1
|
Omar I, Alakhras A, Mutwali S, Bakhiet M. Molecular insights into T cell development, activation and signal transduction (Review). Biomed Rep 2025; 22:94. [PMID: 40247929 PMCID: PMC12001230 DOI: 10.3892/br.2025.1972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
T cell modulation plays a fundamental role to adaptive and innate immunity, which aids the recognition and defense against pathogens while also maintaining self-tolerance. Numerous molecular pathways participate in this process including thymic selection, T cell receptor and antigen-presenting cells cross linkage, along with co-stimulatory signaling cascades. The present review demonstrates a holistic analysis of various classic and novel mechanisms that govern T cell regulation and emerging therapeutic applications. Recent advancements have introduced novel roles in the journey of T cell modulation that can have a pivotal impact on the understanding of this process; for example, phase separation of the linker for activation of T cells, and the newer application of chimeric antigen receptor (CAR) T cell therapy in autoimmune diseases. While discoveries of proximal and distal signal transduction pathways have contributed to the comprehension of T cell anergy, cytokine-mediated differentiation and the delicate balance between immune activation and tolerance, there are still unresolved debates about further molecular mechanisms. There are also still questions about the long-term side effects of CAR-T cell therapy. Deeper research and analysis are required to further aid the understanding and use of this novel therapeutic approach.
Collapse
Affiliation(s)
- Isra Omar
- Department of Clinical Medicine, College of Medicine, Almaarefa University, 11597 Riyadh, Kingdom of Saudi Arabia
- Department of Clinical Medicine, College of Medicine, University of Medical Sciences and Technology, 3523 Kigali, Rwanda
- Royal College of Physicians of Ireland, Dublin D02 E434, Ireland
| | - Ahmed Alakhras
- Department of Clinical Medicine, College of Medicine, Almaarefa University, 11597 Riyadh, Kingdom of Saudi Arabia
| | - Samahir Mutwali
- TeleGeriatric Research Fellowship Program, Michigan State University, MI 48824, USA
| | - Moiz Bakhiet
- Department of Molecular Medicine and Medical Science, Arabian Gulf University, Manama 328, Kingdom of Bahrain
| |
Collapse
|
2
|
Kou YY, Liu J, Chang YT, Liu LY, Sun F, Li YL, Leng JR, Lin HW, Yang F. Marine derived macrolide bryostatin 4 inhibits the TGF-β signaling pathway against acute erythroleukemia. Cell Oncol (Dordr) 2024; 47:1863-1878. [PMID: 39083211 DOI: 10.1007/s13402-024-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 10/11/2024] Open
Abstract
PURPOSE Acute erythroleukemia (AEL) is a rare and highly aggressive subtype of acute myeloid leukemia (AML) with an extremely poor prognosis when treated with available drugs. Therefore, new investigational agents capable of inducing remission are urgently required. METHODS Bioinformatics analysis, western blot and qRT-PCR were used to reveal the potential biological mechanism of bryostatin 4 (B4), an antineoplastic macrolide derived from the marine bryozoan Bugula neritina. Then, in vivo experiments were conducted to evaluate the role of transforming growth factor (TGF)-β signaling in the progression of AEL. RESULTS Our results revealed that the proliferation of K562 cells and TF-1 cells was significantly inhibited by B4 at IC50 values of 37 nM and 52 nM, respectively. B4 inhibited TGF-β signaling and its downstream pathway targets, particularly the phosphorylation of Smad2, Smad3, Ras, C-RAF, ERK1/2, and MEK. B4 also played an important role in cell invasion and migration in K562 cells and TF-1 cells by reducing the protein levels of the mesenchymal cell marker vimentin. Moreover, Flow cytometry and western blot analyses demonstrated that B4 induced apoptosis and initiated G0/G1 phase arrest by modulating mitochondrial dysfunction and cyclin-dependent kinase (CDK) expression. CONCLUSION These findings indicated that B4 could inhibit the proliferation, migration, invasion, and TGF-β signaling pathways of AEL cells, thus suggesting that B4 possesses therapeutic potential as a treatment for AEL.
Collapse
Affiliation(s)
- Yan-Yu Kou
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- School of Pharmacy, Shanghai JiaoTong University, Shanghai, China
| | - Jie Liu
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Yung-Ting Chang
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Li-Yun Liu
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Fan Sun
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Yi-Lin Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Jia-Rong Leng
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
| | - Hou-Wen Lin
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China.
| | - Fan Yang
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China.
| |
Collapse
|
3
|
Xiao L, Qiao J, Huang Y, Tan B, Hong L, Li Z, Cai G, Wu Z, Zheng E, Wang S, Gu T. RASGRP1 targeted by H3K27me3 regulates myoblast proliferation and differentiation in mice and pigs. Acta Biochim Biophys Sin (Shanghai) 2024; 56:452-461. [PMID: 38419500 PMCID: PMC10984873 DOI: 10.3724/abbs.2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 03/02/2024] Open
Abstract
Skeletal muscle is not only the largest organ in the body that is responsible for locomotion and exercise but also crucial for maintaining the body's energy metabolism and endocrine secretion. The trimethylation of histone H3 lysine 27 (H3K27me3) is one of the most important histone modifications that participates in muscle development regulation by repressing the transcription of genes. Previous studies indicate that the RASGRP1 gene is regulated by H3K27me3 in embryonic muscle development in pigs, but its function and regulatory role in myogenesis are still unclear. In this study, we verify the crucial role of H3K27me3 in RASGRP1 regulation. The gain/loss function of RASGRP1 in myogenesis regulation is performed using mouse myoblast C2C12 cells and primarily isolated porcine skeletal muscle satellite cells (PSCs). The results of qPCR, western blot analysis, EdU staining, CCK-8 assay and immunofluorescence staining show that overexpression of RASGRP1 promotes cell proliferation and differentiation in both skeletal muscle cell models, while knockdown of RASGRP1 leads to the opposite results. These findings indicate that RASGRP1 plays an important regulatory role in myogenesis in both mice and pigs.
Collapse
Affiliation(s)
- Liyao Xiao
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Jiaxin Qiao
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Yiyang Huang
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangzhou510000China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and TechnologyGuangzhou510000China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular BreedingGuangzhou510000China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- Guangdong Wens Breeding Swine Technology Co.Ltd.Yunfu527400China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangzhou510000China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and TechnologyGuangzhou510000China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular BreedingGuangzhou510000China
- Guangdong Wens Breeding Swine Technology Co.Ltd.Yunfu527400China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Shanshan Wang
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- College of Life ScienceHubei UniversityWuhan430000China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| |
Collapse
|
4
|
Fan S, Kang B, Li S, Li W, Chen C, Chen J, Deng L, Chen D, Zhou J. Exploring the multifaceted role of RASGRP1 in disease: immune, neural, metabolic, and oncogenic perspectives. Cell Cycle 2024; 23:722-746. [PMID: 38865342 PMCID: PMC11229727 DOI: 10.1080/15384101.2024.2366009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/25/2023] [Indexed: 06/14/2024] Open
Abstract
RAS guanyl releasing protein 1 (RASGRP1) is a guanine nucleotide exchange factor (GEF) characterized by the presence of a RAS superfamily GEF domain. It functions as a diacylglycerol (DAG)-regulated nucleotide exchange factor, specifically activating RAS through the exchange of bound GDP for GTP. Activation of RAS by RASGRP1 has a wide range of downstream effects at the cellular level. Thus, it is not surprising that many diseases are associated with RASGRP1 disorders. Here, we present an overview of the structure and function of RASGRP1, its crucial role in the development, expression, and regulation of immune cells, and its involvement in various signaling pathways. This review comprehensively explores the relationship between RASGRP1 and various diseases, elucidates the underlying molecular mechanisms of RASGRP1 in each disease, and identifies potential therapeutic targets. This study provides novel insights into the role of RASGRP1 in insulin secretion and highlights its potential as a therapeutic target for diabetes. The limitations and challenges associated with studying RASGRP1 in disease are also discussed.
Collapse
Affiliation(s)
- Shangzhi Fan
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaoqian Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiyi Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Canyu Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jixiang Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiecan Zhou
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Mansour R, El-Orfali Y, Saidu A, Al-Kalamouni H, Mardirossian H, Hanna-Wakim R, Abboud M, Massaad MJ. A novel homozygous mutation in RASGRP1 that predisposes to immune dysregulation and immunodeficiency associated with uncontrolled Epstein-Barr virus-induced B cell proliferation. Clin Immunol 2023; 257:109813. [PMID: 37898412 DOI: 10.1016/j.clim.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND RASGRP1-deficiency results in an immune dysregulation and immunodeficiency that manifest as autoimmunity, lymphoproliferation, lymphopenia, defective T cell function, and increased incidence of Epstein-Bar Virus infections and lymphomas. OBJECTIVE To investigate the mechanism of autoimmune hemolytic anemia and infections in a male patient of consanguineous parents from Lebanon. METHODS Genetic diagnosis was obtained using next generation and Sanger sequencing. Protein expression and phosphorylation were determined by immunoblotting. T and B cell development and function were studied by flow cytometry. Cytokine and immunoglobulin secretions were quantified by enzyme-linked immunosorbent assay. RESULTS The patient suffered from severe lymphopenia especially affecting the T cell compartment. Genetic analysis revealed a homozygous insertion of adenine at position 1396_1397 in RASGRP1 that abolished protein expression and downstream Ras signaling. T cells from the patient showed severe activation defects resulting in uncontrolled Epstein-Bar Virus-induced B cell proliferation. B cells from the patient were normal. CONCLUSION This report expands the spectrum of mutations in patients with RasGRP1 deficiency, and provides evidence for the important role RasGRP1 plays in the ability of T cells to control Epstein-Bar Virus-induced B cell proliferation. CLINICAL IMPLICATIONS Following diagnosis, the patient will be maintained on oral valganciclovir and monitored regularly for Epstein-Bar Virus infections to avoid the development of Epstein-Bar Virus- induced B cell lymphoma. He is also candidate for hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Adam Saidu
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib Al-Kalamouni
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hagop Mardirossian
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Miguel Abboud
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
6
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
7
|
A Focused Review of Ras Guanine Nucleotide-Releasing Protein 1 in Immune Cells and Cancer. Int J Mol Sci 2023; 24:ijms24021652. [PMID: 36675167 PMCID: PMC9864139 DOI: 10.3390/ijms24021652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.
Collapse
|
8
|
Henriques SN, Oliveira L, Santos RF, Carmo AM. CD6-mediated inhibition of T cell activation via modulation of Ras. Cell Commun Signal 2022; 20:184. [PMID: 36414966 PMCID: PMC9682754 DOI: 10.1186/s12964-022-00998-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND CD6 is one of many cell surface receptors known to regulate signal transduction upon T cell activation. However, whether CD6 mediates costimulatory or inhibitory signals is controversial. When T cells engage with antigen presenting cells (APCs), CD6 interacts with its ligand CD166 at the cell-cell interface while the cytosolic tail assembles a complex signalosome composed of adaptors and effector enzymes, that may either trigger activating signaling cascades, or instead modulate the intensity of signaling. Except for a few cytosolic adaptors that connect different components of the CD6 signalosome, very little is known about the mechanistic effects of the cytosolic effectors that bind CD6. METHODS Jurkat model T cells were transfected to express wild-type (WT) CD6, or a cytoplasmic truncation, signaling-disabled mutant, CD6Δcyt. The two resulting cell lines were directly activated by superantigen (sAg)-loaded Raji cells, used as APCs, to assess the net signaling function of CD6. The Jurkat cell lines were further adapted to express a FRET-based unimolecular HRas biosensor that reported the activity of this crucial GTPase at the immunological synapse. RESULTS We show that deletion of the cytosolic tail of CD6 enhances T-cell responses, indicating that CD6 restrains T-cell activation. One component of the CD6-associated inhibitory apparatus was found to be the GTPase activating protein of Ras (RasGAP), that we show to associate with CD6 in a phosphorylation-dependent manner. The FRET HRas biosensor that we developed was demonstrated to be functional and reporting the activation of the T cell lines. This allowed to determine that the presence of the cytosolic tail of CD6 results in the down-regulation of HRas activity at the immunological synapse, implicating this fundamental GTPase as one of the targets inhibited by CD6. CONCLUSIONS This study provides the first description of a mechanistic sequence of events underlying the CD6-mediated inhibition of T-cell activation, involving the modulation of the MAPK pathway at several steps, starting with the coupling of RasGAP to the CD6 signalosome, the repression of the activity of Ras, and culminating in the reduction of ERK1/2 phosphorylation and of the expression of the T-cell activation markers CD69 and IL-2R α chain. Video abstract.
Collapse
Affiliation(s)
- Sónia N. Henriques
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal ,grid.5808.50000 0001 1503 7226Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F. Santos
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Alexandre M. Carmo
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
9
|
RasGRP1 promotes the acute inflammatory response and restricts inflammation-associated cancer cell growth. Nat Commun 2022; 13:7001. [PMID: 36385095 PMCID: PMC9669001 DOI: 10.1038/s41467-022-34659-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
An acute inflammatory response needs to be properly regulated to promote the elimination of pathogens and prevent the risk of tumorigenesis, but the relevant regulatory mechanism has not been fully elucidated. Here, we report that Ras guanine nucleotide-releasing protein 1 (RasGRP1) is a bifunctional regulator that promotes acute inflammation and inhibits inflammation-associated cancer. At the mRNA level, Rasgrp1 activates the inflammatory response by functioning as a competing endogenous RNA to specifically promote IL-6 expression by sponging let-7a. In vivo overexpression of the Rasgrp1 3' untranslated region enhances lipopolysaccharide-induced systemic inflammation and dextran sulphate sodium-induced colitis in Il6+/+ mice but not in Il6-/- mice. At the protein level, RasGRP1 overexpression significantly inhibits the tumour-promoting effect of IL-6 in hepatocellular carcinoma progenitor cell-like spheroids. Examination of the EGFR signalling pathway shows that RasGRP1 inhibits inflammation-associated cancer cell growth by disrupting the EGFR-SOS1-Ras-AKT signalling pathway. Tumour patients with high RasGRP1 expression have better clinical outcomes than those with low RasGRP1 expression. Considering that acute inflammation rarely leads to tumorigenesis, this study suggests that RasGRP1 may be an important bifunctional regulator of the acute inflammatory response and tumour growth.
Collapse
|
10
|
Cammann C, Israel N, Frentzel S, Jeron A, Topfstedt E, Schüler T, Simeoni L, Zenker M, Fehling HJ, Schraven B, Bruder D, Seifert U. T cell-specific constitutive active SHP2 enhances T cell memory formation and reduces T cell activation. Front Immunol 2022; 13:958616. [PMID: 35983034 PMCID: PMC9379337 DOI: 10.3389/fimmu.2022.958616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition by the T cell receptor (TCR), a complex signaling network orchestrated by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) regulates the transmission of the extracellular signal to the nucleus. The role of the PTPs Src-homology 2 (SH2) domain-containing phosphatase 1 (SHP1, Ptpn6) and Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2, Ptpn11) have been studied in various cell types including T cells. Whereas SHP1 acts as an essential negative regulator of the proximal steps in T cell signalling, the role of SHP2 in T cell activation is still a matter of debate. Here, we analyzed the role of the constitutively active SHP2-D61Y-mutant in T cell activation using knock-in mice expressing the mutant form Ptpn11D61Y in T cells. We observed reduced numbers of CD8+ and increased numbers of CD4+ T cells in the bone marrow and spleen of young and aged SHP2-D61Y-mutant mice as well as in Influenza A Virus (IAV)-infected mice compared to controls. In addition, we found elevated frequencies of effector memory CD8+ T cells and an upregulation of the programmed cell death protein 1 (PD-1)-receptor on both CD4+ and CD8+ T cells. Functional analysis of SHP2-D61Y-mutated T cells revealed an induction of late apoptosis/necrosis, a reduced proliferation and altered signaling upon TCR stimulation. However, the ability of D61Y-mutant mice to clear viral infection was not affected. In conclusion, our data indicate an important regulatory role of SHP2 in T cell function, where the effect is determined by the kinetics of SHP2 phosphatase activity and differs in the presence of the permanently active and the temporally regulated phosphatase. Due to interaction of SHP2 with the PD-1-receptor targeting the protein-tyrosine phosphatase might be a valuable tool to enhance T cell activities in immunotherapy.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sarah Frentzel
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Ulrike Seifert,
| |
Collapse
|
11
|
Arranz-Nicolás J, Martin-Salgado M, Rodríguez-Rodríguez C, Liébana R, Moreno-Ortiz MC, Leitner J, Steinberger P, Ávila-Flores A, Merida I. Diacylglycerol kinase ζ limits IL-2-dependent control of PD-1 expression in tumor-infiltrating T lymphocytes. J Immunother Cancer 2021; 8:jitc-2020-001521. [PMID: 33246984 PMCID: PMC7703416 DOI: 10.1136/jitc-2020-001521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform. Methods We used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells. Results We demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice. Conclusions Our results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.
Collapse
Affiliation(s)
| | | | | | - Rosa Liébana
- Immunology and Oncology, Centro Nacional de Biotecnologia, Madrid, Spain
| | | | - Judith Leitner
- Institute of Immunology. Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology. Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Vienna, Austria
| | | | - Isabel Merida
- Immunology and Oncology, Centro Nacional de Biotecnologia, Madrid, Spain
| |
Collapse
|
12
|
Ren P, Lu L, Cai S, Chen J, Lin W, Han F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front Immunol 2021; 12:713540. [PMID: 34484216 PMCID: PMC8416054 DOI: 10.3389/fimmu.2021.713540] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a complex coordinated transcriptional regulatory mechanism. It affects nearly 95% of all protein-coding genes and occurs in nearly all human organs. Aberrant alternative splicing can lead to various neurological diseases and cancers and is responsible for aging, infection, inflammation, immune and metabolic disorders, and so on. Though aberrant alternative splicing events and their regulatory mechanisms are widely recognized, the association between autoimmune disease and alternative splicing has not been extensively examined. Autoimmune diseases are characterized by the loss of tolerance of the immune system towards self-antigens and organ-specific or systemic inflammation and subsequent tissue damage. In the present review, we summarized the most recent reports on splicing events that occur in the immunopathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and attempted to clarify the role that splicing events play in regulating autoimmune disease progression. We also identified the changes that occur in splicing factor expression. The foregoing information might improve our understanding of autoimmune diseases and help develop new diagnostic and therapeutic tools for them.
Collapse
Affiliation(s)
- Pingping Ren
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Luying Lu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shasha Cai
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nephrology, The First People’s Hospital of Wenling, Taizhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Diacylglycerol Kinase alpha in X Linked Lymphoproliferative Disease Type 1. Int J Mol Sci 2021; 22:ijms22115816. [PMID: 34072296 PMCID: PMC8198409 DOI: 10.3390/ijms22115816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
Diacylglycerol kinases are intracellular enzymes that control the balance between the secondary messengers diacylglycerol and phosphatidic acid. DGKα and DGKζ are the prominent isoforms that restrain the intensity of T cell receptor signalling by metabolizing PLCγ generated diacylglycerol. Thus, their activity must be tightly controlled to grant cellular homeostasis and refine immune responses. DGKα is specifically inhibited by strong T cell activating signals to allow for full diacylglycerol signalling which mediates T cell response. In X-linked lymphoproliferative disease 1, deficiency of the adaptor protein SAP results in altered T cell receptor signalling, due in part to persistent DGKα activity. This activity constrains diacylglycerol levels, attenuating downstream pathways such as PKCθ and Ras/MAPK and decreasing T cell restimulation induced cell death. This is a form of apoptosis triggered by prolonged T cell activation that is indeed defective in CD8+ cells of X-linked lymphoproliferative disease type 1 patients. Accordingly, inhibition or downregulation of DGKα activity restores in vitro a correct diacylglycerol dependent signal transduction, cytokines production and restimulation induced apoptosis. In animal disease models, DGKα inhibitors limit CD8+ expansion and immune-mediated tissue damage, suggesting the possibility of using inhibitors of diacylglycerol kinase as a new therapeutic approach.
Collapse
|
14
|
Fonseca LL, Yang WS, Geerts D, Turkson J, Ji J, Ramos JW. RasGRP1 induces autophagy and transformation-associated changes in primary human keratinocytes. Transl Oncol 2020; 14:100880. [PMID: 33074128 PMCID: PMC7569238 DOI: 10.1016/j.tranon.2020.100880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Ras mutations are present in only a subset of sporadic human cutaneous squamous cell carcinomas (cSCC) even though Ras is activated in most. This suggests that other mechanisms of Ras activation play a role in the disease. The aberrant expression of RasGRP1, a guanyl nucleotide exchange factor for Ras, is critical for mouse cSCC development through its ability to increase Ras activity. However, the role of RasGRP1 in human keratinocyte carcinogenesis remains unknown. Here we report that RasGRP1 is significantly elevated in human cSCC and that high RasGRP1 expression in human primary keratinocytes triggered activation of endogenous Ras and significant morphological changes including cytoplasmic vacuole formation and growth arrest. Moreover, RasGRP1-expressing cells were autophagic as indicated by LC3-II increase and the formation of LC3 punctae. In an in vitro organotypic skin model, wild type keratinocytes generated a well-stratified epithelium, while RasGRP1-expressing cells failed to do so. Finally, RasGRP1 induced transformation-like changes in skin cells from Li-Fraumeni patients with inactivating p53 mutations, demonstrating the oncogenic potential of this protein. These results support a role for RasGRP1 in human epidermal keratinocyte carcinogenesis and might serve as an important new therapeutic target.
Collapse
Affiliation(s)
- Lauren L Fonseca
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Won Seok Yang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Center, AMC location, Amsterdam, 1105, AZ, the Netherlands
| | - James Turkson
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles 90048, CA, USA
| | - Junfang Ji
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Advances in genomics and animal models of human disease have enabled the discovery of mechanisms important for host immunity and self-tolerance. Here, we summarize conceptual and clinical discoveries identified from 2018 to 2019 in the field of primary immunodeficiencies and autoimmunity. RECENT FINDINGS Three new primary immunodeficiencies with autoimmunity were identified and the clinical phenotypes of NFKB1 haploinsufficiency and RASGRP1 deficiency were expanded. A diversity of novel mechanisms leading to autoimmunity associated with primary immunodeficiencies (PIDs) was reported, including pathways important for the metabolism and function of regulatory T cells and germinal B cells, the contribution of neutrophil extracellular traps to plasmacytoid dendritic cell activation and the influence of commensal bacteria on the generation of autoantibodies. With regard to therapeutic developments in the field, we highlight the use of janus kinase inhibitors for immune dysregulation associated with gain-of-function variants in STAT1 and STAT3, as well as the risks of persistent hypogammaglobulinemia associated with rituximab treatment. SUMMARY Mechanistic studies of PIDs with autoimmunity elucidate key principles governing the balance between immune surveillance and self-tolerance.
Collapse
|
16
|
González-Mancha N, Mérida I. Interplay Between SNX27 and DAG Metabolism in the Control of Trafficking and Signaling at the IS. Int J Mol Sci 2020; 21:ijms21124254. [PMID: 32549284 PMCID: PMC7352468 DOI: 10.3390/ijms21124254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recognition of antigens displayed on the surface of an antigen-presenting cell (APC) by T-cell receptors (TCR) of a T lymphocyte leads to the formation of a specialized contact between both cells named the immune synapse (IS). This highly organized structure ensures cell–cell communication and sustained T-cell activation. An essential lipid regulating T-cell activation is diacylglycerol (DAG), which accumulates at the cell–cell interface and mediates recruitment and activation of proteins involved in signaling and polarization. Formation of the IS requires rearrangement of the cytoskeleton, translocation of the microtubule-organizing center (MTOC) and vesicular compartments, and reorganization of signaling and adhesion molecules within the cell–cell junction. Among the multiple players involved in this polarized intracellular trafficking, we find sorting nexin 27 (SNX27). This protein translocates to the T cell–APC interface upon TCR activation, and it is suggested to facilitate the transport of cargoes toward this structure. Furthermore, its interaction with diacylglycerol kinase ζ (DGKζ), a negative regulator of DAG, sustains the precise modulation of this lipid and, thus, facilitates IS organization and signaling. Here, we review the role of SNX27, DAG metabolism, and their interplay in the control of T-cell activation and establishment of the IS.
Collapse
|
17
|
hsa-miR-20b-5p and hsa-miR-363-3p Affect Expression of PTEN and BIM Tumor Suppressor Genes and Modulate Survival of T-ALL Cells In Vitro. Cells 2020; 9:cells9051137. [PMID: 32380791 PMCID: PMC7290785 DOI: 10.3390/cells9051137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy arising from T lymphocyte precursors. We have previously shown by miRNA-seq, that miRNAs from the mir-106a-363 cluster are overexpressed in pediatric T-ALL. In silico analysis indicated their potential involvement in the regulation of apoptosis. Here, we aimed to test the hypothesis on the pro-tumorigenic roles of these miRNAs in T-ALL cells in vitro. We demonstrate, for the first time, that hsa-miR-20b-5p and hsa-miR-363-3p from the mir-106a-363 cluster, when upregulated in T-ALL cells in vitro, protect leukemic cells from apoptosis, enhance proliferation, and contribute to growth advantage. We show, using dual luciferase reporter assays, Ago2-RNA immunoprecipitation, RT-qPCR, and Western blots, that the oncogenic effects of these upregulated miRNAs might, at least in part, be mediated by the downregulation of two important tumor suppressor genes, PTEN and BIM, targeted by both miRNAs. Additionally, we demonstrate the cooperative effects of these two miRNAs by simultaneous inhibition of both miRNAs as compared to the inhibition of single miRNAs. We postulate that hsa-miR-20b-5p and hsa-miR-363-3p from the mir-106a-363 cluster might serve as oncomiRs in T-ALL, by contributing to post-transcriptional repression of key tumor suppressors, PTEN and BIM.
Collapse
|
18
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
19
|
Abstract
Phospholipase C (PLC) family members constitute a family of diverse enzymes. Thirteen different family members have been cloned. These family members have unique structures that mediate various functions. Although PLC family members all appear to signal through the bi-products of cleaving phospholipids, it is clear that each family member, and at times each isoform, contributes to unique cellular functions. This chapter provides a review of the current literature on PLC. In addition, references have been provided for more in-depth information regarding areas that are not discussed including tyrosine kinase activation of PLC. Understanding the roles of the individual PLC enzymes, and their distinct cellular functions, will lead to a better understanding of the physiological roles of these enzymes in the development of diseases and the maintenance of homeostasis.
Collapse
|
20
|
Chiou NT, Kageyama R, Ansel KM. Selective Export into Extracellular Vesicles and Function of tRNA Fragments during T Cell Activation. Cell Rep 2019; 25:3356-3370.e4. [PMID: 30566862 PMCID: PMC6392044 DOI: 10.1016/j.celrep.2018.11.073] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
The discovery of microRNA (miRNA) sorting into extracellular vesicles (EVs) revealed a novel mode of intercellular communication and uncovered a link between cellular endomembrane compartments and small RNAs in EV-secreting cells. Using a two-step ultracentrifugation procedure to isolate EVs released by T cells, we found that 45% of tRNA fragments (tRFs), but fewer than 1% of miRNAs, were significantly enriched in EVs compared with the corresponding cellular RNA. T cell activation induced the EV-mediated release of a specific set of tRFs derived from the 5' end and 3'-internal region of tRNAs without variable loops. Inhibition of EV biogenesis pathways specifically led to the accumulation of these activation-induced EV-enriched tRFs within multivesicular bodies (MVBs). Introducing antisense oligonucleotides to inhibit these tRFs enhanced T cell activation. Taken together, these results demonstrate that T cells selectively release tRFs into EVs via MVBs and suggest that this process may remove tRFs that repress immune activation.
Collapse
Affiliation(s)
- Ni-Ting Chiou
- Sandler Asthma Basic Research Center and Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Robin Kageyama
- Sandler Asthma Basic Research Center and Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Sandler Asthma Basic Research Center and Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Chen P, Wang S, Janardhan KS, Zemans RL, Deng W, Karmaus P, Shen S, Sunday M, Que LG, Fessler MB, Zhong XP. Efficient CD4Cre-Mediated Conditional KRas Expression in Alveolar Macrophages and Alveolar Epithelial Cells Causes Fatal Hyperproliferative Pneumonitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1208-1217. [PMID: 31315887 PMCID: PMC6702086 DOI: 10.4049/jimmunol.1900566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
The CD4Cre transgenic model has been widely used for T cell-specific gene manipulation. We report unexpected highly efficient Cre-mediated recombination in alveolar macrophages (AMFs), bronchial epithelial cells (BECs), and alveolar epithelial cells (AECs) in this strain of mice. Different from CD4 T cells, AMFs, AECs, and BECs do not express detectable Cre protein, suggesting that Cre protein is either very transiently expressed in these cells or only expressed in their precursors. Mice carrying a conditional constitutively active KRas (caKRas) allele and the CD4Cre transgene contain not only hyperactivated T cells but also develop severe AMF accumulation, AEC and BEC hyperplasia, and adenomas in the lung, leading to early lethality correlated with caKRas expression in these cells. We propose that caKRas-CD4Cre mice represent, to our knowledge, a novel model of proliferative pneumonitis involving macrophages and epithelial cells and that the CD4Cre model may offer unique usefulness for studying gene functions simultaneously in multilineages in the lung. Our observations, additionally, suggest that caution in data interpretation is warranted when using the CD4Cre transgenic model for T cell-specific gene manipulation, particularly when lung pathophysiological status is being examined.
Collapse
Affiliation(s)
- Pengcheng Chen
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Shang Wang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Kyathanahalli S Janardhan
- Integrated Laboratory Systems, Inc., and National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Wenhai Deng
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Peer Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Shudan Shen
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Mary Sunday
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Loretta G Que
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710;
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
22
|
Bradley MW, Aiello KA, Ponnapalli SP, Hanson HA, Alter O. GSVD- and tensor GSVD-uncovered patterns of DNA copy-number alterations predict adenocarcinomas survival in general and in response to platinum. APL Bioeng 2019; 3:036104. [PMID: 31463421 PMCID: PMC6701977 DOI: 10.1063/1.5099268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
More than a quarter of lung, uterine, and ovarian adenocarcinoma (LUAD, USEC, and OV) tumors are resistant to platinum drugs. Only recently and only in OV, patterns of copy-number alterations that predict survival in response to platinum were discovered, and only by using the tensor GSVD to compare Agilent microarray platform-matched profiles of patient-matched normal and primary tumor DNA. Here, we use the GSVD to compare whole-genome sequencing (WGS) and Affymetrix microarray profiles of patient-matched normal and primary LUAD, USEC, and OV tumor DNA. First, the GSVD uncovers patterns similar to one Agilent OV pattern, where a loss of most of the chromosome arm 6p combined with a gain of 12p encode for transformation. Like the Agilent OV pattern, the WGS LUAD and Affymetrix LUAD, USEC, and OV patterns are correlated with shorter survival, in general and in response to platinum. Like the tensor GSVD, the GSVD separates these tumor-exclusive genotypes from experimental inconsistencies. Second, by identifying the shorter survival phenotypes among the WGS- and Affymetrix-profiled tumors, the Agilent pattern proves to be a technology-independent predictor of survival, independent also of the best other indicator at diagnosis, i.e., stage. Third, like no other indicator, the pattern predicts the overall survival of OV patients experiencing progression-free survival, in general and in response to platinum. We conclude that comparative spectral decompositions, such as the GSVD and tensor GSVD, underlie a mathematically universal description of the relationships between a primary tumor's genotype and a patient's overall survival phenotype, which other methods miss.
Collapse
Affiliation(s)
| | | | - Sri Priya Ponnapalli
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
23
|
Zhu L, Xia C, Wu L, Zhang Y, Liu J, Chen Y, Liu J, Xiao Y, Nie K, Huang L, Qu N, Yu H. The critical role of RasGRP4 in the growth of diffuse large B cell lymphoma. Cell Commun Signal 2019; 17:92. [PMID: 31409422 PMCID: PMC6693169 DOI: 10.1186/s12964-019-0415-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to confirm that blocking RasGRP4 can effectively slow down the growth of DLBCL both in vitro and in vivo and ascertain the role of RasGRP4 in the prognosis of DLBCL clinically. Methods RasGRP4 expression levels were examined in benign tissues and lymphomas. In order to verify somatic mutation in RasGRP4 gene, cDNA sequencing was performed in DLBCL patients. RasGRP4-dependent cell proliferation, mitochondrial membrane potential, oxidative stress levels and signaling pathway changes were measured by knockdown of RasGRP4. Tumor growth was monitored in xenografted lymphoma model. Clinical data were collected to confirm the role of RasGRP4 in DLBCL. Results RasGRP4 expression was significantly elevated in DLBCL while no somatic mutations were detected of this gene in DLBCL patients. Decreased RasGRP4 significantly inhibited cell proliferation by simultaneously reducing mitosis and promoting apoptosis and increased the oxidative stress levels. Mechanistically, reduced expression of RasGRP4 decreased ERK while increased JNK expression in SUDHL-4 cells. Knockdown of RasGRP4 also significantly inhibited tumor formation in vivo. Furthermore, RasGRP4 expression levels were significantly higher in patients with larger DLBCL lesions (P = 0.0004), high-risk international prognostic index score groups (P = 0.0042), and its expression was positively correlated with maximum standardized uptake value in DLBCL (P = 0.0004). Conclusions These findings indicate the oncogenic role of RasGRP4 in DLBCL, suggesting it as a prognostic biomarker and potential therapeutic target in DLBCL. Electronic supplementary material The online version of this article (10.1186/s12964-019-0415-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Zhu
- Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Chunyan Xia
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Lin Wu
- Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yuxuan Zhang
- School of Pharmacy, Queen's University Belfast Medical Biology Centre, Belfast, UK
| | - Junling Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinan Chen
- Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Jing Liu
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Yongxin Xiao
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Kai Nie
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Liyu Huang
- Shanghai Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Ning Qu
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hong Yu
- Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai, 200030, China.
| |
Collapse
|
24
|
Sutherland-Deveen ME, Wang T, Lamothe SM, Tschirhart JN, Guo J, Li W, Yang T, Du Y, Zhang S. Differential Regulation of Human Ether-à-Go-Go-Related Gene (hERG) Current and Expression by Activation of Protein Kinase C. Mol Pharmacol 2019; 96:1-12. [PMID: 31015282 DOI: 10.1124/mol.118.115188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/17/2019] [Indexed: 02/14/2025] Open
Abstract
The human ether-à-go-go-related gene (hERG) encodes the channel that conducts the rapidly activating delayed rectifier potassium current (IKr) in the heart. Reduction in IKr causes long QT syndrome, which can lead to fatal arrhythmias triggered by stress. One potential link between stress and hERG function is protein kinase C (PKC) activation; however, seemingly conflicting results regarding PKC regulation of hERG have been reported. We investigated the effects of PKC activation using phorbol 12-myristate 13-acetate (PMA) on hERG channels expressed in human embryonic kidney cell line 293 (HEK293) cells and IKr in isolated neonatal rat ventricular myocytes. Acute activation of PKC by PMA (30 nM, 30 minutes) reduced both hERG current (IhERG) and IKr Chronic activation of PKC by PMA (30 nM, 16 hours) increased IKr in cardiomyocytes and the expression level of hERG proteins; however, chronic (30 nM, 16 hours) PMA treatment decreased IhERG, which became larger than untreated control IhERG after PMA removal for 4 hours. Deletion of amino acid residues 2-354 (Δ2-354 hERG) or 1-136 of the N terminus (ΔN 136 hERG) abolished acute PMA (30 nM, 30 minutes)-mediated IhERG reduction. In contrast to wild-type hERG channels, chronic activation of PKC by PMA (30 nM, 16 hours) increased both Δ2-354 hERG and ΔN136 hERG expression levels and currents. The increase in hERG protein was associated with PKC-induced phosphorylation (inhibition) of Nedd4-2, an E3 ubiquitin ligase that mediates hERG degradation. We conclude that PKC regulates hERG in a balanced manner, increasing expression through inhibiting Nedd4-2 while decreasing current through targeting a site(s) within the N terminus.
Collapse
Affiliation(s)
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shawn M Lamothe
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jared N Tschirhart
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yuan Du
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Ghahremanloo A, Soltani A, Modaresi SMS, Hashemy SI. Recent advances in the clinical development of immune checkpoint blockade therapy. Cell Oncol (Dordr) 2019; 42:609-626. [PMID: 31201647 DOI: 10.1007/s13402-019-00456-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The discovery of immune checkpoint proteins and the mechanisms by which cancer cells utilize them to evade the immune system has transformed our approach to cancer immunotherapy. Checkpoint blockade antibodies targeting cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and its ligands such as programmed cell death ligand 1 (PD-L1) have already revolutionized the treatment of multiple types of cancer and have significantly improved treatment and survival outcomes of patients affected by these malignancies. CONCLUSIONS Herein, we summarize current knowledge about the role of, and the mechanisms underlying PD-1/PD-L1 signaling pathways in antitumor immune responses, with particular emphasis on clinical studies evaluating the efficacy of anti-PD-1/PD-L1 blockade in various tumor types. Preliminary clinical investigations with immune-checkpoint blockers highlight broad opportunities with a high potential to enhance antitumor immunity and, as such, to generate significant clinical responses. These preliminary successes open up new avenues towards efficient therapeutics offered to patients.
Collapse
Affiliation(s)
- Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Diacylglycerol kinase control of protein kinase C. Biochem J 2019; 476:1205-1219. [DOI: 10.1042/bcj20180620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Abstract
The diacylglycerol kinases (DGK) are lipid kinases that transform diacylglycerol (DAG) into phosphatidic acid (PA) in a reaction that terminates DAG-based signals. DGK provide negative regulation to conventional and novel protein kinase C (PKC) enzymes, limiting local DAG availability in a tissue- and subcellular-restricted manner. Defects in the expression/activity of certain DGK isoforms contribute substantially to cognitive impairment and mental disorders. Abnormal DGK overexpression in tumors facilitates invasion and resistance to chemotherapy preventing tumor immune destruction by tumor-infiltrating lymphocytes. Effective translation of these findings into therapeutic approaches demands a better knowledge of the physical and functional interactions between the DGK and PKC families. DGKζ is abundantly expressed in the nervous and immune system, where physically and functionally interacts with PKCα. The latest discoveries suggest that PDZ-mediated interaction facilitates spatial restriction of PKCα by DGKζ at the cell–cell contact sites in a mechanism where the two enzymes regulate each other. In T lymphocytes, DGKζ interaction with Sorting Nexin 27 (SNX27) guarantees the basal control of PKCα activation. SNX27 is a trafficking component required for normal brain function whose deficit has been linked to Alzheimer's disease (AD) pathogenesis. The enhanced PKCα activation as the result of SNX27 silencing in T lymphocytes aligns with the recent correlation found between gain-of-function PKCα mutations and AD and suggests that disruption of the mechanisms that provides a correct spatial organization of DGKζ and PKCα may lie at the basis of immune and neuronal synapse impairment.
Collapse
|
27
|
Gawden-Bone CM, Griffiths GM. Phospholipids: Pulling Back the Actin Curtain for Granule Delivery to the Immune Synapse. Front Immunol 2019; 10:700. [PMID: 31031745 PMCID: PMC6470250 DOI: 10.3389/fimmu.2019.00700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositides, together with the phospholipids phosphatidylserine and phosphatidic acid, are important components of the plasma membrane acting as second messengers that, with diacylglycerol, regulate a diverse range of signaling events converting extracellular changes into cellular responses. Local changes in their distribution and membrane charge on the inner leaflet of the plasma membrane play important roles in immune cell function. Here we discuss their distribution and regulators highlighting the importance of membrane changes across the immune synapse on the cytoskeleton and the impact on the function of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
| | - Gillian M Griffiths
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Dawidowska M, Jaksik R, Drobna M, Szarzyńska-Zawadzka B, Kosmalska M, Sędek Ł, Machowska L, Lalik A, Lejman M, Ussowicz M, Kałwak K, Kowalczyk JR, Szczepański T, Witt M. Comprehensive Investigation of miRNome Identifies Novel Candidate miRNA-mRNA Interactions Implicated in T-Cell Acute Lymphoblastic Leukemia. Neoplasia 2019; 21:294-310. [PMID: 30763910 PMCID: PMC6372882 DOI: 10.1016/j.neo.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy originating from T-cell precursors. The genetic landscape of T-ALL has been largely characterized by next-generation sequencing. Yet, the transcriptome of miRNAs (miRNome) of T-ALL has been less extensively studied. Using small RNA sequencing, we characterized the miRNome of 34 pediatric T-ALL samples, including the expression of isomiRs and the identification of candidate novel miRNAs (not previously annotated in miRBase). For the first time, we show that immunophenotypic subtypes of T-ALL present different miRNA expression profiles. To extend miRNome characteristics in T-ALL (to 82 T-ALL cases), we combined our small RNA-seq results with data available in Gene Expression Omnibus. We report on miRNAs most abundantly expressed in pediatric T-ALL and miRNAs differentially expressed in T-ALL versus normal mature T-lymphocytes and thymocytes, representing candidate oncogenic and tumor suppressor miRNAs. Using eight target prediction algorithms and pathway enrichment analysis, we identified differentially expressed miRNAs and their predicted targets implicated in processes (defined in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) of potential importance in pathogenesis of T-ALL, including interleukin-6-mediated signaling, mTOR signaling, and regulation of apoptosis. We finally focused on hsa-mir-106a-363 cluster and functionally validated direct interactions of hsa-miR-20b-5p and hsa-miR-363-3p with 3' untranslated regions of their predicted targets (PTEN, SOS1, LATS2), overrepresented in regulation of apoptosis. hsa-mir-106a-363 is a paralogue of prototypic oncogenic hsa-mir-17-92 cluster with yet unestablished role in the pathogenesis of T-ALL. Our study provides a firm basis and data resource for functional analyses on the role of miRNA-mRNA interactions in T-ALL.
Collapse
Key Words
- all, acute lymphoblastic leukemia
- egil, european group for immunological classification of leukemias
- geo, gene expression omnibus
- go, gene ontology
- isomir, isoform of mirna
- kegg, kyoto encyclopedia of genes and genomes
- mirnome, transcriptome of mirnas
- mre, mirna response element
- or, odds ratio
- rt-qpcr, quantitative reverse transcription polymerase chain reaction
- small rna-seq, next-generation sequencing of small rnas
- t-all, t-cell acute lymphoblastic leukemia
- 3′utr, 3′ untranslated region
Collapse
Affiliation(s)
- Małgorzata Dawidowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Roman Jaksik
- Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Monika Drobna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Bronisława Szarzyńska-Zawadzka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Maria Kosmalska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Ludomiła Machowska
- Clinic of Pediatric Oncology Hematology and Transplantology, Poznań University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Anna Lalik
- Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Children's University Hospital, Gębali 6, 20-093 Lublin, Poland.
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Jerzy R Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland.
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland.
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| |
Collapse
|
29
|
Roy J, Dibaeinia P, Fan TM, Sinha S, Das A. Global analysis of osteosarcoma lipidomes reveal altered lipid profiles in metastatic versus nonmetastatic cells. J Lipid Res 2018; 60:375-387. [PMID: 30504231 DOI: 10.1194/jlr.m088559] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary bone cancer in humans. The early detection and subsequent control of metastasis has been challenging in OS. Lipids are important constituents of cells that maintain structural integrity that can be converted into lipid-signaling molecules and are reprogrammed in cancerous states. Here, we investigate the global lipidomic differences in metastatic (143B) and nonmetastatic (HOS) human OS cells as compared with normal fetal osteoblast cells (FOB) using lipidomics. We detect 15 distinct lipid classes in all three cell lines that included over 1,000 lipid species across various classes including phospholipids, sphingolipids and ceramides, glycolipids, and cholesterol. We identify a key class of lipids, diacylglycerols, which are overexpressed in metastatic OS cells as compared with their nonmetastatic or nontumorigenic counterparts. As a proof of concept, we show that blocking diacylglycerol synthesis reduces cellular viability and reduces cell migration in metastatic OS cells. Thus, the differentially regulated lipids identified in this study might aid in biomarker discovery, and the synthesis and metabolism of specific lipids could serve as future targets for therapeutic development.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61802
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61802.,Neuroscience Program and Department of Bioengineering, Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802 .,Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802.,Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61802
| |
Collapse
|
30
|
Kono M, Kurita T, Yasuda S, Kono M, Fujieda Y, Bohgaki T, Katsuyama T, Tsokos GC, Moulton VR, Atsumi T. Decreased Expression of Serine/Arginine-Rich Splicing Factor 1 in T Cells From Patients With Active Systemic Lupus Erythematosus Accounts for Reduced Expression of RasGRP1 and DNA Methyltransferase 1. Arthritis Rheumatol 2018; 70:2046-2056. [PMID: 29905030 DOI: 10.1002/art.40585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/07/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE T cells from systemic lupus erythematosus (SLE) patients have reduced protein levels of RasGRP1, a guanine nucleotide exchange factor for Ras, and increased transcript of alternatively spliced (AS) forms lacking exon 11. Serine/arginine-rich splicing factor 1 (SRSF1) binds pre-messenger RNA (pre-mRNA) to regulate AS forms of several genes, including CD3ζ in SLE T cells. This study was undertaken to assess whether SRSF1 controls the expression of RasGRP1 in T cells from patients with SLE. METHODS We studied T cells from 45 SLE patients and 18 healthy subjects. Expression levels of SRSF1, wild-type (WT) RasGRP1, and DNA methyltransferase 1 (DNMT1) were assessed by quantitative polymerase chain reaction. Direct binding of SRSF1 to exon 11 of RasGRP1 mRNA was evaluated with an oligonucleotide-protein pulldown assay. Healthy T cells and SLE T cells were treated with SRSF1-specific small interfering RNA or SRSF1 expression vector, respectively, and then evaluated for mRNA/protein expression. RESULTS SRSF1 expression levels were significantly lower in T cells from SLE patients compared to those from healthy subjects, and correlated inversely with disease activity and positively with levels of RasGRP1-WT and DNMT1. SRSF1 bound directly to exon 11 of RasGRP1 mRNA. Silencing of SRSF1 in human T cells led to increased ratios of RasGRP1-AS to RasGRP1-WT and decreased levels of RasGRP1 protein, whereas overexpression of SRSF1 in SLE T cells caused recovery of RasGRP1, which in turn induced DNMT1/interleukin-2 expression. CONCLUSION SRSF1 controls the alternative splicing of RasGRP1 and subsequent protein expression. Our findings extend evidence that alternative splicing plays a central role in the aberrant T cell function in patients with SLE by controlling the expression of multiple genes.
Collapse
Affiliation(s)
| | | | | | - Michihito Kono
- Hokkaido University, Sapporo, Japan, and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | | | - Takayuki Katsuyama
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vaishali R Moulton
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
31
|
RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol 2018; 142:595-604.e16. [DOI: 10.1016/j.jaci.2017.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
|
32
|
Somekh I, Marquardt B, Liu Y, Rohlfs M, Hollizeck S, Karakukcu M, Unal E, Yilmaz E, Patiroglu T, Cansever M, Frizinsky S, Vishnvenska-Dai V, Rechavi E, Stauber T, Simon AJ, Lev A, Klein C, Kotlarz D, Somech R. Novel Mutations in RASGRP1 are Associated with Immunodeficiency, Immune Dysregulation, and EBV-Induced Lymphoma. J Clin Immunol 2018; 38:699-710. [DOI: 10.1007/s10875-018-0533-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022]
|
33
|
Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L. Downregulation of lizard immuno-genes in the regenerating tail and myogenes in the scarring limb suggests that tail regeneration occurs in an immuno-privileged organ. PROTOPLASMA 2017; 254:2127-2141. [PMID: 28357509 DOI: 10.1007/s00709-017-1107-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Amputated tails of lizards regenerate while limbs form scars which histological structure is very different from the original organs. Lizards provide useful information for regenerative medicine and some hypotheses on the loss of regeneration in terrestrial vertebrates. Analysis of tail and limb transcriptomes shows strong downregulation in the tail blastema for immunoglobulins and surface B and T receptors, cell function, and metabolism. In contrast, in the limb blastema genes for myogenesis, muscle and cell function, and extracellular matrix deposition but not immunity are variably downregulated. The upregulated genes show that the regenerating tail is an embryonic organ driven by the Wnt pathway and non-coding RNAs. The strong inflammation following amputation, the non-activation of the Wnt pathway, and the upregulation of inflammatory genes with no downregulation of immune genes indicate that the amputated limb does not activate an embryonic program. Intense inflammation in limbs influences in particular the activity of genes coding for muscle proteins, cell functions, and stimulates the deposition of dense extracellular matrix proteins resulting in scarring limb outgrowths devoid of muscles. The present study complements that on upregulated genes, and indicates that the regenerating tail requires immune suppression to maintain this embryonic organ connected to the rest of the tail without be rejected or turned into a scar. It is hypothesized that the evolution of the adaptive immune system determined scarring instead of organ regeneration in terrestrial vertebrates and that lizards evolved the process of tail regeneration through a mechanism of immuno-evasion.
Collapse
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Tatjana Skobo
- Department of Biology, University of Padova, Padova, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | - Lorenzo Alibardi
- Comparative Histolab, Padova, Italy.
- Dipartimento Bigea, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
34
|
Myers DR, Zikherman J, Roose JP. Tonic Signals: Why Do Lymphocytes Bother? Trends Immunol 2017; 38:844-857. [PMID: 28754596 DOI: 10.1016/j.it.2017.06.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023]
Abstract
Since the 1990s it has been known that B and T lymphocytes exhibit low-level, constitutive signaling in the basal state (tonic signaling). These lymphocytes display a range of affinity for self, which in turn generates a range of tonic signaling. Surprisingly, what signaling pathways are active in the basal state and the functional relevance of the observed tonic signaling heterogeneity remain open questions today. Here we summarize what is known about the mechanistic and functional details of tonic signaling. We highlight recent advances that have increased our understanding of how the amount of tonic signal impacts immune function, describing novel tools that have moved the field forward and toward a molecular understanding of tonic signaling.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Jeroen P Roose
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Predominant contribution of DGKζ over DGKα in the control of PKC/PDK‐1‐regulated functions in T cells. Immunol Cell Biol 2017; 95:549-563. [DOI: 10.1038/icb.2017.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
|
36
|
Navas VH, Cuche C, Alcover A, Di Bartolo V. Serine Phosphorylation of SLP76 Is Dispensable for T Cell Development but Modulates Helper T Cell Function. PLoS One 2017; 12:e0170396. [PMID: 28107427 PMCID: PMC5249077 DOI: 10.1371/journal.pone.0170396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022] Open
Abstract
The adapter protein SLP76 is a key orchestrator of T cell receptor (TCR) signal transduction. We previously identified a negative feedback loop that modulates T cell activation, involving phosphorylation of Ser376 of SLP76 by the hematopoietic progenitor kinase 1 (HPK1). However, the physiological relevance of this regulatory mechanism was still unknown. To address this question, we generated a SLP76-S376A-expressing knock-in mouse strain and investigated the effects of Ser376 mutation on T cell development and function. We report here that SLP76-S376A-expressing mice exhibit normal thymocyte development and no detectable phenotypic alterations in mature T cell subsets or other lymphoid and myeloid cell lineages. Biochemical analyses revealed that mutant T cells were hypersensitive to TCR stimulation. Indeed, phosphorylation of several signaling proteins, including SLP76 itself, phospholipase Cγ1 and the protein kinases AKT and ERK1/2, was increased. These modifications correlated with increased Th1-type and decreased Th2-type cytokine production by SLP76-S376A T cells, but did not result in significant changes of proliferative capacity nor activation-induced cell death susceptibility. Hence, our results reveal that SLP76-Ser376 phosphorylation does not mediate all HPK1-dependent regulatory effects in T cells but it fine-tunes helper T cell responses.
Collapse
Affiliation(s)
- Victor H. Navas
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- Université "Pierre et Marie Curie", Paris, France
| | - Céline Cuche
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
| | - Andres Alcover
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
- * E-mail:
| |
Collapse
|
37
|
Mérida I, Torres-Ayuso P, Ávila-Flores A, Arranz-Nicolás J, Andrada E, Tello-Lafoz M, Liébana R, Arcos R. Diacylglycerol kinases in cancer. Adv Biol Regul 2017; 63:22-31. [PMID: 27697466 DOI: 10.1016/j.jbior.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
Diacylglycerol kinases (DGK) are a family of enzymes that catalyze the transformation of diacylglycerol into phosphatidic acid. In T lymphocytes, DGKα and ζ limit the activation of the PLCγ/Ras/ERK axis, providing a critical checkpoint to inhibit T cell responses. Upregulation of these isoforms limits Ras activation, leading to hypo-responsive, anergic states similar to those caused by tumors. Recent studies have identified DGKα upregulation in tumor lymphocyte infiltrates, and cells from DGKα and ζ deficient mice show enhanced antitumor activity, suggesting that limitation of DAG based signals by DGK is used by tumors to evade immune attack. DGKα expression is low or even absent in other healthy cells like melanocytes, hepatocytes or neurons. Expression of this isoform, nevertheless is upregulated in melanoma, hepatocarcinoma and glioblastoma where DGKα contributes to the acquisition of tumor metastatic traits. A model thus emerges where tumor milieu fosters DGKα expression in tumors as well as in tumor infiltrating lymphocytes with opposite consequences. Here we review the mechanisms and targets that facilitate tumor "addiction" to DGKα, and discuss its relevance in the more advanced forms of cancer for tumor immune evasion. A better knowledge of this function offers a new perspective in the search of novel approaches to prevent inhibition of immune attack in cancer. Part of the failure in clinical progress may be attributed to the complexity of the tumor/T lymphocyte interaction. As they develop, tumors use a number of mechanisms to drive endogenous, tumor reactive T cells to a general state of hyporesponsiveness or anergy. A better knowledge of the molecular mechanisms that tumors use to trigger T cell anergic states will greatly help in the advance of immunotherapy research.
Collapse
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain.
| | - Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Raquel Arcos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| |
Collapse
|
38
|
Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol 2016; 7:550. [PMID: 28018338 PMCID: PMC5149523 DOI: 10.3389/fimmu.2016.00550] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022] Open
Abstract
The immune system maintains a critically organized network to defend against foreign particles, while evading self-reactivity simultaneously. T lymphocytes function as effectors and play an important regulatory role to orchestrate the immune signals. Although central tolerance mechanism results in the removal of the most of the autoreactive T cells during thymic selection, a fraction of self-reactive lymphocytes escapes to the periphery and pose a threat to cause autoimmunity. The immune system evolved various mechanisms to constrain such autoreactive T cells and maintain peripheral tolerance, including T cell anergy, deletion, and suppression by regulatory T cells (TRegs). These effects are regulated by a complex network of stimulatory and inhibitory receptors expressed on T cells and their ligands, which deliver cell-to-cell signals that dictate the outcome of T cell encountering with cognate antigens. Among the inhibitory immune mediators, the pathway consisting of the programed cell death 1 (PD-1) receptor (CD279) and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) plays an important role in the induction and maintenance of peripheral tolerance and for the maintenance of the stability and the integrity of T cells. However, the PD-1:PD-L1/L2 pathway also mediates potent inhibitory signals to hinder the proliferation and function of T effector cells and have inimical effects on antiviral and antitumor immunity. Therapeutic targeting of this pathway has resulted in successful enhancement of T cell immunity against viral pathogens and tumors. Here, we will provide a brief overview on the properties of the components of the PD-1 pathway, the signaling events regulated by PD-1 engagement, and their consequences on the function of T effector cells.
Collapse
Affiliation(s)
- Kankana Bardhan
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Theodora Anagnostou
- Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Vassiliki A. Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Fu G, Yu M, Chen Y, Zheng Y, Zhu W, Newman DK, Wang D, Wen R. Phospholipase Cγ1 is required for pre-TCR signal transduction and pre-T cell development. Eur J Immunol 2016; 47:74-83. [PMID: 27759161 DOI: 10.1002/eji.201646522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022]
Abstract
Pre-T cell receptor (TCR) signaling is required for pre-T cell survival, proliferation, and differentiation from the CD4 and CD8 double negative (DN) to the double positive (DP) stage. However, the pre-TCR signal transduction pathway is not fully understood and the signaling molecules involved have not been completely identified. Phospholipase Cγ (PLCγ) 1 is an important signaling molecule that generates two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate, that are important to mediate PKC activation and intracellular Ca2+ flux in many signaling pathways. Previously, we have shown that PLCγ1 is important for TCR-mediated signaling, development and T-cell activation, but the role of PLCγ1 in pre-TCR signal transduction and pre-T cell development is not known. In this study, we demonstrated that PLCγ1 expression level in pre-T cells was comparable to that in mature T cells. Deletion of PLCγ1 prior to the pre-TCR signaling stage partially blocked the DN3 to DN4 transition and reduced thymic cellularity. We also demonstrated that deletion of PLCγ1 impaired pre-T cell proliferation without affecting cell survival. Further study showed that deficiency of PLCγ1 impaired pre-TCR mediated Ca2+ flux and Erk activation. Thus our studies demonstrate that PLCγ1 is important for pre-TCR mediated signal transduction and pre-T cell development.
Collapse
Affiliation(s)
- Guoping Fu
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Mei Yu
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Yuhong Chen
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Yongwei Zheng
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Wen Zhu
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Interdisciplinary Program in Biomedical Science, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Debra K Newman
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Demin Wang
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Renren Wen
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
40
|
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. Orchestrating Lymphocyte Polarity in Cognate Immune Cell-Cell Interactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:195-261. [PMID: 27692176 DOI: 10.1016/bs.ircmb.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune synapse (IS) is a specialized structure established between different immune cells that fulfills several functions, including a role as a communication bridge. This intimate contact between a T cell and an antigen-presenting cell promotes the proliferation and differentiation of lymphocytes involved in the contact. T-cell activation requires the specific triggering of the T-cell receptor (TCR), which promotes the activation of different signaling pathways inducing the polarization of the T cell. During this process, different adhesion and signaling receptors reorganize at specialized membrane domains, concomitantly to the polarization of the tubulin and actin cytoskeletons, forming stable polarization platforms. The centrosome also moves toward the IS, driving the movement of different organelles, such as the biosynthetic, secretory, degrading machinery, and mitochondria, to sustain T-cell activation. A proper orchestration of all these events is essential for T-cell effector functions and the accomplishment of a complete immune response.
Collapse
Affiliation(s)
- Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| |
Collapse
|
41
|
Ferretti A, Fortwendel JR, Gebb SA, Barrington RA. Autoantibody-Mediated Pulmonary Alveolar Proteinosis in Rasgrp1-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:470-9. [PMID: 27279372 DOI: 10.4049/jimmunol.1502248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/13/2016] [Indexed: 11/19/2022]
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare lung syndrome caused by the accumulation of surfactants in the alveoli. The most prevalent clinical form of PAP is autoimmune PAP (aPAP) whereby IgG autoantibodies neutralize GM-CSF. GM-CSF is a pleiotropic cytokine that promotes the differentiation, survival, and activation of alveolar macrophages, the cells responsible for surfactant degradation. IgG-mediated neutralization of GM-CSF thereby inhibits alveolar macrophage homeostasis and function, leading to surfactant accumulation and innate immunodeficiency. Importantly, there are no rodent models for this disease; therefore, underlying immune mechanisms regulating GM-CSF-specific IgG in aPAP are not well understood. In this article, we identify that autoimmune-prone Rasgrp1-deficient mice develop aPAP: 1) Rasgrp1-deficient mice exhibit reduced pulmonary compliance and lung histopathology characteristic of PAP; 2) alveolar macrophages from Rasgrp1-deficient mice are enlarged and exhibit reduced surfactant degradation; 3) the concentration of GM-CSF-specific IgG is elevated in both serum and bronchoalveolar lavage fluid from Rasgrp1-deficient mice; 4) GM-CSF-specific IgG is capable of neutralizing GM-CSF bioactivity; and 5) Rasgrp1-deficient mice also lacking CD275/ICOSL, a molecule necessary for conventional T cell-dependent Ab production, have reduced GM-CSF-specific autoantibody and do not develop PAP. Collectively, these studies reveal that Rasgrp1-deficient mice, to our knowledge, represent the first rodent model for aPAP.
Collapse
Affiliation(s)
- Andrew Ferretti
- Department of Microbiology & Immunology, University of South Alabama, Mobile, AL 36688; Center for Lung Biology, University of South Alabama, Mobile, AL 36688; and
| | - Jarrod R Fortwendel
- Department of Microbiology & Immunology, University of South Alabama, Mobile, AL 36688; Center for Lung Biology, University of South Alabama, Mobile, AL 36688; and
| | - Sarah A Gebb
- Center for Lung Biology, University of South Alabama, Mobile, AL 36688; and Department of Physiology & Cell Biology, University of South Alabama, Mobile, AL 36688
| | - Robert A Barrington
- Department of Microbiology & Immunology, University of South Alabama, Mobile, AL 36688; Center for Lung Biology, University of South Alabama, Mobile, AL 36688; and
| |
Collapse
|
42
|
Golinski ML, Vandhuick T, Derambure C, Fréret M, Lecuyer M, Guillou C, Hiron M, Boyer O, Le Loët X, Vittecoq O, Lequerré T. Dysregulation of RasGRP1 in rheumatoid arthritis and modulation of RasGRP3 as a biomarker of TNFα inhibitors. Arthritis Res Ther 2015; 17:382. [PMID: 26714738 PMCID: PMC4718016 DOI: 10.1186/s13075-015-0894-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022] Open
Abstract
Background B and T cells play a key role in rheumatoid arthritis (RA) pathophysiology. RasGRP1 and RasGRP3 are involved in T and B cell receptors signaling, and belong to gene combination able to predict infliximab responsiveness, leading to the question of RasGRP1 and RasGRP3 involvement in RA. Methods RasGRP1 and RasGRP3 expression levels were measured by qRT-PCR and/or western-blot in peripheral blood mononuclear cells (PBMCs), in T and B cells from untreated RA patients and in RA patients treated by TNFα inhibitors. T and B cells from healthy controls (HC) were cultured with TNFα, and TNFα receptors neutralizing antibodies to highlight the TNFα effects on RasGRP1 and RasGRP3 pathways. MAPK pathways and apoptosis were respectively analyzed using the Proteome Profiler arrays and flow cytometry. Results In PBMCs from RA patients, gene expression levels of RasGRP1 were invariant while RasGRP3 was downregulated under TNFα inhibitors and upregulated under TNFα. In T cells from RA patients, RasGRP1 was decreased and its gene expression level was correlated with disease activity. In T cells from HC, TNFα stimulation increased RasGRP1 gene expression level while it reduced RasGRP1 protein expression level. Bryostatin-1 experiments have confirmed that the TNFα effect observed on T cells proliferation was due to the decrease of RasGRP1 expression. Besides, RasGRP3 expression level increased in PBMCs from RA patients under TNFα and in B cells from HC leading us to conclude that RasGRP3 in B cells was modulated by TNFα. Conclusion This study demonstrates RasGRP1 dysregulation in RA patients while RasGRP3 is characterized as a biomarker linked to TNFα inhibitors. After binding to TNFR1, TNFα reduced RasGRP1 protein expression resulting in inhibition of T cell activation. Trial registration Clinicaltrials.gov NCT00234234, registered 04 November 2008; NCT00767325, registered 05 October 2005. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0894-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Laure Golinski
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. .,INSERM U905, Université de Rouen, Faculté de médecine - pharmacie, 22 boulevard Gambetta, 76000, Rouen, France.
| | - Thibault Vandhuick
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. .,Department of Rheumatology & CIC/CRB 1404, Rouen University Hospital, Rouen, France.
| | - Céline Derambure
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
| | - Manuel Fréret
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
| | - Matthieu Lecuyer
- NeoVasc ERI 28 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
| | - Clément Guillou
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
| | - Martine Hiron
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.
| | - Olivier Boyer
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. .,Department of Immunology, Rouen University Hospital, Rouen, France.
| | - Xavier Le Loët
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. .,Department of Rheumatology & CIC/CRB 1404, Rouen University Hospital, Rouen, France.
| | - Olivier Vittecoq
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. .,Department of Rheumatology & CIC/CRB 1404, Rouen University Hospital, Rouen, France.
| | - Thierry Lequerré
- INSERM, U905 & Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France. .,Department of Rheumatology & CIC/CRB 1404, Rouen University Hospital, Rouen, France.
| |
Collapse
|
43
|
Mongiorgi S, Finelli C, Yang YR, Clissa C, McCubrey JA, Billi AM, Manzoli L, Suh PG, Cocco L, Follo MY. Inositide-dependent signaling pathways as new therapeutic targets in myelodysplastic syndromes. Expert Opin Ther Targets 2015; 20:677-87. [PMID: 26610046 DOI: 10.1517/14728222.2016.1125885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Nuclear inositide signaling pathways specifically regulate cell proliferation and differentiation. Interestingly, the modulation of nuclear inositides in hematological malignancies can differentially affect erythropoiesis or myelopoiesis. This is particularly important in patients with myelodysplastic syndromes (MDS), who show both defective erythroid and myeloid differentiation, as well as an increased risk of evolution into acute myeloid leukemia (AML). AREAS COVERED This review focuses on the structure and function of specific nuclear inositide enzymes, whose impairment could be linked with disease pathogenesis and cancer. The authors, stemming from literature and published data, discuss and describe the role of nuclear inositides, focusing on specific enzymes and demonstrating that targeting these molecules could be important to develop innovative therapeutic approaches, with particular reference to MDS treatment. EXPERT OPINION Demethylating therapy, alone or in combination with other drugs, is the most common and current therapy for MDS patients. Nuclear inositide signaling molecules have been demonstrated to be important in hematopoietic differentiation and are promising new targets for developing a personalized MDS therapy. Indeed, these enzymes can be ideal targets for drug design and their modulation can have several important downstream effects to regulate MDS pathogenesis and prevent MDS progression to AML.
Collapse
Affiliation(s)
- Sara Mongiorgi
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Carlo Finelli
- b Institute of Hematology "L e A Seràgnoli" , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Yong Ryoul Yang
- c School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Republic of Korea
| | - Cristina Clissa
- b Institute of Hematology "L e A Seràgnoli" , S. Orsola-Malpighi Hospital , Bologna , Italy.,d Hematology and Transplant Center , AORMN , Pesaro , Italy
| | - James A McCubrey
- e Department of Microbiology & Immunology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Anna Maria Billi
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Lucia Manzoli
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Pann-Ghill Suh
- c School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Republic of Korea
| | - Lucio Cocco
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Matilde Y Follo
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
44
|
Purow B. Molecular Pathways: Targeting Diacylglycerol Kinase Alpha in Cancer. Clin Cancer Res 2015; 21:5008-12. [PMID: 26420856 DOI: 10.1158/1078-0432.ccr-15-0413] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Lipid kinases have largely been neglected as targets in cancer, and an increasing number of reports suggest diacylglycerol kinase alpha (DGKα) may be one with promising therapeutic potential. DGKα is one of 10 DGK family members that convert diacylglycerol (DAG) to phosphatidic acid (PA), and both DAG and PA are critical lipid second messengers in the plasma membrane. A host of important oncogenic proteins and pathways affect cancer cells in part through DGKα, including the c-Met and VEGF receptors. Others partially mediate the effects of DGKα inhibition in cancer, such as mTOR and HIF-1α. DGKα inhibition can directly impair cancer cell viability, inhibits angiogenesis, and notably may also boost T-cell activation and enhance cancer immunotherapies. Although two structurally similar inhibitors of DGKα were established decades ago, they have seen minimal in vivo usage, and it is unlikely that either of these older DGKα inhibitors will have utility for cancer. An abandoned compound that also inhibits serotonin receptors may have more translational potential as a DGKα inhibitor, but more potent and specific DGKα inhibitors are sorely needed. Other DGK family members may also provide therapeutic targets in cancer, but require further investigation.
Collapse
Affiliation(s)
- Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
45
|
Merida I, Andrada E, Gharbi SI, Avila-Flores A. Redundant and specialized roles for diacylglycerol kinases and in the control of T cell functions. Sci Signal 2015; 8:re6. [DOI: 10.1126/scisignal.aaa0974] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Abstract
Maintenance of peripheral tolerance is essential for homeostasis of the immune system. While central tolerance mechanisms result in deletion of the majority of self-reactive T cells, T lymphocytes specific for self-antigens also escape this process and circulate in the periphery. To control the development of autoimmunity, multiple mechanisms of peripheral tolerance have evolved, including T cell anergy, deletion, and suppression by regulatory T (Treg) cells. The pathway consisting of the programmed cell death 1 (PD-1) receptor (CD279) and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC; CD273) plays a vital role in the induction and maintenance of peripheral tolerance. This pathway also regulates the balance between stimulatory and inhibitory signals needed for effective immunity and maintenance of T cell homeostasis. In contrast to this important beneficial role in maintaining T cell homeostasis, PD-1 mediates potent inhibitory signals that prevent the expansion and function of T effector cells and have detrimental effects on antiviral and antitumor immunity. Despite the compelling studies on the significant functional role of PD-1 in mediating inhibition of activated T cells, little is known about how PD-1 blocks T cell activation. Here, we will provide a brief overview of the signaling events that are regulated by PD-1 triggering, and we will discuss their implications on cell intrinsic and extrinsic mechanisms that determine the fate and function of T effector cells.
Collapse
|
47
|
RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun 2014; 5:4657. [PMID: 25118589 PMCID: PMC4143924 DOI: 10.1038/ncomms5657] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/11/2014] [Indexed: 01/18/2023] Open
Abstract
Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response. Toll like receptors (TLRs) couple microbial sensing to initiation of immune responses, which are essential for defense against pathogens but may cause immunopathology when activated excessively. Here the authors show that RasGRP3 sets a threshold of TLR activation to prevent immunopathology.
Collapse
|
48
|
Liao W, Jordaan G, Coriaty N, Sharma S. Amplification of B cell receptor-Erk signaling by Rasgrf-1 overexpression in chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:2907-16. [PMID: 24597981 DOI: 10.3109/10428194.2014.898759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rasgrf-1 is a guanine exchange factor (GEF) that catalyzes the exchange of GDP for GTP. In a RNA microarray analysis of chronic lymphocytic leukemia (CLL) specimens (n = 5), this gene was found to be overexpressed in CLL as compared to normal peripheral blood mononuclear cell (PBMC) CD19 + B cells (n = 3). CLL specimens (n = 29) expressed Rasgrf-1 RNA at levels 5-300-fold higher as compared to normal B cells. CLL specimens expressed a 75 kDa isoform that was smaller than the expected full-length protein (140 kDa) and the truncated variant had higher GEF activity. Knockdown of Rasgrf-1 in CLL specimens inhibited active GTP-bound Ras and the Ras/Erk/mitogen-activated protein kinase (MAPK) pathway. Rasgrf-1 was phosphorylated and activated by B cell receptor (BCR) signaling that increased its GEF function, and this phosphorylation was blocked by Src and Bruton's tyrosine kinase (BTK) inhibitors. Rasgrf-1 is a novel GEF protein that has a role in BCR signaling and its overexpression further activates the Ras/Erk/MAPK pathway in CLL specimens.
Collapse
Affiliation(s)
- Wei Liao
- Division of Hematology-Oncology, Greater Los Angeles VA Healthcare Center, UCLA School of Medicine , Los Angeles, CA , USA
| | | | | | | |
Collapse
|
49
|
Differential regulation of the rainbow trout (Oncorhynchus mykiss) MT-A gene by nuclear factor interleukin-6 and activator protein-1. BMC Mol Biol 2013; 14:28. [PMID: 24341438 PMCID: PMC3867414 DOI: 10.1186/1471-2199-14-28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previously we have identified a distal region of the rainbow trout (Oncorhynchus mykiss) metallothionein-A (rtMT-A) enhancer region, being essential for free radical activation of the rtMT-A gene. The distal promoter region included four activator protein 1 (AP1) cis-acting elements and a single nuclear factor interleukin-6 (NF-IL6) element. In the present study we used the rainbow trout hepatoma (RTH-149) cell line to further examine the involvement of NF-IL6 and AP1 in rtMT-A gene expression following exposure to oxidative stress and tumour promotion. RESULTS Using enhancer deletion studies we observed strong paraquat (PQ)-induced rtMT-A activation via NF-IL6 while the AP1 cis-elements showed a weak but significant activation. In contrast to mammals the metal responsive elements were not activated by oxidative stress. Electrophoretic mobility shift assay (EMSA) mutation analysis revealed that the two most proximal AP1 elements, AP11,2, exhibited strong binding to the AP1 consensus sequence, while the more distal AP1 elements, AP13,4 were ineffective. Phorbol-12-myristate-13-acetate (PMA), a known tumor promoter, resulted in a robust induction of rtMT-A via the AP1 elements alone. To determine the conservation of regulatory functions we transfected human Hep G2 cells with the rtMT-A enhancer constructs and were able to demonstrate that the cis-elements were functionally conserved. The importance of NF-IL6 in regulation of teleost MT is supported by the conservation of these elements in MT genes from different teleosts. In addition, PMA and PQ injection of rainbow trout resulted in increased hepatic rtMT-A mRNA levels. CONCLUSIONS These studies suggest that AP1 primarily is involved in PMA regulation of the rtMT-A gene while NF-IL6 is involved in free radical regulation. Taken together this study demonstrates the functionality of the NF-IL6 and AP-1 elements and suggests an involvement of MT in protection during pathological processes such as inflammation and cancer.
Collapse
|
50
|
Abstract
One of the mechanisms that are in place to control the activation of mature T cells that bear self-reactive antigen receptors is anergy, a long-term state of hyporesponsiveness that is established in T cells in response to suboptimal stimulation. T cells receive signals that result not only from antigen recognition and costimulation but also from other sources, including cytokine receptors, inhibitory receptors or metabolic sensors. Integration of those signals will determine T cell fate. Under conditions that induce anergy, T cells activate a program of gene expression that leads to the production of proteins that block T cell receptor signaling and inhibit cytokine gene expression. In this review we will examine those signals that determine functional outcome following antigen encounter, review current knowledge of the factors that ensure signaling inhibition and epigenetic gene silencing in anergic cells and explore the mechanisms that lead to the reversal of anergy and the reacquisition of effector functions.
Collapse
Affiliation(s)
- Rut Valdor
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| | - Fernando Macian
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| |
Collapse
|