1
|
Zheng W, Ling S, Cao Y, Shao C, Sun X. Combined use of NK cells and radiotherapy in the treatment of solid tumors. Front Immunol 2024; 14:1306534. [PMID: 38264648 PMCID: PMC10803658 DOI: 10.3389/fimmu.2023.1306534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cells are innate lymphocytes possessing potent tumor surveillance and elimination activity. Increasing attention is being focused on the role of NK cells in integral antitumor strategies (especially immunotherapy). Of note, therapeutic efficacy is considerable dependent on two parameters: the infiltration and cytotoxicity of NK cells in tumor microenvironment (TME), both of which are impaired by several obstacles (e.g., chemokines, hypoxia). Strategies to overcome such barriers are needed. Radiotherapy is a conventional modality employed to cure solid tumors. Recent studies suggest that radiotherapy not only damages tumor cells directly, but also enhances tumor recognition by immune cells through altering molecular expression of tumor or immune cells via the in situ or abscopal effect. Thus, radiotherapy may rebuild a NK cells-favored TME, and thus provide a cost-effective approach to improve the infiltration of NK cells into solid tumors, as well as elevate immune-activity. Moreover, the radioresistance of tumor always hampers the response to radiotherapy. Noteworthy, the puissant cytotoxic activity of NK cells not only kills tumor cells directly, but also increases the response of tumors to radiation via activating several radiosensitization pathways. Herein, we review the mechanisms by which NK cells and radiotherapy mutually promote their killing function against solid malignancies. We also discuss potential strategies harnessing such features in combined anticancer care.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sunkai Ling
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunlin Shao
- Institution of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Liu L, Zeng F, Li Y, Li W, Yu H, Zeng Q, Chen Q, Qin H. Undifferentiated destruction of mitochondria by photoacoustic shockwave to overcome chemoresistance and radiation resistance in cancer therapy. NANOSCALE 2022; 14:4073-4081. [PMID: 35244120 DOI: 10.1039/d1nr07449k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resistance to either radiation or chemotherapy remains a complex and stubborn obstacle in cancer therapy and is responsible for a significant portion of the treatment failure. While the underlying mechanisms of the resistance are often associated with multiple factors, direct destruction of mitochondria is likely to ensure the ultimate death of the cell. Herein, a strategy of precise mitochondrial destruction using a photoacoustic (PA) shockwave was proposed to overcome chemoresistance and radiation resistance in cancer therapy. A nanoparticle featuring mitochondria-targeting and high near-infrared absorbance is constructed. The nanoparticle was found to indiscriminately localize in the mitochondria of both parental and its corresponding resistant tumor cells due to the mitochondrial transmembrane potential. By absorbing a controllable amount of energy from a pulsed laser, the nanoparticle could generate a mechanical PA shockwave that physically damages the mitochondria leading to the opening of apoptotic pathways and thus yielding a precision antitumor effect. The cell-killing efficiency was validated in vitro and in vivo. The results demonstrate that a PA shockwave can result in undifferentiated killing of the resistant tumor cells via destruction of mitochondria. Given the critical importance of resistant tumor cells, although at its preliminary stage, the proposed modality may open a new window in cancer therapy.
Collapse
Affiliation(s)
- Liming Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Fanchu Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yujie Li
- Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Wenjing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hui Yu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qingxing Zeng
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qun Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Dutka M, Bobiński R, Wojakowski W, Francuz T, Pająk C, Zimmer K. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signalling axis in heart failure and other cardiovascular diseases. Heart Fail Rev 2021; 27:1395-1411. [PMID: 34313900 PMCID: PMC9197867 DOI: 10.1007/s10741-021-10153-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/29/2023]
Abstract
Osteoprotegerin (OPG) is a glycoprotein involved in the regulation of bone remodelling. OPG regulates osteoclast activity by blocking the interaction between the receptor activator of nuclear factor kappa B (RANK) and its ligand (RANKL). More and more studies confirm the relationship between OPG and cardiovascular diseases. Numerous studies have confirmed that a high plasma concentration of OPG and a low concentration of tumour necrosis factor–related apoptosis inducing ligand (TRAIL) together with a high OPG/TRAIL ratio are predictors of poor prognosis in patients with myocardial infarction. A high plasma OPG concentration and a high ratio of OPG/TRAIL in the acute myocardial infarction are a prognostic indicator of adverse left ventricular remodelling and of the development of heart failure. Ever more data indicates the participation of OPG in the regulation of the function of vascular endothelial cells and the initiation of the atherosclerotic process in the arteries. Additionally, it has been shown that TRAIL has a protective effect on blood vessels and exerts an anti-atherosclerotic effect. The mechanisms of action of both OPG and TRAIL within the cells of the vascular wall are complex and remain largely unclear. However, these mechanisms of action as well as their interaction in the local vascular environment are of great interest to researchers. This article presents the current state of knowledge on the mechanisms of action of OPG and TRAIL in the circulatory system and their role in cardiovascular diseases. Understanding these mechanisms may allow their use as a therapeutic target in cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, Medical University of Silesia, Katowice, Poland
| | - Celina Pająk
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
4
|
Lim B, Greer Y, Lipkowitz S, Takebe N. Novel Apoptosis-Inducing Agents for the Treatment of Cancer, a New Arsenal in the Toolbox. Cancers (Basel) 2019; 11:cancers11081087. [PMID: 31370269 PMCID: PMC6721450 DOI: 10.3390/cancers11081087] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Evasion from apoptosis is an important hallmark of cancer cells. Alterations of apoptosis pathways are especially critical as they confer resistance to conventional anti-cancer therapeutics, e.g., chemotherapy, radiotherapy, and targeted therapeutics. Thus, successful induction of apoptosis using novel therapeutics may be a key strategy for preventing recurrence and metastasis. Inhibitors of anti-apoptotic molecules and enhancers of pro-apoptotic molecules are being actively developed for hematologic malignancies and solid tumors in particular over the last decade. However, due to the complicated apoptosis process caused by a multifaceted connection with cross-talk pathways, protein–protein interaction, and diverse resistance mechanisms, drug development within the category has been extremely challenging. Careful design and development of clinical trials incorporating predictive biomarkers along with novel apoptosis-inducing agents based on rational combination strategies are needed to ensure the successful development of these molecules. Here, we review the landscape of currently available direct apoptosis-targeting agents in clinical development for cancer treatment and update the related biomarker advancement to detect and validate the efficacy of apoptosis-targeted therapies, along with strategies to combine them with other agents.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yoshimi Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Naoko Takebe
- Early Clinical Trials Development, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Dufour F, Rattier T, Constantinescu AA, Zischler L, Morlé A, Ben Mabrouk H, Humblin E, Jacquemin G, Szegezdi E, Delacote F, Marrakchi N, Guichard G, Pellat-Deceunynck C, Vacher P, Legembre P, Garrido C, Micheau O. TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget 2018; 8:9974-9985. [PMID: 28039489 PMCID: PMC5354785 DOI: 10.18632/oncotarget.14285] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/30/2016] [Indexed: 01/23/2023] Open
Abstract
TRAIL induces selective tumor cell death through TRAIL-R1 and TRAIL-R2. Despite the fact that these receptors share high structural homologies, induction of apoptosis upon ER stress, cell autonomous motility and invasion have solely been described to occur through TRAIL-R2. Using the TALEN gene-editing approach, we show that TRAIL-R1 can also induce apoptosis during unresolved unfolded protein response (UPR). Likewise, TRAIL-R1 was found to co-immunoprecipitate with FADD and caspase-8 during ER stress. Its deficiency conferred resistance to apoptosis induced by thaspigargin, tunicamycin or brefeldin A. Our data also demonstrate that tumor cell motility and invasion-induced by TRAIL-R2 is not cell autonomous but induced in a TRAIL-dependant manner. TRAIL-R1, on the other hand, is unable to trigger cell migration owing to its inability to induce an increase in calcium flux. Importantly, all the isogenic cell lines generated in this study revealed that apoptosis induced TRAIL is preferentially induced by TRAIL-R1. Taken together, our results provide novel insights into the physiological functions of TRAIL-R1 and TRAIL-R2 and suggest that targeting TRAIL-R1 for anticancer therapy is likely to be more appropriate owing to its lack of pro-motile signaling capability.
Collapse
Affiliation(s)
- Florent Dufour
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France
| | - Thibault Rattier
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France
| | - Andrei Alexandru Constantinescu
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France
| | - Luciana Zischler
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France.,Pós-graduação emCiências da Saúde, Escola de Medicina, Pontifícia Univ. Católica do Paraná, Curitiba, Paraná, Brazil
| | - Aymeric Morlé
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France
| | - Hazem Ben Mabrouk
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Etienne Humblin
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France
| | - Guillaume Jacquemin
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France
| | - Eva Szegezdi
- Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Gilles Guichard
- Univ. de Bordeaux, CNRS, IPB, UMR 5248, CBMN, Institut Européen de Chimie et de Biologie, Pessac, France
| | | | - Pierre Vacher
- INSERM U1218, Univ. de Bordeaux, Institut Bergonié, Bordeaux, France
| | - Patrick Legembre
- CLCC Eugène Marquis, INSERM ER440 Oncogenesis, Stress & Signaling, Rennes, France
| | - Carmen Garrido
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France.,Centre Georges-François Leclerc, Dijon, France
| | - Olivier Micheau
- INSERM, UMR866, Equipe labellisée Ligue contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Univ. Bourgogne Franche-Comté, Dijon, France.,Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
6
|
A Novel Fully Human Agonistic Single Chain Fragment Variable Antibody Targeting Death Receptor 5 with Potent Antitumor Activity In Vitro and In Vivo. Int J Mol Sci 2017; 18:ijms18102064. [PMID: 28953230 PMCID: PMC5666746 DOI: 10.3390/ijms18102064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/03/2017] [Accepted: 09/17/2017] [Indexed: 01/13/2023] Open
Abstract
Agonistic antibodies, which bind specifically to death receptor 5 (DR5), can trigger apoptosis in tumor cells through the extrinsic pathway. In this present study, we describe the use of a phage display to isolate a novel fully human agonistic single chain fragment variable (scFv) antibody, which targets DR5. After five rounds of panning a large (1.2 × 108 clones) phage display library on DR5, a total of over 4000 scFv clones were screened by the phage ELISA. After screening for agonism in a cell-viability assay in vitro, a novel DR5-specific scFv antibody TR2-3 was isolated, which inhibited COLO205 and MDA-MB-231 tumor cell growth without any cross-linking agents. The activity of TR2-3 in inducing apoptosis in cancer cells was evaluated by using an Annexin V-PE apoptosis detection kit in combination with flow cytometry and the Hoechst 33342 and propidium iodide double staining analysis. In addition, the activation of caspase-dependent apoptosis was evaluated by Western blot assays. The results indicated that TR2-3 induced robust apoptosis of the COLO205 and MDA-MB-231 cells in a dose-dependent and time-dependent manner, while it remarkably upregulated the cleavage of caspase-3 and caspase-8. Furthermore, TR2-3 suppressed the tumor growth significantly in the xenograft model. Taken together, these data suggest that TR2-3 exhibited potent antitumor activity both in vitro and in vivo. This work provides a novel human antibody, which might be a promising candidate for cancer therapy by targeting DR5.
Collapse
|
7
|
TNF-related apoptosis inducing ligand in ocular cancers and ocular diabetic complications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:424019. [PMID: 25834817 PMCID: PMC4365302 DOI: 10.1155/2015/424019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 01/06/2023]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is an intensively studied cytokine, in particular for its anticancer activity. The discovery that conjunctival sac fluid contains extremely high levels of soluble TRAIL as compared to other body fluids suggested important implications in the context of the immunological surveillance of the eye, in particular of the anterior surface. In this review, we discuss the potential physiopathologic and therapeutic role of the TRAIL/TRAIL receptor system in a variety of ocular cancers. Moreover, since an increasing amount of data has indicated the important biological activities of the TRAIL/TRAIL receptor systems also in a completely different pathologic context such as diabetes mellitus, in the second part of this review we summarize the currently available data on the involvement of TRAIL in the ocular complications of diabetes mellitus as modulator of the inflammatory and angiogenic response in the eye.
Collapse
|
8
|
Li H, Chang G, Wang J, Wang L, Jin W, Lin Y, Yan Y, Wang R, Gao W, Ma L, Li Q, Pang T. Cariporide sensitizes leukemic cells to tumor necrosis factor related apoptosis-inducing ligand by up-regulation of death receptor 5 via endoplasmic reticulum stress-CCAAT/enhancer binding protein homologous protein dependent mechanism. Leuk Lymphoma 2014; 55:2135-40. [PMID: 24188478 DOI: 10.3109/10428194.2013.861064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CCAAT/enhancer binding protein homologous protein (CHOP) expression increases when Na(+)-H(+) exchanger 1 (NHE1) is inhibited. Endoplasmic reticulum (ER) stress has been shown to trigger tumor cell death through CHOP. We therefore hypothesized that NHE1 activity correlates with ER stress and confers pharmaceutical potential to NHE1 inhibitor as an anti-tumor agent. The present study showed that treatment with the NHE1 inhibitor cariporide led to ER stress-induced up-regulation of the death receptor 5 (DR5) which is mediated by CHOP at the transcriptional level. We also determined that ER stress-induced Janus kinase (JNK) activation was responsible for the modulation of CHOP. Combining cariporide with tumor necrosis factor related apoptosis-inducing ligand (TRAIL) led to a significantly enhanced level of apoptosis that was abrogated by siRNA silencing of CHOP. This study provides a potential mechanistic rationale for the use of NHE1 inhibitor in combination with DR5 agonists to induce apoptosis in leukemia.
Collapse
Affiliation(s)
- Huawen Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Implication of different effector mechanisms by cord blood-derived and peripheral blood-derived cytokine-induced killer cells to kill precursor B acute lymphoblastic leukemia cell lines. Cytotherapy 2014; 16:845-56. [PMID: 24529554 DOI: 10.1016/j.jcyt.2013.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 12/12/2013] [Accepted: 12/26/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND AIMS Cytokine-induced killer (CIK) cells ex vivo-expanded from cord blood (CB) or peripheral blood (PB) have been shown to be cytotoxic against autologous and allogeneic tumor cells. We have previously shown that CD56(+) CIK cells (CD3(+)CD56(+) and CD3(-)CD56(+)) are capable of killing precursor B-cell acute lymphoblastic leukemia (B-ALL) cell lines. However, the lytic pathways used by CD56(+) PB and CB-CIK cells to kill B-ALL cell lines have not been studied. METHODS CB and PB-CIK cells were differentiated. CD56(+) CB- and PB-CIK cells were compared for expression of different phenotypic markers and for the lytic pathways used to kill B-ALL cell lines. RESULTS We found that cytotoxic granule proteins were expressed at higher levels in CD56(+) PB-CIK than in CD56(+) CB-CIK cells. However, CD56(+) CB-CIK cells expressed more tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) compared with CD56(+) PB-CIK cells. We observed that CD56(+) CB-CIK cells used both the NKG2D and TRAIL cytotoxic pathways and were more effective at killing REH cells than CD56(+) PB-CIK cells that used only the NKG2D pathway. In contrast, CD56(+) PB-CIK cells used both NKG2D and TRAIL pathways to kill NALM6 cells, whereas CD56(+) CB-CIK cells used only the NKG2D pathway. CONCLUSIONS Our results suggest that both the source of CIK and the type of B-ALL cell line have an impact on the intensity of the cytolytic activity and on the pathway used. These findings may have clinical implications with respect to optimizing therapeutic efficacy, which may be dependent on the source of the CIK cells and on the target tumor cells.
Collapse
|
10
|
Huang YW, Lee WH, Tsai YH, Huang HM. Activin A induction of erythroid differentiation sensitizes K562 chronic myeloid leukemia cells to a subtoxic concentration of imatinib. Am J Physiol Cell Physiol 2013; 306:C37-44. [PMID: 24088895 DOI: 10.1152/ajpcell.00130.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem/progenitor cell disorder in which Bcr-Abl oncoprotein inhibits cell differentiation. Differentiation induction is considered an alternative strategy for treating CML. Activin A, a member of the transforming growth factor-β superfamily, induces erythroid differentiation of CML cells through the p38 MAPK pathway. In this study, treatment of the K562 CML stem/progenitor cell line with activin A followed by a subtoxic concentration of the Bcr-Abl inhibitor imatinib strongly induced growth inhibition and apoptosis compared with simultaneous treatment with activin A and imatinib. Imatinib-induced growth inhibition and apoptosis following activin A pretreatment were dose- and time-dependent. Imatinib-induced growth inhibition and apoptosis were also dependent on the pretreatment dose of activin A. More than 90% of the activin A-induced increases in glycophorin A-positive cells were sensitive to imatinib. However, only some of original glycophorin A-positive cells in the activin A treatment group were sensitive to imatinib. Sequential treatment with activin A and imatinib decreased Bcr-Abl, procaspase-3, Mcl-1, and Bcl-xL and also induced cleavage of procaspase-3/poly(ADP-ribose)polymerase. The reduction of erythroid differentiation in p38 MAPK dominant-negative mutants or by short hairpin RNA knockdown of p38 MAPK decreased the growth inhibition and apoptosis mediated by sequential treatment with activin A and imatinib. Furthermore, the same inhibition level of multidrug resistance 1 expression was observed in cells treated with activin A alone, treated sequentially with activin A and imatinib, or treated simultaneously with activin A and imatinib. The p38 MAPK inhibitor SB-203580 can restore activin A-inhibited multidrug resistance 1 expression. Taken together, our results suggest that a subtoxic concentration of imatinib could exhibit strong cytotoxicity against erythroid-differentiated K562 CML cells.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | |
Collapse
|
11
|
Flusberg DA, Sorger PK. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging. Phys Biol 2013; 10:035002. [PMID: 23735516 DOI: 10.1088/1478-3975/10/3/035002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.
Collapse
Affiliation(s)
- Deborah A Flusberg
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
12
|
Qiu G, Jiang J, Liu XS. Pentamidine sensitizes chronic myelogenous leukemia K562 cells to TRAIL-induced apoptosis. Leuk Res 2012; 36:1417-21. [PMID: 22938941 DOI: 10.1016/j.leukres.2012.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/11/2012] [Accepted: 07/28/2012] [Indexed: 02/05/2023]
Abstract
Pentamidine (PMD) is an anti-protozoa drug with potential anticancer activity. Here we show that PMD at clinically achievable plasma drug concentrations slightly inhibited the growth of human leukemia cell lines. PMD close to its therapeutic doses sensitized TRAIL-resistant K562 cells to the cytokine and potentiated TRAIL-induced apoptosis through activation of caspase-8 and -3. When we investigated the underlying mechanism, we observed that treatment with PMD increased DR5 expression at both mRNA and protein levels and down-regulated anti-apoptotic XIAP and Mcl-1 protein levels. This study provides a rationale for a more in-depth exploration into the combined treatment with PMD and TRAIL as a valuable strategy for leukemia therapy.
Collapse
Affiliation(s)
- Geng Qiu
- Department of Biochemistry, Shantou University Medical College, Shantou, Guangdong, China
| | | | | |
Collapse
|
13
|
Enhanced effects of TRAIL-endostatin-based double-gene-radiotherapy on suppressing growth, promoting apoptosis and inducing cell cycle arrest in vascular endothelial cells. ACTA ACUST UNITED AC 2012; 32:167-172. [PMID: 22528215 DOI: 10.1007/s11596-012-0030-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Indexed: 02/05/2023]
Abstract
This study examined the effects of TRAIL-endostatin-based gene-radiotherapy on cellular growth, apoptosis and cell cycle progression in human vascular endothelial cells ECV304 in vitro. The expression of TRAIL and endostatin protein in ECV304 cells was detected by ELISA after the transfection of recombinant plasmid pshuttle-Egr1-shTRAIL-shES and X-ray irradiation. Then MTT assay was used for determining the cellular proliferation, and flow cytometry (FCM) plus Annexin V and propidium iodide (PI) double-staining or PI single-staining were employed for the detection of apoptosis and cell cycle progression. The results showed that expression of TRAIL and endostatin protein exhibited a time- and dose-dependent change in ECV304 cells after pshuttle-Egr1-shTRAIL-shES transfection in conjunction with irradiation. In the TRAIL-endostatin-based single- or double-gene-radiotherapy, the cell viability declined in a time- and dose-dependent manner, the percentage of cells at G(2)/M phase and apoptotic rate was increased, and the percentage of cells at G(0)/G(1) phase was lowered as compared with those receiving radiotherapy alone. Moreover, TRAIL-endostatin-based double-gene-radiotherapy demonstrated better effects on growth inhibition, promotion of apoptosis and induction of cell cycle arrest in ECV304 cells than single-gene-radiotherapy.
Collapse
|
14
|
Oh Y, Jeon YJ, Hong GS, Kim I, Woo HN, Jung YK. Regulation in the targeting of TRAIL receptor 1 to cell surface via GODZ for TRAIL sensitivity in tumor cells. Cell Death Differ 2012; 19:1196-207. [PMID: 22240897 DOI: 10.1038/cdd.2011.209] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5), promote the selective clearing of various malignancies by inducing apoptosis, holding the promise as a potent therapeutic agent for anticancer. Though DR4 and DR5 have high sequence similarity, differential regulation of both receptors in human tumor cells remains largely unexplored. Here, we repot that golgi-specific Asp-His-His-Cys (DHHC) zinc finger protein (GODZ) regulates TRAIL/DR4-mediated apoptosis. Using the SOS protein recruitment-yeast two-hybrid screening, we isolated GODZ that interacted with the death domain of DR4. GODZ binds to DR4, but not to DR5, through the DHHC and the C-terminal transmembrane domain. Expression level of GODZ affects apoptosis of tumor cells triggered by TRAIL, but not that induced by TNF-α/cycloheximide (CHX) or DNA-damaging drugs. In parallel, GODZ functions to localize DR4 to the plasma membrane (PM) via DHHC motif. Also, introduction of mutation into the cysteine-rich motif of DR4 results in its mistargeting and attenuates TRAIL- or GODZ-mediated apoptosis. Interestingly, GODZ expression is highly downregulated in Hep-3B tumor cells, which show resistance to TRAIL. However, reconstitution of GODZ expression enhances the targeting of DR4 to cell surface and sensitizes Hep-3B cells to TRAIL. Taken together, these data establish that GODZ is a novel DR4-selective regulator responsible for targeting of DR4 to the PM, and thereby for TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Y Oh
- Global Research Laboratory, School of Biological Science/Bio-Max Institute, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Radiotherapy and TRAIL for cancer therapy. Cancer Lett 2011; 332:184-93. [PMID: 21824725 DOI: 10.1016/j.canlet.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 06/10/2011] [Accepted: 07/02/2011] [Indexed: 11/22/2022]
Abstract
The use of radiotherapy and concomitant chemotherapy substantially improved cure rates in patients with different malignant tumours. However, it is unlikely that further improvements based on conventional chemotherapy may be achieved in the future since increased rates of acute side effects already limit the value of these approaches. Additionally, the increased local control rates are counterweighted by still high rates of distant failures resulting in low net gains for the patients. Thus, there is a currently unmet need for the integration of target-specific drugs improving local control as well distant control into radiation based treatment protocols. In this regard, the death-receptor ligand TNF-α-related apoptosis-inducing ligand (TRAIL/Apo2L) and TRAIL-receptor agonistic antibodies were shown to display a high selectivity for tumour cells and act synergistically with conventional chemotherapy drugs and radiation. Up to now it has been shown that radiation strongly sensitises malignant cells to TRAIL and TRAIL-agonistic antibodies. Synergistic induction of apoptosis was demonstrated in a majority of malignant cell types and xenograft models. Especially in those cells types displaying only weak responses to either treatment alone, strong sensitising effects were described. Moreover, in merely all normal cells and tissues no synergistic effects were found. Depending on cell type and experimental setting, the efficacy of combined treatment is determined by the p53-status, the balance between pro- and anti-apoptotic Bcl-2 proteins and modulation of TRAIL-receptor signal transduction.
Collapse
|
16
|
Abstract
IMPORTANCE OF THE FIELD TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines, which can induce apoptotic cell death in a variety of tumor cells by engaging specific death receptors, TRAIL-R1 and TRAIL-R2, while having low toxicity towards normal cells. There is interest in cancer therapy inducing cell death by activation of the death-receptor-mediated apoptotic pathway while avoiding decoy-receptor-mediated neutralization of the signal. This has led to the development of a number of receptor-specific TRAIL-variants and agonistic antibodies. Some of these soluble recombinant TRAIL and agonist antibodies targeting TRAIL-R1 and/or TRAIL-R2 are progressing in clinical trials. In addition, TRAIL-resistant tumors can be sensitized to TRAIL by a combination of TRAIL or agonistic antibodies with chemotherapeutic agents, targeted small molecules or irradiation. AREAS COVERED IN THIS REVIEW Recent advances in developing TRAIL or its agonist receptor antibodies in cancer therapy. We also discuss combination therapies in overcoming TRAIL resistance in cancer cells. WHAT THE READER WILL GAIN Knowledge of current clinical trials, the promise and obstacles in the future development of therapies affecting TRAIL signaling pathways. TAKE HOME MESSAGE Cancer therapeutics targeting the TRAIL/TRAIL receptor signaling pathway hold great promise for molecularly targeted pro-apoptotic anti-cancer therapy.
Collapse
Affiliation(s)
- Junaid Abdulghani
- Penn State Hershey Medical Center, Penn State Hershey Cancer Institute, Penn State College of Medicine, Department of Medicine (Hematology/Oncology), Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Hershey, PA 17033, USA
| | | |
Collapse
|
17
|
Abstract
AbstractThe biological effects of low-dose radiation have attracted attention, but data are currently insufficient to fully understand the beneficial role of the phenomenon. In the present study, we have investigated the effects of low doses of gamma-irradiation alone and in combination with all-trans-retinoic acid (RA) on proliferation, apoptosis and differentiation of the human promyelocytic leukemia HL-60 cells. Changes in cell behavior and protein expression were determined with the use of light and fluorescent microscopy, immunocytochemical and Western blot analysis. Low-dose irradiation with 1–100 cGy caused a dose-dependent inhibition of HL-60 cell proliferation, and induced apoptosis and differentiation to granulocytes with an increase in the number of CD15-positive cells. Pre-irradiation with 1–100 cGy for 24 h before treatment with RA promoted apoptosis but did not impair RA-induced differentiation. Both processes were associated with a decrease in the expression of the proliferating cell nuclear antigen (PCNA), BCL-2, c-MYC, and changes in both cytosolic and nuclear levels of protein tyrosine-phosphorylation as well as protein kinase C alpha or beta isoforms. These results demonstrate the beneficial role of low-dose irradiation in modulating leukemia cell proliferation, differentiation and apoptosis.
Collapse
|
18
|
TRAIL and other TRAIL receptor agonists as novel cancer therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:195-206. [PMID: 19760076 DOI: 10.1007/978-0-387-89520-8_14] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo2L, is a member of the TNF superfamily (TNFSF) of cytokines. TRAIL gained much attention during the past decade due to the demonstration of its therapeutic potential as a tumor-specific apoptosis inducer. TRAIL was identified as a protein with high homology to other members of the TNF cytokine family, especially to the ligand of Fas/Apo-1 (CD95), CD95L (FasL/APO-1L). TRAIL has been shown to induce apoptosis selectively in many tumor cell lines without affecting normal cells and tissues, making TRAIL itself as well as agonists of the two human receptors of TRAIL which can submit an apoptotic signal, TRAIL-R1 (DR4) and TRAIL-R2 (DR5), promising novel biotherapeutics for cancer therapy. An increasing number of publications now shows that TRAIL resistance in primary human tumor cells will have to be overcome and that sensitization to TRAIL-induced apoptosis will be required in many cases. Therefore, it will also be instrumental to develop suitable diagnostic tests to identify patients who will benefit from TRAIL-based novel anticancer therapeutics and those who will not. Interestingly, the first clinical results even in monotherapy with TRAIL as well as various agonistic TRAIL receptor-specific antibodies have shown encouraging results. This chapter provides a compact overview on the biochemistry of the TRAIL/TRAIL-R system, the physiological role of TRAIL and its receptors and the results of clinical trials with TRAIL and various TRAIL-R agonistic antibodies.
Collapse
|
19
|
Mahmood Z, Shukla Y. Death receptors: Targets for cancer therapy. Exp Cell Res 2010; 316:887-99. [DOI: 10.1016/j.yexcr.2009.12.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/08/2009] [Accepted: 12/13/2009] [Indexed: 12/24/2022]
|
20
|
Kuijlen JMA, Bremer E, Mooij JJA, den Dunnen WFA, Helfrich W. Review: on TRAIL for malignant glioma therapy? Neuropathol Appl Neurobiol 2010; 36:168-82. [PMID: 20102513 DOI: 10.1111/j.1365-2990.2010.01069.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is a devastating cancer with a median survival of around 15 months. Significant advances in treatment have not been achieved yet, even with a host of new therapeutics under investigation. Therefore, the quest for a cure for GBM remains as intense as ever. Of particular interest for GBM therapy is the selective induction of apoptosis using the pro-apoptotic tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL signals apoptosis via its two agonistic receptors TRAIL-R1 and TRAIL-R2. TRAIL is normally present as homotrimeric transmembrane protein, but can also be processed into a soluble trimeric form (sTRAIL). Recombinant sTRAIL has strong tumouricidal activity towards GBM cells, with no or minimal toxicity towards normal human cells. Unfortunately, GBM is a very heterogeneous tumour, with multiple genetically aberrant clones within one tumour. Consequently, any single agent therapy is likely to be not effective enough. However, the anti-GBM activity of TRAIL can be synergistically enhanced by a variety of conventional and novel targeted therapies, making TRAIL an ideal candidate for combinatorial strategies. Here we will, after briefly detailing the biology of TRAIL/TRAIL receptor signalling, focus on the promises and pitfalls of recombinant TRAIL as a therapeutic agent alone and in combinatorial therapeutic approaches for GBM.
Collapse
Affiliation(s)
- J M A Kuijlen
- Department of Neurosurgery, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Oikonomou E, Kosmidou V, Katseli A, Kothonidis K, Mourtzoukou D, Kontogeorgos G, Andera L, Zografos G, Pintzas A. TRAIL receptor upregulation and the implication of KRAS/BRAF mutations in human colon cancer tumors. Int J Cancer 2009; 125:2127-2135. [PMID: 19637313 DOI: 10.1002/ijc.24613] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TRAIL raises hopes as a promising anti-tumor agent due to its selectivity toward cancer cells. Higher expression of its pro-death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5) attenuates higher sensitivity to TRAIL-induced apoptosis, and represents a marker for better cancer prognosis and treatment. Since receptor availability can be analogous to ligand efficacy, we performed RT-PCR analysis of DR4 and DR5 in 51 colon cancer biopsy specimens and respective normal mucosa, while 11 of these tumors were determined immunohistochemically for protein expression. Transcriptional analysis showed that DR4 and DR5 were significantly upregulated in 37 and 47% of the tumor samples respectively, while both DR4 and DR5 were coinstantaneously upregulated in 31% of the samples analyzed. Positive transcriptional regulation of DRs was recorded as early as Dukes' A stage. Furthermore, protein expression analysis yielded results comparable to DR4 and DR5 increased mRNA levels. Possible contributing events to DR upregulation involve presence of frequent oncogenic mutations in the MAPK pathway, and was investigated by direct sequencing in all 51 tumors. Samples (6/8) hosting either a KRAS(G12V) or BRAF(V600E) mutation, significantly amplified the upregulated expression of DR4 and DR5, showing strong inter-relation between overexpression and presence of oncogenic KRAS/ BRAF mutations. In the light of recent data concerning TRAIL receptor distribution, we contribute further by presenting DR5 as the most frequently upregulated DR in colon cancer. Furthermore, oncogenic mutations may directly or indirectly enhance DR expression, potentially sensitizing these tumors to TRAIL-based therapies.
Collapse
Affiliation(s)
- Eftychia Oikonomou
- Laboratory of Signal Mediated Gene Expression, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
23
|
Gasparian ME, Chernyak BV, Dolgikh DA, Yagolovich AV, Popova EN, Sycheva AM, Moshkovskii SA, Kirpichnikov MP. Generation of new TRAIL mutants DR5-A and DR5-B with improved selectivity to death receptor 5. Apoptosis 2009; 14:778-87. [PMID: 19412666 DOI: 10.1007/s10495-009-0349-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TRAIL (tumor necrosis factor (TNF) related apoptosis-inducing ligand) has been introduced as an extrinsic pathway inducer of apoptosis that does not have the toxicities of Fas and TNF. However, the therapeutic potential of TRAIL is limited because of many primary tumor cells are resistant to TRAIL. Despite intensive investigations, little is known in regards to the mechanisms underlying TRAIL selectivity and efficiency. A major reason likely lies in the complexity of the interaction of TRAIL with its five receptors, of which only two DR4 and DR5 are death receptors. Binding of TRAIL with decoy receptors DcR1 and DcR2 or soluble receptor osteoprotegerin (OPG) fail to induce apoptosis. Here we describe design and expression in Escherichia coli of DR5-selective TRAIL variants DR5-A and DR5-B. The measurements of dissociation constants of these mutants with all five receptors show that they practically do not interact with DR4 and DcR1 and have highly reduced affinity to DcR2 and OPG receptors. These mutants are more effective than wild type TRAIL in induction of apoptosis in different cancer cell lines. In combination with the drugs targeted to cytoskeleton (taxol, cytochalasin D) the mutants of TRAIL induced apoptosis in resistant Hela cells overexpressing Bcl-2. The novel highly selective and effective DR5-A and DR5-B TRAIL variants will be useful in studies on the role of different receptors in TRAIL-induced apoptosis in sensitive and resistant cell lines.
Collapse
Affiliation(s)
- Marine E Gasparian
- Laboratory of Protein Engineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, 16/10 Miklukho-Maklaya, 117997, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Enhancement of TRAIL cytotoxicity by AG-490 in human ALL cells is characterized by downregulation of cIAP-1 and cIAP-2 through inhibition of Jak2/Stat3. Cell Res 2009; 19:1079-89. [PMID: 19564891 DOI: 10.1038/cr.2009.80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability of death-inducing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to selectively kill a variety of cancer cells has been largely described, but one of the major concerns with the treatment is the occurrence of drug resistance and possible toxic side effects. Here, we report that TRAIL induces apoptosis in Jurkat and SUPT1 T cell lines and in human T-ALL blasts but not in healthy subject-derived peripheral blood mononuclear cells. In parallel, the treatment with TRAIL and Tyrphostin (AG-490), a selective Janus kinase 2 inhibitor, produces an evident enhancement of cytotoxicity, characterized by a significant inhibition of Stat3 phosphorylation compared to controls or to TRAIL alone-treated samples, and associated with a dramatic decrease of both cIAP-1 and cIAP-2 mRNA levels. Downregulation of cIAP-1 and cIAP-2 by specific small interference RNAs significantly amplifies TRAIL-reduced cytotoxicity. All together, these findings strongly indicate that cIAP-1 and cIAP-2 downregulation is a fundamental step in the signaling pathways mediating the combinatorial effect of TRAIL and AG-490 on T cell leukemia. These findings may help to open new routes for the development of less toxic pharmacological strategies in the treatment of patients affected by TRAIL-sensitive leukemias.
Collapse
|
25
|
Abstract
The development of apoptosis resistance is a crucial step during the pathogenesis of malignant tumors. Thus, any treatment approach overcoming apoptosis resistance may be a valuable tool in oncology. Although a variety of treatments induce apoptosis, only very few specifically trigger programmed cell death. In this regard, the class of apoptosis inducing ligands may turn out to have a considerable potential in oncology. TNF-alpha-related apoptosis-inducing ligand (TRAIL/Apo2L) is the most promising candidate, either alone or in combination with established cancer therapies, since it induces apoptosis in a wide range of malignant cells while sparing most normal tissues. Since death-receptor induced apoptosis is mainly mediated via nonmitochondrial death pathways, it is possible to induce apoptosis in cancer cell systems which mainly harbor defects within the mitochondrial death cascades. Even more so it has been shown that conventional DNA damaging approaches reduced the killing threshold for receptor induced apoptosis, making TRAIL an ideal candidate for combined approaches. Thus, combined treatments might offer the chance to enhance therapeutic efficiency and overcome resistance. In combination, additive or synergistic apoptotic responses and substantially enhanced clonogenic cell kill has been documented. Furthermore, in several settings it has been shown that combined modality teatments were effective in malignant cells, which are highly resistant to either treatment, alone. Ionizing radiation is one of the most effective modalities in oncology. Thus, it is reasonable to test, how far combinations of TRAIL with ionizing radiation may increase the efficacy. Indeed, the combination of TRAIL with ionizing radiation in several in vitro settings as well as xenograft models resulted in highly increased rates of cell kill and long-term tumor control. No increase in the rate and severity of side effects has been documented, indicating that the combination really increases the therapeutic ratio. It is important to note that TRAIL and TRAIL receptor agonistic antibodies, either as single
Collapse
Affiliation(s)
- Olivier Niemöller
- Department of Radiation Oncology, Ludwig-Maximilians Universität Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | |
Collapse
|
26
|
Cordier SM, Papenfuss K, Walczak H. From biochemical principles of apoptosis induction by TRAIL to application in tumour therapy. Results Probl Cell Differ 2009; 49:115-143. [PMID: 19142621 DOI: 10.1007/400_2008_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily which has been shown to selectively kill tumour cells, while sparing normal tissue. This attribute makes TRAIL an attractive drug candidate for cancer therapy. Although most primary tumour cells turned out to be primarily TRAIL-resistant, recent studies evidenced that a variety of cancers can be sensitised to TRAIL-induced apoptosis upon pre-treatment with chemotherapeutic agents or irradiation, while normal cells remain TRAIL-resistant. However, biomarkers that reliably predict which patients may benefit from such combinatorial therapies are required. Thus, it is essential to better understand the mechanisms underlying TRAIL resistance versus sensitivity. In this chapter, we introduce the signalling events which take place during TRAIL-induced apoptosis, describe the physiological function of TRAIL and summarise pre-clinical and clinical results obtained so far with TRAIL-receptor agonists.
Collapse
Affiliation(s)
- Stefanie M Cordier
- Tumour Immunology Unit, Division of Medicine, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
27
|
Secchiero P, Sblattero D, Chiaruttini C, Melloni E, Macor P, Zorzet S, Tripodo C, Tedesco F, Marzari R, Zauli G. Selection and Characterization of a Novel Agonistic Human Recombinant Anti-Trail-R2 Minibody with Antileukemic Activity. Int J Immunopathol Pharmacol 2009; 22:73-83. [DOI: 10.1177/039463200902200109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising natural anticancer therapeutic agent because through its “death receptors”, TRAIL-R1 and TRAIL-R2, it induces apoptosis in many transformed tumor cells, but not in the majority of normal cells. Hence, agonistic compounds directed against TRAIL death receptors have the potential of being excellent cancer therapeutic agents, with minimal cytotoxicity in normal tissues. Here, we report the selection and characterization of a new single-chain fragment variable (scFv) to TRAIL-R2 receptor isolated from a human phage-display library, produced as minibody (MB), and characterized for the in vitro anti-leukemic tumoricidal activity. The anti-TRAIL-R2 MB2.23 efficiently and specifically bound to membrane-associated TRAIL-R2 on different leukemic cell lines and could act as a direct agonist in vitro, initiating apoptotic signaling as well as complement-dependent cytotoxicity and antibody-dependent cell cytotoxicity, providing a rationale for further investigations of MB2.23 in anticancer therapy.
Collapse
Affiliation(s)
| | - D. Sblattero
- Department of Medical Sciences, University Piemonte Orientale, Novara
| | - C. Chiaruttini
- Department of Life Sciences, University of Trieste, Trieste
| | | | - P. Macor
- Department of Life Sciences, University of Trieste, Trieste
| | - S. Zorzet
- Department of Life Sciences, University of Trieste, Trieste
| | - C. Tripodo
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - F. Tedesco
- Department of Life Sciences, University of Trieste, Trieste
| | - R. Marzari
- Department of Life Sciences, University of Trieste, Trieste
| | | |
Collapse
|
28
|
Secchiero P, Lamberti G, Corallini F, Melloni E, Guarnotta C, Sebastiani A, Zauli G. Conjunctival sac fluid contains elevated levels of soluble TRAIL: Implications for the anti-tumoral surveillance of the anterior surface of the eye. J Cell Physiol 2009; 218:199-204. [DOI: 10.1002/jcp.21589] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. TRAIL receptor signalling and modulation: Are we on the right TRAIL? Cancer Treat Rev 2008; 35:280-8. [PMID: 19117685 DOI: 10.1016/j.ctrv.2008.11.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/03/2008] [Accepted: 11/13/2008] [Indexed: 01/16/2023]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand or Apo2 ligand (TRAIL/Apo2L) is a member of the tumour necrosis factor (TNF) superfamily of cytokines that induces apoptosis upon binding to its death domain-containing transmembrane receptors, death receptors 4 and 5 (DR4, DR5). Importantly, TRAIL preferentially induces apoptosis in cancer cells while exhibiting little or no toxicity in normal cells. To date, research has focused on the mechanism of apoptosis induced by TRAIL and the processes involved in the development of TRAIL resistance. TRAIL-resistant tumours can be re-sensitized to TRAIL by a combination of TRAIL with chemotherapeutics or irradiation. Studies suggest that in many cancer cells only one of the two death-inducing TRAIL receptors is functional. These findings as well as the aim to avoid decoy receptor-mediated neutralization of TRAIL led to the development of receptor-specific TRAIL variants and agonistic antibodies. These molecules are predicted to be more potent than native TRAIL in vivo and may be suitable for targeted treatment of particular tumours. This review focuses on the current status of TRAIL receptor-targeting for cancer therapy, the apoptotic signalling pathway induced by TRAIL receptors, the prognostic implications of TRAIL receptor expression and modulation of TRAIL sensitivity of tumour cells by combination therapies. The mechanisms of TRAIL resistance and the potential measures that can be taken to overcome them are also addressed. Finally, the status of clinical trials of recombinant TRAIL and DR4-/DR5-specific agonistic antibodies as well as the pre-clinical studies of receptor-selective TRAIL variants is discussed including the obstacles facing the use of these molecules as anti-cancer therapeutics.
Collapse
Affiliation(s)
- Devalingam Mahalingam
- Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | | | | | |
Collapse
|
30
|
Papenfuss K, Cordier SM, Walczak H. Death receptors as targets for anti-cancer therapy. J Cell Mol Med 2008; 12:2566-85. [PMID: 19210756 PMCID: PMC3828874 DOI: 10.1111/j.1582-4934.2008.00514.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/25/2008] [Indexed: 01/06/2023] Open
Abstract
Human tumour cells are characterized by their ability to avoid the normal regulatory mechanisms of cell growth, division and death. The classical chemotherapy aims to kill tumour cells by causing DNA damage-induced apoptosis. However, as many tumour cells possess mutations in intracellular apoptosis-sensing molecules like p53, they are not capable of inducing apoptosis on their own and are therefore resistant to chemotherapy. With the discovery of the death receptors the opportunity arose to directly trigger apoptosis from the outside of tumour cells, thereby circumventing chemotherapeutic resistance. Death receptors belong to the tumour necrosis factor receptor superfamily, with tumour necrosis factor (TNF) receptor-1, CD95 and TNF-related apoptosis-inducing ligand-R1 and -R2 being the most prominent members. This review covers the current knowledge about these four death receptors, summarizes pre-clinical approaches engaging these death receptors in anti-cancer therapy and also gives an overview about their application in clinical trials conducted to date.
Collapse
Affiliation(s)
| | | | - Henning Walczak
- Tumour Immunology Unit, Division of Medicine, Imperial College LondonUnited Kingdom
| |
Collapse
|
31
|
Maduro JH, de Vries EG, Meersma GJ, Hougardy BM, van der Zee AG, de Jong S. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis. Int J Radiat Oncol Biol Phys 2008; 72:543-52. [DOI: 10.1016/j.ijrobp.2008.06.1902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 05/27/2008] [Accepted: 06/17/2008] [Indexed: 11/15/2022]
|
32
|
Abstract
Oncogenic tyrosine kinases, such as BCR-ABL, TEL-ABL, TEL-PDGFbetaR, and FLT3-ITD, play a major role in the development of hematopoietic malignancy. They activate many of the same signal transduction pathways. To identify the critical target genes required for transformation in hematopoietic cells, we used a comparative gene expression strategy in which selective small molecules were applied to 32Dcl3 cells that had been transformed to factor-independent growth by these respective oncogenic alleles. We identified inhibitor of DNA binding 1 (Id1), a gene involved in development, cell cycle, and tumorigenesis, as a common target of these oncogenic kinases. These findings were prospectively confirmed in cell lines and primary bone marrow cells engineered to express the respective tyrosine kinase alleles and were also confirmed in vivo in murine models of disease. Moreover, human AML cell lines Molm-14 and K562, which express the FLT3-ITD and BCR-ABL tyrosine kinases, respectively, showed high levels of Id1 expression. Antisense and siRNA based knockdown of Id1-inhibited growth of these cells associated with increased p27(Kip1) expression and increased sensitivity to Trail-induced apoptosis. These findings indicate that Id1 is an important target of constitutively activated tyrosine kinases and may be a therapeutic target for leukemias associated with oncogenic tyrosine kinases.
Collapse
|
33
|
Caravatta L, Sancilio S, di Giacomo V, Rana R, Cataldi A, Di Pietro R. PI3-K/Akt-dependent activation of cAMP-response element-binding (CREB) protein in Jurkat T leukemia cells treated with TRAIL. J Cell Physiol 2008; 214:192-200. [PMID: 17579344 DOI: 10.1002/jcp.21186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently demonstrated the activation of phosphatidylinositol 3-kinase (PI3-K/Akt) survival pathway in Jurkat T leukemia cells known for their sensitivity to the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)/Apo2L cytotoxic action. The present investigation was done to elucidate the role of cAMP-response element-binding (CREB) protein in this system. Jurkat T cells were treated with 100-1,000 ng/ml TRAIL for time intervals up to 24 h in the presence or absence of selective pharmacologic inhibitors of PI3-K/Akt (LY294002) or p38 MAPK (SB253580) pathways. Upon TRAIL treatment, a dose-dependent increase in the percentage of apoptotic cells as well as in caspase-3 activity was observed. A further enhancement of apoptotic cell death was obtained with the use of CREB1 siRNA technology, as demonstrated by flow cytometry. Western blot analysis showed a high constitutive level of CREB phosphorylation at Ser(133) in Jurkat T cells under normal serum culture conditions. Under low serum culture conditions, an early (within 1 h) and transient increase in CREB phosphorylation was detected in response to both TRAIL doses and reduced upon pre-treatment with LY294002 or SB253580, demonstrating the PI3-K/Akt- and p38 MAPK-dependency of this effect. The parallel analysis in immune fluorescence demonstrated the nuclear translocation of the phosphorylated form upon treatment with 100 ng/ml TRAIL, whereas the immune labeling was mainly detectable in the cytoplasm compartment upon the higher more cytotoxic dose. These results let us hypothesize that CREB activation can be an important player in the complex cross-talk among pro- and anti-apoptotic pathways in this peculiar cell model.
Collapse
Affiliation(s)
- Luciana Caravatta
- Dipartimento di Biomorfologia, Università G. d'Annunzio, Chieti-Pescara, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Shen J, Wu Y, Shi L, Liu J, Liu S, Guan Z, Yin Z. Construction and characterization of two versions of bifunctional EGFP-sTRAIL fusion proteins. Appl Microbiol Biotechnol 2007; 76:141-9. [PMID: 17562041 DOI: 10.1007/s00253-007-1001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/10/2007] [Accepted: 04/12/2007] [Indexed: 11/28/2022]
Abstract
The extracellular portion (amino acids 95-281 or 114-281) of the human tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) was genetically linked to the C terminus of the fluoresce-enhanced green fluorescent protein variant (EGFP) to generate two versions of EGFP-sTRAIL fusion proteins, designated EGFP-sTR95 and EGFP-sTR114, respectively. The two versions of EGFP-sTRAIL fusion proteins both induce extensive apoptosis in lymphoid as well as nonlymphoid tumor cell lines. In addition, the two versions of fusion proteins retain similar fluorescence spectra to those of EGFP and have shown the specific binding to TRAIL receptor-positive cells; thus, the stained cells could be analyzed with flow cytometry. Hence, the two versions of fusion proteins represent a readily obtainable source of biologically active sTRAIL that may prove useful in exploit fully the characteristics of both the soluble TRAIL and its receptor system.
Collapse
Affiliation(s)
- Jiayin Shen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210046, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Koschny R, Walczak H, Ganten TM. The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med (Berl) 2007; 85:923-35. [PMID: 17437073 DOI: 10.1007/s00109-007-0194-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/07/2007] [Accepted: 03/14/2007] [Indexed: 12/30/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising new anticancer biotherapeutic. As shown by many preclinical studies, TRAIL efficiently induces apoptosis in numerous tumor cell lines but not in the majority of normal cells. However, an increasing number of publications report on a predominance of TRAIL resistance in primary human tumor cells, which require sensitization for TRAIL-induced apoptosis. Sensitization of cancer cells by treatment with chemotherapeutic drugs and irradiation has been shown to restore TRAIL sensitivity in many TRAIL-resistant tumor cells. Accordingly TRAIL treatment has been successfully used in different in vivo models for the treatment of tumors also in combination with chemotherapeutics without significant toxicity. However, some reports demonstrated toxicity of TRAIL alone or in combination with chemotherapeutic drugs in normal cells. This review summarizes data concerning the apoptosis-inducing pathways and efficacy of TRAIL, alone or in combination with chemotherapeutic drugs, in primary cancer cells compared to the unwanted effects of TRAIL treatment on normal tissue. We discuss the different in vitro tumor cell models and the potential of different recombinant forms of TRAIL or agonistic antibodies to TRAIL death receptors. Most preclinical studies show a high efficiency of a combinatorial TRAIL-based therapy in animal models and in primary human ex vivo tumor cells with a low toxicity in normal cells. Accordingly clinical phase I/II studies have begun and will be developed further with caution.
Collapse
Affiliation(s)
- Ronald Koschny
- Division of Apoptosis Regulation, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L, Cocco L, Vitale M. NK Cells and Cancer. THE JOURNAL OF IMMUNOLOGY 2007; 178:4011-6. [PMID: 17371953 DOI: 10.4049/jimmunol.178.7.4011] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we overview the main features and functions of NK cells, focusing on their role in cell-mediated immune response to tumor cells. In parallel, we discuss the information available in the field of NK cell receptors and offer a wide general overview of functional aspects of cell targeting and killing, focusing on the recent acknowledgments on the efficacy of NK cells after cytokine and mAb administration in cancer therapy. Since efficacy of NK cell-based immunotherapy has been proven in KIR-mismatch regimens or in TRAIL-dependent apoptosis, the ability to manipulate the balance of activating and inhibitory receptors on NK cells and of their cognate ligands, as well as the sensitivity of tumor cells to apoptosis, opens new perspectives for NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Loris Zamai
- Institute of Histology and Laboratory Analysis, University of Urbino, Via Ubaldini 7, I-61020 Urbino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zauli G, Rimondi E, Stea S, Baruffaldi F, Stebel M, Zerbinati C, Corallini F, Secchiero P. TRAIL inhibits osteoclastic differentiation by counteracting RANKL-dependent p27Kip1 accumulation in pre-osteoclast precursors. J Cell Physiol 2007; 214:117-25. [PMID: 17620297 DOI: 10.1002/jcp.21165] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Experimental evidences indicate that the TNF family member TNF-related apoptosis inducing ligand (TRAIL) might be involved in modulating osteoclastic differentiation. The ability of recombinant soluble TRAIL to affect bone density in vivo was evaluated by using 4-week-old mice subcutaneously (s.c.) injected with TRAIL for 8 days. TRAIL injection induced a significant increase of tibia trabecular thickness and total bone mass in 4-week-old mice, accompanied by a significant decrease of TRAP serum levels, without modulation of osteocalcin and osteoprotegerin (OPG). Parallel experiments performed in vitro showed that inhibition of osteoclastic differentiation, induced by treatment of human peripheral blood osteoclast precursors with TRAIL, was associated to inhibition of receptor activator of nuclear factor kappa B ligand (RANKL)-induced accumulation of p27(Kip1). The potential role of p27(Kip1) pathway in mediating the anti-osteoclastic activity of TRAIL was further suggested by in vitro gene knock-down experiments performed in osteoclast precursor cultures. Taken together, our data strongly suggest that recombinant TRAIL inhibits osteoclastogenesis by inducing the ubiquitin-mediated degradation of p27(Kip1).
Collapse
Affiliation(s)
- Giorgio Zauli
- Department of Biomedicine, University of Trieste, Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wissink EHJ, Verbrugge I, Vink SR, Schader MB, Schaefer U, Walczak H, Borst J, Verheij M. TRAIL enhances efficacy of radiotherapy in a p53 mutant, Bcl-2 overexpressing lymphoid malignancy. Radiother Oncol 2006; 80:214-22. [PMID: 16916556 DOI: 10.1016/j.radonc.2006.07.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Resistance to apoptosis is a contributing factor in the response to radiotherapy. Aim of this study was to evaluate whether TRAIL--in a soluble isoleucine zippered form--enhances the cytotoxic effect of irradiation on tumour cells with a blockade in the mitochondrial apoptosis route and/or a dysfunctional p53 pathway. MATERIALS AND METHODS The p53 mutant human T acute lymphoblastic leukemia line Jurkat transduced with the Bcl-2 gene was used as model system in vitro and in a subcutaneous transplant setting in immunodeficient mice. Sensitivity to single and combined treatment was read out by apoptosis hallmarks and clonogenic survival in vitro, and by bioluminescence and palpation in vivo. RESULTS Jurkat cells overexpressing Bcl-2 did not undergo apoptosis after irradiation, but the combination with TRAIL synergistically induced apoptosis without breaking mitochondrial resistance. TRAIL also reduced clonogenic survival after irradiation. In vivo, radiotherapy or TRAIL alone delayed tumour outgrowth, but combination treatment had the most profound effect. CONCLUSIONS Isoleucine zippered TRAIL can strongly enhance the efficacy of tumour therapy with ionising radiation in an unfavourable setting of p53 mutation and Bcl-2 overexpression.
Collapse
Affiliation(s)
- Esther H J Wissink
- Division of Immunology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Briggs RC, Shults KE, Flye LA, McClintock-Treep SA, Jagasia MH, Goodman SA, Boulos FI, Jacobberger JW, Stelzer GT, Head DR. Dysregulated human myeloid nuclear differentiation antigen expression in myelodysplastic syndromes: evidence for a role in apoptosis. Cancer Res 2006; 66:4645-51. [PMID: 16651415 DOI: 10.1158/0008-5472.can-06-0229] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduced levels of human myeloid nuclear differentiation antigen (MNDA) gene transcripts have been detected in both familial and sporadic cases of myelodysplastic syndromes (MDS). Numerous reports implicate elevated apoptosis/programmed cell death and death ligands and their receptors in the pathogenesis of MDS. MNDA and related proteins contain the pyrin domain that functions in signaling associated with programmed cell death and inflammation. We tested the hypothesis that MNDA is involved in the regulation of programmed cell death in human myeloid hematopoietic cells. Clones of K562 cells (MNDA-null) that expressed ectopic MNDA protein were established using retroviral transduction. MNDA-expressing K562 clones were resistant to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis, but were not protected from programmed cell death induced with genotoxic agents or H(2)O(2). MNDA protein expression assessed in control and intermediate and high-grade MDS marrows showed several patterns of aberrant reduced MNDA. These variable patterns of dysregulated MNDA expression may relate to the variable pathophysiology of MDS. We propose that MNDA has a role regulating programmed cell death in myeloid progenitor cells, and that its down-regulation in MDS is related to granulocyte-macrophage progenitor cell sensitivity to TRAIL-induced programmed cell death.
Collapse
Affiliation(s)
- Robert C Briggs
- Departments of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Di Pietro R, Fang H, Fields K, Miller S, Flora M, Petricoin EC, Dveksler G, Rana RA, Grimley PM. Peroxiredoxin genes are not induced in myeloid leukemia cells exposed to ionizing radiation. Int J Immunopathol Pharmacol 2006; 19:517-524. [PMID: 17026836 DOI: 10.1177/039463200601900307] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peroxiredoxins (Prx) comprise an extended family of small antioxidant proteins which conserve a thioredoxin-dependent catalytic function that can contribute to cell protection from reactive oxygen species (ROS). ROS generation is one of the deleterious intracellular effects of ionizing radiation, but the role of Prx during radiation treatment has not been extensively explored. Present experiments measure effects of ionizing radiation on expression of human Prx types I (PAGA), II (NKEF-B) and IV (AOE372) in human myeloid leukemia cells (K562). Prx gene transcription was analyzed by amplifying with RT-PCR cDNAs complementary to each Prx-specific coding sequence and by identifying the derived products with Southern blotting procedure. Transcripts of GAPDH were used as the endogenous standard for semi-quantitative comparisons. No consistent increase in Prx gene expression was detected at time intervals up to 72 h after gamma radiation doses that caused cell cycle arrest and nuclear damage (maximum 20 Gy). Immunoblots also were consistent with a prolonged expression or stability of the Prx I/II proteins. Similarly, a cytotoxic concentration of the oxidant hemin, which stimulates rapid hemoglobinization of K562 cells, caused no induction of Prx gene expression. Our results indicate a high Prx stability in human radio-resistant leukemia cells.
Collapse
Affiliation(s)
- R Di Pietro
- Department of Biomorphology, G. d'Annunzio University, Chieti-Pescara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rowinsky EK. Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents. J Clin Oncol 2006; 23:9394-407. [PMID: 16361639 DOI: 10.1200/jco.2005.02.2889] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Targeted induction of programmed cell death or apoptosis via the extrinsic apoptotic pathway represents an unexploited therapeutic strategy to destroy cancer cells. The activation of cell surface receptors by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) results in direct stimulation of apoptotic signaling pathways (extrinsic stimulation). Molecules that directly activate these receptors, such as agonistic monoclonal antibodies to the TRAIL receptors and recombinant TRAIL, are being developed as monotherapies and as part of combination therapies with existing chemotherapeutic drugs and other therapeutic modalities. This article examines the TRAIL receptors as potential targets for activating the TRAIL-mediated apoptosis pathway and presents the current status of novel therapeutics that exploit this pathway, particularly focusing on agonistic monoclonal antibodies to the TRAIL receptors. The preclinical activity, the status of ongoing evaluations, and the potential clinical impact of these novel agents are reviewed.
Collapse
|
42
|
Giampietro F, Sancilio S, Tiboni GM, Rana RA, Di Pietro R. Levels of apoptosis in human granulosa cells seem to be comparable after therapy with a gonadotropin-releasing hormone agonist or antagonist. Fertil Steril 2006; 85:412-419. [PMID: 16595220 DOI: 10.1016/j.fertnstert.2005.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To compare levels of apoptosis in granulosa cells from women treated with the gonadotropin-releasing hormone (GnRH) agonist triptorelin or the GnRH antagonist cetrorelix. DESIGN Randomized, prospective study. SETTING University hospital. PATIENT(S) Thirty-two women undergoing assisted reproduction techniques after ovulation induction with recombinant follicle-stimulating hormone (FSH) plus GnRH agonist or antagonist. INTERVENTION(S) Granulosa cells were isolated from follicular aspirates after oocyte removal. MAIN OUTCOME MEASURE(S) Apoptosis was assessed with Annexin V binding assay, terminal deoxynucleotidyl transferase (TdT)-mediated nick-end labeling (TUNEL) assay, flow cytometric analysis of DNA, and ultrastructural analysis of cell morphology in transmission electron microscopy. Serum and follicular hormonal levels were also determined. RESULT(S) Annexin V binding and TUNEL assays revealed comparable percentages of apoptosis in the two groups under investigation. Analysis of DNA histograms revealed a similar cell cycle distribution in the two groups. Ultrastructural analysis only occasionally displayed patterns of chromatin margination in apoptotic cells. The mean concentrations of all the follicular fluid steroid hormones evaluated (E2, T, and P) were significantly lower in the GnRH antagonist-treated group. CONCLUSION(S) Therapy with a GnRH agonist or antagonist is associated with comparable levels of apoptosis in granulosa cells.
Collapse
Affiliation(s)
- Franca Giampietro
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Facoltà di Medicina e Chirurgia, Università G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | | | | | | | | |
Collapse
|
43
|
Butler LM, Liapis V, Bouralexis S, Welldon K, Hay S, Thai LM, Labrinidis A, Tilley WD, Findlay DM, Evdokiou A. The histone deacetylase inhibitor, suberoylanilide hydroxamic acid, overcomes resistance of human breast cancer cells to Apo2L/TRAIL. Int J Cancer 2006; 119:944-54. [PMID: 16550602 DOI: 10.1002/ijc.21939] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the apoptosis-inducing ligand Apo2L/TRAIL is a promising new agent for the treatment of cancer, the sensitivity of cancer cells for induction of apoptosis by Apo2L/TRAIL varies considerably. Identification of agents that can be used in combination with Apo2L/TRAIL to enhance apoptosis in breast cancer cells would increase the potential utility of this agent as a breast cancer therapeutic. Here, we show that the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize Apo2L/TRAIL-resistant breast cancer cells to Apo2L/TRAIL-induced apoptosis. Importantly, neither Apo2L/TRAIL alone, nor in combination with SAHA, affected the viability of normal human cells in culture. Apo2L/TRAIL-resistant MDA-MB-231 breast cancer cells, generated by long-term culture in the continuous presence of Apo2L/TRAIL, were resensitized to Apo2L/TRAIL-induced apoptosis by SAHA. The sensitization of these cells by SAHA was accompanied by activation of caspase 8, caspase 9 and caspase 3 and was concomitant with Bid and PARP cleavage. The expression of the proapoptotic protein, Bax, increased significantly with SAHA treatment and high levels of Bax were maintained in the combined treatment with Apo2L/TRAIL. Treatment with SAHA increased cell surface expression of DR5 but not DR4. Interestingly, SAHA treatment also resulted in a significant increase in cell surface expression of DcR1. Taken together, our findings indicate that the use of these 2 agents in combination may be effective for the treatment of breast cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide and Hanson Institute, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang YX, Wang YY, Lee WH, Zheng YT, Zhang Y. Apoptotic activity of frog Bombina maxima skin albumin. Comp Biochem Physiol B Biochem Mol Biol 2005; 143:153-9. [PMID: 16343964 DOI: 10.1016/j.cbpb.2005.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 11/05/2005] [Accepted: 11/06/2005] [Indexed: 11/19/2022]
Abstract
Albumin, the most abundant protein components of blood plasma, is synthesized and secreted by liver cells in vertebrates. Recently, it was demonstrated that frog Bombina maxima albumin is also expressed in skin. Both B. maxima albumins from skin and serum (BmA-skin and BmA-serum) have similar biochemical characteristics except that the former contains haem b. Present studies showed that BmA-skin exhibited cytotoxic activity on H9 and C8166 cells. Pretreated with hemin to induce erythroid differentiation, K562 cells lost their resistance to cytotoxicity of BmA-skin. After treating cells with BmA-skin for 48 h, 50 percentage cytotoxic concentrations (CC(50)) of BmA-skin on H9, C8166 and hemin-treated K562 cells were 1.31+/-0.09, 1.59+/-0.08 and 2.28+/-0.06 microM, respectively. The cell death induced by BmA-skin was mediated by apoptosis of the tested cell lines, as demonstrated by nuclear morphological changes, DNA fragmentation and DNA hypodiploidy of apoptosis cells. At BmA-skin concentration of 2 microM, 27.3%, 19.7% and 17.8% of H9, C8166 and hemin-treated K562 cells were found to be apoptotic. In contrast, BmA-serum possessed no cytotoxic and apoptosis-inducing activity on all the cell lines tested, even with concentration used up to 15 microM. These results indicated that bound haem b in BmA-skin contributed significantly to its cytotoxic and apoptosis-inducing activity on the cell lines assayed.
Collapse
Affiliation(s)
- Ying-Xia Zhang
- Department of Animal Toxinology, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiao Chang Road, Kunming, Yunnan 650223, China.
| | | | | | | | | |
Collapse
|
45
|
Zhang X, Cheung RM, Komaki R, Fang B, Chang JY. Radiotherapy sensitization by tumor-specific TRAIL gene targeting improves survival of mice bearing human non-small cell lung cancer. Clin Cancer Res 2005; 11:6657-68. [PMID: 16166445 PMCID: PMC1351100 DOI: 10.1158/1078-0432.ccr-04-2699] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE To sensitize non-small cell lung cancer (NSCLC) to radiotherapy by tumor-specific delivery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. EXPERIMENTAL DESIGN The TRAIL was delivered to human NSCLC cell lines and normal human bronchial epithelial cells by the replication-defective adenoviral vector Ad/TRAIL-F/RGD using a tumor-specific human telomerase reverse transcriptase promoter. Cancer growth was studied using 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt and clonogenic assays. Activation of the apoptosis pathway was analyzed in a Western blot and sub-G(1) DNA accumulation. A xenograft mouse lung cancer model was treated by intratumoral injections of Ad/TRAIL-F/RGD and local radiotherapy; the other groups received one of these treatments alone or a control agent. Apoptosis and TRAIL expression in tumors were also analyzed. RESULTS Ad/TRAIL-F/RGD specifically targets human NSCLC cells without significant effect in normal human bronchial epithelial cells. The combination of Ad/TRAIL-F/RGD and radiotherapy significantly improved cell-killing effect in all NSCLC cell lines tested (P < 0.05). Expression of TRAIL showed a dose-dependent relationship with Ad/TRAIL-F/RGD, and radiation seemed to increase TRAIL expression. Activation of the apoptosis by TRAIL and radiation was shown by activation of caspase-9, caspase-8, caspase-3, and poly(ADP-ribose) polymerase and increased DNA sub-G(1) accumulation. The combination of TRAIL and radiotherapy significantly increased apoptosis in vivo, inhibited tumor growth, and prolonged mean survival in mice bearing human NSCLC to 43.7 days compared with 23.7 days (TRAIL only) and 16.5 days (radiotherapy only; P < 0.05). CONCLUSIONS The combination of Ad/TRAIL-F/RGD and radiotherapy significantly improved therapeutic efficacy in suppressing NSCLC tumor growth and prolonging survival. Ad/TRAIL-F/RGD may improve the therapeutic ratio of radiotherapy in NSCLC.
Collapse
Affiliation(s)
| | | | | | - Bingliang Fang
- Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Joe Y. Chang
- Radiation Oncology, and
- *Corresponding author: Joe Y. Chang, M.D., Ph.D., Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. Telephone: (713) 563-2300; Fax: (713) 563-2331; E-mail:. Bingliang Fang: co-corresponding author
| |
Collapse
|
46
|
Zeng W, Miyazato A, Chen G, Kajigaya S, Young NS, Maciejewski JP. Interferon-gamma-induced gene expression in CD34 cells: identification of pathologic cytokine-specific signature profiles. Blood 2005; 107:167-75. [PMID: 16131564 PMCID: PMC1895358 DOI: 10.1182/blood-2005-05-1884] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic effects of interferon-gamma (IFN-gamma) may be responsible for certain aspects of the pathology seen in bone marrow failure syndromes, including aplastic anemia (AA), paroxysmal nocturnal hemoglobinuria (PNH), and some forms of myelodysplasia (MDS). Overexpression of and hematopoietic inhibition by IFN-gamma has been observed in all of these conditions. In vitro, IFN-gamma exhibits strong inhibitory effects on hematopoietic progenitor and stem cells. Previously, we have studied the transcriptome of CD34 cells derived from patients with bone marrow failure syndromes and identified characteristic molecular signatures common to some of these conditions. In this report, we have investigated genome-wide expression patterns after exposure of CD34 and bone marrow stroma cells derived from normal bone marrow to IFN-gamma in vitro and have detected profound changes in the transcription profile. Some of these changes were concordant in both stroma and CD34 cells, whereas others were specific to CD34 cells. In general, our results were in agreement with the previously described function of IFN-gamma in CD34 cells involving activation of apoptotic pathways and immune response genes. Comparison between the IFN-gamma transcriptome in normal CD34 cells and changes previously detected in CD34 cells from AA and PNH patients reveals the presence of many similarities that may reflect molecular signature of in vivo IFN-gamma exposure.
Collapse
Affiliation(s)
- Weihua Zeng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zauli G, Sancilio S, Cataldi A, Sabatini N, Bosco D, Di Pietro R. PI-3K/Akt and NF-kappaB/IkappaBalpha pathways are activated in Jurkat T cells in response to TRAIL treatment. J Cell Physiol 2005; 202:900-911. [PMID: 15389633 DOI: 10.1002/jcp.20202] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this work was to evaluate the involvement of survival pathways in the response of Jurkat T leukaemic cells sensitive to the cytotoxic action of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)/Apo2L. Jurkat T cells express TRAIL-R2/DR5 and TRAIL-R4/DcR2 receptors and start to die by apoptosis early (3 h) upon TRAIL administration reaching a dose-dependent increase in the percentage of dead cells within 48 h (up to 85-90%). This increase in cell death is accompanied by a dose-dependent significant (P < 0.05) increase in the G0/G1 phase of the cell cycle and reverted by the treatment with a broad inhibitor of caspases, z-VAD-fmk. Co-treatment of the cells with inhibitors of PI-3 kinase (LY294002) and nuclear factor kappa B (NF-kappaB) (SN50) pathways leads to an earlier significantly increased cytotoxicity, respectively in the form of apoptosis and necrosis. Consistently with the data obtained with the pharmacological inhibitors, the activation and nuclear translocation of both PI-3K and NF-kappaB were observed. In summary, our results provide evidence that even in sensitive neoplastic cells TRAIL paradoxically activates pro-survival pathways, which protect against TRAIL-mediated death since their inhibition leads to an earlier and increased cytotoxicity.
Collapse
Affiliation(s)
- Giorgio Zauli
- Dipartimento di Morfologia Umana Normale, Università di Trieste, Via Manzoni, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Ciusani E, Croci D, Gelati M, Calatozzolo C, Sciacca F, Fumagalli L, Balzarotti M, Fariselli L, Boiardi A, Salmaggi A. In vitro effects of topotecan and ionizing radiation on TRAIL/Apo2L-mediated apoptosis in malignant glioma. J Neurooncol 2005; 71:19-25. [PMID: 15719269 DOI: 10.1007/s11060-004-9180-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The survival of patients with malignant gliomas is still unsatisfactory despite multimodality treatment, therefore new therapeutic strategies are required. Tumor necrosis factor apoptosis related ligand (TRAIL/Apo2L), a member of the tumor necrosis factor superfamily, may induce apoptotic cell death in several tumors, but not in normal cells, upon binding with specific receptors. In the present study, the expression and function of TRAIL receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5) has been investigated in five human glioma cell lines (U87, U138, U373, A172, SW1783) in ex vivo tumors and in primary cultures obtained from the tumors. Our data show that gliomas preferentially express TRAIL R2 and that treatment with topotecan, a topoisomerase I inhibitor, significantly up-regulates its expression as detected by flow cytometry and western blotting. Moreover, in most cases, treatment with topotecan resulted in an increased sensitivity to TRAIL-dependent apoptosis, although cyclohexymide had to be added to induce apoptosis. On glioma cell lines, the effects of irradiation on TRAIL receptors were also analysed. In our experimental conditions, irradiation with 2 Gy had a modest additive effect on TRAIL-dependent apoptosis and was not able to modulate TRAIL receptor expression.
Collapse
Affiliation(s)
- Emilio Ciusani
- Department of Clinical Investigation, National Neurological Institute C. Besta, Via Celoria, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Di Pietro R, Zauli G. Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J Cell Physiol 2004; 201:331-340. [PMID: 15389537 DOI: 10.1002/jcp.20099] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumor necrosis factor (TNF) is a cytokine that mediates tumor necrosis. To date, 20 different members of the TNF super-family and 21 different receptors have been identified. All ligands of the TNF super-family have been found to activate transcription factor NF-kappa B and c-Jun kinase. Members of this family have diverse biological effects, including induction of apoptosis, promotion of cell survival, and regulation of the immune system and hematopoiesis. The current review focuses on the biological effects of TNF-related apoptosis-inducing ligand (TRAIL), a TNF super-family member which, a few years ago, generated considerable enthusiasm for its anticancer activity, not accompanied by general toxicity in most normal tissues and organs.
Collapse
Affiliation(s)
- Roberta Di Pietro
- Dipartimento di Biomorfologia, Università G. d'Annunzio, Via dei Vestini, Chieti Scalo, Italy.
| | | |
Collapse
|
50
|
Tourneur L, Delluc S, Lévy V, Valensi F, Radford-Weiss I, Legrand O, Vargaftig J, Boix C, Macintyre EA, Varet B, Chiocchia G, Buzyn A. Absence or Low Expression of Fas-Associated Protein with Death Domain in Acute Myeloid Leukemia Cells Predicts Resistance to Chemotherapy and Poor Outcome. Cancer Res 2004; 64:8101-8. [PMID: 15520222 DOI: 10.1158/0008-5472.can-04-2361] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In acute myeloid leukemia (AML), coexpression of death receptors and ligands of the tumor necrosis factor (TNF) receptor/TNF-alpha superfamily on leukemic cells after chemotherapy is not always accompanied by apoptosis, suggesting that the apoptotic death receptor signaling pathway is disrupted. Because Fas-associated protein with death domain (FADD) is the main adaptor for transmitting the Fas, TNF-related apoptosis-inducing ligand receptors, and TNF receptor 1 death signal, expression of FADD was analyzed by Western blot and immunocytochemistry in leukemic cells of 70 de novo AML patients treated with the European Organization of Research and Treatment of Cancer AML-10 randomized trial before initiation of induction chemotherapy. Thirty seven percent of patients (17 of 46) with FADD negative/low (FADD(-/low)) leukemic cells had a primary refractory disease compared with 12% of FADD(+) patients (3 of 24; P = 0.05). FADD(-/low) expression was significantly associated with a worse event-free survival [EFS (P = 0.04)] and overall survival (P = 0.04). In multivariate analysis, FADD(-/low) protein expression was independently associated with a poor EFS and overall survival (P = 0.002 and P = 0.026, respectively). Importantly, FADD(-/low) protein expression predicted poor EFS even in patients with standard- or good-risk AML (P = 0.009). Thus, we identified low or absent expression of the FADD protein in leukemic cells at diagnosis as a poor independent prognostic factor that can predict worse clinical outcome even for patients with standard- or good-risk AML.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/analysis
- Adolescent
- Adult
- Blotting, Western
- Caspases/physiology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Fas-Associated Death Domain Protein
- Humans
- Immunohistochemistry
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Microscopy, Confocal
- Microscopy, Fluorescence
- Middle Aged
- Prognosis
- fas Receptor/analysis
Collapse
Affiliation(s)
- Léa Tourneur
- Département d'Immunologie, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U 567, Centre National de Recherche Scientifique UMR 8104, Institut Fédératif de Recherche 116, Université René Descartes, Paris V, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|