1
|
Chen Z, Zheng R, Jiang H, Zhang X, Peng M, Jiang T, Zhang X, Shang H. Therapeutic efficacy of Xuebijing injection in treating severe acute pancreatitis and its mechanisms of action: A comprehensive survey. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156629. [PMID: 40101453 DOI: 10.1016/j.phymed.2025.156629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a life-threatening condition associated with high mortality and limited therapeutic options. Current management strategies focus on infection prevention, immune regulation, and anticoagulation. Xuebijing Injection (XBJ), a widely used traditional Chinese medicine-derived intravenous preparation, has shown promising therapeutic effects in SAP. Herein, we sought to evaluate clinical and preclinical evidence on XBJ to reveal its potential mechanisms of action, and provide insights to guide future research and clinical applications. METHODS We conducted a comprehensive survey of studies on XBJ in the treatment of SAP across PubMed, Embase, Cochrane Library, CBM, CNKI, Wanfang and VIP databases from their inception to March 21st, 2024. RESULTS A total of 239 studies were included, comprising 12 animal experiments, 7 systematic reviews, 220 clinical trials. Mechanistic studies suggest that XBJ downregulates the expression of inflammatory mediators, improves immune function, and alleviates oxidative stress via multiple signaling pathways, including the TLR4/NF-κB, p38-MAPK, HMGB1/TLR, TLR4/NF-κB, FPR1/NLRP3, and JAK/STAT pathways. These effects contribute to reducing organ damage. Compared to standard treatment, XBJ has more effective at reducing mortality and complications, improving overall clinical outcomes, shortening ventilator use time, and hospital stay in SAP patients. CONCLUSIONS Preclinical evidence and clinical trial data indicated that XBJ can simultaneously regulate inflammatory responses, immune function, microcirculatory disorders, oxidative stress, and apoptosis. However, further research is required to elucidate the specific mechanisms of action, clinical characteristics and safety of XBJ.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton L8N 1Y3, Canada.
| | - Huiru Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Xinyi Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Mengqi Peng
- Shandong Second Medical University, Weifang 261053, China
| | - Tong Jiang
- Binzhou medical university, YanTai 264000, China
| | - Xiaowei Zhang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China; Dong-Fang Hospital of Beijing University of Chinese Medicine, No. 6 The First District of Fang-Xing-Yuan, Fengtai District, Beijing100078, China.
| |
Collapse
|
2
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2025; 638:160-171. [PMID: 39695234 PMCID: PMC11798877 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Opgenorth J, Mayorga EJ, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, McGill JL, Baumgard LH. Intravenous lipopolysaccharide challenge in early- versus mid-lactation dairy cattle. I: The immune and inflammatory responses. J Dairy Sci 2024; 107:6225-6239. [PMID: 38428491 DOI: 10.3168/jds.2023-24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Cows in early lactation (EL) are purportedly immune suppressed, which renders them more susceptible to disease. Thus, the study objective was to compare key biomarkers of immune activation from i.v. LPS between EL and mid-lactation (ML) cows. Multiparous EL (20 ± 2 DIM; n = 11) and ML (131 ± 31 DIM; n = 12) cows were enrolled in a 2 × 2 factorial design and assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered a single LPS bolus from Escherichia coli O55:B5 (0.09 µg/kg of BW), or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. After LPS administration, cows were intensely evaluated for 3 d to analyze their response and recovery to LPS. Rectal temperature increased in LPS relative to PF cows (1.1°C in the first 9 h), and the response was more severe in EL-LPS relative to ML-LPS cows (2.3 vs. 1.3°C increase at 4 h post-LPS; respectively). Respiration rate increased only in EL-LPS cows (47% relative to ML-LPS in the first hour post-LPS). Circulating tumor necrosis factor-α, IL-6, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, and IFN-γ-inducible protein-10 increased within the first 6 h after LPS and these changes were exacerbated in EL-LPS relative to ML-LPS cows (6.3-fold, 4.8-fold, 57%, 93%, 10%, and 61%, respectively). All cows administered LPS had decreased circulating iCa relative to PF cows (34% at the 6 h nadir), but the hypocalcemia was more severe in EL-LPS than ML-LPS cows (14% at 6 h nadir). In response to LPS, neutrophils decreased regardless of LS, then increased into neutrophilia by 24 h in all LPS relative to PF cows (2-fold); however, the neutrophilic phase was augmented in EL- compared with ML-LPS cows (63% from 24 to 72 h). Lymphocytes and monocytes rapidly decreased then gradually returned to baseline in LPS cows regardless of LS; however, monocytes were increased (57%) at 72 h in EL-LPS relative to ML-LPS cows. Platelets were reduced (46%) in LPS relative to PF cows throughout the 3-d following LPS, and from 24 to 48 h, platelets were further decreased (41%) in EL-LPS compared with ML-LPS. During the 3-d following LPS, serum amyloid A (SAA), LPS-binding protein (LBP), and haptoglobin (Hp) increased in LPS compared with PF groups (9-fold, 72%, and 153-fold, respectively), and the LBP and Hp responses were more exaggerated in EL-LPS than ML-LPS cows (85 and 79%, respectively) whereas the SAA response did not differ by LS. Thus, our data indicates that EL immune function does not appear "suppressed," and in fact many aspects of the immune response are seemingly functionally robust.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
4
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
5
|
Cochrane S, Rajagopal R, Sheffield D, Stewart F, Hathaway L, Barnes NM, Qureshi O, Gordon J. Impact of a varied set of stimuli on a suite of immunological parameters within peripheral blood mononuclear cells: toward a non-animal approach for assessing immune modulation by materials intended for human use. FRONTIERS IN TOXICOLOGY 2024; 6:1335110. [PMID: 38737195 PMCID: PMC11082367 DOI: 10.3389/ftox.2024.1335110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction: In toxicology, steps are being taken towards more mechanism-focused and human relevant approaches to risk assessment, requiring new approaches and methods. Additionally, there is increasing emphasis by regulators on risk assessment of immunotoxicity. Methods: Here we present data from a peripheral blood mononuclear cell (PBMC) system whereby a varied set of stimuli, including those against the TCR and Toll-like receptors, enable readouts of cytokine and prostaglandin E2 (PGE2) production with monocyte, T cell and B cell viability, proliferation, and associated activation markers. In addition to results on the impact of the stimuli used, initial profiling data for a case study chemical, curcumin, is presented, illustrating how the system can be used to generate information on the impact of exogenous materials on three major constituent immune cell subsets for use in risk assessment and to direct follow-on studies. Results: The different stimuli drove distinct responses, not only in relation to the "quantity" of the response but also the "quality". Curcumin had a limited impact on the B cell parameters measured, with the stimuli used, and it was noted that in contrast to T cells where there was either no impact or a reduction in viability and proliferation with increasing concentration, for B cells there was a small but significant increase in both measurements at curcumin concentrations below 20 µM. Similarly, whilst expression of activation markers by T cells was reduced by the highest concentration of curcumin, they were increased in B cells. Curcumin only impacted the viability of stimulated monocytes at the highest concentration and had differential impact on different activation markers. Levels of all cytokines and PGE2 were reduced at higher concentrations. Discussion: Although the platform has certain limitations, it nevertheless enables assessment of healthy baseline monocyte, T-, and B-cell responses, and scrutiny of the impact of different stimuli to detect potential immune suppression or enhancement from exogenous materials. In the case of curcumin, a pattern of responses indicative of immune suppressive / anti-inflammatory effects was detected. It is an accessible, highly modifiable system that can be used to screen materials and guide further studies, providing a holistic, integrated picture of effects.
Collapse
Affiliation(s)
- Stella Cochrane
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - Ramya Rajagopal
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - David Sheffield
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - Fay Stewart
- Celentyx Ltd., Birmingham Research Park, Birmingham, United Kingdom
| | - Lindsay Hathaway
- Celentyx Ltd., Birmingham Research Park, Birmingham, United Kingdom
| | - Nicholas M. Barnes
- Celentyx Ltd., Birmingham Research Park, Birmingham, United Kingdom
- Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Omar Qureshi
- Celentyx Ltd., Birmingham Research Park, Birmingham, United Kingdom
| | - John Gordon
- Celentyx Ltd., Birmingham Research Park, Birmingham, United Kingdom
| |
Collapse
|
6
|
Wang F, Gong F, Shi X, Yang J, Qian J, Wan L, Tong H. Monocyte HLA-DR level on admission predicting in-hospital mortality rate in exertional heatstroke: A 12-year retrospective study. Immun Inflamm Dis 2024; 12:e1240. [PMID: 38629749 PMCID: PMC11022625 DOI: 10.1002/iid3.1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/12/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Exertional heatstroke (EHS), a fatal illness, pronounces multiple organ dysfunction syndrome (MODS) and high mortality rate. Currently, no ideal factor prognoses EHS. Decreased monocyte human leukocyte-DR antigen (mHLA-DR) has been observed in critically ill individuals, particularly in those with sepsis. While most research focus on the pro-inflammatory response exploration in EHS, there are few studies related to immunosuppression, and no report targeted on mHLA-DR in EHS. The present study tried to explore the prognostic value of mHLA-DR levels in EHS patients. METHODS This was a single-center retrospective study. Clinical data of EHS patients admitted to the intensive care unit of the General Hospital of Southern Theatre Command between January 1, 2008, and December 31, 2020, were recorded and analyzed. RESULTS Seventy patients with 54 survivors and 16 nonsurvivors were ultimately enrolled. Levels of mHLA-DR in the nonsurvivors (41.8% [38.1-68.1]%) were significantly lower than those in the survivors (83.1% [67.6-89.4]%, p < 0.001). Multivariate logistic regression indicated that mHLA-DR (odds ratio [OR] = 0.939; 95% confidence interval [CI]: 0.892-0.988; p = 0.016) and Glasgow coma scale (GCS) scores (OR = 0.726; 95% CI: 0.591-0.892; p = 0.002) were independent risk factors related with in-hospital mortality rate in EHS. A nomogram incorporated mHLA-DR with GCS demonstrated excellent discrimination and calibration abilities. Compared to the traditional scoring systems, the prediction model incorporated mHLA-DR with GCS had the highest area under the curve (0.947, 95% CI: [0.865-0.986]) and Youden index (0.8333), with sensitivity of 100% and specificity of 83.33%, and a greater clinical net benefit. CONCLUSION Patients with EHS were at a risk of early experiencing decreased mHLA-DR early. A nomogram based on mHLA-DR with GCS was developed to facilitate early identification and timely treatment of individuals with potentially poor prognosis.
Collapse
Affiliation(s)
- Fanfan Wang
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Intensive Care UnitGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Fanghe Gong
- Department of NeurosurgeryGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Xuezhi Shi
- Department of Intensive Care UnitGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Jiale Yang
- Department of Intensive Care UnitGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Jing Qian
- Department of Intensive Care UnitGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Lulu Wan
- Department of Intensive Care UnitGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Huasheng Tong
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Intensive Care UnitGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| |
Collapse
|
7
|
Yang R, Zheng T, Xiang H, Liu M, Hu K. Lung single-cell RNA profiling reveals response of pulmonary capillary to sepsis-induced acute lung injury. Front Immunol 2024; 15:1308915. [PMID: 38348045 PMCID: PMC10859485 DOI: 10.3389/fimmu.2024.1308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background Sepsis-induced acute lung injury (ALI) poses a significant threat to human health. Endothelial cells, especially pulmonary capillaries, are the primary barriers against sepsis in the lungs. Therefore, investigating endothelial cell function is essential to understand the pathophysiological processes of sepsis-induced ALI. Methods We downloaded single-cell RNA-seq expression data from GEO with accession number GSE207651. The mice underwent cecal ligation and puncture (CLP) surgery, and lung tissue samples were collected at 0, 24, and 48 h. The cells were annotated using the CellMarker database and FindAllMarkers functions. GO enrichment analyses were performed using the Metascape software. Gene set enrichment Analysis (GSEA) and variation Analysis (GSVA) were performed to identify differential signaling pathways. Differential expression genes were collected with the "FindMarkers" function. The R package AUCell was used to score individual cells for pathway activities. The Cellchat package was used to explore intracellular communication. Results Granulocytes increased significantly as the duration of endotoxemia increased. However, the number of T cells, NK cells, and B cells declined. Pulmonary capillary cells were grouped into three sub-clusters. Capillary-3 cells were enriched in the sham group, but declined sharply in the CLP.24 group. Capillary-1 cells peaked in the CLP.24 group, while Capillary-2 cells were enriched in the CLP.48 group. Furthermore, we found that Cd74+ Capillary-3 cells mainly participated in immune interactions. Plat+ Capillary-1 and Clec1a+ Capillary-2 are involved in various physiological processes. Regarding cell-cell interactions, Plat+ Capillary-1 plays the most critical role in granulocyte adherence to capillaries during ALI. Cd74+ Capillary cells expressing high levels of major histocompatibility complex (MHC) and mainly interacted with Cd8a+ T cells in the sham group. Conclusion Plat+ capillaries are involved in the innate immune response through their interaction with neutrophils via ICAM-1 adhesion during endotoxemia, while Cd74+ capillaries epxressed high level of MHC proteins play a role in adaptive immune response through their interaction with T cells. However, it remains unclear whether the function of Cd74+ capillaries leans towards immunity or tolerance, and further studies are needed to confirm this.
Collapse
Affiliation(s)
- Ruhao Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Zheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyu Xiang
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Siegler BH, Thon JN, Altvater M, Schenz J, Larmann J, Weigand MA, Weiterer S. Abdominal surgery induces long-lasting changes in expression and binding of CTCF with impact on Major Histocompatibility Complex II transcription in circulating human monocytes. PLoS One 2023; 18:e0293347. [PMID: 37878653 PMCID: PMC10599505 DOI: 10.1371/journal.pone.0293347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Postoperative immunosuppression has been recognized as an important driver of surgery-related morbidity and mortality. It is characterized by lymphocyte depression and impaired monocyte capability to present foreign antigens to T-cells via Major Histocompatibility Complex, Class II (MHC-II) molecules. In patients with postoperative abdominal sepsis, we previously detected a persisting differential binding of the CCCTC-Binding Factor (CTCF), a superordinate regulator of transcription, inside the MHC-II region with specific impact on human leucocyte antigen (HLA) gene expression. In this prospective exploratory study, we investigated to which extent major surgery affects the MHC-II region of circulating CD14+-monocytes. RESULTS In non-immunocompromised patients undergoing elective major abdominal surgery, a postoperative loss of monocyte HLA-DR surface receptor density was accompanied by a decline in the transcription levels of the classical MHC-II genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1. The surgical event decreased the expression of the transcriptional MHC-II regulators CIITA and CTCF and led to a lower CTCF enrichment at an intergenic sequence within the HLA-DR subregion. During the observation period, we found a slow and only incomplete restoration of monocyte HLA-DR surface receptor density as well as a partial recovery of CIITA, HLA-DRA and HLA-DRB1 expression. In contrast, transcription of HLA-DPA1, HLA-DPB1, CTCF and binding of CTCF within the MHC-II remained altered. CONCLUSION In circulating monocytes, major surgery does not globally affect MHC-II transcription but rather induces specific changes in the expression of selected HLA genes, followed by differential recovery patterns and accompanied by a prolonged reduction of CTCF expression and binding within the MHC-II region. Our results hint toward a long-lasting impact of a major surgical intervention on monocyte functionality, possibly mediated by epigenetic changes that endure the life span of the individual cell.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Niklas Thon
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Marc Altvater
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Judith Schenz
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jan Larmann
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Markus Alexander Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
9
|
Ishikawa F, Matsubara T, Koyama T, Iwamoto H, Miyaji K. Whey protein hydrolysate mitigates both inflammation and endotoxin tolerance in THP-1 human monocytic leukemia cells. Immun Inflamm Dis 2022; 10:e737. [PMID: 36444621 PMCID: PMC9639455 DOI: 10.1002/iid3.737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION It is important to control both inflammation and immunosuppression after severe insults, such as sepsis, trauma, and surgery. Endotoxin tolerance is one of the immunosuppressive conditions and it has been known that endotoxin tolerance relates to poorer clinical outcomes in patients with severe insults. This study investigated whether whey protein hydrolysate (WPH) mitigates inflammation and endotoxin tolerance in THP-1 human monocytic leukemia cells. METHODS Endotoxin tolerance can be experimentally reproduced by two consecutive stimulations with lipopolysaccharide (LPS). THP-1 cells were incubated with LPS and WPH (first stimulation). After collecting the culture supernatant to evaluate the effect on inflammation, the cells were washed and restimulated by 100 ng/ml LPS (second stimulation). The culture supernatant was again collected to evaluate the effect on endotoxin tolerance. Concentrations of LPS and WPH in the first stimulation were adjusted to evaluate their dose dependency. Cytokine levels in the supernatant were determined by enzyme-linked immunosorbent assay. Statistical analysis was performed using the student's t-test or Dunnett's test. RESULTS Five mg/ml WPH significantly decreased interleukin (IL)-6 (p = .006) and IL-10 (p < .001) levels after the first LPS stimulation (1000 ng/ml). WPH significantly increased tumor necrosis factor-alpha (p < .001) and IL-10 (p = .014) levels after the second LPS stimulation. The suppressive effect of WPH on inflammation and endotoxin tolerance was dependent on the concentrations of LPS and WPH. The effective dose of WPH for endotoxin tolerance was lower than its effective dose for inflammation. CONCLUSION WPH mitigated both inflammation and endotoxin tolerance. Therefore, WPH might be a candidate for valuable food ingredients to control both inflammation and immunosuppression after severe insults.
Collapse
Affiliation(s)
- Fuka Ishikawa
- Health Care & Nutrition Science InstituteR&D Division, Morinaga Milk Industry Co. Ltd.KanagawaZamaJapan
| | - Takeshi Matsubara
- Health Care & Nutrition Science InstituteR&D Division, Morinaga Milk Industry Co. Ltd.KanagawaZamaJapan
| | - Takahiro Koyama
- Health Care & Nutrition Science InstituteR&D Division, Morinaga Milk Industry Co. Ltd.KanagawaZamaJapan
| | - Hiroshi Iwamoto
- Health Care & Nutrition Science InstituteR&D Division, Morinaga Milk Industry Co. Ltd.KanagawaZamaJapan
| | - Kazuhiro Miyaji
- Health Care & Nutrition Science InstituteR&D Division, Morinaga Milk Industry Co. Ltd.KanagawaZamaJapan
| |
Collapse
|
10
|
de Oliveira Cardoso E, Santiago KB, Conti BJ, Conte FL, Tasca KI, Romagnoli GG, de Assis Golim M, Rainho CA, Bastos JK, Sforcin JM. Brazilian green propolis: A novel tool to improve the cytotoxic and immunomodulatory action of docetaxel on MCF-7 breast cancer cells and on women monocyte. Phytother Res 2021; 36:448-461. [PMID: 34862831 DOI: 10.1002/ptr.7345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Docetaxel (DTX) is used against breast cancer despite its side effects such as toxicity and immunosuppression. Here we investigated the cytotoxic and immunomodulatory effects of the ethanol solution extract of propolis (EEP) in combination with DTX on MCF-7 breast cancer cells and on women's monocyte. The cytotoxic potential of EEP + DTX was assessed by MTT assay and the type of tumor cell death was evaluated by flow cytometry. The effects of EEP + DTX on the migration and invasion of MCF-7 cells were analyzed. Cytokine production by monocytes was assessed by ELISA and the expression of cell surface markers was evaluated by flow cytometry. We also assessed the fungicidal activity of monocytes against Candida albicans and the generation of reactive oxygen species (ROS). Finally, the impact of the supernatants of treated monocytes in the viability, migration, and invasiveness of tumor cells was assessed. EEP enhanced the cytotoxicity of DTX alone against MCF-7 cells by inducing necrosis and inhibiting their migratory ability. EEP + DTX exerted no cytotoxic effects on monocytes and stimulated HLA-DR expression, TNF-α, and IL-6 production, exerted an immunorestorative action in the fungicidal activity, and reduced the oxidative stress. Our findings have practical implications and reveal new insights for complementary medicine.
Collapse
Affiliation(s)
- Eliza de Oliveira Cardoso
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Karina Basso Santiago
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Bruno José Conti
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Fernanda Lopes Conte
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Karen Ingrid Tasca
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | | | - Marjorie de Assis Golim
- Botucatu Blood Center, School of Medicine, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José Maurício Sforcin
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, São Paulo, Brazil
| |
Collapse
|
11
|
Chilunda V, Martinez-Aguado P, Xia LC, Cheney L, Murphy A, Veksler V, Ruiz V, Calderon TM, Berman JW. Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19. Front Immunol 2021; 12:665773. [PMID: 34108966 PMCID: PMC8181441 DOI: 10.3389/fimmu.2021.665773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has caused more than three million deaths globally. The severity of the disease is characterized, in part, by a dysregulated immune response. CD16+ monocytes are innate immune cells involved in inflammatory responses to viral infections, and tissue repair, among other functions. We characterized the transcriptional changes in CD16+ monocytes from PBMC of people with COVID-19, and from healthy individuals using publicly available single cell RNA sequencing data. CD16+ monocytes from people with COVID-19 compared to those from healthy individuals expressed transcriptional changes indicative of increased cell activation, and induction of a migratory phenotype. We also analyzed COVID-19 cases based on severity of the disease and found that mild cases were characterized by upregulation of interferon response and MHC class II related genes, whereas the severe cases had dysregulated expression of mitochondrial and antigen presentation genes, and upregulated inflammatory, cell movement, and apoptotic gene signatures. These results suggest that CD16+ monocytes in people with COVID-19 contribute to a dysregulated host response characterized by decreased antigen presentation, and an elevated inflammatory response with increased monocytic infiltration into tissues. Our results show that there are transcriptomic changes in CD16+ monocytes that may impact the functions of these cells, contributing to the pathogenesis and severity of COVID-19.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Li C. Xia
- Department of Epidemiology and Public Health, Division of Biostatistics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aniella Murphy
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Veronica Veksler
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vanessa Ruiz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina M. Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
12
|
Shen ZY, Zheng Y, Pecsok MK, Wang K, Li W, Gong MJ, Wu F, Zhang L. C-Reactive Protein Suppresses the Th17 Response Indirectly by Attenuating the Antigen Presentation Ability of Monocyte Derived Dendritic Cells in Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:589200. [PMID: 33841391 PMCID: PMC8027258 DOI: 10.3389/fimmu.2021.589200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a classical murine model for Multiple Sclerosis (MS), a human autoimmune disease characterized by Th1 and Th17 responses. Numerous studies have reported that C-reactive protein (CRP) mitigates EAE severity, but studies on the relevant pathologic mechanisms are insufficient. Our previous study found that CRP suppresses Th1 response directly by receptor binding on naïve T cells; however, we did not observe the effect on Th17 response at that time; thus it remains unclear whether CRP could regulate Th17 response. In this study, we verified the downregulation of Th17 response by a single-dose CRP injection in MOG-immunized EAE mice in vivo while the direct and indirect effects of CRP on Th17 response were differentiated by comparing its actions on isolated CD4+ T cells and splenocytes in vitro, respectively. Moreover, the immune cell composition was examined in the blood and CNS (Central Nervous System), and a blood (monocytes) to CNS (dendritic cells) infiltration pathway is established in the course of EAE development. The infiltrated monocyte derived DCs (moDCs) were proved to be the only candidate antigen presenting cells to execute CRP’s function. Conversely, the decrease of Th17 responses caused by CRP disappeared in the above in vivo and in vitro studies with FcγR2B−/− mice, indicating that FcγR2B expressed on moDCs mediates CRP function. Furthermore, peripheral blood monocytes were isolated and induced to establish moDCs, which were used to demonstrate that the antigen presenting ability of moDCs was attenuated by CRP through FcγR2B, and then NF-κB and ERK signaling pathways were manifested to be involved in this regulation. Ultimately, we perfected and enriched the mechanism studies of CRP in EAE remission, so we are more convinced that CRP plays a key role in protecting against EAE development, which may be a potential therapeutic target for the treatment of MS in human.
Collapse
Affiliation(s)
- Zhi-Yuan Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maggie K Pecsok
- Departments of Neurology and Immunology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ke Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Min-Jie Gong
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Wu
- Center of Teaching and Experiment for Medical Post Graduates, School of Basic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Yin A, Chen W, Cao L, Li Q, Zhu X, Wang L. FAM96A knock-out promotes alternative macrophage polarization and protects mice against sepsis. Clin Exp Immunol 2021; 203:433-447. [PMID: 33232517 PMCID: PMC7874832 DOI: 10.1111/cei.13555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is an intractable clinical syndrome characterized by organ dysfunction when the body over-responds to an infection. Sepsis has a high fatality rate and lacks effective treatment. Family with sequence similarity 96 member A (FAM96A) is an evolutionarily conserved protein with high expression in the immune system and is related to cytosolic iron assembly and tumour suppression; however, research has been rarely conducted on its immune functions. Our study found that Fam96a-/- mice significantly resisted lesions during sepsis simulated by caecal ligation and puncture (CLP) or endotoxicosis models. After a challenge with lipopolysaccharide (LPS) or infection, Fam96a-/- mice exhibited less organ damage, longer survival and better bacterial clearance with decreased levels of proinflammatory cytokines. While screening several subsets of immune cells, FAM96A-expressing macrophages as the key cell type inhibited sepsis development. In-vivo macrophage depletion or adoptive transfer experiments abrogated significant differences in the survival of sepsis between Fam96a-/- and wild-type mice. Results of the bone marrow-derived macrophage (BMDM) polarization experiment indicated that FAM96A deficiency promotes the transformation of uncommitted monocytes/macrophages (M0) into M2 macrophages, secreting fewer proinflammatory cytokines. FAM96A may mediate an immunometabolism shift - from oxidative phosphorylation (OXPHOS) to glycolysis - in macrophages during sepsis, mirrored by reactive oxygen species (ROS) and glucose uptake. These data demonstrate that FAM96A regulates inflammatory response and provide a novel genomic insight for sepsis treatment.
Collapse
Affiliation(s)
- A. Yin
- Center for Human Disease GenomicsDepartment of ImmunologyHealth Science CenterSchool of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory of Medical ImmunologySchool of Basic Medical SciencePeking UniversityMinistry of HealthBeijingPR China
| | - W. Chen
- Center for Human Disease GenomicsDepartment of ImmunologyHealth Science CenterSchool of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory of Medical ImmunologySchool of Basic Medical SciencePeking UniversityMinistry of HealthBeijingPR China
| | - L. Cao
- Center for Human Disease GenomicsDepartment of ImmunologyHealth Science CenterSchool of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory of Medical ImmunologySchool of Basic Medical SciencePeking UniversityMinistry of HealthBeijingPR China
| | - Q. Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - X. Zhu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - L. Wang
- Center for Human Disease GenomicsDepartment of ImmunologyHealth Science CenterSchool of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory of Medical ImmunologySchool of Basic Medical SciencePeking UniversityMinistry of HealthBeijingPR China
| |
Collapse
|
14
|
Désy O, Vallin P, Béland S, Bouchard-Boivin F, Gama AP, De Serres SA. Longitudinal immune profile reveals reduced function of pro-inflammatory monocytes with age following kidney transplantation. Am J Transplant 2021; 21:1147-1159. [PMID: 32777159 DOI: 10.1111/ajt.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023]
Abstract
Toxicity of immunosuppression, notably the risk of infection, increases with age. However, the dynamic changes in innate immune response following transplantation are unclear. Based on recent observations, we hypothesized that pro-inflammatory capacity would decrease with age. We analyzed approximately 300 PBMC samples collected longitudinally in 45 de novo, adult kidney recipients and performed detailed phenotypic and functional profiling of monocytes and T cell subsets. Inflammatory response to TLR4 stimulation and indirect allostimulation using mismatched HLA peptides were assessed. In patients aged ≥56 years, TNF-α production by intermediate monocytes was similar to that in younger patients early posttransplant, but diminished substantially later. Adjusted analyses suggested that this was not attributable to confounding factors. In contrast, the alloimmune response to HLA peptides measured by IFN-γ in CD4+ T cells and TNF-α in monocytes was stable over time, but was low in older recipients. Measurement of CD80-86 surface expression revealed no signal for a lower costimulation capacity of APCs. These results suggest that older recipients have a reduced function of their innate pro-inflammatory immune cells posttransplant while maintaining a stable, low alloimmune response over time. The effect of reduced immunosuppressant doses on preventing this phenomenon needs to be clarified.
Collapse
Affiliation(s)
- Olivier Désy
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Patrice Vallin
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - François Bouchard-Boivin
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Alcino P Gama
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Sacha A De Serres
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
15
|
Benlyamani I, Venet F, Coudereau R, Gossez M, Monneret G. Monocyte HLA-DR Measurement by Flow Cytometry in COVID-19 Patients: An Interim Review. Cytometry A 2020; 97:1217-1221. [PMID: 33125816 DOI: 10.1002/cyto.a.24249] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022]
Abstract
Several months after the sudden emergence of SARS-CoV-2 and COVID-19, the understanding of the appropriate host immune response to a virus totally unknown of human immune surveillance is still of major importance. By international definition, COVID-19 falls in the scope of septic syndromes (organ dysfunction due to dysregulated host response to an infection) in which immunosuppression is a significant driver of mortality. Sepsis-induced immunosuppression is mostly defined and monitored by the measurement of decreased expression of HLA-DR molecules on circulating monocytes (mHLA-DR). In this interim review, we summarize the first mHLA-DR results in COVID-19 patients. In critically ill patients, results homogenously indicate a decreased mHLA-DR expression, which, along with profound lymphopenia and other functional alterations, is indicative of a status of immunosuppression. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ihsane Benlyamani
- Laboratoire d'Immunologie, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, EA7426, Lyon, France
| | - Fabienne Venet
- Laboratoire d'Immunologie, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, EA7426, Lyon, France
| | - Rémy Coudereau
- Laboratoire d'Immunologie, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, EA7426, Lyon, France
| | - Morgane Gossez
- Laboratoire d'Immunologie, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, EA7426, Lyon, France
| | - Guillaume Monneret
- Laboratoire d'Immunologie, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Claude Bernard Lyon 1, EA7426, Lyon, France
| |
Collapse
|
16
|
Alvarez KLF, Poma-Acevedo A, Fernández-Díaz M. A transient increase in MHC-II low monocytes after experimental infection with Avibacterium paragallinarum (serovar B-1) in SPF chickens. Vet Res 2020; 51:123. [PMID: 32977847 PMCID: PMC7517641 DOI: 10.1186/s13567-020-00840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Infectious coryza (IC), an upper respiratory tract disease affecting chickens, is caused by Avibacterium paragallinarum. The clinical manifestations of IC include nasal discharge, facial swelling, and lacrimation. This acute disease results in high morbidity and low mortality, while the course of the disease is prolonged and mortality rates are increased in cases with secondary infections. Studies regarding the immune response in infected chickens are scarce, and the local immune response is the focal point of investigation. However, a large body of work has demonstrated that severe infections can impact the systemic immune response. The objective of this study was to evaluate the systemic effects of Avibacterium paragallinarum (serovar B-1) infection on immune cells in specific pathogen-free (SPF) chickens. The current study revealed the presence of a transient circulating monocyte population endowed with high phagocytic ability and clear downregulation of major histocompatibility complex class II (MHC-II) surface expression. In human and mouse studies, this monocyte population (identified as tolerant monocytes) has been correlated with a dysfunctional immune response, increasing the risk of secondary infections and mortality. Consistent with this dysfunctional immune response, we demonstrate that B cells from infected chickens produced fewer antibodies than those from control chickens. Moreover, T cells isolated from the peripheral blood of infected chickens had a lower ability to proliferate in response to concanavalin A than those isolated from control chickens. These findings could be related to the severe clinical signs observed in complicated IC caused by the presence of secondary infections.
Collapse
Affiliation(s)
- Karla Lucía F Alvarez
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru.
| | - Astrid Poma-Acevedo
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru
| | - Manolo Fernández-Díaz
- Research and Development Laboratories, FARVET, Carretera Panamericana Sur No 766 Km 198.5, Ica, Peru
| |
Collapse
|
17
|
McBride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach KR, Patil TK, Bohannon JK, Sherwood ER, Patil NK. The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma. Front Immunol 2020; 11:1043. [PMID: 32547553 PMCID: PMC7273750 DOI: 10.3389/fimmu.2020.01043] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or β-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or β-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.
Collapse
Affiliation(s)
- Margaret A. McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
18
|
Li J, Tang Z, Xie M, Hang C, Yu Y, Li C. Association between elevation of plasma biomarkers and monocyte dysfunction and their combination in predicting sepsis: An observational single-centre cohort study. Innate Immun 2020; 26:514-527. [PMID: 32456597 PMCID: PMC7491234 DOI: 10.1177/1753425920926602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the possible relationship between the two biomarkers presepsin and procalcitonin (PCT) and monocyte immune function, and to explore their combination in mortality prediction in the early stage of sepsis. A total of 198 patients with bacterial infection and diagnosed with sepsis and 40 healthy control subjects were included. Blood samples were collected on admission within 24 h. Plasma concentrations of presepsin and PCT were measured. Expression of monocyte surface CD14, programmed cell death receptor ligand-1 (PD-L1) and human leucocyte Ag (HLA)-DR were determined using flow cytometry. Levels of plasma presepsin and PCT were significantly higher under septic conditions, and increased with the progression of sepsis. Monocyte CD14 and HLA-DR expression were decreased, while PD-L1 was overexpressed in sepsis compared to control. Presepsin and PCT concentrations were positively correlated with Sequential Organ Failure Assessment score, Acute Physiology and Chronic Health Evaluation System II score and PD-L1, while they were negatively correlated with CD14 and HLA-DR. Presepsin plus monocyte HLA-DR mean fluorescence intensity had the highest prognostic value over other parameters alone or in combination. Presepsin and PCT had a weak correlation with monocyte dysfunction during early sepsis. The combination of presepsin and monocyte HLA-DR could help improve prognostic value.
Collapse
Affiliation(s)
- Jiabao Li
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, PR China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, PR China
| | - Miaorong Xie
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, PR China
| | - Chenchen Hang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, PR China
| | - Yanan Yu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, PR China
| | - Chunsheng Li
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, PR China
| |
Collapse
|
19
|
Venet F, Demaret J, Gossez M, Monneret G. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci 2020; 1499:3-17. [PMID: 32202669 DOI: 10.1111/nyas.14333] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
On May 2017, the World Health Organization recognized sepsis as a global health priority. Sepsis profoundly perturbs immune homeostasis by initiating a complex response that varies over time, with the concomitant occurrence of pro- and anti-inflammatory mechanisms. Sepsis deeply impacts myeloid cell response. Different mechanisms are at play, such as apoptosis, endotoxin tolerance, metabolic failure, epigenetic reprogramming, and central regulation. This induces systemic effects on circulating immune cells and impacts progenitors locally in lymphoid organs. In the bone marrow, a progressive shift toward the release of immature myeloid cells (including myeloid-derived suppressor cells), at the expense of mature neutrophils, takes place. Circulating dendritic cell number remains dramatically low and monocytes/macrophages display an anti-inflammatory phenotype and reduced antigen presentation capacity. Intensity and persistence of these alterations are associated with increased risk of deleterious outcomes in patients. Thus, myeloid cells dysfunctions play a prominent role in the occurrence of sepsis-acquired immunodeficiency. For the most immunosuppressed patients, this paves the way for clinical trials evaluating immunoadjuvant molecules (granulocyte-macrophage colony-stimulating factor and interferon gamma) aimed at restoring homeostatic myeloid cell response. Our review offers a summary of sepsis-induced myeloid cell dysfunctions and current therapeutic strategies proposed to target these defects in patients.
Collapse
Affiliation(s)
- Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julie Demaret
- Institut d'Immunologie, Lille University and University Hospital (CHU), Lille, France
| | - Morgane Gossez
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
20
|
Hernandez A, Patil NK, Stothers CL, Luan L, McBride MA, Owen AM, Burelbach KR, Williams DL, Sherwood ER, Bohannon JK. Immunobiology and application of toll-like receptor 4 agonists to augment host resistance to infection. Pharmacol Res 2019; 150:104502. [PMID: 31689522 DOI: 10.1016/j.phrs.2019.104502] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Infectious diseases remain a threat to critically ill patients, particularly with the rise of antibiotic-resistant bacteria. Septic shock carries a mortality of up to ∼40% with no compelling evidence of promising therapy to reduce morbidity or mortality. Septic shock survivors are also prone to nosocomial infections. Treatment with toll-like receptor 4 (TLR4) agonists have demonstrated significant protection against common nosocomial pathogens in various clinically relevant models of infection and septic shock. TLR4 agonists are derived from a bacteria cell wall or synthesized de novo, and more recently novel small molecule TLR4 agonists have also been developed. TLR4 agonists augment innate immune functions including expansion and recruitment of innate leukocytes to the site of infection. Recent studies demonstrate TLR4-induced leukocyte metabolic reprogramming of cellular metabolism to improve antimicrobial function. Metabolic changes include sustained augmentation of macrophage glycolysis, mitochondrial function, and tricarboxylic acid cycle flux. These findings set the stage for the use of TLR4 agonists as standalone therapeutic agents or antimicrobial adjuncts in patient populations vulnerable to nosocomial infections.
Collapse
Affiliation(s)
- Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cody L Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret A McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine R Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David L Williams
- Department of Surgery, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN, USA
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Steimle A, Michaelis L, Di Lorenzo F, Kliem T, Münzner T, Maerz JK, Schäfer A, Lange A, Parusel R, Gronbach K, Fuchs K, Silipo A, Öz HH, Pichler BJ, Autenrieth IB, Molinaro A, Frick JS. Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Mol Ther 2019; 27:1974-1991. [PMID: 31416777 PMCID: PMC6838991 DOI: 10.1016/j.ymthe.2019.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
Generated by gram-negative bacteria, lipopolysaccharides (LPSs) are one of the most abundant and potent immunomodulatory substances present in the intestinal lumen. Interaction of agonistic LPS with the host myeloid-differentiation-2/Toll-like receptor 4 (MD-2/TLR4) receptor complex results in nuclear factor κB (NF-κB) activation, followed by the robust induction of pro-inflammatory immune responses. Here we have isolated LPS from a common gut commensal, Bacteroides vulgatus mpk (BVMPK), which provides only weak agonistic activity. This weak agonistic activity leads to the amelioration of inflammatory immune responses in a mouse model for experimental colitis, and it was in sharp contrast to strong agonists and antagonists. In this context, the administration of BVMPK LPS into mice with severe intestinal inflammation re-established intestinal immune homeostasis within only 2 weeks, resulting in the clearance of all symptoms of inflammation. These inflammation-reducing properties of weak agonistic LPS are grounded in the induction of a special type of endotoxin tolerance via the MD-2/TLR4 receptor complex axis in intestinal lamina propria CD11c+ cells. Thus, weak agonistic LPS represents a promising agent to treat diseases involving pathological overactivation of the intestinal immune system, e.g., in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alex Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Thorsten Kliem
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Tobias Münzner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Jan Kevin Maerz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Kerstin Gronbach
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Kerstin Fuchs
- Institute of Radiology, Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Hasan Halit Öz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Institute of Radiology, Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Julia-Stefanie Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Mengel A, Ulm L, Hotter B, Harms H, Piper SK, Grittner U, Montaner J, Meisel C, Meisel A, Hoffmann S. Biomarkers of immune capacity, infection and inflammation are associated with poor outcome and mortality after stroke - the PREDICT study. BMC Neurol 2019; 19:148. [PMID: 31269910 PMCID: PMC6607590 DOI: 10.1186/s12883-019-1375-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/23/2019] [Indexed: 02/20/2023] Open
Abstract
Background Almost 40% of stroke patients have a poor outcome at 3 months after the index event. Predictors for stroke outcome in the early acute phase may help to tailor stroke treatment. Infection and inflammation are considered to influence stroke outcome. Methods In a prospective multicenter study in Germany and Spain, including 486 patients with acute ischemic stroke, we used multivariable regression analysis to investigate the association of poor outcome with monocytic HLA-DR (mHLA-DR) expression, interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor alpha (TNF-alpha) and lipopolysaccharide-binding protein (LBP) as markers for immunodepression, inflammation and infection. Outcome was assessed at 3 months after stroke via a structured telephone interview using the modified Rankin Scale (mRS). Poor outcome was defined as a mRS score of 3 or higher which included death. Furthermore, a time-to-event analysis for death within 3 months was performed. Results Three-month outcome data was available for 391 patients. Female sex, older age, diabetes mellitus, atrial fibrillation, stroke-associated pneumonia (SAP) and higher National Institute of Health Stroke Scale (NIHSS) score as well as lower mHLA-DR levels, higher IL-6 and LBP-levels at day 1 were associated with poor outcome at 3 months in bivariate analysis. Furthermore, multivariable analysis revealed that lower mHLA-DR expression was associated with poor outcome. Female sex, older age, atrial fibrillation, SAP, higher NIHSS score, lower mHLA-DR expression and higher IL-6 levels were associated with shorter survival time in bivariate analysis. In multivariable analysis, SAP and higher IL-6 levels on day 1 were associated with shorter survival time. Conclusions SAP, lower mHLA-DR-expression and higher IL-6 levels on day one are associated with poor outcome and shorter survival time at 3 months after stroke onset. Trial registration www.clinicaltrials.gov, NCT01079728, March 3, 2010.
Collapse
Affiliation(s)
- A Mengel
- Department of Neurology Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany. .,Department of Neurology and Stroke, Universitätsklinik Tuebingen, Hoppe-Seyler-Str.3, 72076, Tuebingen, Germany.
| | - L Ulm
- Department of Neurology Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany.,Center for Clinical Research, The University of Queensland, Herston, Queensland, 4029, Australia
| | - B Hotter
- Department of Neurology Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany
| | - H Harms
- Department of Neurology Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany
| | - S K Piper
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - U Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - J Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - C Meisel
- NeuroCure Clinical Research Center Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany
| | - A Meisel
- Department of Neurology Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany.,NeuroCure Clinical Research Center Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany
| | - S Hoffmann
- Department of Neurology Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany.,NeuroCure Clinical Research Center Berlin, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10115, Berlin, Germany
| |
Collapse
|
23
|
Ciaglia E, Montella F, Maciag A, Scala P, Ferrario A, Banco C, Carrizzo A, Spinelli CC, Cattaneo M, De Candia P, Vecchione C, Villa F, Puca AA. Longevity-Associated Variant of BPIFB4 Mitigates Monocyte-Mediated Acquired Immune Response. J Gerontol A Biol Sci Med Sci 2019; 74:S38-S44. [DOI: 10.1093/gerona/glz036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Abstract
One of the basis of exceptional longevity is the maintaining of the balance between inflammatory and anti-inflammatory networks. The monocyte-macrophages activation plays a major role in tuning the immune responses, by oscillating between patrolling-protective to inflammatory status. Longevity-associated variant (LAV) of bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) activates calcium, PKC-alpha, and eNOS, rescuing endothelial dysfunction in aged mice and inducing revascularization. The BPIFB4’s increment in serum of healthy long-living individuals (LLIs) compared to nonhealthy ones, its therapeutic potential in improving vascular homeostasis, which depends on immune system, together with its expression in bone marrow myeloid cells, suggests that LAV-BPIFB4 may improve immune regulation. Here we show that human monocytes exposed to LAV-BPIFB4 protein increased co-stimulatory molecules in resting state and reduced pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) after activating stimuli. Accordingly, a low percentage of CD69+ activated lymphocytes are found among LAV-BPIFB4-treated peripheral blood mononuclear cells (PBMCs). Moreover, human monocyte-derived dendritic cells (DCs) generated in presence of LAV-BPIFB4 secreted higher anti-(IL-10 and TGF-β) and lower pro-inflammatory (TNF-α and IL-1β) cytokines. Accordingly, LLIs’ plasma showed higher levels of circulating IL-10 and of neutralizing IL-1 receptor antagonist (IL-1RA) compared to controls. Thus, LAV-BPIFB4 effects on myeloid compartment could represent one example of a genetic predisposition carried by LLIs to protect from immunological dysfunctions.
Collapse
Affiliation(s)
- Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno, Baronissi, Salerno, Italy
| | - Anna Maciag
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno, Baronissi, Salerno, Italy
| | - Anna Ferrario
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Carlotta Banco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno, Baronissi, Salerno, Italy
| | - Albino Carrizzo
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Monica Cattaneo
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Paola De Candia
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno, Baronissi, Salerno, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesco Villa
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno, Baronissi, Salerno, Italy
- Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
24
|
Probiotic Lactobacillus rhamnosus GR-1 is a unique prophylactic agent that suppresses infection-induced myometrial cell responses. Sci Rep 2019; 9:4698. [PMID: 30886179 PMCID: PMC6423128 DOI: 10.1038/s41598-019-41133-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/27/2019] [Indexed: 01/08/2023] Open
Abstract
Preterm birth (PTB) is a multifactorial syndrome affecting millions of neonates worldwide. Intrauterine infection can induce PTB through the secretion of pro-inflammatory cytokines and untimely activation of uterine contractions. In pregnant mice, prophylactic administration of probiotic Lactobacillus rhamnosus GR-1 supernatant (GR1SN) prevented lipopolysaccharide (LPS)-induced PTB and reduced cytokine expression in the uterine muscle (myometrium). In this study we sought to delineate the mechanisms by which GR1SN suppressed cytokine secretion in the myometrium. We observed that L. rhamnosus GR-1 uniquely secretes heat-resistant but trypsin-sensitive factors, which significantly suppressed LPS-induced secretion of pro-inflammatory cytokines IL-6, IL-8, and MCP-1 in the human myometrial cell line, hTERT-HM. This effect was unique to GR1SN and could not be replicated using supernatant derived from non-GR-1 commensal lactobacilli species: L. rhamnosus GG, L. lactis, L. casei, or L. reuteri RC-14. Furthermore, pre-incubation of hTERT-HM cells with low-dose Pam3CSK (a TLR1/2 synthetic agonist which mimics LPS action) prior to LPS administration also significantly decreased LPS-induced cytokine secretion. This study highlights the distinct capacity of protein-like moieties secreted by L. rhamnosus GR-1 to inhibit pro-inflammatory cytokine production by human myometrial cells, potentially through a TLR1/2-mediated mechanism.
Collapse
|
25
|
Challenges of using lipopolysaccharides for cancer immunotherapy and potential delivery-based solutions thereto. Ther Deliv 2019; 10:165-187. [DOI: 10.4155/tde-2018-0076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite being one of the earliest Toll-like receptor (TLR)-based cancer immunotherapeutics discovered and investigated, the full extent of lipopolysaccharide (LPS) potentials within this arena remains hitherto unexploited. In this review, we will debate the challenges that have complicated the improvement of LPS-based immunotherapeutic approaches in cancer therapy. Based on their nature, those will be discussed with a focus on side effect-related, tolerance-related and in vivo model-related challenges. We will then explore how drug delivery strategies can be integrated within this domain to address such challenges in order to improve the therapeutic outcome, and will present a summary of the studies that have been dedicated thereto. This paper may inspire further developments based on reconciling the advantages of drug delivery and LPS-based cancer immunotherapy.
Collapse
|
26
|
Gómez-Aristizábal A, Gandhi R, Mahomed NN, Marshall KW, Viswanathan S. Synovial fluid monocyte/macrophage subsets and their correlation to patient-reported outcomes in osteoarthritic patients: a cohort study. Arthritis Res Ther 2019; 21:26. [PMID: 30658702 PMCID: PMC6339358 DOI: 10.1186/s13075-018-1798-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chronic, low-grade inflammation of the synovium (synovitis) is a hallmark of osteoarthritis (OA), thus understanding of OA immunobiology, mediated by immune effectors, is of importance. Specifically, monocytes/macrophages (MΦs) are known to be abundantly present in OA joints and involved in OA progression. However, different subsets of OA MΦs have not been investigated in detail, especially in terms of their relationship with patient-reported outcome measures (PROMs). We hypothesized that levels of synovial fluid (SF) MΦ subsets are indicative of joint function and quality of life in patients with OA, and can therefore serve as biomarkers and therapeutic targets for OA. METHODS In this cohort study, synovial fluid leukocytes (SFLs, N = 86) and peripheral blood mononuclear cells (n = 53) from patients with knee OA were characterized. Soluble MΦ receptors and chemokine (sCD14, sCD163, CCL2, CX3CL1) levels were detected in SF using immunoassays. Linear models, adjusted for sex, age and body mass index, were used to determine associations between SF MΦs and soluble factors with PROMs (N = 83). Pearson correlation was calculated to determine correlation between MΦ subsets, T cells and soluble factors. RESULTS SF MΦs were the most abundant SFLs. Within these, the double-positive CD14+CD16+-MΦ subset is enriched in knee OA SF compared to the circulation. Importantly, MΦ subset ratios correlated with PROMs, specially stiffness, function and quality of life. Interestingly, the SF CD14+CD16+-MΦ subset ratio correlated with SF chemokine (C-C motif) ligand 2 (CCL2) levels but not with levels of sCD163 or sCD14; we found no association between PROMs and either SF CCL2, sCD163, sCD14 or CX3CL1 (which was below detection levels). All SF MΦs displayed high levels of HLA-DR, suggesting an activated phenotype. Correlation between OA SF MΦ subsets and activated CD4+ T cell subsets suggests modulation of CD4+ T cell activation by MΦs. CONCLUSION SF MΦ subsets are associated with knee OA PROMs and display an activated phenotype, which may lead to modulation of CD4+ T cell activation. Knee OA SF MΦ subsets could serve as knee OA function biomarkers and as targets of novel therapeutics.
Collapse
Affiliation(s)
- Alejandro Gómez-Aristizábal
- Arthritis Program, University Health Network, Toronto, ON Canada
- Krembil Research Institute, University Health Network, Toronto, ON Canada
- Cell Therapy Program, University Health Network, Toronto, ON Canada
| | - Rajiv Gandhi
- Arthritis Program, University Health Network, Toronto, ON Canada
- Krembil Research Institute, University Health Network, Toronto, ON Canada
- Division of Orthopaedic Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON Canada
| | - Nizar N. Mahomed
- Arthritis Program, University Health Network, Toronto, ON Canada
- Krembil Research Institute, University Health Network, Toronto, ON Canada
- Division of Orthopaedic Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON Canada
| | - K. Wayne Marshall
- Arthritis Program, University Health Network, Toronto, ON Canada
- Krembil Research Institute, University Health Network, Toronto, ON Canada
- Division of Orthopaedic Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON Canada
| | - Sowmya Viswanathan
- Arthritis Program, University Health Network, Toronto, ON Canada
- Krembil Research Institute, University Health Network, Toronto, ON Canada
- Cell Therapy Program, University Health Network, Toronto, ON Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
27
|
Kokona D, Ebneter A, Escher P, Zinkernagel MS. Colony-stimulating factor 1 receptor inhibition prevents disruption of the blood-retina barrier during chronic inflammation. J Neuroinflammation 2018; 15:340. [PMID: 30541565 PMCID: PMC6292111 DOI: 10.1186/s12974-018-1373-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microglia-associated inflammation is closely related to the pathogenesis of various retinal diseases such as uveitis and diabetic retinopathy, which are associated with increased vascular permeability. In this study, we investigated the effect of systemic lipopolysaccharide (LPS) exposure to activation and proliferation of retinal microglia /macrophages. METHODS Balb/c and Cx3cr1gfp/+ mice were challenged with LPS (1 mg/kg) daily for four consecutive days. For microglia depletion, mice were treated with colony-stimulating factor 1 receptor (CSF-1R) inhibitor PLX5622 1 week before the first LPS challenge and until the end of the experiment. In vivo imaging of the retina was performed on days 4 and 7 after the first LPS challenge, using optical coherence tomography and fluorescein angiography. Flow cytometry analysis, retinal whole mount, and retinal sections were used to investigate microglia and macrophage infiltration and proliferation after LPS challenge. Cytokines were analyzed in the blood as well as in the retina. Data analysis was performed using unpaired t tests, repeated measures one-way ANOVA, or ordinary one-way ANOVA followed by Tukey's post hoc analysis. Kruskal-Wallis test followed by Dunn's multiple comparison tests was used for the analysis of non-normally distributed data. RESULTS Repeated LPS challenge led to activation and proliferation of retinal microglia, infiltration of monocyte-derived macrophages into the retina, and breakdown of the blood-retina barrier (BRB) accompanied by accumulation of sub-retinal fluid. Using in vivo imaging, we show that the breakdown of the BRB is highly reproducible but transitory. Acute but not chronic systemic exposure to LPS triggered a robust release of inflammatory mediators in the retina with minimal effects in the blood plasma. Inhibition of the CSF-1R by PLX5622 resulted in depletion of retinal microglia, suppression of cytokine production in the retina, and prevention of BRB breakdown. CONCLUSIONS These findings suggest that microglia/macrophages play an important role in the pathology of retinal disorders characterized by breakdown of the BRB, and suppression of their activation may be a potential therapeutic target for such retinopathies.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland.,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, CH-3010, Bern, Switzerland. .,Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| |
Collapse
|
28
|
Fort R, Monneret G, Venet F, Hot A. L’expression diminuée de HLA-DR monocytaire comme indicateur d’immunodépression chez les patients drépanocytaires en crise. Rev Med Interne 2018. [DOI: 10.1016/j.revmed.2018.10.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Abstract
Immune therapy to ease the burden of sepsis has thus far failed to consistently improve patient outcomes. Advances in cancer immune therapy and awareness that prolonged immune-suppression in sepsis can leave patients vulnerable to secondary infection and death have driven resurgence in the field of sepsis immune-therapy investigation. As we develop and evaluate these novel therapies, we must learn from past experiences where single-mediator targeted immune therapies were blindly delivered to heterogeneous patient cohorts with complex and evolving immune responses. Advances in genomics, proteomics, metabolomics, and point-of-care technology, coupled with a better understanding of sepsis pathogenesis, have meant that personalised immune-therapy is on the horizon. Here, we review the complex immune pathogenesis in sepsis and the contemporary immune therapies that are being investigated to manipulate this response. An outline of the immune biomarkers that may be used to support this approach is also provided.
Collapse
Affiliation(s)
- Roger Davies
- Department of Anaesthetics, Pain and Intensive Care Medicine, Imperial College London, UK
- Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Kieran O’Dea
- Department of Anaesthetics, Pain and Intensive Care Medicine, Imperial College London, UK
| | - Anthony Gordon
- Department of Anaesthetics, Pain and Intensive Care Medicine, Imperial College London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
30
|
Proteomic analysis of lipopolysaccharide activated human monocytes. Mol Immunol 2018; 103:257-269. [PMID: 30326359 DOI: 10.1016/j.molimm.2018.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/20/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022]
Abstract
Monocytes are key mediators of innate immunity and comprise an important cellular defence against invading pathogens. However, exaggerated or dysregulated monocyte activation can lead to severe immune-mediated pathology such as sepsis or chronic inflammatory diseases. Thus, detailed insight into the molecular mechanisms of monocyte activation is essential to understand monocyte-driven inflammatory pathologies. We therefore investigated the global protein changes in human monocytes during lipopolysaccharide (LPS) activation to mimic bacterial activation. Purified human monocytes were stimulated with LPS for 17 h and analyzed by state-of-the-art liquid chromatography tandem mass spectrometry (LC-MS/MS). The label-free quantitative proteome analysis identified 2746 quantifiable proteins of which 101 had a statistically significantly different abundance between LPS-stimulated cells and unstimulated controls. Additionally, 143 proteins were exclusively identified in either LPS stimulated cells or unstimulated controls. Functional annotation clustering demonstrated that LPS, most significantly, regulates proteasomal- and lysosomal proteins but in opposite directions. Thus, seven proteasome subunits were upregulated by LPS while 11 lysosomal proteins were downregulated. Both systems are critically involved in processing of proteins for antigen-presentation and together with LPS-induced regulation of CD74 and tapasin, our data suggest that LPS can skew monocytic antigen-presentation towards MHC class I rather than MHC class II. In summary, this study provides a sensitive high throughput protein analysis of LPS-induced monocyte activation and identifies several LPS-regulated proteins not previously described in the literature which can be used as a source for future studies.
Collapse
|
31
|
Association between HLA-DR Expression and Multidrug-resistant Infection in Patients with Severe Acute Pancreatitis. Curr Med Sci 2018; 38:449-454. [PMID: 30074211 DOI: 10.1007/s11596-018-1899-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Multidrug-resistant (MDR) bacterial infection is a common complication of severe acute pancreatitis (SAP). This study aimed to explore the association between human leukocyte antigen-antigen D-related (HLA-DR) expression and multidrug-resistant infection in patients with SAP. A total of 24 SAP patients who were admitted to Nanjing Drum Tower Hospital between May 2015 and December 2016 were enrolled in the study. The percentages of CD4+, CD8+, natural killer (NK), and HLA-DR (CD14+) cells and the CD4+/CD8+ cell ratio on days 1,7,14, and 28 after admission were determined by flow cytometry. Eighteen patients presented with the symptoms of infection. Among them, 55.6% patients (10/18) developed MDR infection. The most common causative MDR organisms were Enterobacter cloacae and Acinetobacter baumannii. The CD4+/CD8+ cell ratio and the percentage of NK cells were similar between patients with non-MDR and patients with MDR infections. In patients without infection, the HLA-DR percentage was maintained at a high level throughout the 28 days. Compared to the patients without any infection, the HLA-DR percentage in patients with non-MDR infection was reduced on day 1 but increased and reached similar levels on day 28. In patients with MDR infection, the HLA-DR percentage remained below normal levels at all-time points. It was concluded that persistent down-regulation of HLA-DR expression is associated with MDR bacterial infection in patients with SAP.
Collapse
|
32
|
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol 2017; 14:121-137. [PMID: 29225343 DOI: 10.1038/nrneph.2017.165] [Citation(s) in RCA: 559] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction that is caused by a dysregulated host response to infection. Sepsis can induce acute kidney injury and multiple organ failures and represents the most common cause of death in the intensive care unit. Sepsis initiates a complex immune response that varies over time, with the concomitant occurrence of both pro-inflammatory and anti-inflammatory mechanisms. As a result, most patients with sepsis rapidly display signs of profound immunosuppression, which is associated with deleterious consequences. Scientific advances have highlighted the role of metabolic failure, epigenetic reprogramming, myeloid-derived suppressor cells, immature suppressive neutrophils and immune alterations in primary lymphoid organs (the thymus and bone marrow) in sepsis. An improved understanding of the mechanisms underlying this immunosuppression as well as of the similarities between sepsis-induced immunosuppression and immune defects in cancer or immunosenescence has led to novel therapeutic strategies aimed at stimulating immune function in patients with sepsis. Trials assessing the therapeutic benefit of IL-7, granulocyte-macrophage colony-stimulating factor (GM-CSF) and antibodies against programmed cell death protein 1 (PD1) and programmed cell death 1 ligand 1 (PDL1) for the treatment of sepsis are in progress. The reappraisal of sepsis pathophysiology has also resulted in a novel approach to the design of clinical trials evaluating sepsis treatments, based on an evaluation of the immune status and biomarker-based stratification of patients.
Collapse
Affiliation(s)
- Fabienne Venet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Immunology Department, Flow Division, 69003 Lyon, France.,Equipe d'Accueil 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Immunology Department, Flow Division, 69003 Lyon, France.,Equipe d'Accueil 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, 69003 Lyon, France
| |
Collapse
|
33
|
Hoffmann S, Harms H, Ulm L, Nabavi DG, Mackert BM, Schmehl I, Jungehulsing GJ, Montaner J, Bustamante A, Hermans M, Hamilton F, Göhler J, Malzahn U, Malsch C, Heuschmann PU, Meisel C, Meisel A. Stroke-induced immunodepression and dysphagia independently predict stroke-associated pneumonia - The PREDICT study. J Cereb Blood Flow Metab 2017; 37:3671-3682. [PMID: 27733675 PMCID: PMC5718319 DOI: 10.1177/0271678x16671964] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stroke-associated pneumonia is a frequent complication after stroke associated with poor outcome. Dysphagia is a known risk factor for stroke-associated pneumonia but accumulating evidence suggests that stroke induces an immunodepressive state increasing susceptibility for stroke-associated pneumonia. We aimed to confirm that stroke-induced immunodepression syndrome is associated with stroke-associated pneumonia independently from dysphagia by investigating the predictive properties of monocytic HLA-DR expression as a marker of immunodepression as well as biomarkers for inflammation (interleukin-6) and infection (lipopolysaccharide-binding protein). This was a prospective, multicenter study with 11 study sites in Germany and Spain, including 486 patients with acute ischemic stroke. Daily screening for stroke-associated pneumonia, dysphagia and biomarkers was performed. Frequency of stroke-associated pneumonia was 5.2%. Dysphagia and decreased monocytic HLA-DR were independent predictors for stroke-associated pneumonia in multivariable regression analysis. Proportion of pneumonia ranged between 0.9% in the higher monocytic HLA-DR quartile (≥21,876 mAb/cell) and 8.5% in the lower quartile (≤12,369 mAb/cell). In the presence of dysphagia, proportion of pneumonia increased to 5.9% and 18.8%, respectively. Patients without dysphagia and normal monocytic HLA-DR expression had no stroke-associated pneumonia risk. We demonstrate that dysphagia and stroke-induced immunodepression syndrome are independent risk factors for stroke-associated pneumonia. Screening for immunodepression and dysphagia might be useful for identifying patients at high risk for stroke-associated pneumonia.
Collapse
Affiliation(s)
- Sarah Hoffmann
- 1 NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany.,2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Hendrik Harms
- 3 Department of Neurology, St.-Josefs Krankenhaus Potsdam, Germany
| | - Lena Ulm
- 1 NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany
| | - Darius G Nabavi
- 4 Department of Neurology, Vivantes Klinikum Neukölln, Berlin, Germany
| | | | - Ingo Schmehl
- 6 Department of Neurology, Unfallkrankenhaus Berlin, Germany
| | - Gerhard J Jungehulsing
- 7 Department of Neurology, Jüdisches Krankenhaus Berlin, Germany.,8 Center for Stroke Research (CSB), Charité - Universitätsmedizin Berlin, Germany
| | - Joan Montaner
- 9 Department of Neurology, Hospital Universitari Vall d'Hebron Barcelona, Spain
| | | | - Marcella Hermans
- 4 Department of Neurology, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Frank Hamilton
- 5 Department of Neurology, Vivantes Auguste Viktoria Klinikum, Berlin, Germany
| | - Jos Göhler
- 2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Uwe Malzahn
- 10 Institute of Clinical Epidemiology and Biometry, University of Würzburg, Germany.,11 Clinical Trial Center Würzburg, University Hospital Würzburg, Germany
| | - Carolin Malsch
- 10 Institute of Clinical Epidemiology and Biometry, University of Würzburg, Germany.,12 Comprehensive Heart Failure Center, University of Würzburg, Germany
| | - Peter U Heuschmann
- 10 Institute of Clinical Epidemiology and Biometry, University of Würzburg, Germany.,11 Clinical Trial Center Würzburg, University Hospital Würzburg, Germany.,12 Comprehensive Heart Failure Center, University of Würzburg, Germany
| | - Christian Meisel
- 13 Department of Immunology, Charité - Universitätsmedizin Berlin, Germany.,14 Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Andreas Meisel
- 1 NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany.,2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany.,8 Center for Stroke Research (CSB), Charité - Universitätsmedizin Berlin, Germany
| | | |
Collapse
|
34
|
Poujol F, Monneret G, Gallet-Gorius E, Pachot A, Textoris J, Venet F. Ex vivo Stimulation of Lymphocytes with IL-10 Mimics Sepsis-Induced Intrinsic T-Cell Alterations. Immunol Invest 2017; 47:154-168. [PMID: 29182416 DOI: 10.1080/08820139.2017.1407786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Profound T-cell alterations are observed in septic patients in association with increased risk of secondary infection and mortality. The pathophysiological mechanisms leading to such dysfunctions are not completely understood and direct and indirect mechanisms have been described. In this study we evaluated whether ex vivo stimulation of lymphocytes with IL-10, an immunosuppressive cytokine released at the systemic level during sepsis, could mimic sepsis-induced intrinsic T-cell alterations. We showed that recombinant human IL-10 priming of T cells altered their proliferative response to anti-CD2/CD3/CD28 antibody-coated beads and PHA stimulations, in a dose-dependent manner independently of accessory cells. This priming also significantly decreased T-cell secretion of IL-2 and IFNγ following stimulation. Furthermore, we demonstrated that IL-10 reduction of T-cell functionality was associated with increased FOXP3 expression in CD4+CD25+CD127- regulatory T cells as observed in sepsis. Finally, we found that blocking the increased IL-10 concentration in plasma from septic shock patients increased the proliferative response of responding T cells from healthy controls. We describe here an ex vivo model recapitulating features of sepsis-induced intrinsic T-cell alterations. This should help, in further studies, to decipher the pathophysiological mechanisms of T-cell alterations induced after septic shock.
Collapse
Affiliation(s)
- Fanny Poujol
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,b Immunology Laboratory, Joint Research Unit (BioMérieux/Hospices Civils de Lyon/UCBL1), Edouard Herriot Hospital , Lyon , France
| | - Guillaume Monneret
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,c Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital , Lyon , France
| | - Emmanuelle Gallet-Gorius
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,b Immunology Laboratory, Joint Research Unit (BioMérieux/Hospices Civils de Lyon/UCBL1), Edouard Herriot Hospital , Lyon , France
| | - Alexandre Pachot
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,b Immunology Laboratory, Joint Research Unit (BioMérieux/Hospices Civils de Lyon/UCBL1), Edouard Herriot Hospital , Lyon , France
| | - Julien Textoris
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,b Immunology Laboratory, Joint Research Unit (BioMérieux/Hospices Civils de Lyon/UCBL1), Edouard Herriot Hospital , Lyon , France.,d Anesthesia and Critical Care Medicine Department , Hospices Civils de Lyon, Burn ICU, Edouard Herriot Hospital , Lyon , France
| | - Fabienne Venet
- a Joint Research Unit, EA 7426 bioMérieux/Hospices Civils de Lyon/UCBL1 "Pathophysiology of injury induced immunosuppression (PI3)", Edouard Herriot Hospital , Lyon , France.,c Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital , Lyon , France
| |
Collapse
|
35
|
Distinct pattern of immune tolerance in dendritic cells treated with lipopolysaccharide or lipoteichoic acid. Mol Immunol 2017; 91:57-64. [DOI: 10.1016/j.molimm.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 11/17/2022]
|
36
|
The effect of IκK-16 on lipopolysaccharide-induced impaired monocytes. Immunobiology 2017; 223:365-373. [PMID: 29126656 DOI: 10.1016/j.imbio.2017.10.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
This study focuses on impaired monocyte function, which occurs in some patients after trauma, major elective surgery, or sepsis. This monocyte impairment increases the risk of secondary infection and death. We aimed to determine the influence IκK-16 had on monocytes using an ex-vivo model of human monocyte impairment. We included the effects of the well-studied comparators interferon-gamma (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) on impaired monocytes. Primary human monocytes were stimulated with 10ng/mL of lipopolysaccharide (LPS) for 16h and then challenged with 100ng/mL LPS to assess the monocyte inflammatory response. Treatment regimens, consisting of either IκK-16, IFN-γ, or GM-CSF, were administered to impaired monocytes near the time of initial LPS stimulation. Stimulation with 10ng/mL LPS initially promoted a pro-inflammatory response but subsequently impaired production of both tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) and decreased HLA-DR expression. IκK-16 treatment attenuated TNF-α production and programmed death-ligand 1 (PD-L1) expression and increased IL-10 and CD14 expression. IFN-γ treatment increased TNF-α production as well as PD-L1 and HLA-DR expression. In conclusion, limiting early inflammation with IκK-16 suppresses TNF-α production and PD-L1 expression but enhances IL-10 production and preserves CD14 expression for potential future exposure to infective stimuli.
Collapse
|
37
|
Zorio V, Venet F, Delwarde B, Floccard B, Marcotte G, Textoris J, Monneret G, Rimmelé T. Assessment of sepsis-induced immunosuppression at ICU discharge and 6 months after ICU discharge. Ann Intensive Care 2017; 7:80. [PMID: 28770544 PMCID: PMC5540741 DOI: 10.1186/s13613-017-0304-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/23/2017] [Indexed: 12/29/2022] Open
Abstract
Background Increase in mortality and in recurrent infections in the year following ICU discharge continues in survivors of septic shock, even after total clinical recovery from the initial septic event and its complications. This supports the hypothesis that sepsis could induce persistent long-term immune dysfunctions. To date, there is almost no data on ICU discharge and long-term evolution of sepsis-induced immunosuppression in septic shock survivors. The aim of this study was to assess the persistence of sepsis-induced immunosuppression by measuring expression of human leukocyte antigen DR on monocytes (mHLA-DR), CD4+ T cells, and regulatory T cells (Treg) at ICU discharge and 6 months after ICU discharge in patients admitted to the ICU for septic shock. Methods In this prospective observational study, septic shock survivors with no preexisting immune suppression or treatment interfering with the immune system were included. mHLA-DR, CD4+ T cells, and Treg expression were assessed on day 1–2, 3–4, and 6–8 after ICU admission, at ICU discharge, and 6 months after ICU discharge. Results A total of 40 patients were enrolled during their ICU stay: 21 males (52.5%) and 19 females, median age 68 years (IQR 58–77), median SOFA score on day 1–2 was 8 (IQR 7–9), and median ICU length of stay was 11 days (IQR 7–24). Among these 40 patients, 33 were studied at ICU discharge and 15 were disposed for blood sampling 6 months after ICU discharge. On day 1–2, mHLA-DR expression was abnormally low for all patients [median 4212 (IQR 2640–6047) AB/C] and remained abnormally low at ICU discharge for 75% of them [median 10,281 (IQR 7719–13,035) AB/C]. On day 3–4, 46% of patients presented CD4+ lymphopenia [median 515 (IQR 343–724) mm−3] versus 34% at ICU discharge [median 642 (IQR 459–846) mm−3]. Among patients with a 6-month blood sample, normal values of mHLA-DR were found for all patients [median 32,616 (IQR 24,918–38,738) AB/C] except for one and only another one presented CD4+ lymphopenia. Conclusions While immune alterations persist at ICU discharge, there is, at cellular level, no persistent immune alterations among septic shock survivors analyzed 6 months after ICU discharge.
Collapse
Affiliation(s)
- Violette Zorio
- Department of Anesthesiology and Critical Care Medicine, Edouard Herriot hospital, Hospices Civils de Lyon, Lyon, France. .,EA7426 Hospices Civils de Lyon - bioMérieux, University Claude Bernard Lyon 1 "Pathophysiology of Injury Induced Immunosuppression", Lyon, France.
| | - Fabienne Venet
- EA7426 Hospices Civils de Lyon - bioMérieux, University Claude Bernard Lyon 1 "Pathophysiology of Injury Induced Immunosuppression", Lyon, France.,Cellular Immunology Laboratory, Edouard Herriot hospital, Hospices Civils de Lyon, Lyon, France
| | - Benjamin Delwarde
- Department of Anesthesiology and Critical Care Medicine, Edouard Herriot hospital, Hospices Civils de Lyon, Lyon, France.,EA7426 Hospices Civils de Lyon - bioMérieux, University Claude Bernard Lyon 1 "Pathophysiology of Injury Induced Immunosuppression", Lyon, France
| | - Bernard Floccard
- Department of Anesthesiology and Critical Care Medicine, Edouard Herriot hospital, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Marcotte
- Department of Anesthesiology and Critical Care Medicine, Edouard Herriot hospital, Hospices Civils de Lyon, Lyon, France
| | - Julien Textoris
- Department of Anesthesiology and Critical Care Medicine, Edouard Herriot hospital, Hospices Civils de Lyon, Lyon, France.,EA7426 Hospices Civils de Lyon - bioMérieux, University Claude Bernard Lyon 1 "Pathophysiology of Injury Induced Immunosuppression", Lyon, France
| | - Guillaume Monneret
- EA7426 Hospices Civils de Lyon - bioMérieux, University Claude Bernard Lyon 1 "Pathophysiology of Injury Induced Immunosuppression", Lyon, France.,Cellular Immunology Laboratory, Edouard Herriot hospital, Hospices Civils de Lyon, Lyon, France
| | - Thomas Rimmelé
- Department of Anesthesiology and Critical Care Medicine, Edouard Herriot hospital, Hospices Civils de Lyon, Lyon, France.,EA7426 Hospices Civils de Lyon - bioMérieux, University Claude Bernard Lyon 1 "Pathophysiology of Injury Induced Immunosuppression", Lyon, France
| |
Collapse
|
38
|
Müller MM, Lehmann R, Klassert TE, Reifenstein S, Conrad T, Moore C, Kuhn A, Behnert A, Guthke R, Driesch D, Slevogt H. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression. Sci Rep 2017; 7:838. [PMID: 28404994 PMCID: PMC5429802 DOI: 10.1038/s41598-017-00828-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.
Collapse
Affiliation(s)
- Mario M Müller
- Septomics Research Center, Jena University Hospital, Jena, Germany.,Jena University Hospital, Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Roland Lehmann
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | | | | | - Theresia Conrad
- Septomics Research Center, Jena University Hospital, Jena, Germany.,Leibnitz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institut, Jena, Germany
| | - Christoph Moore
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Anna Kuhn
- Septomics Research Center, Jena University Hospital, Jena, Germany.,Leibnitz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institut, Jena, Germany
| | - Andrea Behnert
- Jena University Hospital, Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Reinhard Guthke
- Leibnitz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institut, Jena, Germany
| | | | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany.
| |
Collapse
|
39
|
Fensterheim BA, Guo Y, Sherwood ER, Bohannon JK. The Cytokine Response to Lipopolysaccharide Does Not Predict the Host Response to Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3264-3273. [PMID: 28275139 DOI: 10.4049/jimmunol.1602106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 12/18/2022]
Abstract
The magnitude of the LPS-elicited cytokine response is commonly used to assess immune function in critically ill patients. A suppressed response, known as endotoxin tolerance, is associated with worse outcomes, yet endotoxin tolerance-inducing TLR4 ligands are known to protect animals from infection. Thus, it remains unknown whether the magnitude of the LPS-elicited cytokine response provides an accurate assessment of antimicrobial immunity. To address this, the ability of diverse TLR ligands to modify the LPS-elicited cytokine response and resistance to infection were assessed. Priming of mice with LPS, monophosphoryl lipid A (MPLA), or poly(I:C) significantly reduced plasma LPS-elicited proinflammatory cytokines, reflecting endotoxin tolerance, whereas CpG-ODN-primed mice showed augmented cytokine production. In contrast, LPS, MPLA, and CpG-ODN, but not poly(I:C), improved the host response to a Pseudomonas aeruginosa infection. Mice primed with protective TLR ligands, including CpG-ODN, showed reduced plasma cytokines during P. aeruginosa infection. The protection imparted by TLR ligands persisted for up to 15 d yet was independent of the adaptive immune system. In bone marrow-derived macrophages, protective TLR ligands induced a persistent metabolic phenotype characterized by elevated glycolysis and oxidative metabolism as well as augmented size, granularity, phagocytosis, and respiratory burst. Sustained augmentation of glycolysis in TLR-primed cells was dependent, in part, on hypoxia-inducible factor 1-α and was essential for increased phagocytosis. In conclusion, the magnitude of LPS-elicited cytokine production is not indicative of antimicrobial immunity after exposure to TLR ligands. Additionally, protective TLR ligands induce sustained augmentation of phagocyte metabolism and antimicrobial function.
Collapse
Affiliation(s)
- Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235; and
| | - Yin Guo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235; and
| | - Edward R Sherwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235; and.,Anesthesiology Research Division, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37212
| | - Julia K Bohannon
- Anesthesiology Research Division, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37212
| |
Collapse
|
40
|
Chen AL, Sun X, Wang W, Liu JF, Zeng X, Qiu JF, Liu XJ, Wang Y. Activation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to the immunosuppression of mice infected with Angiostrongylus cantonensis. J Neuroinflammation 2016; 13:266. [PMID: 27733201 PMCID: PMC5062856 DOI: 10.1186/s12974-016-0743-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunosuppression has been described as a consequence of brain injury and infection by different mechanisms. Angiostrongylus cantonensis can cause injury to the central nervous system and eosinophilic meningitis to human. Both T cell and B cell immunity play an essential role in the resistance of the infection. However, whether brain injury caused by A. cantonensis infection can lead to immunosuppression is not clear. Therefore, the present study sought to observe the alteration of immune responses in mice infected with A. cantonensis. METHODS Mice were infected with 20 third-stage A. cantonensis larvae. The messenger RNA (mRNA) expression of inflammatory mediators in brain tissues was observed by qRT-PCR. Cell surface markers including CD3, CD4, CD8, CD19, B220, 7-AAD, annexin-V, IgM, AA4.1, and CD23 were evaluated by using flow cytometry. The immune functions of T and B lymphocytes were detected upon stimulation by ConA and antibody responses to a nonself antigen OVA, respectively. Activation of the hypothalamic-pituitary-adrenal axis was evaluated by analyzing the concentration of plasma corticosterone and levels of mRNA for corticotropin-releasing hormone, tyrosine hydroxylase, and c-fos. RESULTS A. cantonensis infection results in obvious immunosuppression evidenced as progressive spleen and thymus atrophy and significant decrease in the number of lymphocyte subsets including B cells, CD3+ T cells, CD4+ T cells, and CD8+ T cells, as well as reduced T cell proliferation at 21 days post-infection and antibody reaction to exogenous protein after infection. However, the sharp decrease of splenic and thymic cells was not due to cell apoptosis but to B cell genesis cessation and impairing thymocyte development. In addition, helminthicide treatment with albendazole on infected mice at 7 days post-infection could prevent immunosuppressive symptoms. Importantly, infected mice displayed hypothalamic-pituitary-adrenal axis activation, with peak responses occurring at 16 days post-infection, and glucocorticoid receptor antagonist could partially restore the infection-induced cessation of B cell genesis. CONCLUSIONS Brain injury caused by A. cantonensis infection, like that of brain stroke and trauma, enhanced endogenous corticosteroid activity, resulting in peripheral immunosuppression.
Collapse
Affiliation(s)
- Ai-Ling Chen
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214002, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wei Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Jin-Feng Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xin Zeng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jing-Fan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xin-Jian Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
41
|
Cross AS. Invited review: Endotoxin tolerance — current concepts in historical perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080020201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Alan S. Cross
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
42
|
Ussher JE, van Wilgenburg B, Hannaway RF, Ruustal K, Phalora P, Kurioka A, Hansen TH, Willberg CB, Phillips RE, Klenerman P. TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur J Immunol 2016; 46:1600-14. [PMID: 27105778 PMCID: PMC5297987 DOI: 10.1002/eji.201545969] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 02/27/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant innate-like T lymphocyte population that are enriched in liver and mucosal tissues. They are restricted by MR1, which presents antigens derived from a metabolic precursor of riboflavin synthesis, a pathway present in many microbial species, including commensals. Therefore, MR1-mediated MAIT cell activation must be tightly regulated to prevent inappropriate activation and immunopathology. Using an in vitro model of MR1-mediated activation of primary human MAIT cells, we investigated the mechanisms by which it is regulated. Uptake of intact bacteria by antigen presenting cells (APCs) into acidified endolysosomal compartments was required for efficient MR1-mediated MAIT cell activation, while stimulation with soluble ligand was inefficient. Consistent with this, little MR1 was seen at the surface of human monocytic (THP1) and B-cell lines. Activation with a TLR ligand increased the amount of MR1 at the surface of THP1 but not B-cell lines, suggesting differential regulation in different cell types. APC activation and NF-κB signaling were critical for MR1-mediated MAIT cell activation. In primary cells, however, prolonged TLR signaling led to downregulation of MR1-mediated MAIT cell activation. Overall, MR1-mediated MAIT cell activation is a tightly regulated process, dependent on integration of innate signals by APCs.
Collapse
Affiliation(s)
- James E Ussher
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, United Kingdom.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Bonnie van Wilgenburg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Rachel F Hannaway
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Kerstin Ruustal
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Prabhjeet Phalora
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, United Kingdom.,Oxford NIHR Biomedical Research Centre, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Rodney E Phillips
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, United Kingdom.,Oxford NIHR Biomedical Research Centre, The John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
43
|
Gren ST, Janciauskiene S, Sandeep S, Jonigk D, Kvist PH, Gerwien JG, Håkansson K, Grip O. The protease inhibitor cystatin C down-regulates the release of IL-β and TNF-α in lipopolysaccharide activated monocytes. J Leukoc Biol 2016; 100:811-822. [DOI: 10.1189/jlb.5a0415-174r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/04/2016] [Indexed: 01/14/2023] Open
|
44
|
Galbraith N, Walker S, Galandiuk S, Gardner S, Polk HC. The Significance and Challenges of Monocyte Impairment: For the Ill Patient and the Surgeon. Surg Infect (Larchmt) 2016; 17:303-12. [PMID: 26958709 DOI: 10.1089/sur.2015.245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Trauma, major elective surgery, and overt sepsis can lead to a cascade of immunological change. A subset of these patients will have a degree of immune suppression that leads to hyporesponsive innate defenses, increasing the risk of infective co-morbidity and death. This article is an overview of monocyte impairment in the high-risk surgical patient. Specifically, our primary focus is on observations made pertaining to monocyte function and pathophysiological mechanisms underpinning this impairment. Clinical factors influencing monocyte function are also discussed. METHODS A Pubmed search was conducted to review aspects of monocyte impairment in the surgical patient. Search terms included "monocyte impairment," "immunoparalysis," and "endotoxin tolerance" cross-referenced against terms including "trauma," "major surgery," and "sepsis." RESULTS Findings revealed a broad variety of monocyte defects reported in surgical patients. They ranged from altered cytokine responses, particularly ex vivo TNF-α production, to impaired antigen presentation such as depressed HLA-DR expression. The latter is the most commonly described marker of secondary infection and death. Studies of underlying mechanisms have commonly utilized a model of endotoxin tolerance with in vitro monocytes, revealing a complex array of dysregulated pathways. For our purposes, endotoxin tolerance and monocyte impairment are sufficiently similar entities to permit further study as a single subject. In the high risk patient, microRNAs (also referred to as miRNA or miR) are emerging as potential biomarkers that may modify such pathways. Creation of a reliable impaired human monocyte model could be important to all such considerations. CONCLUSION Impairment of monocyte function continues to be predictive of nosocomial infection, multi-organ failure, and death in some surgical patients. However, the optimal marker that could identify a patient as high risk early enough, and whether it might guide potential therapy, still is yet to be proven.
Collapse
Affiliation(s)
- Norman Galbraith
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| | - Samuel Walker
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| | - Susan Galandiuk
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| | - Sarah Gardner
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| | - Hiram C Polk
- Department of Surgery, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
45
|
Scriven JE, Graham LM, Schutz C, Scriba TJ, Wilkinson KA, Wilkinson RJ, Boulware DR, Urban BC, Lalloo DG, Meintjes G. A Glucuronoxylomannan-Associated Immune Signature, Characterized by Monocyte Deactivation and an Increased Interleukin 10 Level, Is a Predictor of Death in Cryptococcal Meningitis. J Infect Dis 2016; 213:1725-34. [PMID: 26768248 PMCID: PMC4857465 DOI: 10.1093/infdis/jiw007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/23/2015] [Indexed: 11/14/2022] Open
Abstract
Background. Cryptococcal meningitis remains a significant cause of death among human immunodeficiency virus type 1 (HIV)–infected persons in Africa. We aimed to better understand the pathogenesis and identify immune correlates of mortality, particularly the role of monocyte activation. Methods. A prospective cohort study was conducted in Cape Town, South Africa. Patients with a first episode of cryptococcal meningitis were enrolled, and their immune responses were assessed in unstimulated and stimulated blood specimens, using flow cytometry and cytokine analysis. Results. Sixty participants were enrolled (median CD4+ T-cell count, 34 cells/µL). Mortality was 23% (14 of 60 participants) at 14 days and 39% (22 of 57) at 12 weeks. Nonsurvivors were more likely to have an altered consciousness and higher cerebrospinal fluid fungal burden at presentation. Principal component analysis identified an immune signature associated with early mortality, characterized by monocyte deactivation (reduced HLA-DR expression and tumor necrosis factor α response to lipopolysaccharide); increased serum interleukin 6, CXCL10, and interleukin 10 levels; increased neutrophil counts; and decreased T-helper cell type 1 responses. This immune signature remained an independent predictor of early mortality after adjustment for consciousness level and fungal burden and was associated with higher serum titers of cryptococcal glucuronoxylomannan. Conclusions. Cryptococcal-related mortality is associated with monocyte deactivation and an antiinflammatory blood immune signature, possibly due to Cryptococcus modulation of the host immune response. Validation in other cohorts is required.
Collapse
Affiliation(s)
- James E Scriven
- Liverpool School of Tropical Medicine Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool Clinical Infectious Diseases Research Initiative Department of Medicine, University of Cape Town and Groote Schuur Hospital, South Africa
| | | | - Charlotte Schutz
- Clinical Infectious Diseases Research Initiative Department of Medicine, University of Cape Town and Groote Schuur Hospital, South Africa
| | - Thomas J Scriba
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine Department of Paediatrics and Child Health, University of Cape Town
| | | | - Robert J Wilkinson
- Department of Medicine, Imperial College London Mill Hill Laboratory, Francis Crick Institute, London, United Kingdom Clinical Infectious Diseases Research Initiative
| | | | | | - David G Lalloo
- Liverpool School of Tropical Medicine Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool
| | - Graeme Meintjes
- Department of Medicine, Imperial College London Clinical Infectious Diseases Research Initiative Department of Medicine, University of Cape Town and Groote Schuur Hospital, South Africa
| |
Collapse
|
46
|
Poujol F, Monneret G, Pachot A, Textoris J, Venet F. Altered T Lymphocyte Proliferation upon Lipopolysaccharide Challenge Ex Vivo. PLoS One 2015; 10:e0144375. [PMID: 26642057 PMCID: PMC4671586 DOI: 10.1371/journal.pone.0144375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022] Open
Abstract
Context Sepsis is characterized by the development of adaptive immune cell alterations, which intensity and duration are associated with increased risk of health-care associated infections and mortality. However, pathophysiological mechanisms leading to such lymphocyte dysfunctions are not completely understood, although both intrinsic lymphocyte alterations and antigen-presenting cells (APCs) dysfunctions are most likely involved. Study The aim of the current study was to evaluate whether lipopolysaccharide (LPS, mimicking initial Gram negative bacterial challenge) could directly impact lymphocyte function after sepsis. Therefore, we explored ex-vivo the effect of LPS priming on human T lymphocyte proliferation induced by different stimuli. Results We showed that LPS priming of PBMCs reduced T cell proliferative response and altered IFNγ secretion after stimulation with OKT3 but not with phytohaemagglutinin or anti-CD2/CD3/CD28-coated beads stimulations. Interestingly only LPS priming of monocytes led to decreased T cell proliferative response as opposed to LPS priming of lymphocytes. Importantly, LPS priming was associated with reduced expression of HLA-DR, CD86 and CD64 on monocytes but not with the modification of CD3, CTLA4, PD-1 and CD28 expressions on lymphocytes. Finally, IFNγ stimulation restored monocytes accessory functions and T cell proliferative response to OKT3. Conclusion We conclude that LPS priming does not directly impact lymphocyte functions but reduces APC’s capacity to activate T cells. This recapitulates ex vivo indirect mechanisms participating in sepsis-induced lymphocyte alterations and suggests that monocyte-targeting immunoadjuvant therapies in sepsis may also help to improve adaptive immune dysfunctions. Direct mechanisms impacting lymphocytes being also at play during sepsis, the respective parts of direct versus indirect sepsis-induced lymphocyte alterations remain to be evaluated in clinic.
Collapse
Affiliation(s)
- Fanny Poujol
- BioMérieux, Joint Research Unit, Hospices Civils de Lyon—bioMérieux, Hôpital Edouard Herriot, Lyon, France
| | - Guillaume Monneret
- BioMérieux, Joint Research Unit, Hospices Civils de Lyon—bioMérieux, Hôpital Edouard Herriot, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Alexandre Pachot
- BioMérieux, Joint Research Unit, Hospices Civils de Lyon—bioMérieux, Hôpital Edouard Herriot, Lyon, France
| | - Julien Textoris
- BioMérieux, Joint Research Unit, Hospices Civils de Lyon—bioMérieux, Hôpital Edouard Herriot, Lyon, France
- Anesthesiology and Intensive care department, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Fabienne Venet
- BioMérieux, Joint Research Unit, Hospices Civils de Lyon—bioMérieux, Hôpital Edouard Herriot, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
- * E-mail:
| |
Collapse
|
47
|
Palmer CD, Romero-Tejeda M, Sirignano M, Sharma S, Allen TM, Altfeld M, Jost S. Naturally Occurring Subclinical Endotoxemia in Humans Alters Adaptive and Innate Immune Functions through Reduced MAPK and Increased STAT1 Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2015; 196:668-77. [PMID: 26643479 DOI: 10.4049/jimmunol.1501888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022]
Abstract
Multiple studies have shown correlates of immune activation with microbial translocation and plasma LPS during HIV infection. It is unclear whether this activation is due to LPS, residual viral replication, or both. Few studies have addressed the effects of persistent in vivo levels of LPS on specific immune functions in humans in the absence of chronic viral infection or pathological settings such as sepsis. We previously reported on a cohort of HIV-negative men with subclinical endotoxemia linked to alterations in CD4/CD8 T cell ratio and plasma cytokine levels. This HIV-negative cohort allowed us to assess cellular immune functions in the context of different subclinical plasma LPS levels ex vivo without confounding viral effects. By comparing two samples of differing plasma LPS levels from each individual, we now show that subclinical levels of plasma LPS in vivo significantly alter T cell proliferative capacity, monocyte cytokine release, and HLA-DR expression, and induce TLR cross-tolerance by decreased phosphorylation of MAPK pathway components. Using this human in vivo model of subclinical endotoxemia, we furthermore show that plasma LPS leads to constitutive activation of STAT1 through autocrine cytokine signaling, suggesting that subclinical endotoxemia in healthy individuals might lead to significant changes in immune function that have thus far not been appreciated.
Collapse
Affiliation(s)
| | | | | | | | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; and
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; and Department of Viral Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Stephanie Jost
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; and
| |
Collapse
|
48
|
Ahn SY, Sohn SH, Lee SY, Park HL, Park YW, Kim H, Nam JH. The effect of lipopolysaccharide-induced obesity and its chronic inflammation on influenza virus-related pathology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:924-930. [PMID: 26509733 DOI: 10.1016/j.etap.2015.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Obese individuals show increased susceptibility to infection, low vaccine efficacy, and worse pathophysiology. However, it is unclear how obesity affects these events. The aim of this study was to investigate the effect of obesity-triggered chronic inflammation on immune cells after influenza virus infection. Control and lipopolysaccharide mice, in which an osmotic pump continually released Tween saline or lipopolysaccharide, were prepared and 3 weeks later were infected with pandemic H1N1 2009 influenza A virus. In lipopolysaccharide mice, we found a reduction in macrophage activation markers in the steady state, and reduced production of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6, in restimulated peritoneal macrophages. Interestingly, lipopolysaccharide-triggered chronic inflammation exacerbated the severity of pathological symptoms in the lungs after challenge with influenza virus. Taken together, the increased severity of virus-induced symptoms in obese individuals with chronic inflammation may be, at least partially, caused by macrophage dysfunction.
Collapse
Affiliation(s)
- Sun-Young Ahn
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Sung-Hwa Sohn
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Sang-Yeon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Hye-Lim Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | - Yong-Wook Park
- SK Chemical, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Hun Kim
- SK Chemical, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea.
| |
Collapse
|
49
|
Toledano V, Hernández-Jiménez E, Cubillos-Zapata C, Flandez M, Álvarez E, Varela-Serrano A, Cantero R, Valles G, García-Rio F, López-Collazo E. Galactomannan Downregulates the Inflammation Responses in Human Macrophages via NFκB2/p100. Mediators Inflamm 2015; 2015:942517. [PMID: 26441484 PMCID: PMC4579314 DOI: 10.1155/2015/942517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 11/17/2022] Open
Abstract
We show that galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups present on the cell wall of several fungi, induces a reprogramming of the inflammatory response in human macrophages through dectin-1 receptor. The nuclear factor kappa-light-chain-enhancer of activated B cells 2 (NFκB2)/p100 was overexpressed after galactomannan challenge. Knocking down NFκB2/p100 using small interfering RNA (siRNA) indicated that NFκB2/p100 expression is a crucial factor in the progression of the galactomannan-induced refractoriness. The data presented in this study could be used as a modulator of inflammatory response in clinical situations where refractory state is required.
Collapse
Affiliation(s)
- Víctor Toledano
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Enrique Hernández-Jiménez
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Carolina Cubillos-Zapata
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Marta Flandez
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Enrique Álvarez
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- EMPIREO S.L., 28004 Madrid, Spain
| | - Aníbal Varela-Serrano
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Ramón Cantero
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | | | | | - Eduardo López-Collazo
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| |
Collapse
|
50
|
Monneret G, Venet F. Sepsis-induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:376-86. [PMID: 26130241 DOI: 10.1002/cyto.b.21270] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Septic syndromes remain a major although largely under-recognized health care problem and represent the first cause of mortality in intensive care units. While sepsis has, for long, been solely described as inducing a tremendous systemic inflammatory response, novel findings indicate that sepsis indeed initiates a more complex immunologic response that varies over time, with the concomitant occurrence of both pro- and anti-inflammatory mechanisms. As a resultant, after a short proinflammatory phase, septic patients enter a stage of protracted immunosuppression. This is illustrated in those patients by reactivation of dormant viruses (CMV or HSV) or infections due to pathogens, including fungi, which are normally pathogenic solely in immunocompromised hosts. Although mechanisms are not totally understood, these alterations might be directly responsible for worsening outcome in patients who survived initial resuscitation as nearly all immune functions are deeply compromised. Indeed, the magnitude and persistence over time of these dysfunctions have been associated with increased mortality and health-care associated infection rate. Consequently, new promising therapeutic avenues are currently emerging from those recent findings such as adjunctive immunostimulation (IFN-γ, GM-CSF, IL-7, anti-PD1/L1 antibodies) for the most immunosuppressed patients. Nevertheless, as there is no clinical sign of immune dysfunctions, the prerequisite for such therapeutic intervention relies on our capacity in identifying the patients who could benefit from immunostimulation. To date, the most robust biomarkers of sepsis-induced immunosuppression are measured by flow cytometry. Of them, the decreased expression of monocyte HLA-DR appears as a "gold standard." This review reports on the mechanisms sustaining sepsis-induced immunosuppression and its related biomarkers measurable by flow cytometry. The objective is to integrate the most recent facts in an up-to-date account of clinical results, flow cytometry aspects as well as issues in results standardization for multicenter studies. © 2015 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Guillaume Monneret
- Cellular Immunology Laboratory, Hospices Civils De Lyon, Hôpital E Herriot, Lyon, France
- Université Claude Bernard Lyon I, Immunology Department, Lyon, France
- TRIGGERSEP (TRIal Group for Global Evaluation and Research in SEPsis)/F-CRIN Network, France
| | - Fabienne Venet
- Cellular Immunology Laboratory, Hospices Civils De Lyon, Hôpital E Herriot, Lyon, France
- Université Claude Bernard Lyon I, Immunology Department, Lyon, France
| |
Collapse
|