1
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
2
|
Akram MW, Wong TW. Translational hurdles in anti-asthmatic nanomedicine development. Expert Opin Drug Deliv 2024; 21:987-989. [PMID: 39045614 DOI: 10.1080/17425247.2024.2385092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Muhammad Waseem Akram
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Sau S, Dey A, Pal P, Das B, Maity KK, Dash SK, Tamili DK, Das B. Immunomodulatory and immune-toxicological role of nanoparticles: Potential therapeutic applications. Int Immunopharmacol 2024; 135:112251. [PMID: 38781608 DOI: 10.1016/j.intimp.2024.112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, Nanoparticle-based immunotherapeutic research has invoked global interest due to their unique properties. The immune system is a shielding structure that defends living things from external threats. Before the use of any materials in drug design, it is essential to study the immunological response to avoid triggering undesirable immune responses in the body. This review tries to summarize the properties, various applications, and immunotherapeutic aspects of NP-induced immunomodulation relating to therapeutic development and toxicity in human health. The role of NPs in the immune system and their modulatory functions, resulting in immunosuppression or immunostimulation, exerts benefits or dangers depending on their compositions, sizes, surface chemistry, and so forth. After NPs enter into the body, they can interact with body fluid exposing, them to different body proteins to form protein corona particles and other bio-molecules (DNA, RNA, sugars, etc.), which may alter their bioactivity. Phagocytes are the first immune cells that can interact with foreign materials including nanoparticles. Immunostimulation and immunosuppression operate in two distinct manners. Overall, functionalized nanocarriers optimized various therapeutic implications by stimulating the host immune system and regulating the tranquility of the host immune system. Among others, toxicity and bio-clearance of nanomaterials are always prime concerns at the preclinical and clinical stages before final approval. The interaction of nanoparticles with immune cells causes direct cell damage via apoptosis and necroses as well as immune signaling pathways also become influenced.
Collapse
Affiliation(s)
- Somnath Sau
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Nutrition and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Alo Dey
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Pritam Pal
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Bishal Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Physiology, Debra Thana Sahid Kshudiram Smriti Mahavidyalaya, Debra-721124, Paschim Medinipur, West Bengal, India
| | - Kankan Kumar Maity
- Department of Chemistry and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Dipak Kumar Tamili
- Department of Zoology and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Balaram Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India.
| |
Collapse
|
4
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Vermeire TG, Hoet P, Ion RM, Krätke R, Proykova A, Scott M, de Jong WH. Opinion of the Scientific Committee on health, environmental and emerging risks on the safety of titanium dioxide in toys. Regul Toxicol Pharmacol 2024; 146:105527. [PMID: 38056706 DOI: 10.1016/j.yrtph.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The Opinion of the Scientific Committee on Health, Environmental and Emerging Risks advises the European Commission on whether the uses of titanium dioxide in toys and toy materials can be considered to be safe in light of the identified exposure, and the classification of titanium dioxide as carcinogenic category 2 after inhalation. Four toy products including casting kits, chalk, powder paints and white colour pencils containing various amounts of TiO2 as colouring agent were evaluated for inhalation risks. For the oral route, childrens' lip gloss/lipstick, finger paint and white colour pencils were evaluated. When it can be demonstrated with high certainty that no ultrafine fraction is present in pigmentary TiO2 preparations used in toys and toy materials, safe use with no or negligible risk for all products considered is indicated based on the exposure estimations of this Opinion. However, if an ultrafine fraction is assumed to be present, safe use is not indicated, except for white colour pencils.
Collapse
Affiliation(s)
- Theo G Vermeire
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Peter Hoet
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rodica-Mariana Ion
- National Institute of R&D for Chemistry and Petrochemistry - ICECHIM, Bucharest, Romania
| | - Renate Krätke
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | - Wim H de Jong
- National Institute for Public Health (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
6
|
Bakan B, Jonckheere AC, Decaesteker T, Marain NF, Murugadoss S, Karabay Yavasoglu NU, Şahar U, Şenay RH, Akgöl S, Göksel Ö, Hoet PHM, Vanoirbeek JAJ. Impact of a Polymer-Based Nanoparticle with Formoterol Drug as Nanocarrier System In Vitro and in an Experimental Asthmatic Model. TOXICS 2023; 11:974. [PMID: 38133375 PMCID: PMC10747207 DOI: 10.3390/toxics11120974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
The implementation of nanotechnology in pulmonary delivery systems might result in better and more specific therapy. Therefore, a nano-sized drug carrier should be toxicologically inert and not induce adverse effects. We aimed to investigate the responses of a polymer nano drug carrier, a lysine poly-hydroxyethyl methacrylate nanoparticle (NP) [Lys-p(HEMA)], loaded with formoterol, both in vitro and in vivo in an ovalbumin (OVA) asthma model. The successfully synthesized nanodrug formulation showed an expectedly steady in vitro release profile. There was no sign of in vitro toxicity, and the 16HBE and THP-1 cell lines remained vital after exposure to the nanocarrier, both loaded and unloaded. In an experimental asthma model (Balb/c mice) of ovalbumin sensitization and challenge, the nanocarrier loaded and unloaded with formoterol was tested in a preventive strategy and compared to treatment with the drug in a normal formulation. The airway hyperresponsiveness (AHR) and pulmonary inflammation in the bronchoalveolar lavage (BAL), both cellular and biochemical, were assessed. The application of formoterol as a regular drug and the unloaded and formoterol-loaded NP in OVA-sensitized mice followed by a saline challenge was not different from the control group. Yet, both the NP formulation and the normal drug application led to a more deteriorated lung function and increased lung inflammation in the OVA-sensitized and -challenged mice, showing that the use of the p(HEMA) nanocarrier loaded with formoterol needs more extensive testing before it can be applied in clinical settings.
Collapse
Affiliation(s)
- Buket Bakan
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, 3000 Leuven, Belgium; (B.B.); (P.H.M.H.)
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum 25240, Turkey
| | - Anne-Charlotte Jonckheere
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Tatjana Decaesteker
- BREATH, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium (N.F.M.)
| | - Nora F. Marain
- BREATH, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium (N.F.M.)
| | - Sivakumar Murugadoss
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, 3000 Leuven, Belgium; (B.B.); (P.H.M.H.)
| | | | - Umut Şahar
- Department of Biology, Faculty of Science, Ege University, Izmir 35100, Turkey; (N.U.K.Y.); (U.Ş.)
| | - Raziye Hilal Şenay
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey; (R.H.Ş.); (S.A.)
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey; (R.H.Ş.); (S.A.)
| | - Özlem Göksel
- Laboratory of Occupational & Environmental Respiratory Diseases and Asthma, Ege University, Izmir 35040, Turkey;
| | - Peter H. M. Hoet
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, 3000 Leuven, Belgium; (B.B.); (P.H.M.H.)
| | - Jeroen A. J. Vanoirbeek
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, 3000 Leuven, Belgium; (B.B.); (P.H.M.H.)
| |
Collapse
|
7
|
Utembe W, Andraos C, Gulumian M. Immunotoxicity of engineered nanomaterials and their role in asthma. Crit Rev Toxicol 2023; 53:491-505. [PMID: 37933836 DOI: 10.1080/10408444.2023.2270519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The toxicity of engineered nanomaterials (ENMs) in vivo and in vitro has formed the basis of most studies. However, the toxicity of ENMs, particularly on the immune system, i.e. immunotoxicity, and their role in manipulating it, are less known. This review addresses the initiation or exacerbation as well as the attenuation of allergic asthma by a variety of ENMs and how they may be used in drug delivery to enhance the treatment of asthma. This review also highlights a few research gaps in the study of the immunotoxicity of ENMs, for example, the potential drawbacks of assays used in immunotoxicity assays; the potential role of hormesis during dosing of ENMs; and the variables that result in discrepancies among different studies, such as the physicochemical properties of ENMs, differences in asthmatic animal models, and different routes of administration.
Collapse
Affiliation(s)
- Wells Utembe
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa
- Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlene Andraos
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Deng R, Zhu Y, Wu X, Wang M. Toxicity and Mechanisms of Engineered Nanoparticles in Animals with Established Allergic Asthma. Int J Nanomedicine 2023; 18:3489-3508. [PMID: 37404851 PMCID: PMC10317527 DOI: 10.2147/ijn.s411804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Asthma is a chronic respiratory disease that is highly sensitive to environmental pollutants, including engineered nanoparticles (NPs). Exposure to NPs has become a growing concern for human health, especially for susceptible populations. Toxicological studies have demonstrated strong associations between ubiquitous NPs and allergic asthma. In this review, we analyze articles that focus on adverse health effects induced by NPs in animal models of allergic asthma to highlight their critical role in asthma. We also integrate potential mechanisms that could stimulate and aggravate asthma by NPs. The toxic effects of NPs are influenced by their physicochemical properties, exposure dose, duration, route, as well as the exposure order between NPs and allergens. The toxic mechanisms involve oxidative stress, various inflammasomes, antigen presenting cells, immune cells, and signaling pathways. We suggest that future research should concentrate on establishing standardized models, exploring mechanistic insights at the molecular level, assessing the combined effects of binary exposures, and determining safe exposure levels of NPs. This work provides concrete evidence of the hazards posed by NPs in animals with compromised respiratory health and supports the modifying role of NPs exposure in allergic asthma.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| | - Ya Zhu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| |
Collapse
|
10
|
Saafane A, Durocher I, Vanharen M, Girard D. Impact of ultra-small silver nanoparticles of 2 nm (AgNP 2) on neutrophil biology: AgNP 2 alter the actin cytoskeleton and induce karyorrhexis by a mitogen-activated protein kinase-dependent mechanism in vitro and transitorily attract neutrophils in vivo. Chem Biol Interact 2022; 365:110096. [PMID: 35963315 DOI: 10.1016/j.cbi.2022.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Silver (Ag) is known as an antibacterial agent and there is a growing interest to use silver nanoparticles (AgNPs) in a variety of medical applications and other sectors. Some studies reported that one of the undesired effects of AgNPs is inflammation and that these NPs can alter the biology of neutrophils. Since it is commonly accepted that the more NPs are small, the more toxic they are the aim of this study was to determine the impact of ultra-small silver nanoparticles of 2 nm (AgNP2) on the biology of neutrophils, key player cells in inflammation. We report that AgNP2 are potent neutrophil activators as they rapidly induce actin polymerization and dismantling the actin network. Although AgNP2 are not necrotic for neutrophils and do not induce ROS production, kinetic studies reveal that AgNP2 are rapid inducer of apoptosis. Pyknosis (mainly 1-2 large nuclear dots) was observed after only 1h of treatment followed by karyorrhexis (several small dots) and by a complete nuclear dissolution leading to anuclear neutrophils after 6h. These observations are not associated with the release of silver ions since treatment of neutrophils with 1-50 μg/ml AgNO3 (as a source of Ag+) did not induce any apparent changes. AgNP2 induce p38 and Erk-1/2 mitogen-activated protein kinase (MAPK) and although karyorrhexis was markedly reversed by MAPK inhibitors, the cell nuclei remain with a pyknotic-like phenotype but do not return to the characteristic polylobed nucleus. Using the murine air pouch model of inflammation AgNP2 were found to induce a neutrophil influx. Our data indicate that AgNP2 are potent neutrophil activators targeting the actin cytoskeleton and the mechanism involved for inducing apoptosis is rapid, complex, and partially includes MAPK pathways. Therefore, the ultra-small AgNP2 are more potent than larger ones for inducing apoptosis and they can transitorily attract neutrophils in vivo.
Collapse
Affiliation(s)
- Abdelaziz Saafane
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Isabelle Durocher
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Marion Vanharen
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
11
|
Saafane A, Girard D. Interaction between iron oxide nanoparticles (Fe 3O 4 NPs) and human neutrophils: Evidence that Fe 3O 4 NPs possess some pro-inflammatory activities. Chem Biol Interact 2022; 365:110053. [PMID: 35872045 DOI: 10.1016/j.cbi.2022.110053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Iron oxide nanoparticles (Fe3O4 NPs) are important for different medical applications. However, potential toxicity has been reported and several parameters must still be studied to reach highest therapeutic efficacy with minimal undesired effects. Inflammation is one of the most reported undesired effects of NP exposure in a variety of inflammatory models and conflicting data exist regarding whether Fe3O4 NPs possess pro- or anti-inflammatory activities. The aim of this study was to determine the direct effect of Fe3O4 NPs on the biology of neutrophil, a key player cell in inflammation. Freshly isolated human neutrophils were incubated in vitro with Fe3O4 NPs, and several functions have been studied. Using transmission electronic microscopy, Fe3O4 NPs were found to be ingested by neutrophils. These NPs do not induce a respiratory burst by themselves, but they increase the ability of neutrophils to adhere onto human endothelial cells as well as enhance phagocytosis. An antibody array approach revealed that Fe3O4 NPs induce the production of some cytokines, including the chemokine IL-8 (CXCL8), which was confirmed by ELISA. Fe3O4NPs were found to delay spontaneous neutrophil apoptosis regardless of sex of the donor. Using a pharmacological approach, we demonstrate that Fe3O4 NPs delay apoptosis by a de novo protein synthesis-dependent mechanism and via different cell signalling pathways. The data indicate that Fe3O4 NPs can alter the biology of human neutrophils and that they possess some pro-inflammatory effects, particularly based on their capacity to delay apoptosis and to induce the production of pro-inflammatory cytokines. Therefore, Fe3O4 NPs can regulate inflammation by targeting human neutrophil functions.
Collapse
Affiliation(s)
- Abdelaziz Saafane
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université Du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université Du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
12
|
Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 2022; 31:31/163/210112. [PMID: 35321933 PMCID: PMC9128841 DOI: 10.1183/16000617.0112-2021] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to environmental pollutants is a major contributor to the development and progression of obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD. In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation. In this review, we discuss the molecular and immunological mechanisms involved in physical barrier disruption induced by major airborne pollutants and outline their implications in the pathogenesis of asthma and COPD. We further discuss the link between these pollutants and changes in the lung microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in asthma and COPD. Exposure to air pollution induces airway epithelial barrier dysfunction through several mechanisms including increased oxidative stress, exaggerated cytokine responses and impaired host defence, which contributes to development of asthma and COPD. https://bit.ly/3DHL1CA
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Venkataramana Sidhaye
- Pulmonary and Critical Care Medicine, Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fariba Rezaee
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.,Dept of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
13
|
Sagawa T, Honda A, Ishikawa R, Miyasaka N, Nagao M, Akaji S, Kida T, Tsujikawa T, Yoshida T, Kawahito Y, Takano H. Role of necroptosis of alveolar macrophages in acute lung inflammation of mice exposed to titanium dioxide nanoparticles. Nanotoxicology 2022; 15:1312-1330. [PMID: 35000540 DOI: 10.1080/17435390.2021.2022231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles are indispensable for daily life but induce acute inflammation, mainly via inhalation exposure. TiO2 nanoparticles can be phagocytosed by alveolar macrophages (AMs) in vivo and cause necroptosis of exposed cells in vitro. However, the relationship between localization of TiO2 nanoparticles in the lungs after exposure and their biological responses including cell death and inflammation remains unclear. This study was conducted to investigate the intra/extracellular localization of TiO2 nanoparticles in murine lungs at 24 h after intratracheal exposure to rutile TiO2 nanoparticles and subsequent local biological reactions, specifically necroptosis of AMs and lung inflammation. We found that TiO2 exposure induced leukocyte migration into the alveolar region and increased the secretion of C-C motif ligand (CCL) 3 in the bronchoalveolar lavage (BAL) fluid. A combination of Raman spectroscopy and staining of cell and tissue samples confirmed that AMs phagocytose TiO2. AMs that phagocytosed TiO2 nanoparticles showed necroptosis, characterized by the expression of phosphorylated mixed lineage kinase domain-like protein and translocation of high mobility group box-1 from the cell nucleus to the cytoplasm. In primary cultured AMs, TiO2 also induced necroptosis and increased the secretion of CCL3. Necroptosis inhibitors suppressed the increase in CCL3 secretion in both the BAL fluid and culture supernatant of AMs and suppressed the increase in leukocytes in the BAL fluid. These data suggest that necroptosis of AMs that phagocytose TiO2 nanoparticles is involved as part of the mechanism by which TiO2 induces acute lung inflammation.
Collapse
Affiliation(s)
- Tomoya Sagawa
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Honda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Raga Ishikawa
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Megumi Nagao
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Sakiko Akaji
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takashi Kida
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology - Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Majumder N, Goldsmith WT, Kodali VK, Velayutham M, Friend SA, Khramtsov VV, Nurkiewicz TR, Erdely A, Zeidler-Erdely PC, Castranova V, Harkema JR, Kelley EE, Hussain S. Oxidant-induced epithelial alarmin pathway mediates lung inflammation and functional decline following ultrafine carbon and ozone inhalation co-exposure. Redox Biol 2021; 46:102092. [PMID: 34418598 PMCID: PMC8385153 DOI: 10.1016/j.redox.2021.102092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Environmental inhalation exposures are inherently mixed (gases and particles), yet regulations are still based on single toxicant exposures. While the impacts of individual components of environmental pollution have received substantial attention, the impact of inhalation co-exposures is poorly understood. Here, we mechanistically investigated pulmonary inflammation and lung function decline after inhalation co-exposure and individual exposures to ozone (O3) and ultrafine carbon black (CB). Environmentally/occupationally relevant lung deposition levels in mice were achieved after inhalation of stable aerosols with similar aerodynamic and mass median distributions. X-ray photoemission spectroscopy detected increased surface oxygen contents on particles in co-exposure aerosols. Compared with individual exposures, co-exposure aerosols produced greater acellular and cellular oxidants detected by electron paramagnetic resonance (EPR) spectroscopy, and in vivo immune-spin trapping (IST), as well as synergistically increased lavage neutrophils, lavage proteins and inflammation related gene/protein expression. Co-exposure induced a significantly greater respiratory function decline compared to individual exposure. A synthetic catalase-superoxide dismutase mimetic (EUK-134) significantly blunted lung inflammation and respiratory function decline confirming the role of oxidant imbalance. We identified a significant induction of epithelial alarmin (thymic stromal lymphopoietin-TSLP)-dependent interleukin-13 pathway after co-exposure, associated with increased mucin and interferon gene expression. We provided evidence of interactive outcomes after air pollution constituent co-exposure and identified a key mechanistic pathway that can potentially explain epidemiological observation of lung function decline after an acute peak of air pollution. Developing and studying the co-exposure scenario in a standardized and controlled fashion will enable a better mechanistic understanding of how environmental exposures result in adverse outcomes. Interaction with O3 mediates free radical production on the surface of carbon black (CB) particles. Oxidants mediate co-exposure (CB + O3)-induced lung function decline. EUK-134 (a synthetic superoxide-catalase mimetic) abrogates CB + O3-induced lung inflammation. CB + O3 co-exposure induces greater lung inflammation than individual exposures. Epithelial alarmin (TSLP) contributes significantly to the CB + O3 toxicity.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Vamsi K Kodali
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | | | - Sherri A Friend
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Valery V Khramtsov
- Department of Biochemistry, School of Medicine, West Virginia University, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Aaron Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Patti C Zeidler-Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Vince Castranova
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, School of Veterinary Medicine, Michigan State University, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA.
| |
Collapse
|
15
|
Wang WM, Chen CY, Lu TH, Yang YF, Liao CM. Estimates of lung burden risk associated with long-term exposure to TiO 2 nanoparticles as a UV-filter in sprays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12924-8. [PMID: 33625711 DOI: 10.1007/s11356-021-12924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are employed as an ultraviolet filter in sunscreen products because of their high ultraviolet absorptivity. However, sunscreen sprays may pose health risks due to the toxicity of inhaled TiO2 NPs. Therefore, we estimated the potential human health risk posed by inhaled TiO2 NPs emitted from sunscreen sprays. The physiology-based lung model was employed to predict the lung TiO2 NPs burden caused by long-term exposure. A Hill-based dose-response model described the relationship between lung inflammation and TiO2 NP accumulation. The Weibull threshold model was used to estimate the threshold amount of accumulation inducing 0.5% of the maximum increase in neutrophils. The potential health risk was assessed using a hazard quotient-based probabilistic risk model. All data obtained to date indicate that application of sunscreen sprays poses no significant health risk. However, using data simulations based on the threshold criterion, we discovered that in terms of practical strategies for preventing the risks posed by inhaled TiO2 NPs emitted from spray products, the suggested daily use amount and pressing number are 40 g (95% confidence interval: 11-146 g) and 66 (18-245), respectively. In this study, we successfully translated the potential health risk of long-term exposure to NP-containing sunscreen sprays and recommendations for daily application into mechanistic insights.
Collapse
Affiliation(s)
- Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
16
|
Shabbir S, Kulyar MFEA, Bhutta ZA, Boruah P, Asif M. Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO 2NPs) and Their Jeopardy to Human Population. BIONANOSCIENCE 2021; 11:621-632. [PMID: 33520589 PMCID: PMC7835448 DOI: 10.1007/s12668-021-00836-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are the most produced nanomaterial for food additives, pigments, photocatalysis, and personal care products. These nanomaterials are at the forefront of rapidly developing indispensable nanotechnology. In all these nanomaterials, titanium dioxide (TiO2) is the most common nanomaterial which is being synthesized for many years. These nanoparticles of TiO2 are widely used at the commercial level, especially in cosmetic industries. High usage in such a way has increased the toxicological consequences of the human population. Several studies have shown that TiO2 NPs accumulated after oral exposure or inhalation in the alimentary canal, lungs, heart, liver, spleen, cardiac muscle, and kidneys. Additionally, in mice and rats, they disturb glucose and lipid homeostasis. Moreover, TiO2 nanoparticles primarily cause adverse reactions by inducing oxidative stress that leads to cell damage, inflammation, genotoxicity, and adverse immune responses. The form and level of destruction are strongly based on the physical and chemical properties of TiO2 nanoparticles, which administer their reactivity and bioavailability. Studies give indications that TiO2 NPs cause both DNA strand breaks and chromosomal damages. The effects of genotoxicity do not depend only on particle surface changes, size, and exposure route, but also relies on the duration of exposure. Most of these effects may be because of a very high dose of TiO2 NPs. Despite increased production and use, epidemiological data for TiO2 NPs is still missing. This review discusses previous research regarding the impact of TiO2 NP toxicity on human health and highlights areas that require further understanding in concern of jeopardy to the human population. This review is important to point out areas where extensive research is needed; thus, their possible impact on individual health should be investigated in more details.
Collapse
Affiliation(s)
- Samina Shabbir
- Biogas Institute of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | | | - Zeeshan Ahmad Bhutta
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland EH25 9RG UK
| | - Prerona Boruah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Muhammad Asif
- Department of Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab 54000 Pakistan
| |
Collapse
|
17
|
Weiss M, Fan J, Claudel M, Sonntag T, Didier P, Ronzani C, Lebeau L, Pons F. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. J Nanobiotechnology 2021; 19:5. [PMID: 33407567 PMCID: PMC7789233 DOI: 10.1186/s12951-020-00747-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A positive surface charge has been largely associated with nanoparticle (NP) toxicity. However, by screening a carbon NP library in macrophages, we found that a cationic charge does not systematically translate into toxicity. To get deeper insight into this, we carried out a comprehensive study on 5 cationic carbon NPs (NP2 to NP6) exhibiting a similar zeta (ζ) potential value (from + 20.6 to + 26.9 mV) but displaying an increasing surface charge density (electrokinetic charge, Qek from 0.23 to 4.39 µmol/g). An anionic and non-cytotoxic NP (NP1, ζ-potential = - 38.5 mV) was used as control. RESULTS The 5 cationic NPs induced high (NP6 and NP5, Qek of 2.95 and 4.39 µmol/g, respectively), little (NP3 and NP4, Qek of 0.78 and 1.35 µmol/g, respectively) or no (NP2, Qek of 0.23 µmol/g) viability loss in THP-1-derived macrophages exposed for 24 h to escalating NP dose (3 to 200 µg/mL). A similar toxicity trend was observed in airway epithelial cells (A549 and Calu-3), with less viability loss than in THP-1 cells. NP3, NP5 and NP6 were taken up by THP-1 cells at 4 h, whereas NP1, NP2 and NP4 were not. Among the 6 NPs, only NP5 and NP6 with the highest surface charge density induced significant oxidative stress, IL-8 release, mitochondrial dysfunction and loss in lysosomal integrity in THP-1 cells. As well, in mice, NP5 and NP6 only induced airway inflammation. NP5 also increased allergen-induced immune response, airway inflammation and mucus production. CONCLUSIONS Thus, this study clearly reveals that the surface charge density of a cationic carbon NP rather than the absolute value of its ζ-potential is a relevant descriptor of its in vitro and in vivo toxicity.
Collapse
Affiliation(s)
- Maud Weiss
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Jiahui Fan
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Mickaël Claudel
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Thomas Sonntag
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, UMR 7021, CNRS-Université de Strasbourg, Illkirch, France
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France.
- Faculté de Pharmacie, UMR 7199, 74 route du Rhin, 67400, Illkirch, France.
| |
Collapse
|
18
|
Wang P, Zhang L, Liao Y, Du J, Xu M, Zhao W, Yin S, Chen G, Deng Y, Li Y, Xue X, Yang Y, Hu G, Chen Y. Effect of Intratracheal Instillation of ZnO Nanoparticles on Acute Lung Inflammation Induced by Lipopolysaccharides in Mice. Toxicol Sci 2020; 173:373-386. [PMID: 31804693 DOI: 10.1093/toxsci/kfz234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although studies have shown toxic effects of zinc oxide (ZnO) particles following inhalation, additional effects on injured lungs, which are characterized by dysfunction of the alveolar-capillary barriers, remain uncharacterized. To explore these additional effects, nano-sized ZnO (nZnO) and bulk-sized ZnO were applied to lipopolysaccharide (LPS)-challenged mouse lungs, which were used as a disease model of acute lung inflammation. An elevated Zn2+ concentration was detected in lung tissue after LPS plus nZnO exposure. Exposure to nZnO in LPS-challenged mice resulted in higher total cell number, proportion of neutrophils, and total protein level in bronchoalveolar lavage fluid. Intratracheal instillation of nZnO intensively aggravated LPS-induced lung inflammation that was accompanied by enhanced expression of interleukin-1β, interleukin-6, monocyte chemotactic protein-1α, and granulocyte-macrophage colony stimulating factor. Catalase, glutathione, and total superoxide dismutase levels were significantly decreased, and the malondialdehyde level was obviously increased in the LPS plus nZnO group. 8-Hydroxyguanosine, a marker for DNA damage, was highly concentrated in the lungs from the LPS plus nZnO group. Furthermore, nZnO increased lung apoptosis in an acute lung inflammation model. Taken together, this evidence indicates that nZnO aggravates lung inflammation related to LPS. This enhancement effect may be mediated via oxidative stress, which can lead to DNA damage and apoptosis. This work is important because of the ever-increasing exposure of people to ZnO nanoparticles in industry. The identification of the toxic effects of nZnO and possible mechanisms revealed in this study provide valuable information for future studies.
Collapse
Affiliation(s)
- Ping Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanxia Liao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Juan Du
- Department of Inspection and Quarantine (Hygiene Detection Center), School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Mengying Xu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen Zhao
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Shuxian Yin
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guilan Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu Deng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiran Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xue Xue
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiming Yang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yinghua Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
19
|
Shang L, Deng D, Roffel S, Gibbs S. Differential influence of Streptococcus mitis on host response to metals in reconstructed human skin and oral mucosa. Contact Dermatitis 2020; 83:347-360. [PMID: 32677222 PMCID: PMC7693211 DOI: 10.1111/cod.13668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Skin and oral mucosa are continuously exposed to potential metal sensitizers while hosting abundant microbes, which may influence the host response to sensitizers. This host response may also be influenced by the route of exposure that is skin or oral mucosa, due to their different immune properties. OBJECTIVE Determine how commensal Streptococcus mitis influences the host response to nickel sulfate (sensitizer) and titanium(IV) bis(ammonium lactato)dihydroxide (questionable sensitizer) in reconstructed human skin (RHS) and gingiva (RHG). METHODS RHS/RHG was exposed to nickel or titanium, in the presence or absence of S. mitis for 24 hours. Histology, cytokine secretion, and Toll-like receptors (TLRs) expression were assessed. RESULTS S. mitis increased interleukin (IL)-6, CXCL8, CCL2, CCL5, and CCL20 secretion in RHS but not in RHG; co-application with nickel further increased cytokine secretion. In contrast, titanium suppressed S. mitis-induced cytokine secretion in RHS and had no influence on RHG. S. mitis and metals differentially regulated TLR1 and TLR4 in RHS, and predominantly TLR4 in RHG. CONCLUSION Co-exposure of S. mitis and nickel resulted in a more potent innate immune response in RHS than in RHG, whereas titanium remained inert. These results indicate the important influence of commensal microbes and the route of exposure on the host's response to metals.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Molecular Cell Biology and ImmunologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
20
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
21
|
Roach KA, Anderson SE, Stefaniak AB, Shane HL, Boyce GR, Roberts JR. Evaluation of the skin-sensitizing potential of gold nanoparticles and the impact of established dermal sensitivity on the pulmonary immune response to various forms of gold. Nanotoxicology 2020; 14:1096-1117. [PMID: 32909489 DOI: 10.1080/17435390.2020.1808107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gold nanoparticles (AuNP) are largely biocompatible; however, many studies have demonstrated their potential to modulate various immune cell functions. The potential allergenicity of AuNP remains unclear despite the recognition of gold as a common contact allergen. In these studies, AuNP (29 nm) dermal sensitization potential was assessed via Local Lymph Node Assay (LLNA). Soluble gold (III) chloride (AuCl3) caused lymph node (LN) expansion (SI 10.9), whereas bulk particles (Au, 942 nm) and AuNP did not. Next, the pulmonary immune effects of AuNP (10, 30, 90 µg) were assessed 1, 4, and 8 days post-aspiration. All markers of lung injury and inflammation remained unaltered, but a dose-responsive increase in LN size was observed. Finally, mice were dermally-sensitized to AuCl3 then aspirated once, twice, or three times with Au or AuNP in doses normalized for mass or surface area (SA) to assess the impact of existing contact sensitivity to gold on lung immune responses. Sensitized animals exhibited enhanced responsivity to the metal, wherein subsequent immune alterations were largely conserved with respect to dose SA. The greatest increase in bronchoalveolar lavage (BAL) lymphocyte number was observed in the high dose group - simultaneous to preferential expansion of BAL/LN CD8+ T-cells. Comparatively, the lower SA-based doses of Au/AuNP caused more modest elevations in BAL lymphocyte influx (predominantly CD4+ phenotype), exposure-dependent increases in serum IgE, and selective expansion/activation of LN CD4+ T-cells and B-cells. Overall, these findings suggest that AuNP are unlikely to cause sensitization; however, established contact sensitivity to gold may increase immune responsivity following pulmonary AuNP exposure.
Collapse
Affiliation(s)
- K A Roach
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - S E Anderson
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - A B Stefaniak
- Respiratory Health Division (RHD), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - H L Shane
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - G R Boyce
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J R Roberts
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
22
|
Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L481-L496. [PMID: 32640839 PMCID: PMC7518063 DOI: 10.1152/ajplung.00104.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.
Collapse
Affiliation(s)
- Carrie C Smallcombe
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Terri J Harford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Centre for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio
| |
Collapse
|
23
|
Cruz M, Sanchez-Díez S, I O, Romero-Mesones C, J V, Velde G V, X M. The immunomodulatory effects of diesel exhaust particles in asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114600. [PMID: 33618472 DOI: 10.1016/j.envpol.2020.114600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 06/12/2023]
Abstract
Ammonium persulfate (AP) causes occupational asthma (OA) and diesel exhaust particles (DEP) exacerbate asthma; however, the role of DEP in asthma due to chemical agents has not been assessed to date. Therefore, the present work aims to study the immunomodulatory effects of DEP in a mouse model of chemical asthma. BALB/c ByJ mice were randomly divided into four experimental groups. On days 1 and 8, mice were dermally sensitized with AP or saline. On days 15, 18 and 21, they received intranasal instillations of AP or saline. Two experimental groups received DEP on every of the three challenges. Airway hyperresponsiveness (AHR), lung mechanics, pulmonary inflammation in bronchoalveolar lavage, leukocyte numbers in total lung tissue, oxidative stress and optical projection tomography (OPT) studies were assessed. The AP-sensitized and challenged group showed asthma-like responses, such as airway hyperresponsiveness, increased levels of eosinophils and NKs and lower numbers of monocytes and CD11b-Ly6C- dendritic cells (DCs). Mice exposed to DEP alone showed increased levels of neutrophils and NKs, reduced numbers of monocytes and alveolar macrophages, and increased levels of CD11b + Ly6C- DCs. The AP sensitized and AP + DEP challenged group also showed asthma-like symptoms such as AHR, as well as increased numbers of eosinophils, neutrophils, CD11b + Ly6C- DCs and decreased levels of total and alveolar macrophages and tolerogenic DCs. Particle deposition was visualised using OPT. In the DEP group the particles were distributed relatively evenly, while in the AP + DEP group they were seen mainly in the large conducting airways. The results show that DEP exposure activates the innate immune response and, together with AP, exacerbates asthma immune hallmarks. This mouse model provides the first evidence of the capacity of DEPs to increase CD11b + Ly6C- (Th2-related) DCs. This study also demonstrates, for the first time, a differential deposition pattern of DEP in lungs depending on asthma status.
Collapse
Affiliation(s)
- Mj Cruz
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - S Sanchez-Díez
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ojanguren I
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Romero-Mesones
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanoirbeek J
- Centre of Environment and Health, KU Leuven, Leuven, Belgium
| | - Vande Velde G
- Department of Imaging and Pathology, Biomedical MRI, KU Leuven. Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Muñoz X
- Pulmonology Service, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CibeRes), Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Joubert AI, Geppert M, Johnson L, Mills-Goodlet R, Michelini S, Korotchenko E, Duschl A, Weiss R, Horejs-Höck J, Himly M. Mechanisms of Particles in Sensitization, Effector Function and Therapy of Allergic Disease. Front Immunol 2020; 11:1334. [PMID: 32714326 PMCID: PMC7344151 DOI: 10.3389/fimmu.2020.01334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Humans have always been in contact with natural airborne particles from many sources including biologic particulate matter (PM) which can exhibit allergenic properties. With industrialization, anthropogenic and combustion-derived particles have become a major fraction. Currently, an ever-growing number of diverse and innovative materials containing engineered nanoparticles (NPs) are being developed with great expectations in technology and medicine. Nanomaterials have entered everyday products including cosmetics, textiles, electronics, sports equipment, as well as food, and food packaging. As part of natural evolution humans have adapted to the exposure to particulate matter, aiming to protect the individual's integrity and health. At the respiratory barrier, complications can arise, when allergic sensitization and pulmonary diseases occur in response to particle exposure. Particulate matter in the form of plant pollen, dust mites feces, animal dander, but also aerosols arising from industrial processes in occupational settings including diverse mixtures thereof can exert such effects. This review article gives an overview of the allergic immune response and addresses specifically the mechanisms of particulates in the context of allergic sensitization, effector function and therapy. In regard of the first theme (i), an overview on exposure to particulates and the functionalities of the relevant immune cells involved in allergic sensitization as well as their interactions in innate and adaptive responses are described. As relevant for human disease, we aim to outline (ii) the potential effector mechanisms that lead to the aggravation of an ongoing immune deviation (such as asthma, chronic obstructive pulmonary disease, etc.) by inhaled particulates, including NPs. Even though adverse effects can be exerted by (nano)particles, leading to allergic sensitization, and the exacerbation of allergic symptoms, promising potential has been shown for their use in (iii) therapeutic approaches of allergic disease, for example as adjuvants. Hence, allergen-specific immunotherapy (AIT) is introduced and the role of adjuvants such as alum as well as the current understanding of their mechanisms of action is reviewed. Finally, future prospects of nanomedicines in allergy treatment are described, which involve modern platform technologies combining immunomodulatory effects at several (immuno-)functional levels.
Collapse
Affiliation(s)
- Anna I Joubert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mark Geppert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Litty Johnson
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Robert Mills-Goodlet
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sara Michelini
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Evgeniia Korotchenko
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Höck
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Himly
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
25
|
Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev 2020; 163-164:65-83. [PMID: 32603814 PMCID: PMC7736167 DOI: 10.1016/j.addr.2020.06.025] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/19/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Significant research and preclinical investment in cancer nanomedicine has produced several products, which have improved cancer care. Nevertheless, there exists a perception that cancer nanomedicine 'has not lived up to its promise' because the number of approved products and their clinical performance are modest. Many of these analyses do not consider the long clinical history and many clinical products developed from iron oxide nanoparticles. Iron oxide nanoparticles have enjoyed clinical use for about nine decades demonstrating safety, and considerable clinical utility and versatility. FDA-approved applications of iron oxide nanoparticles include cancer diagnosis, cancer hyperthermia therapy, and iron deficiency anemia. For cancer nanomedicine, this wealth of clinical experience is invaluable to provide key lessons and highlight pitfalls in the pursuit of nanotechnology-based cancer therapeutics. We review the clinical experience with systemic liposomal drug delivery and parenteral therapy of iron deficiency anemia (IDA) with iron oxide nanoparticles. We note that the clinical success of injectable iron exploits the inherent interaction between nanoparticles and the (innate) immune system, which designers of liposomal drug delivery seek to avoid. Magnetic fluid hyperthermia, a cancer therapy that harnesses magnetic hysteresis heating is approved for treating humans only with iron oxide nanoparticles. Despite its successful demonstration to enhance overall survival in clinical trials, this nanotechnology-based thermal medicine struggles to establish a clinical presence. We review the physical and biological attributes of this approach, and suggest reasons for barriers to its acceptance. Finally, despite the extensive clinical experience with iron oxide nanoparticles new and exciting research points to surprising immune-modulating potential. Recent data demonstrate the interactions between immune cells and iron oxide nanoparticles can induce anti-tumor immune responses. These present new and exciting opportunities to explore additional applications with this venerable technology. Clinical applications of iron oxide nanoparticles present poignant case studies of the opportunities, complexities, and challenges in cancer nanomedicine. They also illustrate the need for revised paradigms and multidisciplinary approaches to develop and translate nanomedicines into clinical cancer care.
Collapse
Affiliation(s)
- Frederik Soetaert
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, Belgium; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Preethi Korangath
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David Serantes
- Department of Applied Physics and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Steven Fiering
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Centre, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore 21218, USA; Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore 21218, USA.
| |
Collapse
|
26
|
Alsaleh NB, Brown JM. Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions. Front Immunol 2020; 11:222. [PMID: 32117324 PMCID: PMC7033602 DOI: 10.3389/fimmu.2020.00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Type I allergic hypersensitivity disorders (atopy) including asthma, atopic dermatitis, allergic rhinitis, and food allergy are on the rise in developed and developing countries. Engineered nanomaterials (ENMs) span a large spectrum of material compositions including carbonic, metals, polymers, lipid-based, proteins, and peptides and are being utilized in a wide range of industries including healthcare and pharmaceuticals, electronics, construction, and food industry, and yet, regulations for the use of ENMs in consumer products are largely lacking. Prior evidence has demonstrated the potential of ENMs to induce and/or aggravate type I allergic hypersensitivity responses. Furthermore, previous studies have shown that ENMs could directly interact with and activate key T-helper 2 (Th2) effector cell types (such as mast cells) and the complement system, which could result in pseudoallergic (non-IgE-mediated) hypersensitivity reactions. Nevertheless, the underlying molecular mechanisms of ENM-mediated induction and/or exacerbation of type I immune responses are poorly understood. In this review, we first highlight key examples of studies that have demonstrated inherent immunomodulatory properties of ENMs in the context of type I allergic hypersensitivity reactions, and most importantly, we attempt to put together the potential molecular mechanisms that could drive ENM-mediated stimulation and/or aggravation of type I allergic hypersensitivity responses.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
28
|
Ray JL, Fletcher P, Burmeister R, Holian A. The role of sex in particle-induced inflammation and injury. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1589. [PMID: 31566915 DOI: 10.1002/wnan.1589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
The use of engineered nanomaterials within various applications such as medicine, electronics, and cosmetics has been steadily increasing; therefore, the rate of occupational and environmental exposures has also increased. Inhalation is an important route of exposure to nanomaterials and has been shown to cause various respiratory diseases in animal models. Human lung disease frequently presents with a sex/gender-bias in prevalence or severity, but investigation of potential sex-differences in the adverse health outcomes associated with nanoparticle inhalation is greatly lacking. Only ~20% of basic research in the general sciences use both male and female animals and a substantial percentage of these do not address differences between sexes within their analyses. This has prevented researchers from fully understanding the impact of sex-based variables on health and disease, particularly the pathologies resulting from the inhalation of particles. The mechanisms responsible for sex-differences in respiratory disease remain unclear, but could be related to a number of variables including sex-differences in hormone signaling, lung physiology, or respiratory immune function. By incorporating sex-based analysis into respiratory nanotoxicology and utilizing human data from other relevant particles (e.g., asbestos, silica, particulate matter), we can improve our understanding of sex as a biological variable in nanoparticle exposures. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Jessica L Ray
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Paige Fletcher
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Rachel Burmeister
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
29
|
Cui H, Huang J, Lu M, Zhang Q, Qin W, Zhao Y, Lu X, Zhang J, Xi Z, Li R. Antagonistic effect of vitamin E on nAl 2O 3-induced exacerbation of Th2 and Th17-mediated allergic asthma via oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1519-1531. [PMID: 31277021 DOI: 10.1016/j.envpol.2019.06.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/07/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Some basic research has shown that nanomaterials can aggravate allergic asthma. However, its potential mechanism is insufficient. Based on the research that alumina nanopowder (nAl2O3) has been reported to cause lung tissue damage, the purpose of this study was to explore the relationship between nAl2O3 and allergic asthma as well as its molecular mechanism. In this study, Balb/c mice were sensitized with ovalbumin (OVA) to construct the allergic asthma model while intratracheally administered 0.5, 5 or 50 mg kg-1·day-1 nAl2O3 for 3 weeks. It was observed that exposure to nAl2O3 exacerbated airway hyperresponsiveness (AHR), airway remodeling, and inflammation cell infiltration, leading to lung function damage in mice. Results revealed that nAl2O3 could increase ROS levels and decrease GSH levels in lung tissue, promote the increases of the T-IgE, TGF-β, IL-1β and IL-6 levels, stimulate the overexpression of transcription factors GATA-3 and RORγt, decrease the levels of IFN-γ and IL-10 and increase the levels of IL-4 and IL-17A, resulting in the imbalance of Th1/Th2 and Treg/Th17 immune responses. In addition, antioxidant Vitamin E (Vit E) could alleviate asthma-like symptoms through blocking oxidative stress. The study displayed that exposure of nAl2O3 deteriorated allergic asthma through promoting the imbalances of Th1/Th2 and Treg/Th17.
Collapse
Affiliation(s)
- Haiyan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Jiawei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Manman Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qian Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Wei Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yun Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xianxian Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Jiting Zhang
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, No.1, Dali Road, Heping District, Tianjin, 300050, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
30
|
Ilinskaya AN, Shah A, Enciso AE, Chan KC, Kaczmarczyk JA, Blonder J, Simanek EE, Dobrovolskaia MA. Nanoparticle physicochemical properties determine the activation of intracellular complement. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 17:266-275. [PMID: 30794962 PMCID: PMC6520145 DOI: 10.1016/j.nano.2019.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/25/2023]
Abstract
The complement system plays an essential role in both innate and adaptive immunity. The traditional understanding of this system comes from studies investigating complement proteins produced by the liver and present in plasma to "complement" the immune cell-mediated response to invading pathogens. Recently, it has been reported that immune cells including, but not limited to, T-cells and monocytes, express complement proteins. This complement is referred to as intracellular (IC) and implicated in the regulation of T-cell activation. The mechanisms and the structure-activity relationship between nanomaterials and IC, however, are currently unknown. Herein, we describe a structure-activity relationship study demonstrating that under in vitro conditions, only polymeric materials with cationic surfaces activate IC in T-cells. The effect also depends on particle size and occurs through a mechanism involving membrane damage, thereby IC on the cell surface serves as a self-opsonization marker in response to the nanoparticle-triggered danger affecting the cell integrity.
Collapse
Affiliation(s)
- Anna N Ilinskaya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD
| | - Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD
| | - Alan E Enciso
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX
| | - King C Chan
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute, Frederick, MD
| | - Jan A Kaczmarczyk
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD
| | - Josip Blonder
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD
| | - Eric E Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD.
| |
Collapse
|
31
|
Zhang S, Ren Q, Qi H, Liu S, Liu Y. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS NANO 2019; 13:2729-2748. [PMID: 30773006 DOI: 10.1021/acsnano.8b08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current understanding of the health risks and adverse effects upon exposure to fine particles is premised on the direct association of particles with target organs, particularly the lung; however, fine-particle exposure has also been found to have detrimental effects on sealed cavities distant to the portal-of-entry, such as joints. Moreover, the fundamental toxicological issues have been ascribed to the direct toxic mechanisms, in particular, oxidative stress and proinflammatory responses, without exploring the indirect mechanisms, such as compensated, adaptive, and secondary effects. In this Review, we recapitulate the current findings regarding the detrimental effects of fine-particle exposure on joints, the surrounding cells, and microenvironment, as well as their deteriorating impact on the progression of arthritis. We also elaborate the likely molecular mechanisms underlying the particle-induced detrimental influence on joints, not limited to direct toxicity, but also considering the other indirect mechanisms. Because of the similarities between fine air particles and engineered nanomaterials, we compare the toxicities of engineered nanomaterials to those of fine air particles. Arthritis and joint injuries are prevalent, particularly in the elderly population. Considering the severity of global exposure to fine particles and limited studies assessing the detrimental effects of fine-particle exposure on joints and arthritis, this Review aims to appeal to a broad interest and to promote more research efforts in this field.
Collapse
Affiliation(s)
- Shuping Zhang
- Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Hui Qi
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
- Beijing Research Institute of Traumatology and Orthopaedics , Beijing 100035 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Yajun Liu
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The explosive growth of the nanotechnology industry has necessitated the examination of engineered nanomaterials (ENMs) for their toxicity. The unique properties that make ENMs useful also make them a health risk, and individuals with pre-existing diseases such as asthma are likely more susceptible. This review summarizes the current literature on the ability of ENMs to both exacerbate and directly cause asthma. RECENT FINDINGS Recent studies highlight the ability of metal nanoparticles (NPs) and carbon nanotubes (CNTs) to not only exacerbate pre-existing asthma in animal models but also initiate allergic airway disease directly. CNTs alone are shown to cause airway mucus production, elevated serum IgE levels, and increased TH2 cytokine levels, all key indicators of asthma. The ability of ENMs to modulate the immune response in asthma varies depending on their physicochemical properties and exposure timing. CNTs consistently exacerbate asthma, as do Ni and TiO2 NPs, whereas some NPs like Au attenuate asthma. Evidence is strong that ENMs can contribute to allergic airway disease; however, more work is required to determine their mechanisms, and more epidemiological studies are needed to validate results from animal models.
Collapse
|
33
|
Chen J, Dong X, Zhang Q, Ding S. Migration of titanium dioxide from PET/TiO2 composite film for polymer-laminated steel. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:483-491. [DOI: 10.1080/19440049.2019.1577992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jinyang Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xiaodong Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Qing Zhang
- Shanghai Bao Steel Packaging Co., Ltd., Shanghai, China
| | - Shumin Ding
- Shanghai Si Jiang New Material Technology Co., Ltd., Shanghai, China
| |
Collapse
|
34
|
Fukatsu H, Koide N, Tada-Oikawa S, Izuoka K, Ikegami A, Ichihara S, Ukaji T, Morita N, Naiki Y, Komatsu T, Umezawa K. NF‑κB inhibitor DHMEQ inhibits titanium dioxide nanoparticle‑induced interleukin‑1β production: Inhibition of the PM2.5‑induced inflammation model. Mol Med Rep 2018; 18:5279-5285. [PMID: 30320338 DOI: 10.3892/mmr.2018.9533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/06/2018] [Indexed: 11/06/2022] Open
Abstract
PM2.5 is a particle with a diameter <2.5 µm that is often involved in air pollution. Nanoparticles <100 nm are thought to invade the trachea and lungs to cause inflammation, possibly through the activation of macrophages. On the other hand, titanium dioxide (TiO2) particles can be used in models of nano‑micro‑sized particles, as one can prepare the particles with such sizes. TiO2 particles are classified into Rutile, Anatase, and Brookite types by their crystal structure. Among them, Anatase‑type TiO2 particles with a primary diameter of 50 nm (A50) were reported to induce interleukin (IL)‑1β production and secretion effectively in phorbol 12‑myristate 13‑acetate‑treated human monocytic leukemia THP‑1 cells (THP‑1 macrophages). We previously designed and synthesized dehydroxymethyl‑epoxyqinomicin (DHMEQ) as an inhibitor of NF‑κB. The present study investigated whether the NF‑κB inhibitor DHMEQ inhibits TiO2 nanoparticle‑induced IL‑1β production in THP‑1 macrophages, and determined the mechanism. As a result, DHMEQ inhibited A50‑induced IL‑1β secretion in ELISA assays at nontoxic concentrations. It decreased the expression of IL‑1β mRNA, which was dependent on NF‑κB. Although NLR family pyrin domain containing 3 (NLRP3)‑inflammasome‑caspase‑1 activation is required for the maturation of IL‑1β, and DHMEQ reduced the NLRP3 mRNA expression and caspase‑1 activity; a caspase‑1 inhibitor did not influence the A50‑induced IL‑1β production. Therefore, it is likely that inhibition of pro‑IL‑1β expression by DHMEQ may be sufficient to inhibit mature IL‑1β production. Thus, DHMEQ may be useful for the amelioration of inflammation in the trachea and lungs caused by inhalation of PM2.5.
Collapse
Affiliation(s)
- Hitomi Fukatsu
- Department of Molecular Target Medicine, Aichi Medical University, Nagakute, Aichi 480‑1195, Japan
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi 480‑1195, Japan
| | - Saeko Tada-Oikawa
- School of Life Studies, Sugiyama Jogakuen University, Nagoya, Aichi 464‑8662, Japan
| | - Kiyora Izuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514‑8507, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi 329‑0498, Japan
| | - Tamami Ukaji
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi 480‑1195, Japan
| | - Naoko Morita
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi 480‑1195, Japan
| | - Yoshikazu Naiki
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi 480‑1195, Japan
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi 480‑1195, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, Nagakute, Aichi 480‑1195, Japan
| |
Collapse
|
35
|
Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Elbakary RH, Okasha EF, Hassan Ragab AM, Ragab MH. Histological Effects of Gold Nanoparticles on the Lung Tissue of Adult Male Albino Rats. J Microsc Ultrastruct 2018; 6:116-122. [PMID: 30221136 PMCID: PMC6130251 DOI: 10.4103/jmau.jmau_25_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Short Introduction: Nanoparticles (NPs) represent a new line in the investigations and treatment of group of diseases. Furthermore, it is found in many products and enters the body by different roots as ingestion and inhalation. Lung is more liable to exposure to these particles. Safety of these particles on the lung needs to be examined. Aim of the Work: To study the effect of gold NPs (GNPs) on the histological structure of the lung tissue. Materials and Methods: Thirty-six healthy male albino rats were randomly divided into three groups including control group (Group I) and two GNP-treated groups (Group II received low dose and Group III received high dose daily for 14 days). At the end of the experiment, all the rats were sacrificed; lungs were dissected and processed to be examined by light and electron microscopy. Results: GNPs induced inflammatory infiltration dilatation and congestion of the blood vessels in association with the collapse of lung alveoli and extravasations of red blood cells. Caspase-3 immunohistochemical reaction showed strong positive reaction in Group III mainly. Ultrastructure observation revealed affection of type II pneumocyte and thickening in the alveolar wall. Conclusions: GNPs led to histological changes in the lung tissue.
Collapse
Affiliation(s)
- Reda H Elbakary
- Department of Histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ebtsam F Okasha
- Department of Histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
37
|
Ratemi E, Sultana Shaik A, Al Faraj A, Halwani R. Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin Exp Allergy 2017; 46:1033-42. [PMID: 27404025 DOI: 10.1111/cea.12771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite the various treatment options and international guidelines currently available for the appropriate therapeutic management of asthma, a large population of patients with asthma continues to have poorly controlled disease. There is therefore a need for novel approaches to achieve better asthma control, especially for severe asthmatics. This review discusses the use of nanoparticles for the specific targeting of inflammatory pathways as a promising approach for the effective control of severe persistent asthma as well as other chronic inflammatory diseases.
Collapse
Affiliation(s)
- E Ratemi
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - A Sultana Shaik
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - A Al Faraj
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - R Halwani
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
39
|
Stone V, Miller MR, Clift MJD, Elder A, Mills NL, Møller P, Schins RPF, Vogel U, Kreyling WG, Alstrup Jensen K, Kuhlbusch TAJ, Schwarze PE, Hoet P, Pietroiusti A, De Vizcaya-Ruiz A, Baeza-Squiban A, Teixeira JP, Tran CL, Cassee FR. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:106002. [PMID: 29017987 PMCID: PMC5933410 DOI: 10.1289/ehp424] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. OBJECTIVES NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. METHODS A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. DISCUSSION Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. CONCLUSION There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424.
Collapse
Affiliation(s)
- Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Martin J D Clift
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swansea University Medical School, Swansea, Wales, UK
| | - Alison Elder
- University of Rochester Medical Center, Rochester, New York
| | - Nicholas L Mills
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Roel P F Schins
- IUF Leibniz-Institut für Umweltmedizinische Forschung, Düsseldorf, Germany
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Wolfgang G Kreyling
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Munich, Germany
| | | | - Thomas A J Kuhlbusch
- Air Quality & Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik e. V. (IUTA), Duisburg, Germany
- Federal Institute of Occupational Safety and Health, Duisburg, Germany
| | | | - Peter Hoet
- Center for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Andrea De Vizcaya-Ruiz
- Departmento de Toxicología, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, México
| | | | - João Paulo Teixeira
- National Institute of Health, Porto, Portugal
- Instituto de Saúde Pública da Universidade do Porto–Epidemiology (ISPUP-EPI) Unit, Porto, Portugal
| | - C Lang Tran
- Institute of Occupational Medicine, Edinburgh, Scotland, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
40
|
Histological effects of gold nanoparticles on lung tissue of adult male albino rats. J Microsc Ultrastruct 2017. [DOI: 10.1016/j.jmau.2017.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Chortarea S, Barosova H, Clift MJD, Wick P, Petri-Fink A, Rothen-Rutishauser B. Human Asthmatic Bronchial Cells Are More Susceptible to Subchronic Repeated Exposures of Aerosolized Carbon Nanotubes At Occupationally Relevant Doses Than Healthy Cells. ACS NANO 2017; 11:7615-7625. [PMID: 28505409 DOI: 10.1021/acsnano.7b01992] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although acute pulmonary toxicity of carbon nanotubes (CNTs) has been extensively investigated, the knowledge of potential health effects following chronic occupational exposure is currently limited and based only upon in vivo approaches. Our aim was to realistically mimic subchronic inhalation of multiwalled CNTs (MWCNTs) in vitro, using the air-liquid interface cell exposure (ALICE) system for aerosol exposures on reconstituted human bronchial tissue from healthy and asthmatic donors. The reliability and sensitivity of the system were validated using crystalline quartz (DQ12), which elicited an increased (pro-)inflammatory response, as reported in vivo. At the administrated MWCNT doses relevant to human occupational lifetime exposure (10 μg/cm2 for 5 weeks of repeated exposures/5 days per week) elevated cilia beating frequency (in both epithelial cultures), and mucociliary clearance (in asthmatic cells only) occurred, whereas no cytotoxic reactions or morphological changes were observed. However, chronic MWCNT exposure did induce an evident (pro-)inflammatory and oxidative stress response in both healthy and asthmatic cells. The latter revealed stronger and more durable long-term effects compared to healthy cells, indicating that individuals with asthma may be more susceptible to adverse effects from chronic MWCNT exposure. Our results highlight the power of occupationally relevant subchronic exposures on human in vitro models in nanosafety hazard assessment.
Collapse
Affiliation(s)
- Savvina Chortarea
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg , CH-1700 Fribourg, Switzerland
| | - Hana Barosova
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg , CH-1700 Fribourg, Switzerland
| | | | - Peter Wick
- Laboratory for Materials-Biology Interactions, Empa, Swiss Federal Laboratories for Materials, Science and Technology , 9014 St Gallen, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg , CH-1700 Fribourg, Switzerland
- Department of Chemistry, University of Fribourg , CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
42
|
Zheng W, Zou HF, Lv SW, Lin YH, Wang M, Yan F, Sheng Y, Song YH, Chen J, Zheng KY. The effect of nano-TiO 2 photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 174:251-260. [PMID: 28803025 DOI: 10.1016/j.jphotobiol.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 11/26/2022]
Abstract
Security issues of nanoparticles on biological toxicity and potential environmental risk have attracted more and more attention with the rapid development and wide applications of nanotechnology. In this work, we explored the effect and probable mechanism of nano-TiO2 on antioxidant activity of copper, zinc superoxide dismutase (Cu, Zn-SOD) under natural light and mixed light at physiological pH. Nano-TiO2 was prepared by sol-hydrothermal method, and then characterized by X-ray Diffraction (XRD) and Transmission electron micrographs (TEM). The Cu, Zn-SOD was purified by sephadex G75 chromatography and qualitatively analyzed by sodium dodecyl sulfate polypropylene amide gel electrophoresis (SDS-PAGE). The effect and mechanism were elucidated base on Fourier Transform Infrared Spectrometer (FT-IR), Circular Dichroism (CD), zeta potential, and electron spin resonance (ESR) methods. Accompanying the results of FT-IR, CD and zeta potential, it could be concluded that nano-TiO2 had no effect on the antioxidant activity of Cu, Zn-SOD by comparing the relative activity under natural light at physiological pH. But the relative activity of Cu, Zn-SOD significantly decreased along with the increase of nano-TiO2 concentration under the mixed light. The results of ESR showed the cause of this phenomenon was the Cu(II) in the active site of Cu, Zn-SOD was reduced to Cu(I) by H2O2 and decreased the content of active Cu, Zn-SOD. The reduction can be inhibited by catalase. Excess O2·- produced by nano-TiO2 photocatalysis under mixed light accumulated a mass of H2O2 through disproportionation reaction in this experimental condition. The results show that nano-TiO2 cannot affect the antioxidant activity of Cu, Zn-SOD in daily life. The study on the effect of nano-TiO2 on Cu, Zn-SOD will provide a valid theory support for biological safety and the toxicological effect mechanism of nanomaterials on enzyme.
Collapse
Affiliation(s)
- Wen Zheng
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hai-Feng Zou
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shao-Wu Lv
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, PR China
| | - Yan-Hong Lin
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Min Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Fei Yan
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ye Sheng
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan-Hua Song
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jie Chen
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ke-Yan Zheng
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
43
|
Durocher I, Noël C, Lavastre V, Girard D. Evaluation of the in vitro and in vivo proinflammatory activities of gold (+) and gold (-) nanoparticles. Inflamm Res 2017; 66:981-992. [PMID: 28676918 DOI: 10.1007/s00011-017-1078-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to determine potential effects of gold (+) and gold (-) nanoparticles, AuNP(+) and AuNP(-), on neutrophil biology. MATERIAL OR SUBJECTS Freshly isolated human neutrophils were used for the in vitro aspects and CD-1 mice were used in the in vivo murine air pouch model of acute neutrophilic inflammation. TREATMENT Human neutrophils were treated with the indicated concentrations of AuNP(+) or AuNP(-) in vitro and mice received 100 or 500 µg/ml AuNP(+) or AuNP(-) into air pouches. METHODS Cellular uptake of AuNP by neutrophils was confirmed by transmission electron microscopy and the ability of the NP to modulate apoptosis, gelatinase activity, and chemokine production and chemotaxis was determined by cytology, zymography, ELISArray, antibody array, and ELISA and by a micro-chemotaxis chamber, respectively. In vivo, exudates were harvested after 6 h to determine the leukocyte infiltration to detect the production of several cytokines by an antibody array approach and ELISA. One-way analysis of variance was used for statistical analysis. RESULTS AuNP possess proinflammatory activities in vitro and induce mainly a neutrophil influx in vivo, albeit at different degrees. CONCLUSIONS AuNP(+) and AuNP(-) should be added as new candidates into a growing list of NP having proinflammatory activities by themselves.
Collapse
Affiliation(s)
- Isabelle Durocher
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Claudie Noël
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Valérie Lavastre
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada.
| |
Collapse
|
44
|
Movia D, Di Cristo L, Alnemari R, McCarthy JE, Moustaoui H, Lamy de la Chapelle M, Spadavecchia J, Volkov Y, Prina-Mello A. The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/jin2.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Luisana Di Cristo
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Roaa Alnemari
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
| | | | - Hanane Moustaoui
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Marc Lamy de la Chapelle
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| |
Collapse
|
45
|
Himly M, Mills-Goodlet R, Geppert M, Duschl A. Nanomaterials in the Context of Type 2 Immune Responses-Fears and Potentials. Front Immunol 2017; 8:471. [PMID: 28487697 PMCID: PMC5403887 DOI: 10.3389/fimmu.2017.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
The type 2 immune response is an adaptive immune program involved in defense against parasites, detoxification, and wound healing, but is predominantly known for its pathophysiological effects, manifesting as allergic disease. Engineered nanoparticles (NPs) are non-self entities that, to our knowledge, do not stimulate detrimental type 2 responses directly, but have the potential to modulate ongoing reactions in various ways, including the delivery of substances aiming at providing a therapeutic benefit. We review, here, the state of knowledge concerning the interaction of NPs with type 2 immune responses and highlight their potential as a multifunctional platform for therapeutic intervention.
Collapse
Affiliation(s)
- Martin Himly
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Robert Mills-Goodlet
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Mark Geppert
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
46
|
Omlor AJ, Le DD, Schlicker J, Hannig M, Ewen R, Heck S, Herr C, Kraegeloh A, Hein C, Kautenburger R, Kickelbick G, Bals R, Nguyen J, Dinh QT. Local Effects on Airway Inflammation and Systemic Uptake of 5 nm PEGylated and Citrated Gold Nanoparticles in Asthmatic Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603070. [PMID: 28009478 DOI: 10.1002/smll.201603070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Nanotechnology is showing promise in many medical applications such as drug delivery and hyperthermia. Nanoparticles administered to the respiratory tract cause local reactions and cross the blood-air barrier, thereby providing a means for easy systemic administration but also a potential source of toxicity. Little is known about how these effects are influenced by preexisting airway diseases such as asthma. Here, BALB/c mice are treated according to the ovalbumin (OVA) asthma protocol to promote allergic airway inflammation. Dispersions of polyethylene-glycol-coated (PEGylated) and citrate/tannic-acid-coated (citrated) 5 nm gold nanoparticles are applied intranasally to asthma and control groups, and (i) airway resistance and (ii) local tissue effects are measured as primary endpoints. Further, nanoparticle uptake into extrapulmonary organs is quantified by inductively coupled plasma mass spectrometry. The asthmatic precondition increases nanoparticle uptake. Moreover, systemic uptake is higher for PEGylated gold nanoparticles compared to citrated nanoparticles. Nanoparticles inhibit both inflammatory infiltrates and airway hyperreactivity, especially citrated gold nanoparticles. Although the antiinflammatory effects of gold nanoparticles might be of therapeutic benefit, systemic uptake and consequent adverse effects must be considered when designing and testing nanoparticle-based asthma therapies.
Collapse
Affiliation(s)
- Albert J Omlor
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Duc D Le
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Janine Schlicker
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Raphael Ewen
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Sebastian Heck
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Christian Herr
- Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Annette Kraegeloh
- INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbrücken, Germany
| | - Christina Hein
- Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125, Saarbrücken, Germany
| | - Ralf Kautenburger
- Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125, Saarbrücken, Germany
| | - Guido Kickelbick
- Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125, Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 303 Kapoor Hall, SUNY Buffalo, NY, 14214, USA
| | - Q Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
- Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| |
Collapse
|
47
|
Tabish AM, Poels K, Byun HM, luyts K, Baccarelli AA, Martens J, Kerkhofs S, Seys S, Hoet P, Godderis L. Changes in DNA Methylation in Mouse Lungs after a Single Intra-Tracheal Administration of Nanomaterials. PLoS One 2017; 12:e0169886. [PMID: 28081255 PMCID: PMC5231360 DOI: 10.1371/journal.pone.0169886] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022] Open
Abstract
Aims This study aimed to investigate the effects of nanomaterial (NM) exposure on DNA methylation. Methods and Results Intra-tracheal administration of NM: gold nanoparticles (AuNPs) of 5-, 60- and 250-nm diameter; single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) at high dose of 2.5 mg/kg and low dose of 0.25 mg/kg for 48 h to BALB/c mice. Study showed deregulations in immune pathways in NM-induced toxicity in vivo. NM administration had the following DNA methylation effects: AuNP 60 nm induced CpG hypermethylation in Atm, Cdk and Gsr genes and hypomethylation in Gpx; Gsr and Trp53 showed changes in methylation between low- and high-dose AuNP, 60 and 250 nm respectively, and AuNP had size effects on methylation for Trp53. Conclusion Epigenetics may be implicated in NM-induced disease pathways.
Collapse
Affiliation(s)
- Ali M. Tabish
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
- Integrated Cardio Metabolic Centre, Huddinge, Sweden
- * E-mail:
| | - Katrien Poels
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Katrien luyts
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Johan Martens
- Centrum voor Oppervlaktechemie en Katalyse, KU Leuven, Leuven, Belgium
| | - Stef Kerkhofs
- Centrum voor Oppervlaktechemie en Katalyse, KU Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, KU Leuven, Belgium
| | - Peter Hoet
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at work, Heverlee, Belgium
| |
Collapse
|
48
|
Engineered Nanomaterials and Occupational Allergy. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2017. [DOI: 10.1007/978-981-10-0351-6_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Deville S, Baré B, Piella J, Tirez K, Hoet P, Monopoli MP, Dawson KA, Puntes VF, Nelissen I. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation. Nanotoxicology 2016; 10:1395-1403. [DOI: 10.1080/17435390.2016.1221476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sarah Deville
- Health Unit, Flemish Institute for Technological Research, Mol, Belgium,
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,
| | - Birgit Baré
- Health Unit, Flemish Institute for Technological Research, Mol, Belgium,
- Lung Toxicology, Catholic University Leuven, Leuven, Belgium,
| | - Jordi Piella
- Inorganic Nanoparticles Group, Institut Català de Nanotecnologia, Campus UAB, Bellaterra, Spain,
- Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, Spain,
| | - Kristof Tirez
- Health Unit, Flemish Institute for Technological Research, Mol, Belgium,
| | - Peter Hoet
- Lung Toxicology, Catholic University Leuven, Leuven, Belgium,
| | - Marco P. Monopoli
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland,
| | - Kenneth A. Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland,
| | - Victor F. Puntes
- Inorganic Nanoparticles Group, Institut Català de Nanotecnologia, Campus UAB, Bellaterra, Spain,
- Vall d’Hebron Institute of Research, Barcelona, Spain, and
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research, Mol, Belgium,
| |
Collapse
|
50
|
Abu Zeid EH, Alam RTM, Abd El-Hameed NE. Impact of titanium dioxide on androgen receptors, seminal vesicles and thyroid hormones of male rats: possible protective trial with aged garlic extract. Andrologia 2016; 49. [DOI: 10.1111/and.12651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- E. H. Abu Zeid
- Department of Forensic Medicine and Toxicology; Faculty of Veterinary Medicine; Zagazig University; Zagazig Sharkia Egypt
| | - R. T. M. Alam
- Department of Clinical Pathology; Faculty of Veterinary Medicine; Zagazig University; Zagazig Sharkia Egypt
| | - N. E. Abd El-Hameed
- Department of Physiology; Faculty of Veterinary Medicine; Zagazig University; Zagazig Sharkia Egypt
| |
Collapse
|