development of techniques leading to the molecular cloning and expression of many hematopoietic growth factors and their receptors, as well as the primary, secondary, and tertiary molecules in signal transduction into activation of specific genes for differentiation or self-renewal. The clinical use of these factors in the diagnosis, treatment, and incorporation into new cell therapies for a variety of diseases is a subject of current interest.
Collapse
Affiliation(s)
- J S Greenberger
- Radiation Oncology Department, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| |
Collapse
|
30
|
Yang FC, Kapur R, King AJ, Tao W, Kim C, Borneo J, Breese R, Marshall M, Dinauer MC, Williams DA. Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 2000; 12:557-68. [PMID: 10843388 DOI: 10.1016/s1074-7613(00)80207-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mast cells generated from Rac2-deficient (-/-) mice demonstrated defective actin-based functions, including adhesion, migration, and degranulation. Rac2(-/-) mast cells generated lower numbers and less mast cell colonies in response to growth factors and were deficient in vivo. Rac2(-/-) mast cells demonstrated a significant reduction in growth factor-induced survival, which correlated with the lack of activation of Akt and significant changes in the expression of the Bcl-2 family members BAD and Bcl-XL, in spite of a 3-fold induction of Rac1 protein. These results suggest that Rac2 plays a unique role in multiple cellular functions and describe an essential role for Rac2 in growth factor-dependent survival and expression of BAD/Bcl-XL.
Collapse
Affiliation(s)
- F C Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
GATA-1 blocks IL-6-induced macrophage differentiation and apoptosis through the sustained expression of cyclin D1 and Bcl-2 in a murine myeloid cell line M1. Blood 2000. [DOI: 10.1182/blood.v95.4.1264.004k09_1264_1273] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytokines exert pleiotropic effects on target cells in a manner dependent on the cell type or stage of differentiation. To determine how instinctive cell properties affect biological effects of cytokine, we introduced an erythroid/megakaryocyte lineage-specific transcription factor, GATA-1, into a murine myeloid cell line M1, which is known to undergo macrophage differentiation in response to interleukin 6 (IL-6). Overexpression of GATA-1 changed the phenotype of M1 cells from myeloid to megakaryocytic lineage. Furthermore, GATA-1 blocked both IL-6-induced macrophage differentiation and apoptosis of M1 cells. Although STAT3 is essential for IL-6-induced macrophage differentiation of M1 cells, GATA-1 had little or no effect on tyrosine phosphorylation, DNA binding, and transcriptional activities of STAT3 in Western blot analysis, electropholic mobility shift assay (EMSA), and luciferase assays. During IL-6-induced macrophage differentiation of M1 cells, IL-6 down-regulated cyclin D1 expression and induced p19INK4D expression, leading to reduction in cdk4 activities. In contrast, sustained expression of cyclin D1 and a significantly lesser amount of p19INK4D induction were observed in IL-6-treated M1 cells overexpressing GATA-1. Furthermore, although bcl-2 expression was severely reduced by IL-6 in M1 cells, it was sustained in GATA-1-introduced M1 cells during the culture with IL-6. Both IL-6-induced macrophage differentiation and apoptosis were significantly abrogated by coexpression of cyclin D1 and bcl-2, whereas overexpressions of cyclin D1 or bcl-2 inhibited only differentiation or apoptosis, respectively. These results suggested that GATA-1 may not only reprogram the lineage phenotype of M1 cells but also disrupt the biologic effects of IL-6 through the sustained expression of cyclin D1 and bcl-2.
Collapse
|
32
|
Abstract
BACKGROUND In prostate cancer, we and others have observed distinct phenotypic responses to interleukin-6 (IL-6), which acts either as a paracrine growth inhibitor in the LNCaP cell line or as an autocrine growth stimulator in PC-3, DU145, and TSU cell lines. To understand the underlying mechanism responsible for this phenotypic difference, we investigated differences in the IL-6-induced Janus kinase-signal transducers and activators of transcription (JAK-STAT) signal transduction pathway between these two phenotypes. METHODS Prostate cancer cell lines were assayed for STAT3 activity by immunoblotting, electrophoretic gel shift assays (EMSA), and a luciferase reporter assay to test for STAT3 protein expression, phosphorylation, DNA binding, and transcriptional activity. To address the physiological role of STAT3, we introduced a dominant-negative mutant of STAT3 into LNCaP cells and assayed the effects of IL-6 on cell growth of this stable transfectant by cell counting, clonogenic assays, and c-myc expression. RESULTS IL-6 induced transcriptional activity of STAT3 only in LNCaP. STAT3 was transcriptionally inactive in PC-3, TSU, and DU145 at the level of protein expression, tyrosine phosphorylation, and DNA binding/transcriptional activity, respectively. An isolated LNCaP subclone containing a dominant-negative mutant of STAT3, LNCaP-SF, did not show STAT3-DNA binding or transcriptional activity. LNCaP-SF exhibited a proliferative response to IL-6 as compared to the control LNCaP-neo clone, which underwent growth arrest. Unlike LNCaP-neo, LNCaP-SF was able form colonies and to maintain c-myc expression in the presence of IL-6. CONCLUSIONS STAT3 transcriptional activation correlates with the growth-inhibitory signal of IL-6 in LNCaP, suggesting that STAT3 transcriptional activity is an important determinant in the different phenotypic responses to IL-6 in prostate cancer.
Collapse
Affiliation(s)
- M T Spiotto
- Department of Radiation and Cellular Oncology, University of Chicago, and the Pritzker School of Medicine, Chicago, Illinois 60637, USA
| | | |
Collapse
|
33
|
Yoshinari M, Imaizumi M, Sato A, Minegishi M, Fujii K, Suzuki H, Miura T, Funato T, Saito T, Chikaoka S, Rikiishi T, Kizaki M, Iinuma K. G-CSF induces apoptosis of a human acute promyelocytic leukemia cell line, UF-1: possible involvement of Stat3 activation and altered Bax expression. TOHOKU J EXP MED 1999; 189:71-82. [PMID: 10622210 DOI: 10.1620/tjem.189.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine that regulates the proliferation, differentiation and survival of cells in the granulocytic lineage. In this study, however, we found that G-CSF or interleukin-6 (IL-6) induced UF-1, a human acute promyelocytic leukemia cell line, into apoptosis that was confirmed by morphological features and DNA fragmentation. This rare response is demonstrated for the first time with human acute promyelocytic leukemia cell line. The apoptosis induced by G-CSF or IL-6 was not preceded by terminal differentiation characterized by morphological maturation, capability to reduce nitroblue tetrazolium, or surface CD11b expression. Interestingly, Western blot analysis revealed that the stimulation of UF-1 with either G-CSF or IL-6 resulted in excessive activation of both signal transducer and activator of transcription 3alpha (Stat3alpha) and Stat3beta. Furthermore, an additional 18 kDa Bax-related protein was expressed by the stimulation of G-CSF or IL-6, while Bcl-2 and Bcl-X proteins remained unchanged. These findings suggest that UF-1 may be a valuable tool in investigating the aberrant regulation of apoptosis, especially the Stat3 involvement in the mechanism of apoptosis induction.
Collapse
Affiliation(s)
- M Yoshinari
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|