1
|
Follert P, Große‐Segerath L, Lammert E. Blood flow-induced angiocrine signals promote organ growth and regeneration. Bioessays 2025; 47:e2400207. [PMID: 39529434 PMCID: PMC11755702 DOI: 10.1002/bies.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Recently, we identified myeloid-derived growth factor (MYDGF) as a blood flow-induced angiocrine signal that promotes human and mouse hepatocyte proliferation and survival. Here, we review literature reporting changes in blood flow after partial organ resection in the liver, lung, and kidney, and we describe the angiocrine signals released by endothelial cells (ECs) upon blood flow alterations in these organs. While hepatocyte growth factor (HGF) and MYDGF are important angiocrine signals for liver regeneration, by now, angiocrine signals have also been reported to stimulate hyperplasia and/or hypertrophy during the regeneration of lungs and kidneys. In addition, angiocrine signals play a critical role in tumor growth. Understanding the mechano-elastic properties and flow-mediated alterations in the organ-specific microvasculature is crucial for therapeutic approaches to maintain organ health and initiate organ renewal.
Collapse
Affiliation(s)
- Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
| | - Linda Große‐Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| |
Collapse
|
2
|
Wellmerling JH, Dresler SR, Meridew JA, Choi KM, Tschumperlin DJ, Tan Q. RNA-sequencing reveals differential fibroblast responses to bleomycin and pneumonectomy. Physiol Rep 2024; 12:e16148. [PMID: 38991987 PMCID: PMC11239319 DOI: 10.14814/phy2.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Pulmonary fibrosis is characterized by pathological accumulation of scar tissue in the lung parenchyma. Many of the processes that are implicated in fibrosis, including increased extracellular matrix synthesis, also occur following pneumonectomy (PNX), but PNX instead results in regenerative compensatory growth of the lung. As fibroblasts are the major cell type responsible for extracellular matrix production, we hypothesized that comparing fibroblast responses to PNX and bleomycin (BLM) would unveil key differences in the role they play during regenerative versus fibrotic lung responses. RNA-sequencing was performed on flow-sorted fibroblasts freshly isolated from mouse lungs 14 days after BLM, PNX, or sham controls. RNA-sequencing analysis revealed highly similar biological processes to be involved in fibroblast responses to both BLM and PNX, including TGF-β1 and TNF-α. Interestingly, we observed smaller changes in gene expression after PNX than BLM at Day 14, suggesting that the fibroblast response to PNX may be muted by expression of transcripts that moderate pro-fibrotic pathways. Itpkc, encoding inositol triphosphate kinase C, was a gene uniquely up-regulated by PNX and not BLM. ITPKC overexpression in lung fibroblasts antagonized the pro-fibrotic effect of TGF-β1. RNA-sequencing analysis has identified considerable overlap in transcriptional changes between fibroblasts following PNX and those overexpressing ITPKC.
Collapse
Affiliation(s)
- Jack H. Wellmerling
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Sara R. Dresler
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Kyoung M. Choi
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Qi Tan
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
- The Hormel Institute, University of MinnesotaAustinMinnesotaUSA
| |
Collapse
|
3
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
4
|
Jaramillo-Rangel G, Chávez-Briones MDL, Ancer-Arellano A, Miranda-Maldonado I, Ortega-Martínez M. Back to the Basics: Usefulness of Naturally Aged Mouse Models and Immunohistochemical and Quantitative Morphologic Methods in Studying Mechanisms of Lung Aging and Associated Diseases. Biomedicines 2023; 11:2075. [PMID: 37509714 PMCID: PMC10377355 DOI: 10.3390/biomedicines11072075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging-related molecular and cellular alterations in the lung contribute to an increased susceptibility of the elderly to devastating diseases. Although the study of the aging process in the lung may benefit from the use of genetically modified mouse models and omics techniques, these approaches are still not available to most researchers and produce complex results. In this article, we review works that used naturally aged mouse models, together with immunohistochemistry (IHC) and quantitative morphologic (QM) methods in the study of the mechanisms of the aging process in the lung and its most commonly associated disorders: cancer, chronic obstructive pulmonary disease (COPD), and infectious diseases. The advantage of using naturally aged mice is that they present characteristics similar to those observed in human aging. The advantage of using IHC and QM methods lies in their simplicity, economic accessibility, and easy interpretation, in addition to the fact that they provide extremely important information. The study of the aging process in the lung and its associated diseases could allow the design of appropriate therapeutic strategies, which is extremely important considering that life expectancy and the number of elderly people continue to increase considerably worldwide.
Collapse
Affiliation(s)
- Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | | | - Adriana Ancer-Arellano
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Ivett Miranda-Maldonado
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Marta Ortega-Martínez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
5
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
6
|
Ko VH, Yu LJ, Secor JD, Pan A, Mitchell PD, Kishikawa H, Puder M. Deficiency in pigment epithelium-derived factor accelerates pulmonary growth and development in a compensatory lung growth model. FASEB J 2021; 35:e21850. [PMID: 34569654 DOI: 10.1096/fj.202002661rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
Children with hypoplastic lung disease associated with congenital diaphragmatic hernia (CDH) continue to suffer significant morbidity and mortality secondary to progressive pulmonary disease. Recently published work from our lab demonstrated the potential of Roxadustat (FG-4592), a prolyl hydroxylase inhibitor, as a treatment for CDH-associated pulmonary hypoplasia. Treatment with Roxadustat led to significantly accelerated compensatory lung growth (CLG) through downregulation of pigment epithelium-derived factor (PEDF), an anti-angiogenic factor, rather than upregulation of vascular endothelial growth factor (VEGF). PEDF and its role in pulmonary development is a largely unexplored field. In this study, we sought to further evaluate the role of PEDF in accelerating CLG. PEDF-deficient mice demonstrated significantly increased lung volume, total lung capacity, and alveolarization compared to wild type controls following left pneumonectomy without increased VEGF expression. Furthermore, Roxadustat administration in PEDF-deficient mice did not further accelerate CLG. Human microvascular endothelial lung cells (HMVEC-L) and human pulmonary alveolar epithelial cells (HPAEC) similarly demonstrated decreased PEDF expression with Roxadustat administration. Additionally, downregulation of PEDF in Roxadustat-treated HMVEC-L and HPAEC, a previously unreported finding, speaks to the potential translatability of Roxadustat from small animal studies. Taken together, these findings further suggest that PEDF downregulation is the primary mechanism by which Roxadustat accelerates CLG. More importantly, these data highlight the critical role PEDF may have in pulmonary growth and development, a previously unexplored field.
Collapse
Affiliation(s)
- Victoria H Ko
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lumeng J Yu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan D Secor
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Pan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Chen Y, Xue Y, Jin Y, Ji H. Lung stem cells in regeneration and tumorigenesis. J Genet Genomics 2021; 48:268-276. [PMID: 33896738 DOI: 10.1016/j.jgg.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022]
Abstract
Adult lung is a highly quiescent organ, with extremely low cell turnover frequency. However, emerging evidences support the occurrence of repair and regeneration in pulmonary epithelia in response to various injuries. Lung regeneration mainly depends on the proliferation of regionally distributed pulmonary stem cells that re-enter the cell cycle. Genetic lineage-tracing approaches help to track the lung epithelial differentiation and/or de-differentiation path, and single-cell transcriptomic technique reveals the essential molecular signaling involved in lung regeneration. Dysregulation of the molecular signaling that balances quiescence and self-renewal leads to the transformation of lung stem cells, and thus promotes lung cancer development. Interestingly, different subtypes of lung cancer share common cells of origin and the pathological transition among various subtypes is responsible for drug resistance in the clinic. In this review, we summarize the recent understanding of lung stem cells in regeneration and tumorigenesis as well as related molecular mechanisms, with the hope to provide helpful insights for clinical treatments of respiratory diseases.
Collapse
Affiliation(s)
- Yuting Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Pulmonary Hospital, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Lignelli E, Palumbo F, Bayindir SG, Nagahara N, Vadász I, Herold S, Seeger W, Morty RE. The H 2S-generating enzyme 3-mercaptopyruvate sulfurtransferase regulates pulmonary vascular smooth muscle cell migration and proliferation but does not impact normal or aberrant lung development. Nitric Oxide 2021; 107:31-45. [PMID: 33338600 DOI: 10.1016/j.niox.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Along with nitric oxide (NO), the gasotransmitters carbon monoxide (CO) and hydrogen sulfide (H2S) are emerging as potentially important players in newborn physiology, as mediators of newborn disease, and as new therapeutic modalities. Several recent studies have addressed H2S in particular in animal models of bronchopulmonary dysplasia (BPD), a common complication of preterm birth where oxygen toxicity stunts lung development. In those studies, exogenous H2S attenuated the impact of oxygen toxicity on lung development, and two H2S-generating enzymes were documented to affect pulmonary vascular development. H2S is directly generated endogenously by three enzymes, one of which, 3-mercaptopyruvate sulfurtransferase (MPST), has not been studied in the lung. In a hyperoxia-based animal model of BPD, oxygen exposure deregulated MPST expression during post-natal lung development, where MPST was localized to the smooth muscle layer of the pulmonary vessels in developing lungs. siRNA-mediated abrogation of MPST expression in human pulmonary artery smooth muscle cells in vitro limited baseline cell migration and cell proliferation, without affecting apoptosis or cell viability. In vivo, MPST was dispensable for normal lung development in Mpst-/-mice, and MPST did not contribute to stunted lung development driven by hyperoxia exposure, assessed by design-based stereology. These data demonstrate novel roles for MPST in pulmonary vascular smooth muscle cell physiology. The potential caveats of using Mpst-/- mice to study normal and aberrant lung development are also discussed, highlighting the possible confounding, compensatory effects of other H2S-generating enzymes that are present alongside MPST in the smooth muscle compartment of developing pulmonary vessels.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Selahattin Görkem Bayindir
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Noriyuki Nagahara
- Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; Institute for Lung Health (ILH), Justus Liebig University Giessen, Aulweg 130, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany.
| |
Collapse
|
9
|
Pérez-Bravo D, Myti D, Mižíková I, Pfeffer T, Surate Solaligue DE, Nardiello C, Vadász I, Herold S, Seeger W, Ahlbrecht K, Morty RE. A comparison of airway pressures for inflation fixation of developing mouse lungs for stereological analyses. Histochem Cell Biol 2020; 155:203-214. [PMID: 33372249 PMCID: PMC7910376 DOI: 10.1007/s00418-020-01951-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/02/2022]
Abstract
The morphometric analysis of lung structure using the principles of stereology has emerged as a powerful tool to describe the structural changes in lung architecture that accompany the development of lung disease that is experimentally modelled in adult mice. These stereological principles are now being applied to the study of the evolution of the lung architecture over the course of prenatal and postnatal lung development in mouse neonates and adolescents. The immature lung is structurally and functionally distinct from the adult lung, and has a smaller volume than does the adult lung. These differences have raised concerns about whether the inflation fixation of neonatal mouse lungs with the airway pressure (Paw) used for the inflation fixation of adult mouse lungs may cause distortion of the neonatal mouse lung structure, leading to the generation of artefacts in subsequent analyses. The objective of this study was to examine the impact of a Paw of 10, 20 and 30 cmH2O on the estimation of lung volumes and stereologically assessed parameters that describe the lung structure in developing mouse lungs. The data presented demonstrate that low Paw (10 cmH2O) leads to heterogeneity in the unfolding of alveolar structures within the lungs, and that high Paw (30 cmH2O) leads to an overestimation of the lung volume, and thus, affects the estimation of volume-dependent parameters, such as total alveoli number and gas-exchange surface area. Thus, these data support the use of a Paw of 20 cmH2O for inflation fixation in morphometric studies on neonatal mouse lungs.
Collapse
Affiliation(s)
- David Pérez-Bravo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany.,Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth (Box 511), Ottawa, ON, 1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tilman Pfeffer
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany.,Centre for Paediatric and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany.,Our Lady's Hospital, MoathillCo. Meath, Navan, C15 RK7Y, Ireland
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany.,Cardio Pulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany.,Cardio Pulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany.,Cardio Pulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University Giessen, Aulweg 130, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany. .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Aulweg 123, 35394, Giessen, Germany. .,Cardio Pulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany.
| |
Collapse
|
10
|
Feddersen S, Nardiello C, Selvakumar B, Vadász I, Herold S, Seeger W, Morty RE. Impact of litter size on survival, growth and lung alveolarization of newborn mouse pups. Ann Anat 2020; 232:151579. [PMID: 32688019 DOI: 10.1016/j.aanat.2020.151579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Lung alveolarization, the development of the alveoli, is disturbed in preterm infants with bronchopulmonary dysplasia (BPD), the most common complication of preterm birth. Animal models based on oxygen toxicity to the developing mouse lung are used to understand the mechanisms of stunted alveolarization in BPD, and to develop new medical management strategies for affected infants. The toxicity of genetic and pharmacological interventions, together with maternal cannibalism, reduce mouse litter sizes in experimental studies. The impact of litter size on normal and stunted lung alveolarization is unknown, but may influence data interpretation. The aim of the study was to assess the impact of litter size on normal and oxygen-stunted lung alveolarization in mice. METHODS BPD was experimentally modelled in newborn C57BL/6J mice by exposure to 85% O2 in the inspired air for the first 14 days of post-natal life. Perturbations to mouse lung architecture were assessed by design-based stereology, in which the alveolar density, total number of alveoli, gas-exchange surface area, and the septal thickness were estimated. RESULTS Litter sizes of a single mouse were not viable to post-natal day 14. Normal lung alveolarization was comparable in mouse pups in litters of 2, 4, 6, and 8 pups per litter. Hyperoxia was equally effective at stunting lung alveolarization in mouse pups in litters of 2, 4, 6, and 8 pups per litter. CONCLUSIONS Studies on normal lung alveolarization as well as alveolarization stunted by oxygen toxicity can be undertaken in mouse litters as small as two pups, and as large as eight pups. There is no evidence to suggest that data cannot be compared within and between litters of two to eight mouse pups.
Collapse
Affiliation(s)
- Sophie Feddersen
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 60231 Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Aulweg 123, 35392 Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 60231 Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Aulweg 123, 35392 Giessen, Germany
| | - Balachandar Selvakumar
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Aulweg 123, 35392 Giessen, Germany; Instituto de Investigación en Biomedicina de Buenos Aires, Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Aulweg 123, 35392 Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Aulweg 123, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 60231 Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Aulweg 123, 35392 Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 60231 Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Aulweg 123, 35392 Giessen, Germany.
| |
Collapse
|
11
|
Wu A, Song H. Regulation of alveolar type 2 stem/progenitor cells in lung injury and regeneration. Acta Biochim Biophys Sin (Shanghai) 2020; 52:716-722. [PMID: 32445469 DOI: 10.1093/abbs/gmaa052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 01/02/2023] Open
Abstract
The renewal of lung epithelial cells is normally slow unless the lung is injured. The resident epithelial stem cells rapidly proliferate and differentiate to maintain lung structure and function when the lung is damaged. The alveolar epithelium is characterized by alveolar type 1 (AT1) and alveolar type 2 (AT2) cells. AT2 cells are the stem cells for alveoli, as they can both self-renew and generate AT1 cells. Abnormal proliferation and regulation of AT2 cells will lead to serious lung diseases including cancers. In this review, we focused on the alveolar stem/progenitor cells, the key physiological function of AT2 cells in lung homeostasis and the complicated regulation of AT2 cells in the repairing processes after lung injury.
Collapse
Affiliation(s)
- Ailing Wu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
12
|
Cho I, Lui PP, Ali N. Treg regulation of the epithelial stem cell lineage. JOURNAL OF IMMUNOLOGY AND REGENERATIVE MEDICINE 2020; 8:100028. [PMID: 32494759 PMCID: PMC7226844 DOI: 10.1016/j.regen.2020.100028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Tissue repair and maintenance in adult organisms is dependent on the interactions between stem cells (SCs) and constituent cells of their microenvironment, or niche. Accumulating evidence suggests that immune cells, specifically Foxp3+ CD4+ Regulatory T cells (Tregs), play an important role as a regulator of the SC niche. Undisputedly, Tregs are the major immunosuppressive lineage of the CD4+ T cell compartment, and reside within numerous secondary lymphoid organs, where they exert their functions. These cells are also specialised in facilitating protective functions specific to their tissue of residence. In this review, we discuss the emerging concepts supporting the SC-regulatory functions of tissue-resident Tregs, during both the steady-state and SC-mediated regeneration. We highlight the skin, intestines, and lung as model organs which are subject to recurrent microinjury,exposure to microbiota, and constantly replenished by resident stem cell populations. An in-depth understanding of the biology of the Treg-SC axis will inform ongoing immunotherapeutic endeavours to target specific subpopulations of tissue-resident Tregs.
Collapse
Affiliation(s)
- Inchul Cho
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Biomedical Sciences, King's College London, London, UK
| | - Prudence Pokwai Lui
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Biomedical Sciences, King's College London, London, UK
| | - Niwa Ali
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Biomedical Sciences, King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
13
|
Ysasi AB, Bennett RD, Wagner W, Valenzuela CD, Servais AB, Tsuda A, Pyne S, Li S, Grimsby J, Pokharel P, Livak KJ, Ackermann M, Blainey PC, Mentzer SJ. Single-Cell Transcriptional Profiling of Cells Derived From Regenerating Alveolar Ducts. Front Med (Lausanne) 2020; 7:112. [PMID: 32373614 PMCID: PMC7186418 DOI: 10.3389/fmed.2020.00112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Lung regeneration occurs in a variety of adult mammals after surgical removal of one lung (pneumonectomy). Previous studies of murine post-pneumonectomy lung growth have identified regenerative “hotspots” in subpleural alveolar ducts; however, the cell-types participating in this process remain unclear. To identify the single cells participating in post-pneumonectomy lung growth, we used laser microdissection, enzymatic digestion and microfluidic isolation. Single-cell transcriptional analysis of the murine alveolar duct cells was performed using the C1 integrated fluidic circuit (Fluidigm) and a custom PCR panel designed for lung growth and repair genes. The multi-dimensional data set was analyzed using visualization software based on the tSNE algorithm. The analysis identified 6 cell clusters; 1 cell cluster was present only after pneumonectomy. This post-pneumonectomy cluster was significantly less transcriptionally active than 3 other clusters and may represent a transitional cell population. A provisional cluster identity for 4 of the 6 cell clusters was obtained by embedding bulk transcriptional data into the tSNE analysis. The transcriptional pattern of the 6 clusters was further analyzed for genes associated with lung repair, matrix production, and angiogenesis. The data demonstrated that multiple cell-types (clusters) transcribed genes linked to these basic functions. We conclude that the coordinated gene expression across multiple cell clusters is likely a response to a shared regenerative microenvironment within the subpleural alveolar ducts.
Collapse
Affiliation(s)
- Alexandra B Ysasi
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| | - Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| | - Willi Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Cristian D Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| | - Andrew B Servais
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, United States
| | - Saumyadipta Pyne
- Public Health Dynamics Laboratory, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shuqiang Li
- Fluidigm Corporation, South San Francisco, CA, United States
| | - Jonna Grimsby
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Prapti Pokharel
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Kenneth J Livak
- Fluidigm Corporation, South San Francisco, CA, United States
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Paul C Blainey
- Broad Institute of Harvard and MIT, Cambridge, MA, United States.,Department of Biological Engineering, MIT, Cambridge, MA, United States
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Gredic M, Blanco I, Kovacs G, Helyes Z, Ferdinandy P, Olschewski H, Barberà JA, Weissmann N. Pulmonary hypertension in chronic obstructive pulmonary disease. Br J Pharmacol 2020; 178:132-151. [PMID: 31976545 DOI: 10.1111/bph.14979] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Even mild pulmonary hypertension (PH) is associated with increased mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). However, the underlying mechanisms remain elusive; therefore, specific and efficient treatment options are not available. Therapeutic approaches tested in the clinical setting, including long-term oxygen administration and systemic vasodilators, gave disappointing results and might be only beneficial for specific subgroups of patients. Preclinical studies identified several therapeutic approaches for the treatment of PH in COPD. Further research should provide deeper insight into the complex pathophysiological mechanisms driving vascular alterations in COPD, especially as such vascular (molecular) alterations have been previously suggested to affect COPD development. This review summarizes the current understanding of the pathophysiology of PH in COPD and gives an overview of the available treatment options and recent advances in preclinical studies. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,PharmInVivo Ltd, Pécs, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Norbert Weissmann
- Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
15
|
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most important causes of death worldwide, and in addition to its impact on the patient's health, it poses a major socioeconomic burden. Tobacco smoke, indoor cooking, and air pollution are major triggers of the disease. This article summarizes evidence for the concept that lung microvascular molecular alterations can be a driver of lung emphysema. If findings from preclinical models allow a transfer to the human situation, this concept can offer new approaches for curative treatment of lung emphysema.
Collapse
|
16
|
Buchacker T, Mühlfeld C, Wrede C, Wagner WL, Beare R, McCormick M, Grothausmann R. Assessment of the Alveolar Capillary Network in the Postnatal Mouse Lung in 3D Using Serial Block-Face Scanning Electron Microscopy. Front Physiol 2019; 10:1357. [PMID: 31824323 PMCID: PMC6881265 DOI: 10.3389/fphys.2019.01357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
The alveolar capillary network (ACN) has a large surface area that provides the basis for an optimized gas exchange in the lung. It needs to adapt to morphological changes during early lung development and alveolarization. Structural alterations of the pulmonary vasculature can lead to pathological functional conditions such as in bronchopulmonary dysplasia and various other lung diseases. To understand the development of the ACN and its impact on the pathogenesis of lung diseases, methods are needed that enable comparative analyses of the complex three-dimensional structure of the ACN at different developmental stages and under pathological conditions. In this study a newborn mouse lung was imaged with serial block-face scanning electron microscopy (SBF-SEM) to investigate the ACN and its surrounding structures before the alveolarization process begins. Most parts but not all of the examined ACN contain two layers of capillaries, which were repeatedly connected with each other. A path from an arteriole to a venule was extracted and straightened to allow cross-sectional visualization of the data along the path within a plane. This allows a qualitative characterization of the structures that erythrocytes pass on their way through the ACN. One way to define regions of the ACN supplied by specific arterioles is presented and used for analyses. Pillars, possibly intussusceptive, were found in the vasculature but no specific pattern was observed in regard to parts of the saccular septa. This study provides 3D information with a resolution of about 150 nm on the microscopic structure of a newborn mouse lung and outlines some of the potentials and challenges of SBF-SEM for 3D analyses of the ACN.
Collapse
Affiliation(s)
- Tobias Buchacker
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany.,REBIRTH Cluster of Excellence, Hanover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology (DIR), University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Richard Beare
- Department of Medicine, Monash University, Melbourne, VIC, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany
| |
Collapse
|
17
|
Mammoto A, Mammoto T. Vascular Niche in Lung Alveolar Development, Homeostasis, and Regeneration. Front Bioeng Biotechnol 2019; 7:318. [PMID: 31781555 PMCID: PMC6861452 DOI: 10.3389/fbioe.2019.00318] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Endothelial cells (ECs) constitute small capillary blood vessels and contribute to delivery of nutrients, oxygen and cellular components to the local tissues, as well as to removal of carbon dioxide and waste products from the tissues. Besides these fundamental functions, accumulating evidence indicates that capillary ECs form the vascular niche. In the vascular niche, ECs reciprocally crosstalk with resident cells such as epithelial cells, mesenchymal cells, and immune cells to regulate development, homeostasis, and regeneration in various organs. Capillary ECs supply paracrine factors, called angiocrine factors, to the adjacent cells in the niche and orchestrate these processes. Although the vascular niche is anatomically and functionally well-characterized in several organs such as bone marrow and neurons, the effects of endothelial signals on other resident cells and anatomy of the vascular niche in the lung have not been well-explored. This review discusses the role of alveolar capillary ECs in the vascular niche during development, homeostasis and regeneration.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Wakamatsu I, Matsuguma H, Nakahara R, Chida M. Factors associated with compensatory lung growth after pulmonary lobectomy for lung malignancy: an analysis of lung weight and lung volume changes based on computed tomography findings. Surg Today 2019; 50:144-152. [PMID: 31440912 DOI: 10.1007/s00595-019-01863-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To establish the factors associated with compensatory lung growth (CLG) in human adults. METHODS The subjects of this study were 216 patients who underwent pulmonary lobectomy between January 2008 and March 2015 and had computed tomography (CT) scans done before and 2 years after surgery with no signs of recurrence. The predicted postoperative values of lung volume and lung weight, based on the preoperative CT data, were compared with those 2 years after surgery. RESULTS When the predicted postoperative values were considered to be 100%, the mean lung volume and lung weight 2 years after surgery were 116 ± 16% and 115 ± 19%, respectively. CLG was defined as both lung volume ≥ 110% and lung weight ≥ 106% (CLG group; n = 108). Both univariate and multivariate analyses showed that younger age (≤ 60 years), a larger number of resected subsegments (≥ 10), and a light- (< 20 pack-years) or non-smoking history were significantly associated with CLG. CONCLUSIONS This study identified younger age, a light- or non-smoking history, and a large resection volume as the predictors of CLG in patients who underwent pulmonary lobectomy for lung malignancy. All of these three factors may be reasonably connected to CLG.
Collapse
Affiliation(s)
- Ikuma Wakamatsu
- Division of Thoracic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, 320-0834, Tochigi, Japan.
| | - Haruhisa Matsuguma
- Division of Thoracic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, 320-0834, Tochigi, Japan
| | - Rie Nakahara
- Division of Thoracic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, 320-0834, Tochigi, Japan
| | - Masayuki Chida
- Department of General Thoracic Surgery, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
19
|
Rodríguez-Castillo JA, Pérez DB, Ntokou A, Seeger W, Morty RE, Ahlbrecht K. Understanding alveolarization to induce lung regeneration. Respir Res 2018; 19:148. [PMID: 30081910 PMCID: PMC6090695 DOI: 10.1186/s12931-018-0837-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Gas exchange represents the key physiological function of the lung, and is dependent upon proper formation of the delicate alveolar structure. Malformation or destruction of the alveolar gas-exchange regions are key histopathological hallmarks of diseases such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis; all of which are characterized by perturbations to the alveolo-capillary barrier structure. Impaired gas-exchange is the primary initial consequence of these perturbations, resulting in severe clinical symptoms, reduced quality of life, and death. The pronounced morbidity and mortality associated with malformation or destruction of alveoli underscores a pressing need for new therapeutic concepts. The re-induction of alveolarization in diseased lungs is a new and exciting concept in a regenerative medicine approach to manage pulmonary diseases that are characterized by an absence of alveoli. Main text Mechanisms of alveolarization first need to be understood, to identify pathways and mediators that may be exploited to drive the induction of alveolarization in the diseased lung. With this in mind, a variety of candidate cell-types, pathways, and molecular mediators have recently been identified. Using lineage tracing approaches and lung injury models, new progenitor cells for epithelial and mesenchymal cell types – as well as cell lineages which are able to acquire stem cell properties – have been discovered. However, the underlying mechanisms that orchestrate the complex process of lung alveolar septation remain largely unknown. Conclusion While important progress has been made, further characterization of the contributing cell-types, the cell type-specific molecular signatures, and the time-dependent chemical and mechanical processes in the developing, adult and diseased lung is needed in order to implement a regenerative therapeutic approach for pulmonary diseases.
Collapse
Affiliation(s)
- José Alberto Rodríguez-Castillo
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - David Bravo Pérez
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - Aglaia Ntokou
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - Werner Seeger
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany
| | - Rory E Morty
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany
| | - Katrin Ahlbrecht
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany.
| |
Collapse
|
20
|
Mentzer SJ. The puzzling mechanism of compensatory lung growth. Stem Cell Investig 2018; 5:8. [PMID: 29682515 DOI: 10.21037/sci.2018.03.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol 2018; 433:166-176. [DOI: 10.1016/j.ydbio.2017.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
|
22
|
Haber S, Weisbord M, Mentzer SJ, Tsuda A. Alveolar septal patterning during compensatory lung growth: Part II the effect of parenchymal pressure gradients. J Theor Biol 2017; 421:168-178. [PMID: 28363864 DOI: 10.1016/j.jtbi.2017.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
In most mammals, compensatory lung growth occurs after the removal of one lung (pneumonectomy). Although the mechanism of alveolar growth is unknown, the patterning of complex alveolar geometry over organ-sized length scales is a central question in regenerative lung biology. Because shear forces appear capable of signaling the differentiation of important cells involved in neoalveolarization (fibroblasts and myofibroblasts), interstitial fluid mechanics provide a potential mechanism for the patterning of alveolar growth. The movement of interstitial fluid is created by two basic mechanisms: 1) the non-uniform motion of the boundary walls, and 2) parenchymal pressure gradients external to the interstitial fluid. In a previous study (Haber et al., Journal of Theoretical Biology 400: 118-128, 2016), we investigated the effects of non-uniform stretching of the primary septum (associated with its heterogeneous mechanical properties) during breathing on generating non-uniform Stokes flow in the interstitial space. In the present study, we analyzed the effect of parenchymal pressure gradients on interstitial flow. Dependent upon lung microarchitecture and physiologic conditions, parenchymal pressure gradients had a significant effect on the shear stress distribution in the interstitial space of primary septa. A dimensionless parameter δ described the ratio between the effects of a pressure gradient and the influence of non-uniform primary septal wall motion. Assuming that secondary septa are formed where shear stresses were the largest, it is shown that the geometry of the newly generated secondary septa was governed by the value of δ. For δ smaller than 0.26, the alveolus size was halved while for higher values its original size was unaltered. We conclude that the movement of interstitial fluid, governed by parenchymal pressure gradients and non-uniform primary septa wall motion, provides a plausible mechanism for the patterning of alveolar growth.
Collapse
Affiliation(s)
- Shimon Haber
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Michal Weisbord
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA, United States
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, United States.
| |
Collapse
|
23
|
Ysasi AB, Wagner WL, Valenzuela CD, Kienzle A, Servais AB, Bennett RD, Tsuda A, Ackermann M, Mentzer SJ. Evidence for pleural epithelial-mesenchymal transition in murine compensatory lung growth. PLoS One 2017; 12:e0177921. [PMID: 28542402 PMCID: PMC5438137 DOI: 10.1371/journal.pone.0177921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022] Open
Abstract
In many mammals, including rodents and humans, removal of one lung results in the compensatory growth of the remaining lung; however, the mechanism of compensatory lung growth is unknown. Here, we investigated the changes in morphology and phenotype of pleural cells after pneumonectomy. Between days 1 and 3 after pneumonectomy, cells expressing α-smooth muscle actin (SMA), a cytoplasmic marker of myofibroblasts, were significantly increased in the pleura compared to surgical controls (p < .01). Scanning electron microscopy of the pleural surface 3 days post-pneumonectomy demonstrated regions of the pleura with morphologic features consistent with epithelial-mesenchymal transition (EMT); namely, cells with disrupted intercellular junctions and an acquired mesenchymal (rounded and fusiform) morphotype. To detect the migration of the transitional pleural cells into the lung, a biotin tracer was used to label the pleural mesothelial cells at the time of surgery. By post-operative day 3, image cytometry of post-pneumonectomy subpleural alveoli demonstrated a 40-fold increase in biotin+ cells relative to pneumonectomy-plus-plombage controls (p < .01). Suggesting a similar origin in space and time, the distribution of cells expressing biotin, SMA, or vimentin demonstrated a strong spatial autocorrelation in the subpleural lung (p < .001). We conclude that post-pneumonectomy compensatory lung growth involves EMT with the migration of transitional mesothelial cells into subpleural alveoli.
Collapse
Affiliation(s)
- Alexandra B. Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Willi L. Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Cristian D. Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arne Kienzle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew B. Servais
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert D. Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Lechner AJ, Driver IH, Lee J, Conroy CM, Nagle A, Locksley RM, Rock JR. Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy. Cell Stem Cell 2017; 21:120-134.e7. [PMID: 28506464 DOI: 10.1016/j.stem.2017.03.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/09/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Abstract
To investigate the role of immune cells in lung regeneration, we used a unilateral pneumonectomy model that promotes the formation of new alveoli in the remaining lobes. Immunofluorescence and single-cell RNA sequencing found CD115+ and CCR2+ monocytes and M2-like macrophages accumulating in the lung during the peak of type 2 alveolar epithelial stem cell (AEC2) proliferation. Genetic loss of function in mice and adoptive transfer studies revealed that bone marrow-derived macrophages (BMDMs) traffic to the lung through a CCL2-CCR2 chemokine axis and are required for optimal lung regeneration, along with Il4ra-expressing leukocytes. Our data suggest that these cells modulate AEC2 proliferation and differentiation. Finally, we provide evidence that group 2 innate lymphoid cells are a source of IL-13, which promotes lung regeneration. Together, our data highlight the potential for immunomodulatory therapies to stimulate alveologenesis in adults.
Collapse
Affiliation(s)
- Andrew J Lechner
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Ian H Driver
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Jinwoo Lee
- Department of Medicine and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Carmen M Conroy
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Abigail Nagle
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Richard M Locksley
- Department of Medicine and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jason R Rock
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Pozarska A, Rodríguez-Castillo JA, Surate Solaligue DE, Ntokou A, Rath P, Mižíková I, Madurga A, Mayer K, Vadász I, Herold S, Ahlbrecht K, Seeger W, Morty RE. Stereological monitoring of mouse lung alveolarization from the early postnatal period to adulthood. Am J Physiol Lung Cell Mol Physiol 2017; 312:L882-L895. [PMID: 28314804 DOI: 10.1152/ajplung.00492.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022] Open
Abstract
Postnatal lung maturation generates a large number of small alveoli, with concomitant thinning of alveolar septal walls, generating a large gas exchange surface area but minimizing the distance traversed by the gases. This demand for a large and thin gas exchange surface area is not met in disorders of lung development, such as bronchopulmonary dysplasia (BPD) histopathologically characterized by fewer, larger alveoli and thickened alveolar septal walls. Diseases such as BPD are often modeled in the laboratory mouse to better understand disease pathogenesis or to develop new interventional approaches. To date, there have been no stereology-based longitudinal studies on postnatal mouse lung development that report dynamic changes in alveoli number or alveolar septal wall thickness during lung maturation. To this end, changes in lung structure were quantified over the first 22 mo of postnatal life of C57BL/6J mice. Alveolar density peaked at postnatal day (P)39 and remained unchanged at 9 mo (P274) but was reduced by 22 mo (P669). Alveoli continued to be generated, initially at an accelerated rate between P5 and P14, and at a slower rate thereafter. Between P274 and P669, loss of alveoli was noted, without any reduction in lung volume. A progressive thinning of the alveolar septal wall was noted between P5 and P28. Pronounced sex differences were observed in alveoli number in adult (but not juvenile) mice, when comparing male and female mouse lungs. This sex difference was attributed exclusively to the larger volume of male mouse lungs.
Collapse
Affiliation(s)
- Agnieszka Pozarska
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Aglaia Ntokou
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Philipp Rath
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Alicia Madurga
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
26
|
Bennett RD, Ysasi AB, Wagner WL, Valenzuela CD, Tsuda A, Pyne S, Li S, Grimsby J, Pokharel P, Livak KJ, Ackermann M, Blainey P, Mentzer SJ. Deformation-induced transitional myofibroblasts contribute to compensatory lung growth. Am J Physiol Lung Cell Mol Physiol 2017; 312:L79-L88. [PMID: 27836901 PMCID: PMC5283924 DOI: 10.1152/ajplung.00383.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 01/24/2023] Open
Abstract
In many mammals, including humans, removal of one lung (pneumonectomy) results in the compensatory growth of the remaining lung. Compensatory growth involves not only an increase in lung size, but also an increase in the number of alveoli in the peripheral lung; however, the process of compensatory neoalveolarization remains poorly understood. Here, we show that the expression of α-smooth muscle actin (SMA)-a cytoplasmic protein characteristic of myofibroblasts-is induced in the pleura following pneumonectomy. SMA induction appears to be dependent on pleural deformation (stretch) as induction is prevented by plombage or phrenic nerve transection (P < 0.001). Within 3 days of pneumonectomy, the frequency of SMA+ cells in subpleural alveolar ducts was significantly increased (P < 0.01). To determine the functional activity of these SMA+ cells, we isolated regenerating alveolar ducts by laser microdissection and analyzed individual cells using microfluidic single-cell quantitative PCR. Single cells expressing the SMA (Acta2) gene demonstrated significantly greater transcriptional activity than endothelial cells or other discrete cell populations in the alveolar duct (P < 0.05). The transcriptional activity of the Acta2+ cells, including expression of TGF signaling as well as repair-related genes, suggests that these myofibroblast-like cells contribute to compensatory lung growth.
Collapse
Affiliation(s)
- Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandra B Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Willi L Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Cristian D Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| | - Saumyadipta Pyne
- Indian Institute of Public Health, Kavuri Hills, Madhapur, Hyderabad, India
| | - Shuqiang Li
- Fluidigm Corporation, South San Francisco, California; and
| | - Jonna Grimsby
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Prapti Pokharel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Paul Blainey
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
27
|
Green J, Endale M, Auer H, Perl AKT. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity. Am J Respir Cell Mol Biol 2016; 54:532-45. [PMID: 26414960 DOI: 10.1165/rcmb.2015-0095oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy.
Collapse
Affiliation(s)
- Jenna Green
- 1 Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Mehari Endale
- 1 Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Herbert Auer
- 2 Functional GenOmics Consulting, Palleja, Spain
| | - Anne-Karina T Perl
- 1 Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| |
Collapse
|
28
|
Haber S, Weisbord M, Mishima M, Mentzer SJ, Tsuda A. Interstitial fluid flow of alveolar primary septa after pneumonectomy. J Theor Biol 2016; 400:118-28. [PMID: 27049045 DOI: 10.1016/j.jtbi.2016.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Neoalveolation is known to occur in the remaining lung after pneumonectomy. While compensatory lung growth is a complex process, stretching of the lung tissue appears to be crucial for tissue remodeling. Even a minute shear stress exerted on fibroblasts in the interstitial space is known to trigger cell differentiation into myofibroblast that are essential to building new tissues. We hypothesize that the non-uniform motion of the primary septa due to their heterogeneous mechanical properties under tidal breathing induces a spatially unique interstitial flow and shear stress distribution in the interstitial space. This may in turn trigger pulmonary fibroblast differentiation and neoalveolation. In this study, we developed a theoretical basis for how cyclic motion of the primary septal walls with heterogeneous mechanical properties affects the interstitial flow and shear stress distribution. The velocity field of the interstitial flow was expressed by a Fourier (complex) series and its leading term was considered to induce the basic structure of stress distribution as long as the dominant length scale of heterogeneity is the size of collapsed alveoli. We conclude that the alteration of mechanical properties of the primary septa caused by pneumonectomy can develop a new interstitial flow field, which alters the shear stress distribution. This may trigger the differentiation of resident fibroblasts, which may in turn induce spatially unique neoalveolation in the remaining lung. Our example illustrates that the initial forming of new alveoli about half the size of the original ones.
Collapse
Affiliation(s)
- Shimon Haber
- Faculty of Mechanical Engineering, Technion-Israel Institute of Tecnology, Haifa 32000, Israel
| | - Michal Weisbord
- Faculty of Mechanical Engineering, Technion-Israel Institute of Tecnology, Haifa 32000, Israel
| | - Michiaki Mishima
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Steve J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, United States.
| |
Collapse
|
29
|
Abstract
Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints.
Collapse
Affiliation(s)
- Connie C.W. Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dallas M. Hyde
- California National Primate Research Center, University of California at Davis, Davis, California, USA
| | | |
Collapse
|
30
|
Mammoto T, Chen Z, Jiang A, Jiang E, Ingber DE, Mammoto A. Acceleration of Lung Regeneration by Platelet-Rich Plasma Extract through the Low-Density Lipoprotein Receptor-Related Protein 5-Tie2 Pathway. Am J Respir Cell Mol Biol 2016; 54:103-13. [PMID: 26091161 PMCID: PMC5455682 DOI: 10.1165/rcmb.2015-0045oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, the growth of new blood vessels, plays a key role in organ development, homeostasis, and regeneration. The cooperation of multiple angiogenic factors, rather than a single factor, is required for physiological angiogenesis. Recently, we have reported that soluble platelet-rich plasma (PRP) extract, which contains abundant angiopoietin-1 and multiple other angiogenic factors, stimulates angiogenesis and maintains vascular integrity in vitro and in vivo. In this report, we have demonstrated that mouse PRP extract increases phosphorylation levels of the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) and thereby activates angiogenic factor receptor Tie2 in endothelial cells (ECs) and accelerates EC sprouting and lung epithelial cell budding in vitro. PRP extract also increases phosphorylation levels of Tie2 in the mouse lungs and accelerates compensatory lung growth and recovery of exercise capacity after unilateral pneumonectomy in mice, whereas soluble Tie2 receptor or Lrp5 knockdown attenuates the effects of PRP extract. Because human PRP extract is generated from autologous peripheral blood and can be stored at -80°C, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related lung diseases and to the improvement of strategies for lung regeneration.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zhao Chen
- Department of Medicine, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Amanda Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donald E. Ingber
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts; and
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Okui M, Goto T, Asakura K, Kamiyama I, Ohtsuka T. Alveolar macrophage phenotype expression in airway-instilled bone marrow cells in mice. SPRINGERPLUS 2015; 4:770. [PMID: 26688784 PMCID: PMC4676774 DOI: 10.1186/s40064-015-1525-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
No uniform consensus has been established regarding post-pneumonectomy lung regeneration. This study was undertaken to determine whether airway-instilled lung- or bone marrow-derived cells are able to differentiate
and reconstitute as lung component cells in the course of post-pneumonectomy lung growth. Bone marrow cells or lung cells obtained from C57 black (BL)/6-GFP mice were intratracheally instilled into C57BL/6 mice treated with left pneumonectomy and cell differentiation was examined. It is unclear whether intratracheally instilled lung or bone marrow cells differentiate into non-hematopoietic cells after pneumonectomy. However, regardless of whether pneumonectomy is performed, intratracheally instilled bone marrow cells display a surface antigen profile that is similar to alveolar macrophages. Furthermore, these newly differentiated macrophages function similarly to resident macrophages in terms of TNF-α production, suggesting that bone marrow stem cells acquire the same macrophage phenotype. In conclusion, intratracheally instilled bone marrow cells adapt to the surrounding microenvironment, directly differentiating into alveolar macrophages, and remain in the alveolar space for at least 3 months.
Collapse
Affiliation(s)
- Masayuki Okui
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Taichiro Goto
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Keisuke Asakura
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Ikuo Kamiyama
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Takashi Ohtsuka
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
32
|
Mühlfeld C, Hegermann J, Wrede C, Ochs M. A review of recent developments and applications of morphometry/stereology in lung research. Am J Physiol Lung Cell Mol Physiol 2015; 309:L526-36. [DOI: 10.1152/ajplung.00047.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/09/2015] [Indexed: 11/22/2022] Open
Abstract
Design-based stereology is the gold standard of morphometry in lung research. Here, we analyze the current use of morphometric and stereological methods in lung research and provide an overview on recent methodological developments and biological observations made by the use of stereology. Based on this analysis we hope to provide useful recommendations for a good stereological practice to further the use of advanced and unbiased stereological methods.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| |
Collapse
|
33
|
Fritzsching B, Zhou-Suckow Z, Trojanek JB, Schubert SC, Schatterny J, Hirtz S, Agrawal R, Muley T, Kahn N, Sticht C, Gunkel N, Welte T, Randell SH, Länger F, Schnabel P, Herth FJF, Mall MA. Hypoxic epithelial necrosis triggers neutrophilic inflammation via IL-1 receptor signaling in cystic fibrosis lung disease. Am J Respir Crit Care Med 2015; 191:902-13. [PMID: 25607238 DOI: 10.1164/rccm.201409-1610oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE In many organs, hypoxic cell death triggers sterile neutrophilic inflammation via IL-1R signaling. Although hypoxia is common in airways from patients with cystic fibrosis (CF), its role in neutrophilic inflammation remains unknown. We recently demonstrated that hypoxic epithelial necrosis caused by airway mucus obstruction precedes neutrophilic inflammation in Scnn1b-transgenic (Scnn1b-Tg) mice with CF-like lung disease. OBJECTIVES To determine the role of epithelial necrosis and IL-1R signaling in the development of neutrophilic airway inflammation, mucus obstruction, and structural lung damage in CF lung disease. METHODS We used genetic deletion and pharmacologic inhibition of IL-1R in Scnn1b-Tg mice and determined effects on airway epithelial necrosis; levels of IL-1α, keratinocyte chemoattractant, and neutrophils in bronchoalveolar lavage; and mortality, mucus obstruction, and structural lung damage. Furthermore, we analyzed lung tissues from 21 patients with CF and chronic obstructive pulmonary disease and 19 control subjects for the presence of epithelial necrosis. MEASUREMENTS AND MAIN RESULTS Lack of IL-1R had no effect on epithelial necrosis and elevated IL-1α, but abrogated airway neutrophilia and reduced mortality, mucus obstruction, and emphysema in Scnn1b-Tg mice. Treatment of adult Scnn1b-Tg mice with the IL-1R antagonist anakinra had protective effects on neutrophilic inflammation and emphysema. Numbers of necrotic airway epithelial cells were elevated and correlated with mucus obstruction in patients with CF and chronic obstructive pulmonary disease. CONCLUSIONS Our results support an important role of hypoxic epithelial necrosis in the pathogenesis of neutrophilic inflammation independent of bacterial infection and suggest IL-1R as a novel target for antiinflammatory therapy in CF and potentially other mucoobstructive airway diseases.
Collapse
|
34
|
Ysasi AB, Wagner WL, Bennett RD, Ackermann M, Valenzuela CD, Belle J, Tsuda A, Konerding MA, Mentzer SJ. Remodeling of alveolar septa after murine pneumonectomy. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1237-44. [PMID: 26078396 PMCID: PMC4587600 DOI: 10.1152/ajplung.00042.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends ("E"). Septal retraction, observed in 20-30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling.
Collapse
Affiliation(s)
- Alexandra B Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Willi L Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; and
| | - Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; and
| | - Cristian D Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Janeil Belle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| | - Moritz A Konerding
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
35
|
Chang S, Kwon N, Kim J, Kohmura Y, Ishikawa T, Rhee CK, Je JH, Tsuda A. Synchrotron X-ray imaging of pulmonary alveoli in respiration in live intact mice. Sci Rep 2015; 5:8760. [PMID: 25737245 PMCID: PMC4348649 DOI: 10.1038/srep08760] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/03/2015] [Indexed: 12/29/2022] Open
Abstract
Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 ± 14 (mean ± s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 ± 4.7% (mean ± s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 ± 4.3% (mean ± s.d.)) than in the apices (5.7 ± 3.2% (mean ± s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 ± 3.8% (mean ± s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.
Collapse
Affiliation(s)
- Soeun Chang
- 1] X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea [2] Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea
| | - Namseop Kwon
- 1] X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea [2] School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea
| | - Jinkyung Kim
- X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea
| | - Yoshiki Kohmura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo, Hyogo, 679-5198, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo, Hyogo, 679-5198, Japan
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, 505 Banpo-dong, Seocho-Gu, Seoul, 137-701, Korea
| | - Jung Ho Je
- 1] X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea [2] Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea [3] RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo, Hyogo, 679-5198, Japan
| | - Akira Tsuda
- Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Rafii S, Cao Z, Lis R, Siempos II, Chavez D, Shido K, Rabbany SY, Ding BS. Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nat Cell Biol 2015; 17:123-136. [PMID: 25621952 DOI: 10.1038/ncb3096] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
The lung alveoli regenerate after surgical removal of the left lobe by pneumonectomy (PNX). How this alveolar regrowth/regeneration is initiated remains unknown. We found that platelets trigger lung regeneration by supplying stromal-cell-derived factor-1 (SDF-1, also known as CXCL12). After PNX, activated platelets stimulate SDF-1 receptors CXCR4 and CXCR7 on pulmonary capillary endothelial cells (PCECs) to deploy the angiocrine membrane-type metalloproteinase MMP14, stimulating alveolar epithelial cell (AEC) expansion and neo-alveolarization. In mice lacking platelets or platelet Sdf1, PNX-induced alveologenesis was diminished. Reciprocally, infusion of Sdf1(+/+) but not Sdf1-deficient platelets rescued lung regeneration in platelet-depleted mice. Endothelial-specific ablation of Cxcr4 and Cxcr7 in adult mice similarly impeded lung regeneration. Notably, mice with endothelial-specific Mmp14 deletion exhibited impaired expansion of AECs but not PCECs after PNX, which was not rescued by platelet infusion. Therefore, platelets prime PCECs to initiate lung regeneration, extending beyond their haemostatic contribution. Therapeutic targeting of this haemo-vascular niche could enable regenerative therapy for lung diseases.
Collapse
Affiliation(s)
- Shahin Rafii
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Zhongwei Cao
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Raphael Lis
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,Department of Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Ilias I Siempos
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, University of Athens Medical School, Athens 10675, Greece
| | - Deebly Chavez
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Koji Shido
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Sina Y Rabbany
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,Bioengineering Program, Hofstra University, Hempstead, NY 11549
| | - Bi-Sen Ding
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
37
|
Tschanz SA, Salm LA, Roth-Kleiner M, Barré SF, Burri PH, Schittny JC. Rat lungs show a biphasic formation of new alveoli during postnatal development. J Appl Physiol (1985) 2014; 117:89-95. [DOI: 10.1152/japplphysiol.01355.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Roughly 90% of the gas-exchange surface is formed by alveolarization of the lungs. To the best of our knowledge, the formation of new alveoli has been followed in rats only by means of morphological description or interpretation of semiquantitative data until now. Therefore, we estimated the number of alveoli in rat lungs between postnatal days 4 and 60 by unambiguously counting the alveolar openings. We observed a bulk formation of new alveoli between days 4 and 21 (17.4 times increase from 0.8 to 14.3 millions) and a second phase of continued alveolarization between days 21 and 60 (1.3 times increase to 19.3 million). The (number weighted) mean volume of the alveoli decreases during the phase of bulk alveolarization from ∼593,000 μm3 at day 4 to ∼141,000 μm3 at day 21, but increases again to ∼298,000 μm3 at day 60. We conclude that the “bulk alveolarization” correlates with the mechanism of classical alveolarization (alveolarization before the microvascular maturation is completed) and that the “continued alveolarization” follows three proposed mechanisms of late alveolarization (alveolarization after microvascular maturation). The biphasic pattern is more evident for the increase in alveolar number than for the formation of new alveolar septa (estimated as the length of the free septal edge). Furthermore, a striking negative correlation between the estimated alveolar size and published data on retention of nanoparticles was detected.
Collapse
Affiliation(s)
| | - Lilian A. Salm
- Institute of Anatomy, University of Bern, Bern, Switzerland; and
| | - Matthias Roth-Kleiner
- Clinic of Neonatology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Peter H. Burri
- Institute of Anatomy, University of Bern, Bern, Switzerland; and
| | | |
Collapse
|
38
|
Watanabe-Takano H, Takano K, Sakamoto A, Matsumoto K, Tokuhisa T, Endo T, Hatano M. DA-Raf-dependent inhibition of the Ras-ERK signaling pathway in type 2 alveolar epithelial cells controls alveolar formation. Proc Natl Acad Sci U S A 2014; 111:E2291-300. [PMID: 24843139 PMCID: PMC4050578 DOI: 10.1073/pnas.1321574111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alveolar formation is coupled to the spatiotemporally regulated differentiation of alveolar myofibroblasts (AMYFs), which contribute to the morphological changes of interalveolar walls. Although the Ras-ERK signaling pathway is one of the key regulators for alveolar formation in developing lungs, the intrinsic molecular and cellular mechanisms underlying its role remain largely unknown. By analyzing the Ras-ERK signaling pathway during postnatal development of lungs, we have identified a critical role of DA-Raf1 (DA-Raf)-a dominant-negative antagonist for the Ras-ERK signaling pathway-in alveolar formation. DA-Raf-deficient mice displayed alveolar dysgenesis as a result of the blockade of AMYF differentiation. DA-Raf is predominantly expressed in type 2 alveolar epithelial cells (AEC2s) in developing lungs, and DA-Raf-dependent MEK1/2 inhibition in AEC2s suppresses expression of tissue inhibitor of matalloprotienase 4 (TIMP4), which prevents a subsequent proteolytic cascade matrix metalloproteinase (MMP)14-MMP2. Furthermore, MMP14-MMP2 proteolytic cascade regulates AMYF differentiation and alveolar formation. Therefore, DA-Raf-dependent inhibition of the Ras-ERK signaling pathway in AEC2s is required for alveolar formation via triggering MMP2 activation followed by AMYF differentiation. These findings reveal a pivotal role of the Ras-ERK signaling pathway in the dynamic regulation of alveolar development.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Departments of Biomedical Science andDepartment of Biology, Graduate School of Science andJapan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan; and
| | - Kazunori Takano
- Department of Biology, Graduate School of Science andGraduate School of Advanced Integration Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Akemi Sakamoto
- Developmental Genetics, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takeshi Tokuhisa
- Developmental Genetics, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science andGraduate School of Advanced Integration Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522, Japan;
| | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Advances in medical therapy have increased survival of extremely premature infants and changed the pathology of bronchopulmonary dysplasia (BPD) from one of acute lung injury to a disease of disrupted lung development. With this evolution, new questions emerge regarding the molecular mechanisms that control postnatal lung development, the effect of early disruptions of postnatal lung development on long-term lung function, and the existence of endogenous mechanisms that permit lung regeneration after injury. RECENT FINDINGS Recent data demonstrate that a significant component of alveolarization, the final stage of lung development, occurs postnatally. Further, clinical and experimental studies demonstrate that premature birth disrupts alveolarization, decreasing the gas exchange surface area of the lung and causing BPD. BPD is associated with significant short-term morbidity, and new longitudinal, clinical data demonstrate that survivors of BPD have long-standing deficits in lung function and may be at risk for the development of additional lung disease as adults. Unfortunately, current care is mainly supportive with few effective therapies that prevent or treat established BPD. These studies underscore the need to further elucidate the mechanisms that direct postnatal lung growth and develop innovative strategies to stimulate lung regeneration. SUMMARY Despite significant improvements in the care and survival of extremely premature infants, BPD remains a major clinical problem. Although efforts should remain focused on the prevention of preterm labor and BPD, novel research aimed at promoting postnatal alveolarization offers a unique opportunity to develop effective strategies to treat established BPD.
Collapse
|
40
|
Thane K, Ingenito EP, Hoffman AM. Lung regeneration and translational implications of the postpneumonectomy model. Transl Res 2014; 163:363-76. [PMID: 24316173 DOI: 10.1016/j.trsl.2013.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Lung regeneration research is yielding data with increasing translational value. The classical models of lung development, postnatal alveolarization, and postpneumonectomy alveolarization have contributed to a broader understanding of the cellular participants including stem-progenitor cells, cell-cell signaling pathways, and the roles of mechanical deformation and other physiologic factors that have the potential to be modulated in human and animal patients. Although recent information is available describing the lineage fate of lung fibroblasts, genetic fate mapping, and clonal studies are lacking in the study of lung regeneration and deserve further examination. In addition to increasing knowledge concerning classical alveolarization (postnatal, postpneumonectomy), there is increasing evidence for remodeling of the adult lung after partial pneumonectomy. Though limited in scope, compelling data have emerged describing restoration of lung tissue mass in the adult human and in large animal models. The basis for this long-term adaptation to pneumonectomy is poorly understood, but investigations into mechanisms of lung regeneration in older animals that have lost their capacity for rapid re-alveolarization are warranted, as there would be great translational value in modulating these mechanisms. In addition, quantitative morphometric analysis has progressed in conjunction with developments in advanced imaging, which allow for longitudinal and nonterminal evaluation of pulmonary regenerative responses in animals and humans. This review focuses on the cellular and molecular events that have been observed in animals and humans after pneumonectomy because this model is closest to classical regeneration in other mammalian systems and has revealed several new fronts of translational research that deserve consideration.
Collapse
Affiliation(s)
- Kristen Thane
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass
| | - Edward P Ingenito
- Division of Pulmonary, Critical Care, and Sleep Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Andrew M Hoffman
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass.
| |
Collapse
|
41
|
Madurga A, Mižíková I, Ruiz-Camp J, Vadász I, Herold S, Mayer K, Fehrenbach H, Seeger W, Morty RE. Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2014; 306:L684-97. [PMID: 24508731 DOI: 10.1152/ajplung.00361.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arrested alveolarization is the pathological hallmark of bronchopulmonary dysplasia (BPD), a complication of premature birth. Here, the impact of systemic application of hydrogen sulfide (H2S) on postnatal alveolarization was assessed in a mouse BPD model. Exposure of newborn mice to 85% O2 for 10 days reduced the total lung alveoli number by 56% and increased alveolar septal wall thickness by 29%, as assessed by state-of-the-art stereological analysis. Systemic application of H2S via the slow-release H2S donor GYY4137 for 10 days resulted in pronounced improvement in lung alveolarization in pups breathing 85% O2, compared with vehicle-treated littermates. Although without impact on lung oxidative status, systemic H2S blunted leukocyte infiltration into alveolar air spaces provoked by hyperoxia, and restored normal lung interleukin 10 levels that were otherwise depressed by 85% O2. Treatment of primary mouse alveolar type II (ATII) cells with the rapid-release H2S donor NaHS had no impact on cell viability; however, NaHS promoted ATII cell migration. Although exposure of ATII cells to 85% O2 caused dramatic changes in mRNA expression, exposure to either GYY4137 or NaHS had no impact on ATII cell mRNA expression, as assessed by microarray, suggesting that the effects observed were independent of changes in gene expression. The impact of NaHS on ATII cell migration was attenuated by glibenclamide, implicating ion channels, and was accompanied by activation of Akt, hinting at two possible mechanisms of H2S action. These data support further investigation of H2S as a candidate interventional strategy to limit the arrested alveolarization associated with BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Glassberg MK, Choi R, Manzoli V, Shahzeidi S, Rauschkolb P, Voswinckel R, Aliniazee M, Xia X, Elliot SJ. 17β-estradiol replacement reverses age-related lung disease in estrogen-deficient C57BL/6J mice. Endocrinology 2014; 155:441-8. [PMID: 24274985 PMCID: PMC3891937 DOI: 10.1210/en.2013-1345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role that estrogens play in the aging lung is poorly understood. Remodeling of the aging lung with thickening of the alveolar walls and reduction in the number of peripheral airways is well recognized. The present study was designed to address whether estrogen deficiency would affect age-associated changes in the lungs of female C57BL/6J mice. Lungs isolated from old mice (24 months old, estrogen-deficient) demonstrated decreased lung volume and decreased alveolar surface area. There was no difference in alveolar number in the lungs of old and young mice (6 months old, estrogen-replete). Estrogen replacement restored lung volume, alveolar surface area, and alveolar wall thickness to that of a young mouse. Estrogen receptor-α (ERα) protein expression increased without a change in ERβ protein expression in the lung tissue isolated from old mice. In the lungs of old mice, the number of apoptotic cells was increased as well as the activation of matrix metalloproteinase-2 and ERK. Young mice had the highest serum 17β-estradiol levels that decreased with age. Our data suggest that in the aging female mouse lung, estrogen deficiency and an increase of ERα expression lead to the development of an emphysematous phenotype. Estrogen replacement partially prevents these age-associated changes in the lung architecture by restoration of interalveolar septa. Understanding the role of estrogens in the remodeling of the lung during aging may facilitate interventions and therapies for aging-related lung disease in women.
Collapse
Affiliation(s)
- Marilyn K Glassberg
- Departments of Pulmonary and Critical Care Medicine (M.K.G., R.C., S.S., M.A.) and Surgery (X.X., S.J.E.) and the Diabetes Research Institute (V.M.), University of Miami Miller School of Medicine, Miami, Florida 33137; and Department for Lung Development and Remodeling (P.R., R.V.), Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang W, Nguyen NM, Guo J, Woods JC. Longitudinal, noninvasive monitoring of compensatory lung growth in mice after pneumonectomy via (3)He and (1)H magnetic resonance imaging. Am J Respir Cell Mol Biol 2013; 49:697-703. [PMID: 23763461 DOI: 10.1165/rcmb.2012-0332ma] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In rodents and some other mammals, partial pneumonectomy (PNX) of adult lungs results in rapid compensatory lung growth. In the past, quantification of compensatory lung growth and realveolarization could only be accomplished after killing the animal, removal of lungs, and histologic analysis of lungs at single time points. Hyperpolarized (3)He diffusion magnetic resonance imaging (MRI) allows in vivo morphometry of human lungs; our group has adapted this technique for application to mouse lungs. Through imaging, we can obtain maps of lung microstructural parameters that allow quantification of morphometric and physiologic measurements. In this study, we employed our (3)He MRI technique to image in vivo morphometry at baseline and to serially assess compensatory growth after left PNX of mice. (1)H and hyperpolarized (3)He diffusion MRI were performed at baseline (pre-PNX), 3-days, and 30-days after PNX. Compared with the individual mouse's own baseline, MRI was able to detect and serially quantify changes in lung volume, alveolar surface area, alveolar number, and regional changes in alveolar size that occurred during the course of post-PNX lung growth. These results are consistent with morphometry measurements reported in the literature for mouse post-PNX compensatory lung growth. In addition, we were also able to serially assess and quantify changes in the physiologic parameter of lung compliance during the course of compensatory lung growth; this was consistent with flexiVent data. With these techniques, we now have a noninvasive, in vivo method to serially assess the effectiveness of therapeutic interventions on post-PNX lung growth in the same mouse.
Collapse
|
44
|
McLoughlin P, Keane MP. Physiological and pathological angiogenesis in the adult pulmonary circulation. Compr Physiol 2013; 1:1473-508. [PMID: 23733650 DOI: 10.1002/cphy.c100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis occurs during growth and physiological adaptation in many systemic organs, for example, exercise-induced skeletal and cardiac muscle hypertrophy, ovulation, and tissue repair. Disordered angiogenesis contributes to chronic inflammatory disease processes and to tumor growth and metastasis. Although it was previously thought that the adult pulmonary circulation was incapable of supporting new vessel growth, over that past 10 years new data have shown that angiogenesis within this circulation occurs both during physiological adaptive processes and as part of the pathogenic mechanisms of lung diseases. Here we review the expression of vascular growth factors in the adult lung, their essential role in pulmonary vascular homeostasis and the changes in their expression that occur in response to physiological challenges and in disease. We consider the evidence for adaptive neovascularization in the pulmonary circulation in response to alveolar hypoxia and during lung growth following pneumonectomy in the adult lung. In addition, we review the role of disordered angiogenesis in specific lung diseases including idiopathic pulmonary fibrosis, acute adult distress syndrome and both primary and metastatic tumors of the lung. Finally, we examine recent experimental data showing that therapeutic enhancement of pulmonary angiogenesis has the potential to treat lung diseases characterized by vessel loss.
Collapse
Affiliation(s)
- Paul McLoughlin
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, and St. Vincent's University Hospital, Dublin, Ireland.
| | | |
Collapse
|
45
|
Paisley D, Bevan L, Choy KJ, Gross C. The pneumonectomy model of compensatory lung growth: insights into lung regeneration. Pharmacol Ther 2013; 142:196-205. [PMID: 24333263 DOI: 10.1016/j.pharmthera.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
Pneumonectomy (PNX) in experimental animals leads to a species- and age-dependent compensatory growth of the remaining lung lobes. PNX mimics the loss of functional gas exchange units observed in a number of chronic destructive lung diseases. However, unlike in disease models, this tissue loss is well defined, reproducible and lacks accompanying inflammation. Furthermore, compensatory responses to the tissue loss can be easily quantified. This makes PNX a potentially useful model for the study of the cellular and molecular events which occur during realveolarisation. It may therefore help to get a better understanding of how to manipulate these pathways, in order to promote the generation of new alveolar tissue as therapies for destructive lung diseases. This review will explore the insights that experimental PNX has provided into the physiological factors which promote compensatory lung growth as well as the importance of age and species in the rate and extent of compensation. In addition, more recent studies which are beginning to uncover the key cellular and molecular pathways involved in realveolarisation will be discussed. The potential relevance of experimental pneumonectomy to novel therapeutic strategies which aim to promote lung regeneration will also be highlighted.
Collapse
Affiliation(s)
- Derek Paisley
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom.
| | - Luke Bevan
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Katherine J Choy
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Carina Gross
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| |
Collapse
|
46
|
Ochs M. Estimating structural alterations in animal models of lung emphysema. Is there a gold standard? Ann Anat 2013; 196:26-33. [PMID: 24268708 DOI: 10.1016/j.aanat.2013.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases. The major component of COPD, which affects the gas-exchanging parenchyma of the lung, emphysema, is characterized by destruction of alveolar septae leading to loss of functional surface, loss of alveoli and enlargement of remaining distal airspaces. These microstructural alterations can be modeled in animals and can be measured using stereological methods applied to imaging datasets. Many animal models of emphysema exist, but most of them are insufficiently characterized with respect to the underlying nature (e.g. destructive or developmental) and the degree of the structural alterations. The most popular parameter for assessment of emphysematous alterations, mean linear intercept length, has severe limitations. It can, therefore, not be recommended. Better design-based stereological alternatives exist but are less often applied, such as total volumes of parenchymal compartments (alveolar airspace, alveolar duct airspace, alveolar septum), total alveolar surface area, total alveolar number and mean alveolar size and its size variation. A prerequisite is the use of appropriate fixation, sampling, and specimen processing protocols. This article reviews the challenges of stereologic assessment of emphysematous alterations in the lung and illustrates possible strategies.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
47
|
Yilmaz C, Dane DM, Ravikumar P, Unger RH, Hsia CCW. Noninvasive assessment of alveolar microvascular recruitment in conscious non-sedated rats. Respir Physiol Neurobiol 2013; 190:105-12. [PMID: 24100202 DOI: 10.1016/j.resp.2013.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/19/2022]
Abstract
Recruitment of alveolar microvascular reserves, assessed from the relationship between pulmonary diffusing capacity (DLCO) and perfusion (Q˙c), is critical to the maintenance of arterial blood oxygenation. Leptin-resistant ZDF fatty diabetic (fa/fa) rats exhibit restricted cardiopulmonary physiology under anesthesia. To assess alveolar microvascular function in conscious, non-sedated, non-instrumented, and minimally restrained animals, we adapted a rebreathing technique to study fa/fa and control non-diabetic (+/+) rats (4-5 and 7-11mo old) at rest and during mild spontaneous activity. Measurements included O2 uptake, lung volume, Q˙c, DLCO, membrane diffusing capacity (DMCO), capillary blood volume (Vc) and septal tissue-blood volume. In older fa/fa than +/+ animals, DLCO and DMCO at a given Q˙c were lower; Vc was reduced in proportion to Q˙c. Results demonstrate the consequences of alveolar microangiopathy in the metabolic syndrome: lung volume restriction, reduced Q˙c, and elevated membrane resistance to diffusion. At a given Q˙c, DLCO is lower in rats and guinea pigs than dogs or humans, consistent with limited alveolar microvascular reserves in small animals.
Collapse
Affiliation(s)
- Cuneyt Yilmaz
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, United States
| | | | | | | | | |
Collapse
|
48
|
Kho AT, Liu K, Visner G, Martin T, Boudreault F. Identification of dedifferentiation and redevelopment phases during postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 2013; 305:L542-54. [PMID: 23997171 DOI: 10.1152/ajplung.00403.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surgical resection of pulmonary tissue exerts a proregenerative stretch stimulus in the remaining lung units. Whether this regeneration process reenacts part or whole of lung morphogenesis developmental program remains unclear. To address this question, we analyzed the stretch-induced regenerating lung transcriptome in mice after left pneumonectomy (PNX) in its developmental context. We created a C57BL/6 mice lung regeneration transcriptome time course at 3, 7, 14, 28, and 56 days post-PNX, profiling the cardiac and medial lobes and whole right lung. Prominent expression at days 3 and 7 of genes related to cell proliferation (Ccnb1, Bub1, and Cdk1), extracellular matrix (Col1a1, Eln, and Tnc), and proteases (Serpinb2 and Mmp9) indicated regenerative processes that tapered off after 56 days. We projected the post-PNX transcriptomic time course into the transcriptomic principal component space of the C57BL/6 mouse developing lungs time series from embryonic day 9.5 to postnatal day 56. All post-PNX samples were localized around the late postnatal stage of developing lungs. Shortly after PNX, the temporal trajectory of regenerating lobes and right lung reversed course relative to the developing lungs in a process reminiscent of dedifferentiation. This reversal was limited to the later postnatal stage of lung development. The post-PNX temporal trajectory then moves forward in lung development time close to its pre-PNX state after days 28 to 56 in a process resembling redevelopment. A plausible interpretation is that remaining pulmonary tissue reverts to a more primitive stage of development with higher potential for growth to generate tissue in proportion to the loss.
Collapse
Affiliation(s)
- Alvin T Kho
- Boston Children's Hospital, 320 Longwood Ave., Boston, MA 02115 (
| | | | | | | | | |
Collapse
|
49
|
Abstract
Although the pulmonary capillaries were discovered in 1661, the ultrastructure of the wall was not elucidated until 60 years ago. Electron micrographs then showed that only 0.2 μm of tissue separated the capillary endothelium from the alveolar space over much of the area. In retrospect this vanishingly small protective layer should have alerted physiologists to the potential fragility of the capillaries, but this was not appreciated until almost 40 years later. This predicament is unique to pulmonary capillaries. No other capillaries in the body are shielded from the outside environment by such a minute amount of tissue. Reasons why the fragility of the capillaries was not recognized earlier include an inappropriate comparison with the properties of systemic capillaries, the mistaken view that the pulmonary capillary pressure is always low, and a misleading use of the Laplace equation. Evidence for the fragility comes from physiological, pathological, and laboratory observations. As expected from evolutionary considerations, the fragility only becomes evident in the normal lung under exceptional conditions. These include elite human athletes at maximal exercise and animals that have developed the capacity for extreme aerobic activity. However, lung and heart diseases frequently cause capillary disruption. Remodeling of pulmonary capillaries occurs in humans in whom the capillary pressure rises over a long period. Neonatal capillaries are extremely fragile, presumably because they have never been exposed to increased transmural pressures. The capillaries conform to the general biological rule that tissue adapts its structure to carry out its required function.
Collapse
Affiliation(s)
- John B West
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Chamoto K, Gibney BC, Lee GS, Ackermann M, Konerding MA, Tsuda A, Mentzer SJ. Migration of CD11b+ accessory cells during murine lung regeneration. Stem Cell Res 2013; 10:267-77. [PMID: 23376466 PMCID: PMC3622126 DOI: 10.1016/j.scr.2012.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/05/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022] Open
Abstract
In many mammalian species, the removal of one lung leads to growth of the remaining lung to near-baseline levels. In studying post-pneumonectomy mice, we used morphometric measures to demonstrate neoalveolarization within 21 days of pneumonectomy. Of note, the detailed histology during this period demonstrated no significant pulmonary inflammation. To identify occult blood-borne cells, we used a parabiotic model (wild-type/GFP) of post-pneumonectomy lung growth. Flow cytometry of post-pneumonectomy lung digests demonstrated a rapid increase in the number of cells expressing the hematopoietic membrane molecule CD11b; 64.5% of the entire GFP(+) population were CD11b(+). Fluorescence microscopy demonstrated that the CD11b(+) peripheral blood cells migrated into both the interstitial tissue and alveolar airspace compartments. Pneumonectomy in mice deficient in CD11b (CD18(-/-) mutants) demonstrated near-absent leukocyte migration into the airspace compartment (p<.001) and impaired lung growth as demonstrated by lung weight (p<.05) and lung volume (p<.05). Transcriptional activity of the partitioned CD11b(+) cells demonstrated significantly increased transcription of Angpt1, Il1b, and Mmp8, Mmp9, Ncam1, Sele, Sell, Selp in the alveolar airspace and Adamts2, Ecm1, Egf, Mmp7, Npr1, Tgfb2 in the interstitial tissue (>4-fold regulation; p<.05). These data suggest that blood-borne CD11b(+) cells represent a population of accessory cells contributing to post-pneumonectomy lung growth.
Collapse
Affiliation(s)
- Kenji Chamoto
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Barry C. Gibney
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Grace S. Lee
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Moritz A. Konerding
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| |
Collapse
|