1
|
Eber C, Verrier ER. Hijacking JAKis: JAK inhibitors as potential antiviral molecules, a mini review. Antiviral Res 2025; 237:106153. [PMID: 40157651 DOI: 10.1016/j.antiviral.2025.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Janus kinases (JAKs) are key players in the innate immune response and inflammation, catalysing the phosphorylation of STAT proteins, which ultimately leads to the expression of pro-inflammatory and antimicrobial genes. In this context, specific inhibitors of JAK kinases, or JAKis, have been extensively developed, with some already in clinical use for the treatment of chronic inflammatory diseases. However, the interactions between JAK kinases and viral replication appear to be far more complex than initially expected, with some JAKis showing unexpected antiviral properties against different classes of viruses. This mini review summarizes current knowledge about the interactions between JAK proteins and viral infections and discusses the antiviral potential of JAK inhibitors in the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Claudie Eber
- University of Strasbourg, Inserm, ITM UMR_S1110, Strasbourg, France
| | - Eloi R Verrier
- University of Strasbourg, Inserm, ITM UMR_S1110, Strasbourg, France.
| |
Collapse
|
2
|
Torices S, Daire L, Simon S, Naranjo O, Mendoza L, Teglas T, Fattakhov N, Adesse D, Toborek M. Occludin: a gatekeeper of brain Infection by HIV-1. Fluids Barriers CNS 2023; 20:73. [PMID: 37840143 PMCID: PMC10577960 DOI: 10.1186/s12987-023-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Compromised structure and function of the blood-brain barrier (BBB) is one of the pathological hallmarks of brain infection by HIV-1. BBB damage during HIV-1 infection has been associated with modified expression of tight junction (TJ) proteins, including occludin. Recent evidence indicated occludin as a redox-sensitive, multifunctional protein that can act as both an NADH oxidase and influence cellular metabolism through AMPK kinase. One of the newly identified functions of occludin is its involvement in regulating HIV-1 infection. Studies suggest that occludin expression levels and the rate of HIV-1 infection share a reverse, bidirectional relationship; however, the mechanisms of this relationship are unclear. In this review, we describe the pathways involved in the regulation of HIV-1 infection by occludin. We propose that occludin may serve as a potential therapeutic target to control HIV-1 infection and to improve the lives of people living with HIV-1.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Daniel Adesse
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA.
| |
Collapse
|
3
|
Gavegnano C, Savarino A, Owanikoko T, Marconi VC. Crossroads of Cancer and HIV-1: Pathways to a Cure for HIV. Front Immunol 2019; 10:2267. [PMID: 31636630 PMCID: PMC6788429 DOI: 10.3389/fimmu.2019.02267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Recently, a second individual (the “London patient”) with HIV-1 infection and concomitant leukemia was cured of both diseases by a conditioning myeloablative regimen followed by transplantation of stem cells bearing the homozygous CCR5 Δ32 mutation. The substantial risks and cost associated with this procedure render it unfeasible on a large scale. This strategy also indicates that a common pathway toward a cure for both HIV and cancer may exist. Successful approaches to curing both diseases should ideally possess three components, i.e., (1) direct targeting of pathological cells (neoplastic cells in cancer and the HIV-infected reservoir cells), (2) subsequent impediment to reconstitution of the pool of pathological cells and (3) sustained, immunologic control of the disease (both diseases are characterized by detrimental immune hyper-activation that hinders successful establishment of immunity). In this review, we explore medications that are either investigational or FDA-approved anticancer treatments that may be employed to achieve the goal of curing HIV-1. These include: thioredoxin reductase inhibitors (phases 1–3), immune checkpoint inhibitors (phases 1, 3), Jak inhibitors (FDA approved for arthritis and multiple cancer indications, summarized in Table 1). Of note, some of these medications such as arsenic trioxide and Jak inhibitors may also reversibly down regulate CCR5 expression on CD4+ T-cells, thus escaping the ethical issues of inducing or transferring mutations in CCR5 that are presently the subject of interest as it relates to HIV-1 cure strategies.
Collapse
Affiliation(s)
- Christina Gavegnano
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Taofeek Owanikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Vincent C Marconi
- Emory Vaccine Center, Rollins School of Public Health, Emory University School of Medicine, Atlanta, GA, United States.,Atlanta Veterans Affairs Medical Center, Atlanta, GA, United States
| |
Collapse
|
4
|
Malemud CJ. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2018; 10:117-127. [PMID: 29942363 PMCID: PMC6009092 DOI: 10.1177/1759720x18776224] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/20/2018] [Indexed: 12/30/2022] Open
Abstract
Proinflammatory cytokine activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signal transduction pathway is a critical event in the pathogenesis and progression of rheumatoid arthritis. Under normal conditions, JAK/STAT signaling reflects the influence of negative regulators of JAK/STAT, exemplified by the suppressor of cytokine signaling and protein inhibitor of activated STAT. However, in rheumatoid arthritis (RA) both of these regulators are dysfunctional. Thus, continuous activation of JAK/STAT signaling in RA synovial joints results in the elevated level of matrix metalloproteinase gene expression, increased frequency of apoptotic chondrocytes and most prominently 'apoptosis resistance' in the inflamed synovial tissue. Tofacitinib, a JAK small molecule inhibitor, with selectivity for JAK2/JAK3 was approved by the United States Food and Drug Administration (US FDA) for the therapy of RA. Importantly, tofacitinib has demonstrated significant clinical efficacy for RA in the post-US FDA-approval surveillance period. Of note, the success of tofacitinib has spurred the development of JAK1, JAK2 and other JAK3-selective small molecule inhibitors, some of which have also entered the clinical setting, whereas other JAK inhibitors are currently being evaluated in RA clinical trials.
Collapse
|
5
|
Gavegnano C, Brehm JH, Dupuy FP, Talla A, Ribeiro SP, Kulpa DA, Cameron C, Santos S, Hurwitz SJ, Marconi VC, Routy JP, Sabbagh L, Schinazi RF, Sékaly RP. Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors. PLoS Pathog 2017; 13:e1006740. [PMID: 29267399 PMCID: PMC5739511 DOI: 10.1371/journal.ppat.1006740] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/09/2017] [Indexed: 11/18/2022] Open
Abstract
Despite advances in the treatment of HIV infection with ART, elucidating strategies to overcome HIV persistence, including blockade of viral reservoir establishment, maintenance, and expansion, remains a challenge. T cell homeostasis is a major driver of HIV persistence. Cytokines involved in regulating homeostasis of memory T cells, the major hub of the HIV reservoir, trigger the Jak-STAT pathway. We evaluated the ability of tofacitinib and ruxolitinib, two FDA-approved Jak inhibitors, to block seeding and maintenance of the HIV reservoir in vitro. We provide direct demonstration for involvement of the Jak-STAT pathway in HIV persistence in vivo, ex vivo, and in vitro; pSTAT5 strongly correlates with increased levels of integrated viral DNA in vivo, and in vitro Jak inhibitors reduce the frequency of CD4+ T cells harboring integrated HIV DNA. We show that Jak inhibitors block viral production from infected cells, inhibit γ-C receptor cytokine (IL-15)-induced viral reactivation from latent stores thereby preventing transmission of infectious particles to bystander activated T cells. These results show that dysregulation of the Jak-STAT pathway is associated with viral persistence in vivo, and that Jak inhibitors target key events downstream of γ-C cytokine (IL-2, IL-7 and IL-15) ligation to their receptors, impacting the magnitude of the HIV reservoir in all memory CD4 T cell subsets in vitro and ex vivo. Jak inhibitors represent a therapeutic modality to prevent key events of T cell activation that regulate HIV persistence and together, specific, potent blockade of these events may be integrated to future curative strategies.
Collapse
Affiliation(s)
- Christina Gavegnano
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Jessica H. Brehm
- Case Western Reserve University, Dept. of Pathology, Cleveland, OH, United States of America
| | | | - Aarthi Talla
- Case Western Reserve University, Dept. of Pathology, Cleveland, OH, United States of America
| | - Susan Pereira Ribeiro
- Case Western Reserve University, Dept. of Pathology, Cleveland, OH, United States of America
| | - Deanna A. Kulpa
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Cheryl Cameron
- Case Western Reserve University, Dept. of Pathology, Cleveland, OH, United States of America
| | | | - Selwyn J. Hurwitz
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Vincent C. Marconi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service Research Institute, Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Laurent Sabbagh
- Université de Montréal, Department of Microbiology, Infectiology, and Immunology, Montreal, QC, Canada
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, United States of America
- * E-mail: (RFS); (RPS)
| | - Rafick Pierre Sékaly
- Case Western Reserve University, Dept. of Pathology, Cleveland, OH, United States of America
- * E-mail: (RFS); (RPS)
| |
Collapse
|
6
|
Cesana D, Santoni de Sio FR, Rudilosso L, Gallina P, Calabria A, Beretta S, Merelli I, Bruzzesi E, Passerini L, Nozza S, Vicenzi E, Poli G, Gregori S, Tambussi G, Montini E. HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells. Nat Commun 2017; 8:498. [PMID: 28887441 PMCID: PMC5591266 DOI: 10.1038/s41467-017-00609-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
HIV-1 insertions targeting BACH2 or MLK2 are enriched and persist for decades in hematopoietic cells from patients under combination antiretroviral therapy. However, it is unclear how these insertions provide such selective advantage to infected cell clones. Here, we show that in 30/87 (34%) patients under combination antiretroviral therapy, BACH2, and STAT5B are activated by insertions triggering the formation of mRNAs that contain viral sequences fused by splicing to their first protein-coding exon. These chimeric mRNAs, predicted to express full-length proteins, are enriched in T regulatory and T central memory cells, but not in other T lymphocyte subsets or monocytes. Overexpression of BACH2 or STAT5B in primary T regulatory cells increases their proliferation and survival without compromising their function. Hence, we provide evidence that HIV-1-mediated insertional activation of BACH2 and STAT5B favor the persistence of a viral reservoir in T regulatory cells in patients under combination antiretroviral therapy. HIV insertions in hematopoietic cells are enriched in BACH2 or MLK2 genes, but the selective advantages conferred are unknown. Here, the authors show that BACH2 and additionally STAT5B are activated by viral insertions, generating chimeric mRNAs specifically enriched in T regulatory cells favoring their persistence.
Collapse
Affiliation(s)
- Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy.
| | - Francesca R Santoni de Sio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Laura Rudilosso
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Pierangela Gallina
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefano Beretta
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, Milan, 20126, Italy.,National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi 93, Segrate, 20090, Italy
| | - Ivan Merelli
- National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi 93, Segrate, 20090, Italy
| | - Elena Bruzzesi
- Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Silvia Nozza
- Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Guido Poli
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy.,Vita-Salute San Raffaele University School of Medicine, Milan, 20132, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Giuseppe Tambussi
- Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, 20132, Italy.
| |
Collapse
|
7
|
Diamantopoulos PT, Sofotasiou M, Georgoussi Z, Giannakopoulou N, Papadopoulou V, Galanopoulos A, Kontandreopoulou E, Zervakis P, Pallaki P, Kalala F, Kyrtsonis MC, Dimitrakopoulou A, Vassilakopoulos T, Angelopoulou M, Spanakis N, Viniou NA. Prognostic significance of signal transducer and activator of transcription 5 and 5b expression in Epstein-Barr virus-positive patients with chronic lymphocytic leukemia. Cancer Med 2016; 5:2240-8. [PMID: 27367207 PMCID: PMC5055175 DOI: 10.1002/cam4.804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/24/2016] [Accepted: 05/20/2016] [Indexed: 01/16/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins have been intensively studied in hematologic malignancies, and the efficacy of agents against STATs in lymphomas is already under research. We investigated the expression of total STAT5 and STAT5b in peripheral blood samples of patients with chronic lymphocytic leukemia (CLL) in correlation with the presence of Epstein-Barr Virus (EBV) and its major oncoprotein (latent membrane protein 1, LMP1). The EBV load was measured in the peripheral blood by real-time PCR for the BXLF1 gene and the levels of LMP1 by PCR and ELISA. Western blotting was performed for total STAT5 and STAT5b in protein extracts. STAT5b was only expressed in patients (not in healthy subjects) and STAT5 but particularly STAT5b expression was correlated with the presence of the virus (77.3% vs. 51.2%, P = 0.006 for STAT5b) and to the expression of LMP1 (58.3% vs. 21.6%, P = 0.011 for STAT5b). Moreover, the expression of STAT5b and the presence of EBV and LMP1 were strongly negatively correlated with the overall survival of the patients (log-rank test P = 0.011, 0.015, 0.006, respectively). Double positive (for EBV and STAT5b) patients had the lowest overall survival (log-rank test P = 0.013). This is the first report of a survival disadvantage of EBV+ patients with CLL, and the first time that STAT5b expression is correlated with survival. The correlation of STAT5 expression with the presence of the virus, along with our survival correlations defines a subgroup of patients with CLL that may benefit from anti-STAT agents.
Collapse
Affiliation(s)
- Panagiotis T Diamantopoulos
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece.
| | - Maria Sofotasiou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Nefeli Giannakopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Vasiliki Papadopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Elina Kontandreopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Panagiotis Zervakis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Paschalina Pallaki
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Fani Kalala
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Marie-Christine Kyrtsonis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Aglaia Dimitrakopoulou
- Department of Immunology and Histocompatibility, Laikon General Hospital, Athens, Greece
| | - Theodoros Vassilakopoulos
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Maria Angelopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Spanakis
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
8
|
Haile WB, Gavegnano C, Tao S, Jiang Y, Schinazi RF, Tyor WR. The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiol Dis 2016; 92:137-43. [PMID: 26851503 DOI: 10.1016/j.nbd.2016.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
A hallmark of persistent HIV-1 infection in the central nervous system is increased activation of mononuclear phagocytes and surrounding astrogliosis, conferring persistent HIV-induced inflammation. This inflammation is believed to result in neuronal dysfunction and the clinical manifestations of HIV-associated neurocognitive disorders (HAND). The Jak/STAT pathway is activated in macrophages/myeloid cells upon HIV-1 infection, modulating many pro-inflammatory pathways that result in HAND, thereby representing an attractive cellular target. Thus, the impact of ruxolitinib, a Janus Kinase (Jak) 1/2 inhibitor that is FDA approved for myelofibrosis and polycythemia vera, was assessed for its potential to inhibit HIV-1 replication in macrophages and HIV-induced activation in monocytes/macrophages in culture. In addition, a murine model of HIV encephalitis (HIVE) was used to assess the impact of ruxolitinib on histopathological features of HIVE, brain viral load, as well as its ability to penetrate the blood-brain-barrier (BBB). Ruxolitinib was found to inhibit HIV-1 replication in macrophages, HIV-induced activation of monocytes (CD14/CD16) and macrophages (HLA-DR, CCR5, and CD163) without apparent toxicity. In vivo, systemically administered ruxolitinib was detected in the brain during HIVE in SCID mice and markedly inhibited astrogliosis. Together, these data indicate that ruxolitinib reduces HIV-induced activation and infiltration of monocytes/macrophages in vitro, reduces the replication of HIV in vitro, penetrates the BBB when systemically administered in mice and reduces astrogliosis in the brains of mice with HIVE. These data suggest that ruxolitinib will be useful as a novel therapeutic to treat humans with HAND.
Collapse
Affiliation(s)
| | - Christina Gavegnano
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Sijia Tao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Yong Jiang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| | - William R Tyor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30209, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| |
Collapse
|
9
|
Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cell Immunol 2015; 298:126-33. [PMID: 26520669 DOI: 10.1016/j.cellimm.2015.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms involved in cellular immune responses against control of human immunodeficiency virus (HIV) infection is key to development of effective immunotherapeutic strategies against viral proliferation. Clear insights into the regulation of cytotoxic CD8+ T cells is crucial to development of effective immunotherapeutic strategies due to their unique ability to eliminate virus-infected cells during the course of infection. Here, we reviewed the roles of transcription factors, co-inhibitory molecules and regulatory cytokines following HIV infection and their potential significance in regulating the cytotoxic potentials of CD8+ T cells.
Collapse
|
10
|
Zahoor MA, Xue G, Sato H, Aida Y. Genome-wide transcriptional profiling reveals that HIV-1 Vpr differentially regulates interferon-stimulated genes in human monocyte-derived dendritic cells. Virus Res 2015; 208:156-63. [PMID: 26116899 DOI: 10.1016/j.virusres.2015.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that directly link the innate and adaptive immune responses. HIV-1 infection of DCs leads to a diverse array of changes in gene expression and play a major role in dissemination of the virus into T-cells. Although HIV-1 Vpr is a pleiotropic protein involved in HIV-1 replication and pathogenesis, its exact role in APCs such as DCs remains elusive. In this study, utilizing a microarray-based systemic biology approach, we found that HIV-1 Vpr differentially regulates (fold change >2.0) more than 200 genes, primarily those involved in the immune response and innate immune response including type I interferon signaling pathway. The differential expression profiles of select genes involved in innate immune responses (interferon-stimulated genes [ISGs]), including MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, and TNFSF10, were validated by real-time quantitative PCR; the results were consistent with the microarray data. Taken together, our findings are the first to demonstrate that HIV-1 Vpr induces ISGs and activates the type I IFN signaling pathway in human DCs, and provide insights into the role of Vpr in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Muhammad Atif Zahoor
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan; International Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Guangai Xue
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan; International Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan; Japanese Foundation of AIDS Prevention, Tokyo, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
11
|
HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages. PLoS One 2014; 9:e106418. [PMID: 25170834 PMCID: PMC4149569 DOI: 10.1371/journal.pone.0106418] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/06/2014] [Indexed: 01/24/2023] Open
Abstract
Macrophages act as reservoirs of human immunodeficiency virus type 1 (HIV-1) and play an important role in its transmission to other cells. HIV-1 Vpr is a multi-functional protein involved in HIV-1 replication and pathogenesis; however, its exact role in HIV-1-infected human macrophages remains poorly understood. In this study, we used a microarray approach to explore the effects of HIV-1 Vpr on the transcriptional profile of human monocyte-derived macrophages (MDMs). More than 500 genes, mainly those involved in the innate immune response, the type I interferon pathway, cytokine production, and signal transduction, were differentially regulated (fold change >2.0) after infection with a recombinant adenovirus expressing HIV-1 Vpr protein. The differential expression profiles of select interferon-stimulated genes (ISGs) and genes involved in the innate immune response, including STAT1, IRF7, MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, APOBEC3A, DDX58 (RIG-I), TNFSF10 (TRAIL), and RSAD2 (viperin) were confirmed by real-time quantitative PCR and were consistent with the microarray data. In addition, at the post-translational level, HIV-1 Vpr induced the phosphorylation of STAT1 at tyrosine 701 in human MDMs. These results demonstrate that HIV-1 Vpr leads to the induction of ISGs and expand the current understanding of the function of Vpr and its role in HIV-1 immune pathogenesis.
Collapse
|
12
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Vicenzi E, Poli G. Novel factors interfering with human immunodeficiency virus-type 1 replication in vivo and in vitro. ACTA ACUST UNITED AC 2013; 81:61-71. [PMID: 23330719 DOI: 10.1111/tan.12047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The strategy of all retroviral infections is based on establishing an equilibrium between virus replication and proviral latency in the infected host. The human immunodeficiency virus-type 1 (HIV-1), belonging to the subfamily of lentiviridae, adds an additional level of sophistication to this general rule by encoding two regulatory genes (tat and rev) and four accessory genes (nef, vif, vpr and vpu); HIV-2, structurally similar to HIV-1 but characterized by lower pathogenicity in vivo, encodes another accessory gene, vpx. The function of these accessory genes has become clear in recent years: they serve as countermeasures to host-cell restriction factors that prevent or curtail the capacity of HIV to productively infect its target cells (typically, CD4+ T lymphocytes, macrophages and dendritic cells). Some of the best characterized restriction factors for HIV-1 are Tripartite Motif-5α (TRIM5α), preventing infection of nonhuman primates, although not being effective in humans, and apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (APOBEC 3G), counteracted by the viral accessory protein Vif. In addition, several other molecules are under scrutiny for their mechanism of action and potential exploitation as novel anti-HIV agents. This review will summarize the recently emerging knowledge on these novel factors and their potential relevance for the discovery of new anti-HIV agents targeting not only the replicative, but also the latent state of HIV infection.
Collapse
Affiliation(s)
- E Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
14
|
Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. Retrovirology 2013; 10:67. [PMID: 23803414 PMCID: PMC3699421 DOI: 10.1186/1742-4690-10-67] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/29/2013] [Indexed: 12/11/2022] Open
Abstract
Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs.
Collapse
Affiliation(s)
- Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute of Molecular Biology and Medicine, 12, Rue des Profs Jeener et Brachet, 6041, Gosselies, Belgium.
| | | | | |
Collapse
|
15
|
Landires I, Núñez-Samudio V, Thèze J. Short communication: nuclear JAK3 and its involvement in CD4 activation in HIV-infected patients. AIDS Res Hum Retroviruses 2013; 29:784-7. [PMID: 23298197 DOI: 10.1089/aid.2012.0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The subcellular localization of JAK3 was examined by quantitative image analysis. For the first time, JAK3 was found to be located in the nuclei of primary CD4 lymphocytes. A comparable quantity of JAK3 was recovered in CD4 lymphocytes from healthy donors and HIV-infected patients. By contrast, far more phosphorylated JAK3 (pJAK3) was found in the nuclei of CD4 lymphocytes from HIV-infected patients than from healthy donors. The correlation detected between the quantity of pJAK3 in the nuclei of CD4 lymphocytes and the increase in HLA-DR at their surface suggests that pJAK3 may play a role in the deleterious immune activation characterizing HIV-infected patients.
Collapse
Affiliation(s)
- Ivan Landires
- Unité d'Immunogénétique Cellulaire, Département Infection et Epidémiologie et Département d'Immunologie, Institut Pasteur, Paris, France
| | - Virginia Núñez-Samudio
- Unidad de Microbiología y Salud Pública, Instituto de Ciencias Médicas, Las Tablas, Panamá
| | - Jacques Thèze
- Unité d'Immunogénétique Cellulaire, Département Infection et Epidémiologie et Département d'Immunologie, Institut Pasteur, Paris, France
| |
Collapse
|
16
|
Renga B, Francisci D, D'Amore C, Schiaroli E, Mencarelli A, Cipriani S, Baldelli F, Fiorucci S. The HIV matrix protein p17 subverts nuclear receptors expression and induces a STAT1-dependent proinflammatory phenotype in monocytes. PLoS One 2012; 7:e35924. [PMID: 22558273 PMCID: PMC3340403 DOI: 10.1371/journal.pone.0035924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/23/2012] [Indexed: 01/22/2023] Open
Abstract
Background Long-term remission of HIV-1 disease can be readily achieved by combinations of highly effective antiretroviral therapy (HAART). However, a residual persistent immune activation caused by circulating non infectious particles or viral proteins is observed under HAART and might contribute to an higher risk of non-AIDS pathologies and death in HIV infected persons. A sustained immune activation supports lipid dysmetabolism and increased risk for development of accelerated atehrosclerosis and ischemic complication in virologically suppressed HIV-infected persons receiving HAART. Aim While several HIV proteins have been identified and characterized for their ability to maintain immune activation, the role of HIV-p17, a matrix protein involved in the viral replication, is still undefined. Results Here, we report that exposure of macrophages to recombinant human p17 induces the expression of proinflammatory and proatherogenic genes (MCP-1, ICAM-1, CD40, CD86 and CD36) while downregulating the expression of nuclear receptors (FXR and PPARγ) that counter-regulate the proinflammatory response and modulate lipid metabolism in these cells. Exposure of macrophage cell lines to p17 activates a signaling pathway mediated by Rack-1/Jak-1/STAT-1 and causes a promoter-dependent regulation of STAT-1 target genes. These effects are abrogated by sera obtained from HIV-infected persons vaccinated with a p17 peptide. Ligands for FXR and PPARγ counteract the effects of p17. Conclusions The results of this study show that HIV p17 highjacks a Rack-1/Jak-1/STAT-1 pathway in macrophages, and that the activation of this pathway leads to a simultaneous dysregulation of immune and metabolic functions. The binding of STAT-1 to specific responsive elements in the promoter of PPARγ and FXR and MCP-1 shifts macrophages toward a pro-atherogenetic phenotype characterized by high levels of expression of the scavenger receptor CD36. The present work identifies p17 as a novel target in HIV therapy and grounds the development of anti-p17 small molecules or vaccines.
Collapse
Affiliation(s)
- Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Franco Baldelli
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
17
|
Della Chiara G, Crotti A, Liboi E, Giacca M, Poli G, Lusic M. Negative regulation of HIV-1 transcription by a heterodimeric NF-κB1/p50 and C-terminally truncated STAT5 complex. J Mol Biol 2011; 410:933-43. [PMID: 21763497 DOI: 10.1016/j.jmb.2011.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 02/04/2023]
Abstract
Signal transducers and activator of transcription (STAT) proteins are often constitutively activated in leukocytes of HIV-1(+) individuals, which frequently show a dominant expression of a C-terminally truncated isoform of STAT5 (STAT5Δ). STAT5Δ can act as a negative regulator of human immunodeficiency virus type 1 (HIV-1) expression in both CD8-depleted primary leukocytes and chronically infected promonocytic U1 cells stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF). Activated STAT5Δ can directly bind to two consensus sequences in the HIV-1 long terminal repeat (LTR) promoter; binding impairs recruitment of RNA polymerase II (Crotti, A., Lusic, M., Lupo, R., Lievens, P. M., Liboi, E., Della Chiara, G., et al. (2007). Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood, 109, 5380-5389). One of the STAT consensus sequences overlaps with one nuclear factor κB (NF-κB) binding site; interestingly, NF-κB1/p50 homodimers, frequently detected in monocytic cells, are negative regulators of HIV transcription. Here, we show that GM-CSF stimulation of U1 cells, while not inducing NF-κB activation, leads to STAT5Δ phosphorylation and binding to the NF-κB/STAT target sequence in the HIV LTR promoter, which already associates with p50 under unstimulated conditions. STAT5Δ was found to associate with p50, but not with RelA/p65, in both U1 cells expressing endogenous proteins and 293T cells overexpressing these factors. Furthermore, GM-CSF stimulation promoted concurrent binding of STAT5Δ and p50 at the HIV LTR promoter in U1 cells. Immunoprecipitation of chromatin from GM-CSF-stimulated U1 cells confirmed in vivo binding of p50 to the viral promoter together with STAT5Δ. Thus, cytokine-activated STAT5Δ/p50 complexes can contribute to the maintenance of HIV-1 latency in monocytic cells.
Collapse
Affiliation(s)
- Giulia Della Chiara
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milano, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Yang B, Singh S, Bressani R, Kanmogne GD. Cross-talk between STAT1 and PI3K/AKT signaling in HIV-1-induced blood-brain barrier dysfunction: role of CCR5 and implications for viral neuropathogenesis. J Neurosci Res 2011; 88:3090-101. [PMID: 20568281 DOI: 10.1002/jnr.22458] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
How neuroinflammation affects signaling pathways leading to human blood-brain barrier (BBB) dysfunction during HIV-1 infection is incompletely understood. We previously demonstrated that signal transducers and activators of transcription-1 (STAT1) signaling is involved in HIV-1 induced BBB damage and is relevant to viral neuropathogenesis. The objective of this study was to delineate the signaling pathways upstream and downstream of STAT1 involved in HIV-1-induced endothelial dysfunction. We show that HIV-1 activation of STAT1 and STAT3 in human brain microvascular endothelial cells (HBMEC) is associated with induction of promoter activity of the interferon-stimulated response element (ISRE)/interferon-γ-activated sequence (GAS). The STAT1 inhibitor fludarabine diminished HIV-1-induced ISRE/GAS promoter activity. CCR5 neutralizing antibodies and the phosphoinositide-3-kinase (PI3K) inhibitor LY-294002 diminished HIV-1-induced phosphorylation of STAT1 and STAT3, significantly diminished HIV-1-induced ISRE/GAS promoter activity, and diminished virus-induced monocyte adhesion and transendothelial migration. HIV-1 infection did not phosphorylate janus kinases but induced activation of the phosphoinositide-dependent kinase-1 (PDK1) and the serine-threonine protein kinase AKT, both downstream effectors of PI3K. CCR5 antibodies also diminished virus-induced phosphorylation ofPDK1 and AKT. These results suggest that the chemokine receptor CCR5 is partially involved in HIV-1 binding to HBMEC and show cross-talk between STAT1 and PI3K pathways in HIV-1-induced BBB dysfunction.
Collapse
Affiliation(s)
- Bo Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nerbraska, USA
| | | | | | | |
Collapse
|
19
|
Miller RC, Schlaepfer E, Baenziger S, Crameri R, Zeller S, Byland R, Audigé A, Nadal D, Speck RF. HIV interferes with SOCS-1 and -3 expression levels driving immune activation. Eur J Immunol 2011; 41:1058-69. [PMID: 21337543 DOI: 10.1002/eji.201041198] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/14/2010] [Accepted: 01/18/2011] [Indexed: 01/25/2023]
Abstract
HIV infection is characterized by sustained immune activation, which is reflected by activated T cells and, in particular, by increased levels of phosphorylated STAT proteins. Here, we hypothesized that T-cell activation in HIV infection is partially due to the inability of SOCS-1 and SOCS-3 to control the JAK/STAT pathway. We found higher levels of SOCS-1/3 mRNA levels in CD4(+) T cells of HIV-infected patients than in healthy controls. However, SOCS protein levels were lower, explaining the lack of attenuation of the JAK/STAT pathway. Infection of CD4(+) T cells alone did not activate STATs, while ex vivo infection of PBMC did, indicating that non-T cells critical for shaping the immune response, e.g. DC were responsible for the STAT-1 activation. Supernatants from ex vivo-infected PBMC transferred to CD4(+) T cells induced JAK/STAT activation, pointing to a central role of soluble factors. Notably, over-expression of SOCS-1/3 in CD4(+) T cells prevented JAK/STAT activation. Thus, HIV infection interferes with SOCS-1/3 expression driving immune activation. Sustained immune activation disrupts the lymphoid system and favors HIV replication since HIV preferentially infects activated cells. We speculate that regulating SOCS may be a potential way to counteract immune activation in HIV disease.
Collapse
Affiliation(s)
- Regina C Miller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bellistrì GM, Casabianca A, Merlini E, Orlandi C, Ferrario G, Meroni L, Galli M, Magnani M, Monforte AD, Marchetti G. Increased bone marrow interleukin-7 (IL-7)/IL-7R levels but reduced IL-7 responsiveness in HIV-positive patients lacking CD4+ gain on antiviral therapy. PLoS One 2010; 5:e15663. [PMID: 21209878 PMCID: PMC3013120 DOI: 10.1371/journal.pone.0015663] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/19/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The bone marrow (BM) cytokine milieu might substantially affect T-lymphocyte homeostasis in HIV-positive individuals. Interleukin-7 (IL-7) is a bone marrow-derived cytokine regulating T-cell homeostasis through a CD4+-driven feedback loop. CD4+ T-lymphopenia is associated with increased free IL-7 levels and reduced IL-7R expression/function, which are only partially reverted by highly active antiretroviral therapy (HAART). We investigated the BM production, peripheral expression and signaling (pStat5+ and Bcl-2+ CD4+/CD8+ T cells) of IL-7/IL-7Rα in 30 HAART-treated HIV-positive patients who did not experience CD4+ recovery (CD4+ ≤200/µl) and who had different levels of HIV viremia; these patients included 18 immunological nonresponders (INRs; HIV-RNA≤50), 12 complete failures (CFs; HIV-RNA>1000), and 23 HIV-seronegative subjects. METHODS We studied plasma IL-7 levels, IL-7Rα+CD4+/CD8+ T-cell proportions, IL-7Rα mRNA expression in PBMCs, spontaneous IL-7 production by BM mononuclear cells (BMMCs), and IL-7 mRNA/IL-7Rα mRNA in BMMC-derived stromal cells (SCs). We also studied T-cell responsiveness to IL-7 by measuring the proportions of pStat5+ and Bcl-2+ CD4+/CD8+ T cells. RESULTS Compared to HIV-seronegative controls, CFs and INRs presented elevated plasma IL-7 levels and lower IL-7Rα CD4+/CD8+ cell-surface expression and peripheral blood production, confirming the most relevant IL-7/IL-7R disruption. Interestingly, BM investigation revealed a trend of higher spontaneous IL-7 production in INRs (p = .09 vs. CFs) with a nonsignificant trend toward higher IL-7-Rα mRNA levels in BMMC-derived stromal cells. However, upon IL-7 stimulation, the proportion of pStat5+CD4+ T cells did not increase in INRs despite higher constitutive levels (p = .06); INRs also displayed lower Bcl-2+CD8+ T-cell proportions than controls (p = .04). CONCLUSIONS Despite severe CD4+ T-lymphopenia and a disrupted IL-7/IL-7R profile in the periphery, INRs display elevated BM IL-7/IL-7Rα expression but impaired T-cell responsiveness to IL-7, suggesting the activity of a central compensatory pathway targeted to replenish the CD4+ compartment, which is nevertheless inappropriate to compensate the dysfunctional signaling through IL-7 receptor.
Collapse
Affiliation(s)
- Giusi Maria Bellistrì
- Department of Medicine, Surgery and Dentistry, Clinic of Infectious Diseases, “San Paolo” Hospital, University of Milan, Milan, Italy
| | - Anna Casabianca
- Institute of Biological Chemistry “Giorgio Fornaini”, University of Urbino, Urbino, Italy
| | - Esther Merlini
- Department of Medicine, Surgery and Dentistry, Clinic of Infectious Diseases, “San Paolo” Hospital, University of Milan, Milan, Italy
| | - Chiara Orlandi
- Institute of Biological Chemistry “Giorgio Fornaini”, University of Urbino, Urbino, Italy
| | - Giulio Ferrario
- Department of Clinical Sciences, Chair of Infectious Diseases and Tropical Medicine, “Luigi Sacco” Hospital, University of Milan, Milan, Italy
| | - Luca Meroni
- Department of Clinical Sciences, Chair of Infectious Diseases and Tropical Medicine, “Luigi Sacco” Hospital, University of Milan, Milan, Italy
| | - Massimo Galli
- Department of Clinical Sciences, Chair of Infectious Diseases and Tropical Medicine, “Luigi Sacco” Hospital, University of Milan, Milan, Italy
| | - Mauro Magnani
- Institute of Biological Chemistry “Giorgio Fornaini”, University of Urbino, Urbino, Italy
| | - Antonella d'Arminio Monforte
- Department of Medicine, Surgery and Dentistry, Clinic of Infectious Diseases, “San Paolo” Hospital, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Department of Medicine, Surgery and Dentistry, Clinic of Infectious Diseases, “San Paolo” Hospital, University of Milan, Milan, Italy
- * E-mail:
| |
Collapse
|
21
|
Gougeon ML, Chiodi F. Impact of gamma-chain cytokines on T cell homeostasis in HIV-1 infection: therapeutic implications. J Intern Med 2010; 267:502-14. [PMID: 20433577 DOI: 10.1111/j.1365-2796.2010.02221.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CD4(+) T cell lymphocytes are a major target for human immunodeficiency virus type-1 (HIV-1) infection. During this chronic infection, CD4(+) T cell loss (induced through direct viral replication), generalized immune activation and increased susceptibility to apoptosis result in impaired T cell homeostasis with subsequent development of opportunistic infections and cancers. Highly active antiretroviral therapy (HAART) has a well-defined, beneficial effect on HIV-1-related clinical outcome; however, it does not lead to normalization of immune dysregulation. In order to boost both CD4(+) T cell restoration and HIV-1 specific immunity, immunotherapy with gamma-chain cytokines has been used in HIV-1-infected patients during concomitant HAART. In this review, we summarize the role of gamma-chain cytokines, especially interleukin (IL)-2 and IL-7, in influencing T cell homeostasis and proliferation, and discuss how immunotherapy with these cytokines may be beneficial to reconstitute the T cell compartment in the context of HIV-1 infection. The intriguing results of two large trials evaluating the efficacy of IL-2 in restoring immune function during HIV-1 infection are also discussed. In addition, we consider the promises and caveats of the first phase I/II clinical trials with IL-7 in HIV-1-infected patients and the knowledge that is still lacking in the field of T cell reconstitution through gamma-chain cytokines.
Collapse
|
22
|
Louis S, Dutertre CA, Vimeux L, Fery L, Henno L, Diocou S, Kahi S, Deveau C, Meyer L, Goujard C, Hosmalin A. IL-23 and IL-12p70 production by monocytes and dendritic cells in primary HIV-1 infection. J Leukoc Biol 2010; 87:645-53. [PMID: 20097848 DOI: 10.1189/jlb.1009684] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
IL-12 enhances protective responses against HIV replication. Its production after in vitro stimulation is defective in chronic HIV infection, but higher responses can be found. IL-23 shares the p40 chain and some properties with IL-12 and enhances Th17 responses, but its role in HIV infection is unknown. The production of IL-12 and IL-23 and the respective contribution of monocytes and myeloid conventional DC (cDCs) during primary HIV infection were determined. Sixteen patients included in the French PRIMO-ANRS Cohort without antiretroviral treatment were followed prospectively and compared with uninfected donors. Intracellular p40 expression by monocytes and cDCs, analyzed by flow cytometry, was transiently increased in monocytes and cDCs in response to LPS and more consistently, in monocytes in response to LPS + IFN-gamma. IL-23 production, measured by ELISA after PBMC stimulation, was induced by LPS in strong correlation with VLs. IL-12p70 production required the addition of IFN-gamma and was transiently increased in patients compared with controls in correlation with VLs, whereas IL-23 was increased sustainedly. Therefore, an apparent domination of IL-23 over IL-12 responses occurred throughout primary HIV infection, and a potential restoration of IL-12 responses might be expected from a treatment mimicking activated T cell signals.
Collapse
Affiliation(s)
- Stéphanie Louis
- Institut Cochin, Universite Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected macrophages. PLoS One 2009; 4:e5397. [PMID: 19404407 PMCID: PMC2672636 DOI: 10.1371/journal.pone.0005397] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/01/2009] [Indexed: 01/14/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected with macrophage-tropic HIV-1ADA, HIV-1JR-FL, or HIV-1BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages.
Collapse
|
24
|
HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood-brain barrier: modulatory effects of STAT1 signaling. Microvasc Res 2008; 77:212-9. [PMID: 19103208 DOI: 10.1016/j.mvr.2008.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 11/12/2008] [Indexed: 01/24/2023]
Abstract
How neuroinflammatory activities affect signaling pathways leading to blood-brain barrier (BBB) injury during HIV/AIDS are currently unknown. Our previous work demonstrated that HIV-1 exposure activates pro-inflammatory genes in human brain microvascular endothelial cells (HBMEC) and showed that these genes are linked to the janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. Here, we report that HIV-1 gp120 protein activated STAT1 and induced interleukin (IL)-6 and IL-8 secretion in HBMEC. IL-6, IL-8, and gp120 increased monocyte adhesion and migration across in vitro BBB models. The STAT1 inhibitor, fludarabine, prevented gp120-induced IL-6 and IL-8 secretion. Inhibitors of STAT1, mitogen activated protein kinase kinase (MEK) (PD98059), and phosphatidyl inositol 3 kinase (PI3K) (LY294002), blocked gp120-induced STAT1 activation and significantly diminished IL-8-, IL-6-, and gp120-induced monocyte adhesion and migration across in vitro BBB models. These data support the notion that STAT1 plays an important role in gp120-induced inflammation and BBB dysfunction associated with viral infection. Results also suggest crosstalk between STAT1, MEK, and PI3K pathways in gp120-induced BBB dysfunction. Inhibition of STAT1 activation could provide a unique therapeutic strategy to decrease neuroinflammation and BBB dysfunction in HIV/AIDS.
Collapse
|
25
|
Zheng CF, Jones GJ, Shi M, Wiseman JCD, Marr KJ, Berenger BM, Huston SM, Gill MJ, Krensky AM, Kubes P, Mody CH. Late expression of granulysin by microbicidal CD4+ T cells requires PI3K- and STAT5-dependent expression of IL-2Rbeta that is defective in HIV-infected patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:7221-9. [PMID: 18490721 PMCID: PMC2661617 DOI: 10.4049/jimmunol.180.11.7221] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Granulysin is a cytolytic effector molecule used by lymphocytes to kill tumor and microbial cells. Regulation of granulysin production is complex. A significant delay (5 days) following stimulation of CD4(+) T cells with IL-2 occurs before granulysin is produced. Unfortunately, the mechanisms responsible for this delay are unknown. We have recently demonstrated that granulysin-mediated killing of Cryptococcus neoformans by CD4(+) T cells is defective during HIV infection. This is because CD4(+) T cells from HIV-infected patients fail to produce granulysin in response to IL-2 activation. The present studies examined the mechanism of delayed production of granulysin and the mechanism of the defect in HIV patients. We demonstrate that IL-2 initially requires both STAT5 and PI3K activation to increase expression of IL-2Rbeta, produce granulysin, and kill C. neoformans. The increased expression of IL-2Rbeta precedes granulysin, and preventing the increased expression of IL-2Rbeta using small interfering RNA knockdown abrogates granulysin expression. Moreover, following the increased expression of IL-2Rbeta, blocking subsequent signaling by IL-2 using IL-2Rbeta-specific blocking Abs abrogates expression of granulysin. Finally, CD4(+) T cells from HIV-infected patients, who are defective in both STAT5 and PI3K signaling, fail to express IL-2Rbeta and fail to produce granulysin. These results suggest that IL-2 signals via PI3K and STAT5 to increase expression of IL-2Rbeta, which in turn is required for production of granulysin. These results provide a mechanism to explain the "late" production of granulysin during normal T cell responses, as well as for defective granulysin production by CD4(+) T cells in HIV-infected patients.
Collapse
Affiliation(s)
- Chun Fu Zheng
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Gareth J. Jones
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Meiqing Shi
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Jeremy C. D. Wiseman
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Kaleb J. Marr
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Byron M. Berenger
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Shaunna M. Huston
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - M. John Gill
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Alan M. Krensky
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul Kubes
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | - Christopher H. Mody
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Schweneker M, Favre D, Martin JN, Deeks SG, McCune JM. HIV-induced changes in T cell signaling pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:6490-500. [PMID: 18453567 PMCID: PMC2648824 DOI: 10.4049/jimmunol.180.10.6490] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with HIV usually results in chronic activation of the immune system, with profound quantitative and qualitative changes in the T cell compartment. To better understand the mechanistic basis for T cell dysfunction and to discern whether such mechanisms are reversed after effective antiviral treatment, we analyzed changes in signaling pathways of human CD4(+) and CD8(+) T cells from 57 HIV-infected subjects in varying stages of disease progression and treatment, including long-term nonprogressors, progressors, and chronically infected subjects provided effective antiretroviral therapy (responders). A previously described PhosFlow method was adapted and optimized so that protein phosphorylation could be visualized in phenotypically defined subpopulations of CD4(+) and CD8(+) T cells (naive, memory, and effector) by flow cytometry. T cell signaling induced by TCR cross-linking, IL-2, or PMA/ionomycin was found to be blunted within all T cell subpopulations in those with progressive HIV disease compared with long-term nonprogressors and responders. Although alterations in cellular signaling correlated with levels of basal phosphorylation, viral load, and/or expression of programmed death-1, it was the level of basal phosphorylation that appeared to be the factor most dominantly associated with impaired signaling. Notably, provision of effective antiretroviral therapy was associated with a normalization of both basal phosphorylation levels and T cell signaling. These data, in aggregate, suggest that generalized dysfunction of the T cell compartment during progressive HIV disease may be in part dependent upon an increased basal level of phosphorylation, which itself may be due to the heightened state of immune activation found in advanced disease.
Collapse
Affiliation(s)
- Marc Schweneker
- Division of Experimental Medicine, San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA 94110
| | - David Favre
- Division of Experimental Medicine, San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA 94110
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94110
| | - Steven G. Deeks
- HIV/AIDS Division, San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA 94110
| | - Joseph M. McCune
- Division of Experimental Medicine, San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA 94110
- HIV/AIDS Division, San Francisco General Hospital, Department of Medicine, University of California, San Francisco, CA 94110
| |
Collapse
|
27
|
STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood-brain barrier. Blood 2007; 111:2062-72. [PMID: 18003888 DOI: 10.1182/blood-2007-05-091207] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship among neuroinflammation, blood-brain barrier (BBB) dysfunction, and progressive HIV-1 infection as they affect the onset and development of neuroAIDS is incompletely understood. One possible link is signal transducers and activators of transcription (STATs) pathways. These respond to proinflammatory and regulatory factors and could affect neuroinflammatory responses induced from infected cells and disease-affected brain tissue. Our previous works demonstrated that HIV-1 activates pro-inflammatory and interferon-alpha-inducible genes in human brain microvascular endothelial cells (HBMECs) and that these genes are linked to the Janus kinase (JAK)/STAT pathway. We now demonstrate that HIV-1 activates STAT1, induces IL-6 expression, and diminishes expression of claudin-5, ZO-1, and ZO-2 in HBMECs. The STAT1 inhibitor, fludarabine, blocked HIV-1-induced IL-6, diminished HIV-1-induced claudin-5 and ZO-1 down-regulation, and blocked HIV-1- and IL-6-induced monocyte migration across a BBB model. Enhanced expression and activation of STAT1 and decreased claudin-5 were observed in microvessels from autopsied brains of patients with HIV-1-associated dementia. These data support the notion that STAT1 plays an integral role in HIV-1-induced BBB damage and is relevant to viral neuropathogenesis. Inhibition of STAT1 activation could provide a unique therapeutic strategy to attenuate HIV-1-induced BBB compromise and as such improve clinical outcomes.
Collapse
|
28
|
O'Sullivan LA, Liongue C, Lewis RS, Stephenson SEM, Ward AC. Cytokine receptor signaling through the Jak–Stat–Socs pathway in disease. Mol Immunol 2007; 44:2497-506. [PMID: 17208301 DOI: 10.1016/j.molimm.2006.11.025] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 12/31/2022]
Abstract
The complexity of multicellular organisms is dependent on systems enabling cells to respond to specific stimuli. Cytokines and their receptors are one such system, whose perturbation can lead to a variety of disease states. This review represents an overview of our current understanding of the cytokine receptors, Janus kinases (Jaks), Signal transducers and activators of transcription (Stats) and Suppressors of cytokine signaling (Socs), focussing on their contribution to diseases of an immune or hematologic nature.
Collapse
Affiliation(s)
- Lynda A O'Sullivan
- School of Life & Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | | | | | | | | |
Collapse
|
29
|
Tjernlund A, Walther-Jallow L, Behbahani H, Screpanti V, Nowak P, Grandien A, Andersson J, Patterson BK. Leukemia inhibitor factor (LIF) inhibits HIV-1 replication via restriction of stat 3 activation. AIDS Res Hum Retroviruses 2007; 23:398-406. [PMID: 17411373 DOI: 10.1089/aid.2006.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leukemia inhibitor factor (LIF) has been shown to potently inhibit HIV-1 replication in vitro and in human organ explant cultures. Furthermore, LIF activates the Jak/Stat signaling pathway with which many viruses, including HIV-1, interfere. We used CXCR4 and the LIF signaling receptor (gp130)-expressing cMAGI cells transfected with CD4, CCR5, and HIV-LTR-beta-galactosidase as a model system to investigate the potential involvement of Stat proteins in the anti-HIV-1 effect of LIF. Pretreatment with recombinant human (rh)LIF resulted in a significantly reduced uptake of HIV-1(BaL) , HIV-1(LAI), and SIVmac251 viral particles without affecting uptake of murine leukemia retroviral particles. HIV-1(BaL), HIV-1(LAI), as well as rhLIF selectively induced phosphorylation of Stat 3 but not Stat 1 or Stat 5. However, treatment of cMAGI cells with rhLIF prior to HIV-1 infection downregulated the HIV-1-mediated Stat 3 phosphorylation. In addition, peripheral blood mononuclear cells (PBMCs) transfected with Stat 3 siRNA prior to HIV-1(LAI) or HIV-1(BaL) infection produced significantly less HIV-1 p24 antigen as compared to nontransfected HIV-1(LAI) and HIV-1(BaL)-infected PBMCs. Thus, the Jak/Stat signaling pathway is important for the HIV-1 replication life cycle and rhLIF excerts its anti-HIV-1 activity by disrupting this signaling cascade.
Collapse
Affiliation(s)
- Annelie Tjernlund
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Crotti A, Lusic M, Lupo R, Lievens PMJ, Liboi E, Della Chiara G, Tinelli M, Lazzarin A, Patterson BK, Giacca M, Bovolenta C, Poli G. Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood 2007; 109:5380-9. [PMID: 17332243 DOI: 10.1182/blood-2006-08-042556] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD4(+) cells of most individuals infected with HIV-1 harbor a C-terminally truncated and constitutively activated form of signal transducer and activator of transcription-5 (STAT5 Delta). We report that the chronically HIV-infected U1 cell line expresses STAT5 Delta but not full-length STAT5. Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation of U1 cells promoted early activation of STAT5 Delta and of extracellular signal regulated kinases (ERKs), followed by later activation of activator protein 1 (AP-1) and HIV expression. Inhibition of ERK/AP-1 by PD98,059 abolished, whereas either tyrphostin AG490 or a STAT5 small interfering RNA (siRNA) enhanced, virion production in GM-CSF-stimulated U1 cells. Chromatin immunoprecipitation demonstrated the induction of STAT5 Delta binding to STAT consensus sequences in the HIV-1 promoter together with a decreased recruitment of RNA polymerase II after 1 hour of GM-CSF stimulation of U1 cells. Down-regulation of STAT5 Delta by siRNA resulted in the up-regulation of both HIV-1 gag-pol RNA and p24 Gag antigen expression in CD8-depleted leukocytes of several HIV-positive individuals cultivated ex vivo in the presence of interleukin-2 but not of interleukin-7. Thus, the constitutively activated STAT5 Delta present in the leukocytes of most HIV-positive individuals acts as a negative regulator of HIV expression.
Collapse
Affiliation(s)
- Andrea Crotti
- AIDS Immunopathogenesis Unit and the Division of Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Giunta B, Obregon D, Hou H, Zeng J, Sun N, Nikolic V, Ehrhart J, Shytle D, Fernandez F, Tan J. EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-gamma: role of JAK/STAT1 signaling and implications for HIV-associated dementia. Brain Res 2006; 1123:216-225. [PMID: 17078933 PMCID: PMC4487677 DOI: 10.1016/j.brainres.2006.09.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/12/2006] [Indexed: 11/19/2022]
Abstract
Human immunodeficiency virus (HIV)-1 infection of the central nervous system occurs in the vast majority of HIV-infected patients. HIV-associated dementia (HAD) represents the most severe form of HIV-related neuropsychiatric impairment and is associated with neuropathology involving HIV proteins and activation of proinflammatory cytokine circuits. Interferon-gamma (IFN-gamma) activates the JAK/STAT1 pathway, a key regulator of inflammatory and apoptotic signaling, and is elevated in HIV-1-infected brains progressing to HAD. Recent reports suggest green tea-derived (-)-epigallocatechin-3-gallate (EGCG) can attenuate neuronal damage mediated by this pathway in conditions such as brain ischemia. In order to investigate the therapeutic potential of EGCG to mitigate the neuronal damage characteristic of HAD, IFN-gamma was evaluated for its ability to enhance well-known neurotoxic properties of HIV-1 proteins gp120 and Tat in primary neurons and mice. Indeed, IFN-gamma enhanced the neurotoxicity of gp120 and Tat via increased JAK/STAT signaling. Additionally, primary neurons pretreated with a JAK1 inhibitor, or those derived from STAT1-deficient mice, were largely resistant to the IFN-gamma-enhanced neurotoxicity of gp120 and Tat. Moreover, EGCG treatment of primary neurons from normal mice reduced IFN-gamma-enhanced neurotoxicity of gp120 and Tat by inhibiting JAK/STAT1 pathway activation. EGCG was also found to mitigate the neurotoxic properties of HIV-1 proteins in the presence of IFN-gamma in vivo. Taken together, these data suggest EGCG attenuates the neurotoxicity of IFN-gamma augmented neuronal damage from HIV-1 proteins gp120 and Tat both in vitro and in vivo. Thus EGCG may represent a novel natural copound for the prevention and treatment of HAD.
Collapse
Affiliation(s)
- Brian Giunta
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
| | - Demian Obregon
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
| | - Hauyan Hou
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
| | | | - Nan Sun
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
| | - Veljko Nikolic
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
| | - Jared Ehrhart
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
| | - Douglas Shytle
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery; University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
| | - Francisco Fernandez
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
| | - Jun Tan
- Neuroimmunology Laboratory, Silver Child Development Center, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery; University of South Florida, 3515 East Fletcher Avenue Tampa, Florida, 33613, USA
- Corresponding author: Jun Tan, M.D., Ph.D., Neuroimmunology Laboratory, Institute for Reseach in Psychiatry, Department of Psychiatry, College of Medicine University of South Florida. 3515 E Fletcher Ave. Tampa, FL 33613, USA. Phone: 813-974-9326; Fax: 813-974-1130;
| |
Collapse
|
32
|
Sgarbanti M, Marsili G, Remoli AL, Ridolfi B, Stellacci E, Borsetti A, Ensoli B, Battistini A. Analysis of the signal transduction pathway leading to human immunodeficiency virus-1-induced interferon regulatory factor-1 upregulation. Ann N Y Acad Sci 2005; 1030:187-95. [PMID: 15659797 DOI: 10.1196/annals.1329.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interferon (IFN) regulatory factors (IRFs) constitute a family of transcriptional activators and repressors involved in the regulation of immune system, host defense, and cell growth. All members share conserved DNA-binding domains that recognize DNA sequences termed IRF-binding elements/IFN-stimulated response elements (IRF-E/ISRE) present on the promoter of IFN-alpha/beta and IFN-stimulated genes. An ISRE has been identified downstream of the transcription start site of the long terminal repeat (LTR) of human immunodeficiency virus-1 (HIV-1). Our previous results showed that among the IRF factors, IRF-1 is able to stimulate HIV-1 LTR transcription and its expression is induced by HIV-1, early, upon infection and before the expression of Tat. In this study we investigated the signal transduction pathway leading to HIV-1-induced IRF-1 expression. Key IRF-1 promoter elements that mediate the activation of transcription upon induction by inflammatory cytokines are IFN-gamma-activated sequences that bind members of the signal transducer and activator of transcription (STAT) family and binding sites for nuclear factor kappaB (NF-kappaB). Both STAT-1 and NF-kappaB activation were examined to determine putative molecular targets whose inhibition resulted in the inhibition of HIV-1 replication. The results show that at early time points after HIV-1 infection, NF-kappaB but not STAT-1 is activated. Moreover, a significant decrease in HIV-1 replication was observed upon de novo infection of Jurkat T cells expressing an NF-kappaB super-repressor (IkappaB-alpha 2NDelta4). These results suggest that in early phases of HIV-1 infection, before detectable cytokine production, NF-kappaB seems responsible for HIV-1-induced IRF-1 expression.
Collapse
Affiliation(s)
- Marco Sgarbanti
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kartvelishvili A, Lesner A, Szponar M, Simm M. Microarray analysis of differentially expressed genes in cells resistant to HIV-1. Immunol Lett 2004; 93:79-86. [PMID: 15134903 DOI: 10.1016/j.imlet.2004.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 02/24/2004] [Accepted: 02/26/2004] [Indexed: 11/30/2022]
Abstract
We have previously isolated two matched transformed human T cell clones: one of which is resistant to HIV-1 replication and secretes an HIV-1 resistance factor(s) (HRF) and the second which retains the susceptibility of the parental cell line to HIV-1 infection. We employed cDNA arrays to investigate the spectrum of changes in cellular gene expression that correlate with the acquisition of HIV-1 resistance and the secretion of HRF. Using a tissue based immunology/hematology array, we identified 29 transcripts that were differentially expressed by HRF(+) and HRF(-) cells. HRF(+) cells showed a selective down-regulation of 11 genes involved in transcription, several of which are implicated in either susceptibility of cells to HIV-1 or the promotion of HIV-1 transcription itself. In the group of the up-regulated genes, three were linked directly to the cellular resistance to HIV-1. One of the cDNAs placed on the array, representing the hypothetical protein KIAA0117 hybridized only with poly A+ RNA probes derived from HRF(+) cells. The specific up-regulation of two genes, the transcription repressor (CTCF) and hypothetical protein KIAA0117 was confirmed by RT-PCR and Northern blot. The role of KIAA0117 transcript in the resistance to HIV-1 replication needs to be determined.
Collapse
Affiliation(s)
- Alex Kartvelishvili
- Molecular Virology Laboratory, Molecular Virology Division, Department of Medicine, St. Luke's/Roosevelt Hospital Center, Columbia University, 432 West 58th Street, Rm. 709, New York, NY 10019, USA
| | | | | | | |
Collapse
|
34
|
Lee ES, Kalantari P, Tsutsui Section S, Klatt A, Holden J, Correll PH, Power Section C, Henderson AJ. RON Receptor Tyrosine Kinase, a Negative Regulator of Inflammation, Inhibits HIV-1 Transcription in Monocytes/Macrophages and Is Decreased in Brain Tissue from Patients with AIDS. THE JOURNAL OF IMMUNOLOGY 2004; 173:6864-72. [PMID: 15557181 DOI: 10.4049/jimmunol.173.11.6864] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of macrophages and microglia cells after HIV-1 infection and their production of inflammatory mediators contribute to HIV-associated CNS diseases. The mechanisms that initiate and maintain inflammation after HIV-1 infection in the brain have not been well studied. Furthermore, it is not understood why in HIV-associated CNS disease, macrophages and microglia are biased toward inflammation rather than production of mediators that control inflammation. We have focused on the receptor tyrosine kinase RON, a critical negative regulator of macrophage function and inflammation, to determine whether this receptor regulates HIV-1 expression. Overexpressing RON in monocytes/macrophages demonstrates that RON inhibits HIV-1 proviral transcription in part by decreasing the binding activity of NF-kappaB to the HIV-1 long terminal repeat. Because macrophages and microglia cells are a critical reservoir for HIV-1 in the CNS, we examined brain tissues for RON expression and detected RON in astrocytes, cortical neurons, and monocytoid cells. RON was detected in all control patients who were HIV seronegative (n = 7), whereas six of nine brain samples obtained from AIDS patients exhibited reduced RON protein. These data suggest that RON initiates signaling pathways that negatively regulate HIV-1 transcription in monocytes/macrophages and that HIV-1 suppresses RON function by decreasing protein levels in the brain to assure efficient replication. Furthermore, HIV-1 infection would compromise the ability of RON to protect against inflammation and consequent CNS damage.
Collapse
Affiliation(s)
- Eileen S Lee
- Graduate Program in Biochemistry, Department of Veterinary Science, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kryworuchko M, Pasquier V, Keller H, David D, Goujard C, Gilquin J, Viard JP, Joussemet M, Delfraissy JF, Thèze J. Defective interleukin-2-dependent STAT5 signalling in CD8 T lymphocytes from HIV-positive patients: restoration by antiretroviral therapy. AIDS 2004; 18:421-6. [PMID: 15090793 DOI: 10.1097/00002030-200402200-00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND CD8 T lymphocytes are critical in the control of HIV replication and disease progression. Our previous studies demonstrated that CD8 T cells from chronically infected patients with high virus load proliferated poorly in response to interleukin-2 (IL-2), a cytokine critical in CD8 T cell growth and differentiation, even though relatively high levels of IL-2 receptor (IL-2R) were expressed. This suggested that signal transduction defects in response to IL-2 might be involved. The STAT5 transcription factor is important in IL-2-dependent biological responses and it is known that there are defects in unstimulated CD3 and CD4 cells in HIV-infected patients. OBJECTIVE To investigate whether the induction of STAT5 by IL-2 is altered in the CD8 T cells from HIV-positive individuals and the impact of highly active antiretroviral therapy (HAART) on its status. METHODS CD8 T lymphocytes were purified from the peripheral blood mononuclear cells of HIV-positive patients before and after HAART. Ex vivo IL-2-induced STAT5 activation was evaluated by immunoblotting and electrophoretic mobility shift assays. RESULTS CD8 T cells from a subset of untreated HIV-positive patients were unable to activate STAT5a and STAT5b proteins functionally in response to IL-2. This defect was not a result of alterations in IL-2R expression but correlated with an impaired activation of the upstream kinase Jak-3, known to mediate STAT5 activation. Overall, HAART restored Jak/STAT signalling in such patients. CONCLUSIONS These results further uncover a potential mechanism by which CD8 T cell function is impaired in HIV-infected patients.
Collapse
|
36
|
Miller ED, Smith JA, Lichtinger M, Wang L, Su L. Activation of the signal transducer and activator of transcription 1 signaling pathway in thymocytes from HIV-1-infected human thymus. AIDS 2003; 17:1269-77. [PMID: 12799548 PMCID: PMC4415361 DOI: 10.1097/00002030-200306130-00001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify HIV-induced host factors in the severe combined immunodeficient (SCID)-hu Thy/Liv mouse that may contribute to HIV pathogenesis in the thymus. DESIGN To identify genes specifically altered by HIV-1 infection using the cDNA microarray assay, SCID-hu Thy/Liv organs derived from the same donors were used. Therefore, no genetic variations existed between HIV and mock-infected samples. In addition, the 12-14 day post-infection timepoint was chosen because no significant thymocyte depletion was detected in HIV-infected Thy/Liv organs, so mRNA from the same cell types could be compared. METHODS Using SCID-hu Thy/Liv mice constructed from the same donor tissues, we analysed the expression of 9183 host genes in response to HIV infection with cDNA microarrays. Expression of selected genes with more than threefold induction was confirmed by measuring RNA (reverse transcriptase-polymerase chain reaction; RT-PCR) and proteins. RESULTS HIV-1 (JD or NL4-3) infection of the SCID-hu Thy/Liv mouse led to more than threefold induction of 19 genes, 12 of which were IFN-inducible and six were unknown EST clones. We confirmed induction by RT-PCR and protein blots. Both signal transducer and activator of transcription (STAT)1 and STAT2 proteins were induced, and STAT1 was also activated by phosphorylation at the Tyr701 and Ser727 sites in human thymus infected with HIV-JD or NL4-3. Treatment of human fetal thymus organ culture or human thymocytes with recombinant HIV-1 gp120 proteins also led to induction or activation of STAT1. CONCLUSION HIV-1 infection of the thymus led to activation of the STAT1 signaling pathway in thymocytes, which may contribute to HIV-1 pathogenesis in the thymus.
Collapse
Affiliation(s)
- Eric D Miller
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|
37
|
Kohler JJ, Tuttle DL, Coberley CR, Sleasman JW, Goodenow MM. Human immunodeficiency virus type 1 (HIV-1) induces activation of multiple STATs in CD4+ cells of lymphocyte or monocyte/macrophage lineages. J Leukoc Biol 2003; 73:407-16. [PMID: 12629155 DOI: 10.1189/jlb.0702358] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) impacts the activation state of multiple lineages of hematopoietic cells. Chronic HIV-1 infection among individuals with progressive disease can be associated with increased levels of activated signal transducers and activators of transcription (STATs) in peripheral blood mononuclear cells. To investigate interactions between HIV-1 and CD4(+) cells, activated, phosphorylated STAT proteins in nuclear extracts from lymphocytic and promonocytic cell lines as well as primary monocyte-derived macrophages were measured. Levels of activated STATs increased six- to tenfold in HUT78 and U937 cells within 2 h following exposure to virions. The response to virus was dose-dependent, but kinetics of activation was delayed relative to interleukin-2 or interferon-gamma. Activation of STAT1, STAT3, and STAT5 occurred with diverse viral envelope proteins, independent of coreceptor use or viral replication. Envelope-deficient virions had no effect on STAT activation. Monoclonal antibody engagement of CD4 identified a novel role for CD4 as a mediator in the activation of multiple STATs. Results provide a model for HIV-1 pathogenesis in infected and noninfected hematopoietic cells.
Collapse
Affiliation(s)
- James J Kohler
- Department of Pathology, Immunology, and Laboratory Medicine, Division of Immunology and Infectious Diseases, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
38
|
Bovolenta C, Pilotti E, Mauri M, Panzeri B, Sassi M, Dall'Aglio P, Bertazzoni U, Poli G, Casoli C. Retroviral interference on STAT activation in individuals coinfected with human T cell leukemia virus type 2 and HIV-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4443-9. [PMID: 12370379 DOI: 10.4049/jimmunol.169.8.4443] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human T cell leukemia virus (HTLV) type-2 is a human retrovirus whose infection has not been tightly linked to human diseases. However, the fairly high prevalence of this infection among HIV-1-positive individuals indicates the importance of better understanding the potential interference of HTLV-2 infection on HIV-1 infection and AIDS. We previously demonstrated that one signature of PBMC freshly derived from HIV-1-infected individuals is the constitutive activation of a C-terminal truncated STAT5 (STAT5Delta). Therefore, we analyzed the potential activation of STATs in HTLV-2 monoinfected and HTLV-2/HIV-1 dually infected individuals. We observed that PBMC of HTLV-2-infected individuals do not show STAT activation unless they are cultivated ex vivo, in the absence of any mitogenic stimuli, for at least 8 h. The emergence of STAT activation, namely of STAT1, in culture was mostly related to the secretion of IFN-gamma. Of note, this phenomenon is not only a characteristic feature of HTLV-2-infected individuals but also occurred with PBMC of HIV-1(+) individuals. Surprisingly, HTLV-2/HIV-1 coinfection resulted in low/absent STAT activation in vivo that paralleled a diminished secretion of IFN-gamma after ex vivo cultivation. Our findings indicate that both HTLV-2 and HIV-1 infection prime T lymphocytes for STAT1 activation, but they also highlight an interference exerted by HTLV-2 on HIV-1-induced STAT1 activation. Although the nature of such a phenomenon is unclear at the present, these findings support the hypothesis that HTLV-2 may interfere with HIV-1 infection at multiple levels.
Collapse
Affiliation(s)
- Chiara Bovolenta
- Department of Immunology and Infectious Disease, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Samten B, Ghosh P, Yi AK, Weis SE, Lakey DL, Gonsky R, Pendurthi U, Wizel B, Zhang Y, Zhang M, Gong J, Fernandez M, Safi H, Vankayalapati R, Young HA, Barnes PF. Reduced expression of nuclear cyclic adenosine 5'-monophosphate response element-binding proteins and IFN-gamma promoter function in disease due to an intracellular pathogen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3520-6. [PMID: 11907114 DOI: 10.4049/jimmunol.168.7.3520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis-induced IFN-gamma protein and mRNA expression have been shown to be reduced in tuberculosis patients, compared with healthy tuberculin reactors. To determine whether this decrease was associated with reduced activity of the IFN-gamma promoter, we first studied binding of nuclear proteins to the radiolabeled proximal IFN-gamma promoter (-71 to -40 bp), using EMSAs with nuclear extracts of freshly isolated peripheral blood T cells. Nuclear extracts of T cells from most tuberculosis patients showed markedly reduced expression of proteins that bind to the proximal IFN-gamma promoter, compared with findings in nuclear extracts of T cells from healthy tuberculin reactors. These DNA-binding complexes contained CREB proteins, based on competitive EMSAs, supershift assays, and Western blotting with an anti-CREB Ab. Transient transfection of PBLs with a luciferase reporter construct under the control of the IFN-gamma promoter revealed reduced IFN-gamma promoter activity in tuberculosis patients. Transient transfection of Jurkat cells with a dominant-negative CREB repressor plasmid reduced IFN-gamma promoter activity. These data suggest that reduced expression of CREB nuclear proteins in tuberculosis patients results in decreased IFN-gamma promoter activity and reduced IFN-gamma production.
Collapse
Affiliation(s)
- Buka Samten
- Department of Microbiology and Immunology, and Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, Tyler, TX 75708, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bovolenta C, Pilotti E, Mauri M, Turci M, Ciancianaini P, Fisicaro P, Bertazzoni U, Poli G, Casoli C. Human T-cell leukemia virus type 2 induces survival and proliferation of CD34(+) TF-1 cells through activation of STAT1 and STAT5 by secretion of interferon-gamma and granulocyte macrophage-colony-stimulating factor. Blood 2002; 99:224-31. [PMID: 11756175 DOI: 10.1182/blood.v99.1.224] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia-lymphoma virus (HTLV) type-2 can induce the survival and proliferation of CD34(+) TF-1 cells deprived of interleukin (IL)-3. This effect did not require productive infection and occurred when HTLV-2 was produced from T cells (CMo), but not from B cells (BMo), unless the latter virus was complexed with anti-HLA-DR monoclonal antibodies (mAbs). Cellular and molecular mechanisms triggered by HTLV-2 interaction with TF-1 cells were here investigated. Activation of signal transducer and activator of transcription (STAT) 5 protein occurred in TF-1 cells incubated either with IL-3 or with HTLV-2/CMo; in addition the virus, but not IL-3, activated STAT1. The effect of HTLV-2 required several hours, suggesting dependence on the induction of cellular factors. By screening a panel of secreted factors, granulocyte macrophage-colony-stimulating factor (GM-CSF), interferon (IFN)-gamma, and stem cell factor (SCF) were found induced by HTLV-2 in TF-1 cells. Of note is the fact that these molecules induce a variety of biologic effects through the activation of STAT proteins, including STAT1 and STAT5. Neutralization experiments indicated that GM-CSF and IFN-gamma, but not SCF, were responsible for HTLV-2-induced STAT activation, whereas anti-GM-CSF antibodies greatly inhibited TF-1 cell proliferation. Finally, incubation of BMo virus with anti-HLA-DR mAb rescued TF-1 cell survival in the absence of IL-3. Thus, HTLV-2 interaction with CD34(+) precursor cells may lead to the expression of cytokines that, by inducing autocrine activation of STATs, may influence the host's regenerative capacity and immune response to HTLV-2 and to other infectious agents.
Collapse
Affiliation(s)
- Chiara Bovolenta
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
HIV-1 infection leads to T cell dysfunction and apoptosis in vivo and in vitro. The shared common gamma chain of IL-2R and its associated Janus kinase, JAK3, are indispensable for normal T cell function and survival. We have reported that CD4 ligation with HIV gp120 inhibits T cell receptor-induced activation and expression of JAK3. We have also shown that while some strains of HIV-1, such as NL4-3, induce apoptosis of infected CD4(+) T cells, other strains, such as HIV-1 IIIB, do not. Interestingly, we show here that infection of CD4(+) T cells with HIV-1 NL4-3, but not IIIB, inhibited activation and expression of JAK3. NL4-3-infected T cells were unable to upregulate JAK3 expression following stimulation through TCR/CD3. In addition, NL4-3, but not IIIB, inhibited tyrosine phosphorylation and expression of STAT5, a downstream target of JAK3. These data suggest a correlation between apoptosis of HIV-1-infected T cells and inhibition of the JAK3/STAT5 activation pathway.
Collapse
Affiliation(s)
- N Selliah
- Division of Rheumatology, The Children's Hospital of Philadelphia, 3516 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
42
|
Bovolenta C, Camorali L, Mauri M, Ghezzi S, Nozza S, Tambussi G, Lazzarin A, Poli G. Expression and activation of a C-terminal truncated isoform of STAT5 (STAT5 Delta) following interleukin 2 administration or AZT monotherapy in HIV-infected individuals. Clin Immunol 2001; 99:75-81. [PMID: 11286543 DOI: 10.1006/clim.2001.5005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermittent administration of recombinant interleukin-2 (rIL-2) to individuals infected with human immunodeficiency virus (HIV) has been shown to raise and maintain the absolute number of circulating CD4(+) T cells to normal or near normal levels. One of the signaling pathways triggered by IL-2 is the Janus kinase-signal transducer and activator of transcription (JAK-STAT). In particular, IL-2 activates the tyrosine kinases JAK1 and JAK3 and the transcription factors STAT3 and STAT5. We have previously observed that most HIV(+) individuals, unlike healthy seronegative controls, show a constitutive activation of STAT1 and a C-terminal truncated isoform of STAT5 (STAT5 Delta). In the present study, we have analyzed the protein level and activation state of STAT5 isoforms expressed in peripheral blood mononuclear cells of two HIV-infected individuals who showed a good or a poor response to intermittent IL-2 administration, respectively, and of a single individual before and after initiation of Zidovudine monotherapy. We provide evidence that both therapeutic interventions enhanced the expression and activation of the C-terminal truncated isoform of STAT5 (STAT5 Delta) in vivo.
Collapse
Affiliation(s)
- C Bovolenta
- AIDS Immunopathogenesis Unit, DIBIT, 20132 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Barber GN. Host defense, viruses and apoptosis. Cell Death Differ 2001; 8:113-26. [PMID: 11313713 DOI: 10.1038/sj.cdd.4400823] [Citation(s) in RCA: 450] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Accepted: 12/04/2000] [Indexed: 02/08/2023] Open
Abstract
To thwart viral infection, the host has developed a formidable and integrated defense network that comprises our innate and adaptive immune response. In recent years, it has become clear that in an attempt to prevent viral replication, viral dissemination or persistent viral infection of the cell, many of these protective measures actually involve the induction of programmed cell death, or apoptosis. An initial response to viral infection primarily involves the innate arm of immunity and the killing of infected cells with cytotoxic lymphocytes such as natural killer (NK) cells through mechanisms that include the employment of perforin and granzymes. Once the virus has invaded the cell, however, a second host defense-mediated response is also triggered which involves the induction of a family of cytokines known as the interferons (IFNs). The IFNs, which are essential for initiating and coordinating a successful antiviral response, function by stimulating the adaptive arm of immunity involving cytotoxic T cells (CTLs), and by inducing a number of intracellular genes that directly prevent virus replication/cytolysis or that facilitate apoptosis. The IFN-induced gene family is now known to comprise the death ligand TRAIL, the dsRNA-dependent protein kinase (PKR), interferon regulatory factors (IRFs) and the promyelocytic leukemia gene (PML), all of which have been reported to be mediators of cell death. That DNA array analyses indicate that numerous cellular genes, many as yet uncharacterized, may similarly be induced by IFN, further emphasizes the likely importance that these cytokines have in the modulation of apoptosis. This likelihood is additionally underlined by the elaborate strategies developed by viruses to inhibit IFN-antiviral function and the mechanisms of cell death.
Collapse
Affiliation(s)
- G N Barber
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, FL 33136, USA.
| |
Collapse
|
44
|
Abstract
The activation of Stat5 proteins (Stat5a and Stat5b) is one of the earliest signaling events mediated by IL-2 family cytokines, allowing the rapid delivery of signals from the membrane to the nucleus. Among STAT family proteins, Stat5a and Stat5b are the two most closely related STAT proteins. Together with other transcription factors and co-factors, they regulate the expression of the target genes in a cytokine-specific fashion. In addition to their activation by cytokines, activities of Stat5a and Stat5b, as well as other STAT proteins, are negatively controlled by CIS/SOCS/SSI family proteins. The outcome of Stat5 activation in regulating expression of target genes varies, depending upon the complexity of the promoter region of target genes and the other signaling pathways that are activated by each cytokine as well. Here, we mainly focus on the IL2-/IL-2 receptor system, as it is one of the best-studied systems that depend on Stat5-mediated signals. We will summarize what we have learned about the molecular mechanisms of how Stat5 is activated by IL-2 family cytokines from in vitro biochemical studies as well as the role that is played by Stat5 in each of the cytokine signaling pathways from in vivo gene-targeting analyses. Oncogene (2000).
Collapse
Affiliation(s)
- J X Lin
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bldg. 10/Rm. 7N252, 9000 Rockville Pike, Bethesda, Maryland MD 20892-1674, USA
| | | |
Collapse
|