1
|
Li D, Qian L, Du Y, Liu L, Sun Z, Han Y, Guo X, Shen C, Zhang Z, Liu X. METTL14-mediated m 6A modification of DDIT4 promotes its mRNA stability in aging-related idiopathic pulmonary fibrosis. Epigenetics 2025; 20:2462898. [PMID: 39916577 PMCID: PMC11810098 DOI: 10.1080/15592294.2025.2462898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/01/2025] [Accepted: 01/29/2025] [Indexed: 02/12/2025] Open
Abstract
Although N6-methyladenosine (m6A) may be related to the pathogenesis of fibrotic process, the mechanism of m6A modification in aging-related idiopathic pulmonary fibrosis (IPF) remains unclear. Three-milliliter venous blood was collected from IPF patients and healthy controls. MeRIP-seq and RNA-seq were utilized to investigate differential m6A modification. The expressions of identified m6A regulator and target gene were validated using MeRIP-qPCR and real-time PCR. Moreover, we established an animal model and a senescent model of A549 cells to explore the associated molecular mechanism. Our study provided a panorama of m6A methylation in IPF. Increased peaks (3756) and decreased peaks (4712) were observed in the IPF group. The association analysis showed that 749 DEGs were affected by m6A methylation in IPF. Among the m6A regulators, the expression of METTL14 decreased in IPF. The m6A level of our interested gene DDIT4 decreased significantly, but the mRNA level of DDIT4 was higher in IPF. This was further verified in bleomycin-induced pulmonary fibrosis. At the cellular level, it was further confirmed that METTL14 and DDIT4 might participate in the senescence of alveolar epithelial cells. The downregulation of METTL14 might inhibit the decay of DDIT4 mRNA by reducing the m6A modification level of DDIT4 mRNA, leading to high expression of DDIT4 mRNA and protein. Our study provided a panorama of m6A alterations in IPF and discovered METTL14 as a potential intervention target for epigenetic modification in IPF. These results pave the way for future investigations regarding m6A modifications in aging-related IPF.
Collapse
Affiliation(s)
- Dan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Qian
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Du
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifang Liu
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ziyue Sun
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongkang Han
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xiangrui Guo
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Shen
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zheng Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xuejun Liu
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Li GD, Li J, Fan JQ, Li JY, Zhao B, Chen X. Predictive models and WTAP targeting for idiopathic pulmonary fibrosis (IPF). Sci Rep 2025; 15:14622. [PMID: 40287490 PMCID: PMC12033295 DOI: 10.1038/s41598-025-98490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Emerging evidence suggests that N6-methyladenosine (m6A) modification significantly influences lung injury, lung cancer, and immune responses. The current study explores the potential involvement of m6A modification in the development of IPF. This research analyzed the GSE93606 dataset of 20 non-IPF and 154 IPF patients, identifying 26 m6A regulators and developing predictive models with RF and SVM, assessed via ROC curves. A nomogram was created with selected m6A factors, including molecular subtyping, PCA for m6A features, immune cell analysis, DEG identification, and functional enrichment. In vitro experiments on MRC-5 cells used RT-qPCR and Western blotting, and virtual drug screening targeted the WTAP protein through molecular docking. Analysis revealed 26 differential m6A regulators in IPF patients, with 16 significant; IGFBP2 and YTHDF2 were overexpressed, while others decreased. RF and SVM models identified predictive m6A regulators, and a nomogram was developed using five factors to predict IPF incidence. Distinct m6A patterns showed changes in RNA levels of specific genes in the BLM-induced group, and five compounds targeting WTAP were identified. This research explored m6A factors' impact on IPF diagnosis and prognosis, identifying WTAP as a potential biomarker.
Collapse
Affiliation(s)
- Guo-Dong Li
- Department of Pulmonary and Critical Care Medicine, The Affiliated Tai'an City Central Hospital of Qingdao University, Longtan Road 29#, Tai'an, 271000, China
| | - Juan Li
- Department of Comprehensive Ward, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, China
| | - Jia-Qi Fan
- Jining Medical University, 133 Hehua Road, Jining, China
| | - Jun-Yi Li
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Bin Zhao
- Pediatric Surgery, The Affiliated Tai'an City Central Hospital of Qingdao University, Longtan Road 29#, Tai'an, 271000, China.
| | - Xiao Chen
- Department of Pulmonary and Critical Care Medicine, The Affiliated Tai'an City Central Hospital of Qingdao University, Longtan Road 29#, Tai'an, 271000, China.
| |
Collapse
|
3
|
Opolot EE, Goshevski F, Chaudhary R, Kilgore JA, Williams NS, von Recum HA, Desai AB. Sustained Release of Antifibrotic Nintedanib from Polymer Microparticles Reduces Dosing Frequency While Reducing Inflammation in Murine Idiopathic Pulmonary Fibrosis. Ann Biomed Eng 2025:10.1007/s10439-025-03729-8. [PMID: 40210794 DOI: 10.1007/s10439-025-03729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a life-threatening, progressive lung disease with limited therapeutic options, often resulting in poor patient outcomes. Current treatments, such as Nintedanib (NTB) and Pirfenidone (PFD), require frequent administration, leading to adverse effects and low patient adherence. The purpose of this study was to investigate a sustained-release drug delivery system utilizing microparticles (MPs) composed of insoluble beta-cyclodextrin (β-CD) polymers to enhance the bioavailability and extend the release of NTB and PFD. METHODS A multidisciplinary approach, including in silico modeling, in vitro assays, and in vivo studies, was employed to assess the efficacy of β-CD-polymer MPs as drug carriers. RESULTS Molecular docking simulations and surface plasmon resonance studies demonstrated a stronger binding affinity of NTB to β-CD-polymer MPs compared to PFD, suggesting an extended delivery profile for NTB over PFD. Pharmacokinetic analysis in healthy mice confirmed sustained-release profiles for both drugs, with NTB maintaining therapeutic plasma concentrations for over 70 h. In a bleomycin-induced IPF mouse model, NTB-loaded β-CD-polymer MPs significantly reduced pro-inflammatory markers and required fewer injections than the standard daily NTB regimen. CONCLUSION These findings indicate that β-CD-polymer MPs may serve as a promising platform for reducing dosing frequency of NTB and enhancing therapeutic outcomes in the treatment of IPF.
Collapse
Affiliation(s)
- Emmanuel Einyat Opolot
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Filip Goshevski
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Rahul Chaudhary
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica A Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Amar B Desai
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Feng S, Xu G, Ding Q, Shi Y. Fritillaria thunbergii Miq. Extract ameliorated experimental pulmonary fibrosis partly through the PI3K/AKT/FOXO signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119445. [PMID: 39938765 DOI: 10.1016/j.jep.2025.119445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis is an irreversible lung disease with a high mortality rate. Zhebeimu (ZBM, Fritillaria thunbergii Miq.) is a Chinese medicine commonly used for the treatment of pulmonary fibrosis in China. AIM OF THE STUDY In this study, the protective effect and mechanism of ZBM extract in the treatment of pulmonary fibrosis were investigated in vivo and in vitro. MATERIALS AND METHODS The protective effect of ZBM extract was assessed using an in vivo model of bleomycin (BLM) tracheal drip and transforming growth factor-β(TGF-β1)-induced fibroblasts to simulate pulmonary fibrosis, and lung function, lung histopathological status and hydroxyproline were tested. Relevant pathways were detected using protein blotting, immunofluorescence and immunohistochemistry. RESULTS ZBM extract effectively improved lung function, inflammatory changes and fibrotic deposition in the lungs, and reduced the expression of fibroblast markers in mice. In addition, ZBM extract significantly inhibited TGF-β1-induced hyperphosphorylation of FOXO3, and simultaneously improved the low expression level of FOXO3 prototype protein and significantly reduced the phosphorylation level of PI3K-p85 and AKT1, suggesting that ZBM extract improves lung fibrosis by inhibiting the over-activation of PI3K/AKT/FOXO signalling pathway. CONCLUSION The PI3K/AKT/FOXO signalling pathway is critical for ZBM extract to improve pulmonary fibrosis.
Collapse
Affiliation(s)
- Siwen Feng
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518172, China.
| | - Gonghao Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qi Ding
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Yuanyuan Shi
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518172, China.
| |
Collapse
|
5
|
Pei Z, Fan J, Tang M, Li Y. Ferroptosis: A New Strategy for the Treatment of Fibrotic Diseases. Adv Biol (Weinh) 2025; 9:e2400383. [PMID: 39377183 DOI: 10.1002/adbi.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.
Collapse
Affiliation(s)
- Zhuo Pei
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, 110044, China
| | - Maolin Tang
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
6
|
Wang M, Sun Y, Zhao Y, Jiang X, Wang T, Xie J, Yu X, Guo S, Zhang Y, Chen X, Hong A. An FGF2-Derived Short Peptide Attenuates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting Collagen Deposition and Epithelial-Mesenchymal Transition via the FGFR/MAPK Signaling Pathway. Int J Mol Sci 2025; 26:517. [PMID: 39859240 PMCID: PMC11764546 DOI: 10.3390/ijms26020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Following the COVID-19 pandemic, the prevalence of pulmonary fibrosis has increased significantly, placing patients at higher risk and presenting new therapeutic challenges. Current anti-fibrotic drugs, such as Nintedanib, can slow the decline in lung function, but their severe side effects highlight the urgent need for safer and more targeted alternatives. This study explores the anti-fibrotic potential and underlying mechanisms of an endogenous peptide (P5) derived from fibroblast growth factor 2 (FGF2), developed by our research team. Using a bleomycin-induced pulmonary fibrosis mouse model, we observed that P5 alleviated fibrosis by inhibiting collagen deposition, as confirmed by CT scans and histological staining. In TGF-β-induced cell models, P5 effectively suppressed collagen deposition and epithelial-mesenchymal transition (EMT). Transcriptome analysis highlighted pathways related to receptor binding, extracellular matrix organization, and cell adhesion, with KEGG analysis confirming FGFR/MAPK signaling inhibition as the primary mechanism underlying its anti-fibrotic effects. In summary, our study demonstrates that P5 significantly attenuates pulmonary fibrosis through the inhibition of EMT, collagen deposition, and FGFR/MAPK signaling, providing a promising therapeutic approach for fibrosis.
Collapse
Affiliation(s)
- Mengwei Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Yuanmeng Sun
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Yanzhi Zhao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xinyi Jiang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Teng Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiuling Yu
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Shujun Guo
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (M.W.); (Y.S.); (Y.Z.); (X.J.); (T.W.); (J.X.); (X.Y.); (S.G.); (Y.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Xiang Y, Huang G, Luo C, Jiang J, Zhang T, Zeng Q, Zhou F, Du D. Investigates the Role of PANoptosis in Idiopathic Pulmonary Fibrosis and Potential Therapeutic Targets. J Inflamm Res 2024; 17:11605-11629. [PMID: 39737099 PMCID: PMC11682943 DOI: 10.2147/jir.s490457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/15/2024] [Indexed: 01/01/2025] Open
Abstract
Purpose Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. PANoptosis, a unique inflammatory programmed cell death, it manifests as the simultaneous activation of signaling markers for pyroptosis, apoptosis, and necroptosis. However, research on the role of PANoptosis in the development of IPF is currently limited. This study was aimed to explore the role of PANoptosis in IPF. Methods In this study, we first identified PANDEGs using the GEO database. Exploring potential biological functions and immune cell infiltration abundance through GO/KEGG enrichment analysis and Immune infiltration analysis. Through machine learning and experimental validation, we identified four diagnostic genes and four prognostic genes associated with PANoptosis, leading to the development of a diagnostic and prognostic model for IPF. Our single-cell analysis further explored the role of these PANoptosis prognostic genes. Additionally, the L1000FWD application was used to identify small molecule drugs, based on the four PANoptosis prognostic genes, and confirmed their efficacy through molecular docking. Results 104 PANoptosis differentially expressed genes were identified from IPF and normal tissues. Enrichment analysis indicated that these genes were associated with immune-inflammatory response pathway. We developed a diagnostic and prognostic models based on PANoptosis related genes. The diagnostic model included AKT1, PDCD4, PSMA2, and PPP3CB. Conversely, the prognostic model included TNFRSF12A, DAPK2, UACA, and DSP. External dataset validation and qPCR showed the reliability of most of the conclusions. Additionally, potential therapeutic drugs, including Metergoline, Candesartan, and Selumetinib, were identified based on four prognostic genes. Molecular docking shows that these drugs have good binding ability with their targets. Conclusion Importantly, our findings provide scientific evidence for the diagnosis and prognostic biomarkers of IPF patients, as well as small molecule therapeutic drugs.
Collapse
Affiliation(s)
- Yunfei Xiang
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 40044, People’s Republic of China
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 40014, People’s Republic of China
| | - Guangbin Huang
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
| | - Can Luo
- Department of Emergency, Affiliated Hospital of Zunyi Medical University Zunyi, Guizhou, 563003, People’s Republic of China
| | - Junyu Jiang
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 40044, People’s Republic of China
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 40014, People’s Republic of China
| | - Tao Zhang
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 40044, People’s Republic of China
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 40014, People’s Republic of China
| | - Qingbo Zeng
- Department of Emergency, Affiliated Hospital of Zunyi Medical University Zunyi, Guizhou, 563003, People’s Republic of China
| | - Fating Zhou
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 40044, People’s Republic of China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 40014, People’s Republic of China
- Department of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
| | - Dingyuan Du
- Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People’s Republic of China
| |
Collapse
|
8
|
Liu Y, Wang C, Li M, Zhu Y, Liu K, Liu Y, Luo M, Zhang C. Natural ingredients in the regulation of abnormal lipid peroxidation: a potential therapy for pulmonary diseases. Front Pharmacol 2024; 15:1507194. [PMID: 39759448 PMCID: PMC11695318 DOI: 10.3389/fphar.2024.1507194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Pulmonary diseases are a major category of diseases that pose a threat to human health. The most common drugs currently used to treat lung diseases are still chemical drugs, but this may lead to drug resistance and damage to healthy organs in the body. Therefore, developing new drugs is an urgent task. Lipid peroxidation is caused by the disruption of redox homeostasis, accumulation of reactive oxygen species (ROS), depletion of glutathione (GSH), and inactivation of glutathione peroxidase 4 (GPX4). Lipid peroxidation is closely related to the occurrence and progression of respiratory diseases, including acute lung injury, asthma, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease, and lung cancer. Natural ingredients have high safety, high availability, and low cost, and can regulate lipid peroxidation through multiple pathways and targets, making them valuable new drugs. This article aims to summarize the pharmacology and mechanism of natural ingredients targeting lipid peroxidation in the treatment of lung diseases. The reviewed data indicate that natural ingredients are a promising anti-lipid peroxidation drug, mainly alleviating lipid peroxidation through the cystine/glutamate antiporter (System Xc -)/GSH/GPX4 axis, Nrf2 pathway, and ROS pathway. In the future, it will still be necessary to further study the mechanisms of natural products in treating pulmonary diseases through lipid peroxidation and conduct multi-center, large-sample clinical trials to promote the development of new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Cassidy N, Fox L, Love M, Byrne I, Doyle AM, Korn B, Shanagher D, Shone T, Cullen M, Cullen T, Mullaney P, O'Carroll N, O'Dowd G, O'Sullivan T, Russell AM. Fibrotic interstitial lung disease - palliative care needs: a World-Café qualitative study. BMJ Support Palliat Care 2024; 14:e2649-e2656. [PMID: 34635541 PMCID: PMC11672070 DOI: 10.1136/bmjspcare-2021-003249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The importance of palliative care in those with advanced fibrotic interstitial lung diseases (F-ILD) is recognised, but the palliative care requirements of patients and caregivers affected by F-ILD regardless of disease course are not established. We set out to explore this and identify optimal solutions in meeting the needs of a F-ILD population in Ireland. METHODS Implementing a World-Café qualitative research approach, we captured insights evolving, iteratively in interactive small group discussions in response to six predefined topics on palliative care and planning for the future. Thirty-nine stakeholders participated in the World-Café including 12 patients, 13 caregivers, 9 healthcare professionals, 4 industry representatives and 1 representative of the clergy. RESULTS Palliative care emerged as fundamental to the care and treatment of F-ILDs, regardless of disease progression. Unmet palliative care needs were identified as psychological and social support, disease education, inclusion of caregivers and practical/legal advice for disease progression and end-of-life planning. Participants identified diagnosis as a particularly distressing time for patients and families. They called for the introduction of palliative care discussions at this early-stage alongside improvements in integrated care, specifically increasing the involvement of primary care practitioners in referrals to palliative services. CONCLUSION Patients and caregivers need discussions on palliative care associated with F-ILD to be included at the point of diagnosis. This approach may address persisting inadequacies in service provision previously identified over the course of the last decade in the UK, Ireland and European F-ILD patient charters.
Collapse
Affiliation(s)
| | - Lynn Fox
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Maria Love
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Irene Byrne
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Bettina Korn
- Hospice Friendly Hospitals Programme, St. James's Hospital, Dublin, Ireland
| | | | | | - Matt Cullen
- Irish Lung Fibrosis Association, Dublin, Ireland
| | | | | | | | - Gemma O'Dowd
- Irish Lung Fibrosis Association, Dublin, Ireland
| | | | - Anne-Marie Russell
- University of Exeter, Exeter, UK
- Imperial College Health Care Trust, London, UK
| |
Collapse
|
10
|
Khan MM, Galea G, Jung J, Zukowska J, Lauer D, Tuechler N, Halavatyi A, Tischer C, Haberkant P, Stein F, Jung F, Landry JJM, Khan AM, Oorschot V, Becher I, Neumann B, Muley T, Winter H, Duerr J, Mall MA, Grassi A, de la Cueva E, Benes V, Gote-Schniering J, Savitski M, Pepperkok R. Dextromethorphan inhibits collagen and collagen-like cargo secretion to ameliorate lung fibrosis. Sci Transl Med 2024; 16:eadj3087. [PMID: 39693409 DOI: 10.1126/scitranslmed.adj3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/25/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Excessive deposition of fibrillar collagen in the interstitial extracellular matrix (ECM) of human lung tissue causes fibrosis, which can ultimately lead to organ failure. Despite our understanding of the molecular mechanisms underlying the disease, no cure for pulmonary fibrosis has yet been found. We screened a drug library and found that dextromethorphan (DXM), a cough expectorant, reduced the amount of excess fibrillar collagen deposited in the ECM in cultured primary human lung fibroblasts, a bleomycin mouse model, and a cultured human precision-cut lung slice model of lung fibrosis. The reduced extracellular fibrillar collagen upon DXM treatment was due to reversible trafficking inhibition of collagen type I (COL1) in the endoplasmic reticulum (ER) in TANGO1- and HSP47-positive structures. Mass spectrometric analysis showed that DXM promoted hyperhydroxylation of proline and lysine residues on various collagens (COL1, COL3, COL4, COL5, COL7, and COL12) and latent transforming growth factor-β-binding protein (LTBP1 and LTBP2) peptides, coinciding with their secretion block. Additionally, proteome profiling of DXM-treated cells showed increased thermal stability of prolyl-hydroxylases P3H2, P3H3, P3H4, P4HA1, and P4HA2, suggesting a change in their activity. Transcriptome analysis of profibrotic stimulated primary human lung fibroblasts and human ex vivo lung slices after DXM treatment showed activation of an antifibrotic program through regulation of multiple pathways, including the MMP-ADAMTS axis, WNT signaling, and fibroblast-to-myofibroblast differentiation. Together, these data obtained from in vitro, in vivo, and ex vivo models of lung fibrogenesis show that DXM has the potential to limit fibrosis through inhibition of COL1 membrane trafficking in the ER.
Collapse
Affiliation(s)
- Muzamil M Khan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - George Galea
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Juan Jung
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Joanna Zukowska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - David Lauer
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Nadine Tuechler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, 69117 Heidelberg, Germany
- Institute for Computational Biomedicine (ICB), Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Christian Tischer
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Per Haberkant
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ferris Jung
- Genomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Arif M Khan
- Centre for Bioimage Analysis, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Viola Oorschot
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Beate Neumann
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Translational Research Unit/Lung Biobank, Thoraxklinik, University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Translational Research Unit/Lung Biobank, Thoraxklinik, University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin, 13353 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin, 13353 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Alessandro Grassi
- Laboratory Animal Resources, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ernesto de la Cueva
- Laboratory Animal Resources, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Janine Gote-Schniering
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Mikhail Savitski
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
12
|
Dhara TK, Khawas S, Sharma N. Lipid nanoparticles for pulmonary fibrosis: A comprehensive review. Pulm Pharmacol Ther 2024; 87:102319. [PMID: 39216596 DOI: 10.1016/j.pupt.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal progressive and irreversible ailment associated with the proliferation of fibroblast and accumulation of extracellular matrix (ECM) with gradual scarring of lung tissue. Despite several research studies, the treatments available are not efficient enough for the reversal of the disease and are constantly in progress. No drugs other than Pirfenidone and Nintedanib have been approved for the treatment of IPF, necessitating the exploration of novel therapeutic strategies. Recently, lipid-based nanoparticles (LNPs) have drawn more attention because of their potential to enhance the solubility of drugs, cross biological barriers of the lungs and specifically target lung fibrotic tissues, overcoming various challenges in treating IPF. LNPs offer a versatile platform to encapsulate a wide range of drugs, both hydrophilic and lipophilic, improving their bioavailability, allowing sustained release and reducing toxicity, which radiates their significant role in addressing the complexities of IPF. This review summarizes the pathogenesis and conventional treatment of idiopathic pulmonary fibrosis, along with their drawbacks. The review focuses on different types of lipid-based nanoparticles that have been tested in the treatment of idiopathic pulmonary fibrosis, including nanoemulsions, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, niosomes and lipid-polymer hybrid nanoparticles. The review also highlights the future prospects that can offer a potential approach for developing novel strategies to treat idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Tushar Kanti Dhara
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sayak Khawas
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
13
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
14
|
Fenwick K, Kreider M, Kates J. The Development and Clinical Impact of an Innovative Palliative Care Lever Tool for Individuals With Idiopathic Pulmonary Fibrosis: A Quality Improvement Project. Am J Hosp Palliat Care 2024:10499091241304443. [PMID: 39613142 DOI: 10.1177/10499091241304443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Palliative care (PC) is underutilized in the idiopathic pulmonary fibrosis (IPF) patient population, particularly in outpatient settings, despite high symptom burden and complex care needs. There is no clinician consensus for the most effective method of integrating PC into routine medical visits for this patient population, despite acknowledgement of its benefits. The purpose of this quality improvement (QI) project was to pilot an adapted nurse practitioner-led standardized PC lever tool for IPF in an outpatient clinic and evaluate the secondary PC referral rates during the implementation period. DESIGN The lever tool was implemented over a 3-month period. De-identified patient health information from the health system's electronic medical record system was used to compare referrals to PC prior to and during the implementation of the lever tool. RESULTS The established workflow for the nurse practitioner-led implementation of the tool was feasible. There were increased PC referrals and increased PC encounters during the QI period, however the results were not statistically significant. CONCLUSIONS The findings of this QI project add to the limited existing literature evaluating PC referral methods for individuals with IPF in an outpatient setting. Further, the development process and workflow utilized confirms the feasibility of employing the nursing workforce to support the care needs of the IPF patient population.
Collapse
Affiliation(s)
- Kathryn Fenwick
- Penn Interstitial Lung Disease and Sarcoidosis Program, Harron Lung Center, Perelman Center for Advanced Medicine, Penn Medicine, Philadelphia, PA, USA
| | - Maryl Kreider
- Penn Interstitial Lung Disease and Sarcoidosis Program, Harron Lung Center, Perelman Center for Advanced Medicine, Penn Medicine, Philadelphia, PA, USA
| | - Jeannette Kates
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Xia Y, Wang H, Shao M, Liu X, Sun F. MAP3K19 Promotes the Progression of Tuberculosis-Induced Pulmonary Fibrosis Through Activation of the TGF-β/Smad2 Signaling Pathway. Mol Biotechnol 2024; 66:3300-3310. [PMID: 37906388 DOI: 10.1007/s12033-023-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Tuberculosis-induced pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease, which severely affects lung ventilation and air exchange, leading to respiratory distress, impaired lung function, and ultimately death. As previously reported, epithelial-mesenchymal transition (EMT) and fibrosis in type II alveolar epithelial cells (AEC II) are two critical processes that contributes to the initiation and progression of tuberculosis-related PF, but the underlying pathological mechanisms remain unclear. In this study, through performing Real-Time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, and immunofluorescence staining assay, we confirmed that the expression levels of EMT and fibrosis-related biomarkers were significantly increased in lung tissues with tuberculosis-associated PF in vivo and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) strain-infected AEC II cells in vitro. Besides, we noticed that the mitogen-activated protein kinase 19 (MAP3K19) was aberrantly overexpressed in PF models, and silencing of MAP3K19 significantly reduced the expression levels of fibronectin, collagen type I, and alpha-smooth muscle actin to decrease fibrosis, and upregulated E-cadherin and downregulated vimentin to suppress EMT in BCG-treated AEC II cells. Then, we uncovered the underlying mechanisms and found that BCG synergized with MAP3K19 to activate the pro-inflammatory transforming growth factor-beta (TGF-β)/Smad2 signal pathway in AEC II cells, and BCG-induced EMT process and fibrosis in AEC II cells were all abrogated by co-treating cells with TGF-β/Smad2 signal pathway inhibitor LY2109761. In summary, our results uncovered the underlying mechanisms by which the MAP3K19/TGF-β/Smad2 signaling pathway regulated EMT and fibrotic phenotypes of AEC II cells to facilitate the development of tuberculosis-associated PF, and these findings will provide new ideas and biomarkers to ameliorate tuberculosis-induced PF in clinic.
Collapse
Affiliation(s)
- Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China.
| | - Haiyue Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Meihua Shao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Feng Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| |
Collapse
|
16
|
Kong J, Chen L. Gene expression profile analysis of severe influenza-based modulation of idiopathic pulmonary fibrosis. Eur J Med Res 2024; 29:501. [PMID: 39420432 PMCID: PMC11488079 DOI: 10.1186/s40001-024-02107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND It is known severe influenza infections and idiopathic pulmonary fibrosis (IPF) disease might stimulate each other. Till now, no associated mechanism has been reported. METHOD We collected the genetic pattern of expression of severe influenza (GSE111368) and IPF (GSE70866) from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (C-DEGs) were identified from the two datasets, and using this data, we conducted three forms of analyses, functional annotation, protein-protein interaction (PPI) network and module construction, and hub gene identification and co-expression analysis. RESULTS In all, 174 C-DEGs were selected for additional analyses. Based on our functional analysis, these C-DEGs mediated inflammatory response and cell differentiation. Furthermore, using cytoHubba, we identified 15 genes, namely, MELK, HJURP, BIRC5, TPX2, TK1, CDT1, UBE2C, UHRF1, CCNA2, TYMS, CDCA5, CDCA8, RAD54L, CCNB2, and ITGAM, which served as hub genes to possibly contribute to severe influenza patients with IPF disease as comorbidity. The hub gene expressions were further confirmed using two stand-alone datasets (GSE101702 for severe influenza and GSE10667 for IPF). CONCLUSION Herein, we demonstrated the significance of common pathways and critical genes in severe influenza and IPF etiologies. The identified pathways and genes may be employed as possible therapeutic targets for future therapy against severe influenza patients with IPF.
Collapse
Affiliation(s)
- Jianping Kong
- Department of Nephrology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, China
| | - Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, NO 188 Lingshan North Road, Qixia District, Nanjing, 210046, China.
| |
Collapse
|
17
|
Yue B, Xiong D, Chen J, Yang X, Zhao J, Shao J, Wei D, Gao F, Huang M, Chen J. SPP1 induces idiopathic pulmonary fibrosis and NSCLC progression via the PI3K/Akt/mTOR pathway. Respir Res 2024; 25:362. [PMID: 39369217 PMCID: PMC11456247 DOI: 10.1186/s12931-024-02989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND The prevalence of non-small cell lung cancer (NSCLC) is notably elevated in individuals diagnosed with idiopathic pulmonary fibrosis (IPF). Secreted phosphoprotein 1 (SPP1), known for its involvement in diverse physiological processes, including oncogenesis and organ fibrosis, has an ambiguous role at the intersection of IPF and NSCLC. Our study sought to elucidate the function of SPP1 within the pathogenesis of IPF and its subsequent impact on NSCLC progression. METHODS Four GEO datasets was analyzed for common differential genes and TCGA database was used to analyze the prognosis. The immune infiltration was analyzed by TIMER database. SPP1 expression was examined in human lung tissues, the IPF fibroblasts and the BLM-induced mouse lung fibrosis model. Combined with SPP1 gene gain- and loss-of-function, qRT-PCR, Western blot, EdU and CCK-8 experiments were performed to evaluate the effects and mechanisms of SPP1 in IPF progression. Effect of SPP1 on NSCLC was detected by co-cultured IPF fibroblasts and NSCLC cells. RESULTS Through bioinformatics analysis, we observed a significant overexpression of SPP1 in both IPF and NSCLC patient datasets, correlating with enhanced immune infiltration of cancer-associated fibroblasts in NSCLC. Elevated levels of SPP1 were detected in lung tissue samples from IPF patients and bleomycin-induced mouse models, with partial colocalization observed with α-smooth muscle actin. Knockdown of SPP1 inhibits TGF-β1-induced differentiation of fibroblasts to myofibroblasts and the proliferation of IPF fibroblasts. Conversely, SPP1 overexpression promoted IPF fibroblast proliferation via PI3K/Akt/mTOR pathway. Furthermore, IPF fibroblasts promoted NSCLC cell proliferation and activated the PI3K/Akt/mTOR pathway; these effects were attenuated by SPP1 knockdown in IPF fibroblasts. CONCLUSIONS Our findings suggest that SPP1 functions as a molecule promoting both fibrosis and tumorigenesis, positioning it as a prospective therapeutic target for managing the co-occurrence of IPF and NSCLC.
Collapse
Affiliation(s)
- Bingqing Yue
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Dian Xiong
- Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Juan Chen
- Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiucheng Yang
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jin Zhao
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jingbo Shao
- Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Dong Wei
- Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Fei Gao
- Department of Emergency, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Man Huang
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Multiple Organ Failure, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyu Chen
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China.
| |
Collapse
|
18
|
Zhang Q, Zeng M, Zhang B, Wang R, Fan R, Hu Y, Liu J, Zheng X, Feng W. Evening primrose and its compounds of 1-Oxohederagenin and remangilone C ameliorate bleomycin-induced pulmonary fibrosis by regulating β-catenin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155933. [PMID: 39121537 DOI: 10.1016/j.phymed.2024.155933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive and severe respiratory disease for which there is still a lack of satisfactory treatment methods other than lung transplantation. Evening primrose (EP) is widely used in Chinese folk medicinal herbs, especially for the treatment of lung-related diseases. However, the protective effect of evening primrose against PF has yet to be reported. PURPOSE This study explores the pharmacological effect of EP and its possible active components against PF from the perspectives of lung function, histopathological staining, and molecular biology assays. METHODS Establishing a rat pulmonary fibrosis model using bleomycin to detect lung function, pathological changes, and collagen deposition. TGF-β1 was used to establish an in vitro model of PF in BEAS-2B cells, and the active ingredients in evening primrose were screened. Then, the therapeutic effects of 1-Oxohederagenin (C1) and remangilone C (C2) derived from EP were observed in an in vivo model of bleomycin-induced PF, and the differentially expressed genes between the C1 and C2 treatment groups and the model group were screened with transcriptome sequencing. Finally, TGF-β1-induced damage to HFL1 cell was used to explore the specific mechanisms by which C1 and C2 alleviate PF and the involvement of β-catenin signaling. RESULTS Evening primrose extract showed some ameliorative effects on bleomycin-induced PF in rats, manifested as reduced pathological damage and reduced collagen deposition. The chemical components of C1 and C2 potently ameliorated BLM-induced PF in animals and effectively inhibited fibroblast activation by interfering with β-catenin signaling. CONCLUSION Evening primrose extract has certain ameliorative effects on PF. In addation, C1 and C2 might be related with the suppression of fibroblast activation by inhibiting β-catenin signaling.
Collapse
Affiliation(s)
- Qinqin Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China
| | - Mengnan Zeng
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, Henan, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R., Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China
| | - Beibei Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, Henan, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R., Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China
| | - Ru Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China
| | - Ruyi Fan
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China
| | - Yingbo Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China
| | - Juanjuan Liu
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, Henan, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R., Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China.
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, Henan, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R., Henan University of Chinese Medicine, Zhengzhou 450046, Henan, PR China.
| |
Collapse
|
19
|
In 't Zandt R, Mahmutovic Persson I, Tibiletti M, von Wachenfeldt K, Parker GJM, Olsson LE. Contrast enhanced longitudinal changes observed in an experimental bleomycin-induced lung fibrosis rat model by radial DCE-MRI at 9.4T. PLoS One 2024; 19:e0310643. [PMID: 39331604 PMCID: PMC11432896 DOI: 10.1371/journal.pone.0310643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Identifying biomarkers in fibrotic lung disease is key for early anti-fibrotic intervention. Dynamic contrast-enhanced (DCE) MRI offers valuable perfusion-related insights in fibrosis but adapting human MRI methods to rodents poses challenges. Here, we explored these translational challenges for the inflammatory and fibrotic phase of a bleomycin lung injury model in rats. Eleven male Sprague-Dawley rats received a single intratracheal dose of bleomycin (1000iU), four control rats received saline. Imaging was performed on days 7 and 28 post-induction. Ultra-short echo time imaging was used to image the lung for 7 minutes after which Clariscan was injected intravenously. Lung signal changes were measured for an additional 21 minutes. Images were reconstructed with a sliding-window approach, providing a temporal resolution of 10 seconds per image. After imaging on day 28, animals were euthanized, and lungs were collected for histology. Bleomycin-exposed rats initially exhibited reduced body weight, recovering to control levels after 20 days. Lung volume increased in bleomycin animals from 4.4±0.9 ml in controls to 5.5±0.5 ml and 6.5±1.2 ml on day 7 and 28. DCE-MRI showed no change of initial gradient of relative enhancement in the curves between controls and bleomycin animals on day 7 and 28 post-induction. On day 7, the DCE-MRI washout phase in bleomycin animals had higher signals than the saline group and than observed at a later time point. Lung pixels were binned in 7 enhancement classes. On day 28, the size of low relative enhancement bins almost doubled in volume compared to controls and animals on day 7 post-induction. Histology on day 28 suggests that findings could be explained by changes in lung tissue density due to lung volume increase. Adapting this clinical MRI method to rodents at 9.4T remains a challenge. Future studies may benefit from lower field strength MRI combined with higher temporal resolution DCE-MRI.
Collapse
Affiliation(s)
- René In 't Zandt
- Faculty of Medicine, Lund University BioImaging Centre, Lund University, Lund, Sweden
| | - Irma Mahmutovic Persson
- Faculty of Medicine, Lund University BioImaging Centre, Lund University, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Marta Tibiletti
- Bioxydyn Limited, St James Tower, Manchester, United Kingdom
| | | | - Geoff J M Parker
- Bioxydyn Limited, St James Tower, Manchester, United Kingdom
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Lars E Olsson
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
20
|
Huang S, Lin Y, Deng Q, Zhang Y, Peng S, Qiu Y, Huang W, Wang Z, Lai X. Suppression of OGN in lung myofibroblasts attenuates pulmonary fibrosis by inhibiting integrin αv-mediated TGF-β/Smad pathway activation. Matrix Biol 2024; 132:87-97. [PMID: 39019241 DOI: 10.1016/j.matbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) represents a severe and progressive manifestation of idiopathic interstitial pneumonia marked by an uncertain etiology along with an unfavorable prognosis. Osteoglycin (OGN), belonging to the small leucine-rich proteoglycans family, assumes pivotal functions in both tissue formation and damage response. However, the roles and potential mechanisms of OGN in the context of lung fibrosis remain unexplored. METHODS The assessment of OGN expression levels in fibrotic lungs was conducted across various experimental lung fibrosis mouse models. To elucidate the effects of OGN on the differentiation of lung myofibroblasts, both OGN knockdown and OGN overexpression were employed in vitro. The expression of integrin αv, along with its colocalization with lysosomes and latency-associated peptide (LAP), was monitored in OGN-knockdown lung myofibroblasts. Furthermore, the role of OGN in lung fibrosis was investigated through OGN knockdown utilizing adeno-related virus serotype 6 (AAV6)-mediated delivery. RESULTS OGN exhibited upregulation in both lungs and myofibroblasts across diverse lung fibrosis mouse models. And laboratory experiments in vitro demonstrated that OGN knockdown inhibited the TGF-β/Smad signaling pathway in lung myofibroblasts. Conversely, OGN overexpression promoted TGF-β/Smad pathway in these cells. Mechanistic insights revealed that OGN knockdown facilitated lysosome-mediated degradation of integrin αv while inhibiting its binding to latency-associated peptide (LAP). Remarkably, AAV6-targeted OGN knockdown ameliorated the extent of lung fibrosis in experimental mouse models. CONCLUSION Our results indicate that inhibiting OGN signaling could serve as a promising therapeutic way for lung fibrosis.
Collapse
Affiliation(s)
- Shaojie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiwen Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjia Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Senyi Peng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
21
|
Fan J, Chang Y, Cheng S, Liang B, Qu D. Effect of breathing exercises on patients with interstitial lung disease: A systematic review and meta-analysis. Qual Life Res 2024; 33:2335-2347. [PMID: 38907831 DOI: 10.1007/s11136-024-03679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE This study was designed to synthesize the efficacy and safety of breathing exercises in interstitial lung disease (ILD) patients by reviewing the literature and comparing the impact of different control group types, ILD subtypes, breathing exercise action modes or methods, and intervention durations on clinical efficacy. METHODS Systematic searches were conducted across 9 electronic databases, including PubMed, to retrieve English and Chinese studies reporting on ILD patients from inception to February 12, 2024. Study selection and data extraction were independently conducted by two researchers. The quality of the included studies was assessed using the Cochrane risk of bias tool. The data were analysed using RevMan 5.4 and STATA 17.0 software. RESULTS The search identified 25 studies. Compared to the control group, the breathing exercise group exhibited significantly improved lung function (FVC%pred: MD = 3.46, 95%CI = 1.04 to 5.88; DLCO%pred: MD = 3.20, 95% CI = 2.91 to 3.48), dyspnoea (MRC or mMRC scale: MD = - 0.50, 95%CI = - 0.77 to - 0.22), exercise capacity (6MWD: MD = 32.65, 95% CI = 14.77 to 50.53), and HRQoL (SGRQ: MD = - 6.53, 95% CI = - 8.72 to - 4.34) in ILD patients. According to the subgroup analysis, significant improvements consistent with the overall results were observed in the control group with usual treatment. Compared with the control group, breathing exercises had varying degrees of improvement in the mixed diagnostic group, known-cause group, and fibrotic group of ILD patients; breathing exercises alone significantly improved DLCO%pred, MRC (or mMRC), and SGRQ; and the improvement in breathing exercises as part of pulmonary rehabilitation (PR) was more notable. Different durations of breathing exercise could promote the efficacy of different aspects of treatment for ILD patients. CONCLUSIONS Compared with usual treatment, breathing exercises can improve lung function, exercise capacity, and HRQoL in ILD patients, particularly without high requirements for intervention duration. The efficacy of breathing exercises varies for different ILD subtypes, and incorporating breathing exercises as part of PR can be more beneficial for ILD patients. No studies have shown significant risks for ILD patients engaging in breathing exercises.
Collapse
Affiliation(s)
- Jia Fan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Yuyang Chang
- Department of Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Siming Cheng
- Jilin General Aviation Vocational and Technical College, Jilin, 037304, Jilin, China
| | - Bing Liang
- School of Nursing, Jilin University, Changchun, 130021, Jilin, China.
| | - Danhua Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, 130022, Jilin, China.
| |
Collapse
|
22
|
Le NT, Dunleavy MW, Kumar RD, Zhou W, Bhatia SS, El-Hashash AH. Cellular therapies for idiopathic pulmonary fibrosis: current progress and future prospects. AMERICAN JOURNAL OF STEM CELLS 2024; 13:191-211. [PMID: 39308764 PMCID: PMC11411253 DOI: 10.62347/daks5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial, fibrotic lung disease characterized by progressive damage. Lung tissues with IPF are replaced by fibrotic tissues with increased collagen deposition, modified extracellular matrix, all which overall damages the alveoli. These changes eventually impede the gas exchange function of the alveoli, and eventually leads to fatal respiratory failure of the lung. Investigations have been conducted to further understand IPF's pathogenesis, and significant progress in understanding its development has been made. Additionally, two therapeutic treatments, Nintedanib and Pirfenidone, have been approved and are currently used in medical applications. Moreover, cell-based treatments have recently come to the forefront of developing disease therapeutics and are the focus of many current studies. Furthermore, a sizable body of research encompassing basic, pre-clinical, and even clinical trials have all been amassed in recent years and hold a great potential for more widespread applications in patient care. Herein, this article reviews the progress in understanding the pathogenesis and pathophysiology of IPF. Additionally, different cell types used in IPF therapy were reviewed, including alveolar epithelial cells (AECs), circulating endothelial progenitors (EPCs), mixed lung epithelial cells, different types of stem cells, and endogenous lung tissue-specific stem cells. Finally, we discussed the contemporary trials that employ or explore cell-based therapy for IPF.
Collapse
Affiliation(s)
- Nicholas T Le
- Biology Department, Texas A&M University College Station, TX, USA
| | | | - Rebecca D Kumar
- Biology Department, Texas A&M University College Station, TX, USA
| | - William Zhou
- The University of Texas at Austin Austin, TX, USA
| | | | | |
Collapse
|
23
|
Lu H, Liu X, Zhang M, Bera H, Xu W, Jiang H, Zhao X, Wu L, Cun D, Yang M. Pulmonary fibroblast-specific delivery of siRNA exploiting exosomes-based nanoscaffolds for IPF treatment. Asian J Pharm Sci 2024; 19:100929. [PMID: 39258001 PMCID: PMC11385781 DOI: 10.1016/j.ajps.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 09/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive pulmonary disease that leads to interstitial inflammation, lung damage, and eventually life-threatening complications. Among various pathologic factors, Smad4 is a pivotal molecule involved in the progression and exacerbation of IPF. It mediates nuclear transfer of Smad2/Smad3 complexes and initiates the transcription of fibrosis-promoting genes. Thus, the inhibition of Smad4 expression in pulmonary fibroblasts by small interfering RNAs (siRNAs) might be a promising therapeutic strategy for IPF. Herein, we engineered exosome membranes (EM) by cationic lipid (i.e., DOTAP) to load siRNAs against Smad4 (DOTAP/siSmad4@EM), and investigated their specific delivery to pulmonary fibroblasts for treating IPF in a mouse model via pulmonary administration. As reference nanoscaffolds, undecorated DOTAP/siSmad4 complexes (lipoplexes, consisting of cationic lipid DOTAP and siRNAs) and siSmad4-loaded lipid nanoparticles (DOTAP/siSmad4@lipo, consisting of lipoplexes fused with DPPC-Chol liposomes) were also prepared. The results showed that DOTAP/siSmad4@EM exhibited a higher cellular uptake and gene silencing efficacies in mouse pulmonary fibroblasts (viz., MLg2908) as compared to the two reference nanoscaffolds. Furthermore, the outcomes of the in vivo experiments illustrated that DOTAP/siSmad4@EM could significantly down-regulate the Smad4 expression with augmented anti-fibrosis efficiency. Additionally, the DOTAP/siSmad4@EM conferred excellent biocompatibility with low cytokine levels in bronchoalveolar lavage fluid and proinflammatory responses in the pulmonary area. Taken together, the outcomes of our investigation imply that specific inhibition of Smad4 expression in pulmonary fibroblasts by pulmonary administrated DOTAP/siSmad4@EM is a promising therapeutic strategy for IPF, which could safely and effectively deliver siRNA drugs to the targeted site of action.
Collapse
Affiliation(s)
- Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, West Bengal 713212, India
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
24
|
Bartold K, Iskierko Z, Sharma PS, Lin HY, Kutner W. Idiopathic pulmonary fibrosis (IPF): Diagnostic routes using novel biomarkers. Biomed J 2024; 47:100729. [PMID: 38657859 PMCID: PMC11340561 DOI: 10.1016/j.bj.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) diagnosis is still the diagnosis of exclusion. Differentiating from other forms of interstitial lung diseases (ILDs) is essential, given the various therapeutic approaches. The IPF course is now unpredictable for individual patients, although some genetic factors and several biomarkers have already been associated with various IPF prognoses. Since its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. The present review critically examines the recent literature on molecular biomarkers potentially useful in IPF diagnostics. The examined biomarkers are grouped into breath and sputum biomarkers, serologically assessed extracellular matrix neoepitope markers, and oxidative stress biomarkers in lung tissue. Fibroblasts and complete blood count have also gained recent interest in that respect. Although several biomarker candidates have been profiled, there has yet to be a single biomarker that proved specific to the IPF disease. Nevertheless, various IPF biomarkers have been used in preclinical and clinical trials to verify their predictive and monitoring potential.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland.
| |
Collapse
|
25
|
Ruan Y, Ren G, Wang M, Lv W, Shimizu K, Zhang C. The dual role of 20(S)-protopanaxadiol in alleviating pulmonary fibrosis through the gut-lung axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155699. [PMID: 38733907 DOI: 10.1016/j.phymed.2024.155699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pulmonary Fibrosis (PF) is a progressive lung disease characterized by the diffuse interstitial tissue, leading to severe breathing difficulties. The existing treatment methods are primarily aimed at slowing the progression of the disease, underscoring the urgent need to discover new drug interventions targeting novel sites. The "gut-lung axis" represents a complex bidirectional communication system where the gut microbiota not only influences lung immunity but also responds to lung-derived signals. Recent advances have uncovered that alterations in gut microbiota composition can significantly impact respiratory diseases, offering new insights into their pathogenesis and potential therapeutic approaches. METHODS This study is based on the fundamental concepts of the lung-gut axis and our previous research, further exploring the potential mechanisms of 20(S)-Protopanaxadiol (PPD) in ginseng against PF. We utilized a bleomycin-induced mouse model of PF and employed metabolomics and 16S rRNA sequencing to investigate the pathways through which PPD regulates the pulmonary fibrosis process via the gut-lung axis. Finally, we employed strategies such as antibiotic-induced microbiota disruption and fecal microbiota transplantation (FMT) to provide a comprehensive perspective on how PPD regulates pulmonary fibrosis through gut microbiota. RESULTS The results of the bleomycin (BLM) mouse model of PF proved that PPD can directly act on the glycolysis- related metabolic reprogramming process in lung and the AMPK/STING pathway to improve PF. Combined the analysis of gut microbiota and related metabolites, we found that PPD can regulate the process of PF through the gut-lung axis target points G6PD and SPHK1. FMT and antibiotic-induced microbiota disruption further confirmed intermediate effect of gut microbiota in PF process and the treatment of PPD. Our study suggests that PPD can alleviate the process of pulmonary fibrosis either by directly acting on the lungs or by regulating the gut microbiota. CONCLUSION This study positions PPD as a vanguard in the therapeutic landscape for pulmonary fibrosis, offering a dual mechanism of action that encompasses both modulation of gut microbiota and direct intervention at molecular targets. These insights highlight the immense therapeutic potential of harnessing the gut-lung axis.
Collapse
Affiliation(s)
- Yang Ruan
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China; Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Guoqing Ren
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China
| | - Mingchun Wang
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China
| | - Weichao Lv
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China
| | - Kuniyoshi Shimizu
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - Chaofeng Zhang
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China.
| |
Collapse
|
26
|
Wang Y, Chen S, Chen S, Jiang J. Unveiling the role of copper metabolism and STEAP2 in idiopathic pulmonary fibrosis molecular landscape. J Cell Mol Med 2024; 28:e18414. [PMID: 38872435 PMCID: PMC11176596 DOI: 10.1111/jcmm.18414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating interstitial lung disease characterized by progressive fibrosis and poor prognosis. Despite advancements in treatment, the pathophysiological mechanisms of IPF remain elusive. Herein, we conducted an integrated bioinformatics analysis combining clinical data and carried out experimental validations to unveil the intricate molecular mechanism of IPF. Leveraging three IPF datasets, we identified 817 upregulated and 560 downregulated differentially expressed genes (DEGs). Of these, 14 DEGs associated with copper metabolism were identified, shedding light on the potential involvement of disrupted copper metabolism in IPF progression. Immune infiltration analysis revealed dysregulated immune cell infiltration in IPF, with a notable correlation between copper metabolism-related genes and immune cells. Weighted gene co-expression network analysis (WGCNA) identified a central module correlated with IPF-associated genes, among which STEAP2 emerged as a key hub gene. Subsequent in vivo and in vitro studies confirmed the upregulation of STEAP2 in IPF model. Knockdown of STEAP2 using siRNA alleviated fibrosis in vitro, suggesting potential pathway related to copper metabolism in the pathophysiological progression of IPF. Our study established a novel link between immune cell infiltration and dysregulated copper metabolism. The revelation of intracellular copper overload and upregulated STEAP2 unravelled a potential therapeutic option. These findings offer valuable insights for future research and therapeutic interventions targeting STEAP2 and associated pathways in IPF.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shuyang Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shujing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jinjun Jiang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Respiratory Research InstituteShanghaiChina
| |
Collapse
|
27
|
Zhu M, Yi Y, Jiang K, Liang Y, Li L, Zhang F, Zheng X, Yin H. Single-cell combined with transcriptome sequencing to explore the molecular mechanism of cell communication in idiopathic pulmonary fibrosis. J Cell Mol Med 2024; 28:e18499. [PMID: 38887981 PMCID: PMC11184282 DOI: 10.1111/jcmm.18499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common, chronic, and progressive lung disease that severely impacts human health and survival. However, the intricate molecular underpinnings of IPF remains elusive. This study aims to delve into the nuanced molecular interplay of cellular interactions in IPF, thereby laying the groundwork for innovative therapeutic approaches in the clinical field of IPF. Sophisticated bioinformatics methods were employed to identify crucial biomarkers essential for the progression of IPF. The GSE122960 single-cell dataset was obtained from the Gene Expression Omnibus (GEO) compendium, and intercellular communication potentialities were scrutinized via CellChat. The random survival forest paradigm was established using the GSE70866 dataset. Quintessential genes were selected through Kaplan-Meier (KM) curves, while immune infiltration examinations, functional enrichment critiques and nomogram paradigms were inaugurated. Analysis of intercellular communication revealed an intimate potential connections between macrophages and various cell types, pinpointing five cardinal genes influencing the trajectory and prognosis of IPF. The nomogram paradigm, sculpted from these seminal genes, exhibits superior predictive prowess. Our research meticulously identified five critical genes, confirming their intimate association with the prognosis, immune infiltration and transcriptional governance of IPF. Interestingly, we discerned these genes' engagement with the EPITHELIAL_MESENCHYMAL_TRANSITION signalling pathway, which may enhance our understanding of the molecular complexity of IPF.
Collapse
Affiliation(s)
- Minggao Zhu
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yuhu Yi
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Kui Jiang
- Department of NephrologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yongzhi Liang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Lijun Li
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Feng Zhang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Xinglong Zheng
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Haiyan Yin
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
28
|
Wu W, Jia H, Chen S, Ma X, Zhou S, Qiu L, Wu X, Li P, Chu H, Zhang G. Inhibition of OGG1 ameliorates pulmonary fibrosis via preventing M2 macrophage polarization and activating PINK1-mediated mitophagy. Mol Med 2024; 30:72. [PMID: 38822247 PMCID: PMC11143656 DOI: 10.1186/s10020-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hongxia Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xinran Ma
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Lingxiao Qiu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Xinhui Wu
- Department of Traditional Chinese Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, 450064, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Heying Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
29
|
Jernås A, Fagevik Olsén M, Holmqvist E, Danielsbacka J. Experiences of living with idiopathic pulmonary fibrosis in relation to physical activity - "How the hills became steeper and steeper": a qualitative interview study. BMC Pulm Med 2024; 24:255. [PMID: 38783207 PMCID: PMC11118104 DOI: 10.1186/s12890-024-03064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive disease presenting with symptoms like dyspnoea, dry cough, and fatigue, which affect physical function and quality of life. No earlier qualitative studies have investigated physical activity in IPF. This study aims to explore experiences of living with IPF in relation to physical activity. MATERIALS AND METHODS Qualitative interviews were conducted with 14 participants living with IPF. The participants were 77 years old (range: 56-86) and diagnosed with IPF between 2 and 9 years ago. The analysis was performed by qualitative content analysis according to Graneheim and Lundman. RESULTS The results indicated that life and one's ability to be physically active is affected by IPF. Despite this, it seems possible to navigate past obstacles, which was illustrated by an overall theme: "My life is constrained, but I am hanging on". Two major categories cover topics of IPF being a life changing diagnosis with changes in self-image and changed future plans regarding physical activity, as well as life. Physical activity was perceived to be challenging, yet in many ways used as a strategy, developed to manage life. CONCLUSIONS IPF affects physical activity as well as life, from onset onwards. By developing strategies for facilitating physical activity as well as identifying barriers, it seems possible to maintain an active life despite the disease. The healthcare system needs to create support systems that meet different needs during different phases of the disease. TRIAL REGISTRATION "FoU in Sweden" Research and Development in Sweden (id: 227081).
Collapse
Affiliation(s)
- Anna Jernås
- Department of Physical Therapy, Sahlgrenska University Hospital, Vita stråket 13, Gothenburg, 413 45, Sweden
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 430, Gothenburg, 405 30, Sweden
| | - Monika Fagevik Olsén
- Department of Physical Therapy, Sahlgrenska University Hospital, Vita stråket 13, Gothenburg, 413 45, Sweden.
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 430, Gothenburg, 405 30, Sweden.
| | - Emma Holmqvist
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 430, Gothenburg, 405 30, Sweden
| | - Jenny Danielsbacka
- Department of Physical Therapy, Sahlgrenska University Hospital, Vita stråket 13, Gothenburg, 413 45, Sweden
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 430, Gothenburg, 405 30, Sweden
| |
Collapse
|
30
|
Arvind M, Pattnaik B, Gheware A, Prakash YS, Srivastava M, Agrawal A, Bhatraju NK. Plausible role of INPP4A dysregulation in idiopathic pulmonary fibrosis. Physiol Rep 2024; 12:e16032. [PMID: 38720166 PMCID: PMC11078778 DOI: 10.14814/phy2.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4-phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti-INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed.
Collapse
Affiliation(s)
- Meghana Arvind
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Bijay Pattnaik
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Department of Pulmonary Critical Care and Sleep MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Atish Gheware
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Division of Pulmonary and Critical Care Medicine, Department of MedicineWashington University in St. LouisSt. LouisMissouriUSA
| | - Y. S. Prakash
- Department of Anaesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Mousami Srivastava
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Symbiosis Statistical Institute (SSI)Symbiosis International University (SIU)PuneMaharashtraIndia
| | - Anurag Agrawal
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Trivedi School of BiosciencesAshoka UniversitySonipatHaryanaIndia
| | - Naveen Kumar Bhatraju
- Centre of Excellence for Translational Research In Asthma and Lung diseases (TRIAL)CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Trivedi School of BiosciencesAshoka UniversitySonipatHaryanaIndia
| |
Collapse
|
31
|
Cai L, Wang J, Yi X, Yu S, Wang C, Zhang L, Zhang X, Cheng L, Ruan W, Dong F, Su P, Shi Y. Nintedanib-loaded exosomes from adipose-derived stem cells inhibit pulmonary fibrosis induced by bleomycin. Pediatr Res 2024; 95:1543-1552. [PMID: 38245633 DOI: 10.1038/s41390-024-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disorder with a high mortality rate; its therapy remains limited due to the inefficiency of drug delivery. In this study, the system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells (ADSCs-Exo, Exo) was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. METHODS The bleomycin (BLM)-induced PF model was constructed in vivo and in vitro. The effects of Exo-Nin on BLM-induced PF and its regulatory mechanism were examined using RT-qPCR, Western blotting, immunofluorescence, and H&E staining. RESULTS We found Exo-Nin significantly improved BLM-induced PF in vivo and in vitro compared to Nin and Exo groups alone. Mechanistically, Exo-Nin alleviated fibrogenesis by suppressing endothelial-mesenchymal transition through the down-regulation of the TGF-β/Smad pathway and the attenuation of oxidative stress in vivo and in vitro. CONCLUSIONS Utilizing adipose stem cell-derived exosomes as carriers for Nin exhibited a notable enhancement in therapeutic efficacy. This improvement can be attributed to the regenerative properties of exosomes, indicating promising prospects for adipose-derived exosomes in cell-free therapies for PF. IMPACT The system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. The use of adipose stem cell-derived exosomes as the carrier of Nin may increase the therapeutic effect of Nin, which can be due to the regenerative properties of the exosomes and indicate promising prospects for adipose-derived exosomes in cell-free therapies for PF.
Collapse
Affiliation(s)
- Liyun Cai
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Jie Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xue Yi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Shuwei Yu
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Chong Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Liyuan Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xiaoling Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Lixian Cheng
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Wenwen Ruan
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Feige Dong
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ping Su
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ying Shi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China.
| |
Collapse
|
32
|
Liu J, Wang F, Hong Y, Luo F. Bibliometric analysis of the pirfenidone and nintedanib in interstitial lung diseases. Heliyon 2024; 10:e29266. [PMID: 38655311 PMCID: PMC11036012 DOI: 10.1016/j.heliyon.2024.e29266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Background At the beginning of 21st century, reclassification of fibrosing interstitial lung diseases (ILD) scored academic concerning, and then propelled development. Decade before, pifenidone and nintedanib were approved for idiopathic pulmonary fibrosis, but no more drugs are yet available. To evaluate the development traits of pirfenidone and nintedanib in fibrosing ILD, including the influential country, institution, authors, keywords, and the major problems or the priorities of the field emerge and evolve, bibliometric analysis was used to summarize and draw scientific knowledge maps. Methods We confined the words to "pirfenidone", "nintedanib", "pulmonary fibrosis", and "lung disease, interstitial". Publications were retrieved from the Web of Science Core Collection on February 24, 2024 with the search strategies. Citespace and VOSviewer were adopted for bibliometric analysis. Results For the knowledge map of pirfenidone, a total of 4359 authors from 279 institutions in 58 countries/regions contributed to 538 studies. The United States and Italy are way ahead. Genentech Inc and the University of Turin are the institutions with the strongest influence. AM J RESP CRIT CARE is the maximized influential periodical. Raghu G was the most frequently co-cited scholar. keywords cluster demonstrated that vital capacity, safety, outcome, effectiveness, acute exacerbation, pathway, cell, collagen were the hotspots. The burst timeline of hotspots and references revealed academic transitions of pirfenidone-related studies. About the knowledge map of nintedanib, 3297 authors from 238 institutions in 47 countries/regions published 374 studies. Japan, the United States, and Italy are the most productive countries. Boehringer Ingelheim is the overriding productive institution. New ENGL J MED have important roles in reporting milestones of nintedanib. Richeldi L carried numerous capital publications to support the anti-fibrotic effect of nintedanib. From the network of co-occurrence keywords, idiopathic pulmonary fibrosis, efficacy, and safety were the hotspots. Nintedanib for systemic sclerosis-related ILD and progressive pulmonary fibrosis is the hotspot with sharp evolution recently. Conclusions We summarized and showed developmental alterations of pirfenidone and nintedanib in fibrosing ILD through bibliographic index-based analysis. Our findings showed just dozen years sharp development period of pirfenidone and nintedanib in ILD, and identifies potential partners for interested researchers. The burst of hotspots demonstrated the evolvement of research priorities and major problems, and we observed the transition of keywords from experimental terms like mouse, bleomycin, cell, pathway, collagen, gene expression, to clinical terms including efficacy, safety, survival, acute exacerbation, and progressive pulmonary fibrosis. In the future, exploration about disparity models of drug administration, differences between early and later initiate anti-fibrotic therapy, both short-term and long-term efficacy of pirfenidone and nintedanib in fibrosing ILD, specifically in connective disease associate ILD would be emphatically concerned by pulmonologists.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yiwen Hong
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
López-Martínez A, Santos-Álvarez JC, Velázquez-Enríquez JM, Ramírez-Hernández AA, Vásquez-Garzón VR, Baltierrez-Hoyos R. lncRNA-mRNA Co-Expression and Regulation Analysis in Lung Fibroblasts from Idiopathic Pulmonary Fibrosis. Noncoding RNA 2024; 10:26. [PMID: 38668384 PMCID: PMC11054336 DOI: 10.3390/ncrna10020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts. The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1, AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional characterization revealed involvement in TGF-β, PI3K, FOXO, and MAPK signaling pathways. Additionally, this study identified regulatory interactions between sequences of hub mRNAs and lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989, and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways, non-small cell lung cancer, and AMPK signaling pathways.
Collapse
Affiliation(s)
- Armando López-Martínez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico
| | - Rafael Baltierrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico
| |
Collapse
|
34
|
Chu L, Zhuo J, Huang H, Chen W, Zhong W, Zhang J, Meng X, Zou F, Cai S, Zou M, Dong H. Tetrandrine alleviates pulmonary fibrosis by inhibiting alveolar epithelial cell senescence through PINK1/Parkin-mediated mitophagy. Eur J Pharmacol 2024; 969:176459. [PMID: 38438063 DOI: 10.1016/j.ejphar.2024.176459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the β-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.
Collapse
Affiliation(s)
- Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhong Zhuo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshan Zhong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Lee YJ, Kim M, Kim HS, Kang JL. Administration of Gas6 attenuates lung fibrosis via inhibition of the epithelial-mesenchymal transition and fibroblast activation. Cell Biol Toxicol 2024; 40:20. [PMID: 38578518 PMCID: PMC10997547 DOI: 10.1007/s10565-024-09858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Minsuk Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
| |
Collapse
|
36
|
Cooley JC, Redente EF. Getting the Timing Right: Controlling BCL-2 Inhibition as an Antifibrotic Therapy. Am J Respir Cell Mol Biol 2024; 70:231-232. [PMID: 38259233 PMCID: PMC11478124 DOI: 10.1165/rcmb.2023-0436ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024] Open
Affiliation(s)
- Joseph C Cooley
- Department of Medicine National Jewish Health Denver, Colorado
- Department of Medicine University of Colorado School of Medicine Aurora, Colorado
| | - Elizabeth F Redente
- Department of Medicine University of Colorado School of Medicine Aurora, Colorado
- Department of Pediatrics National Jewish Health Denver, Colorado
| |
Collapse
|
37
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
38
|
Zhu M, Zhao L, Zhang X, Zhao R. Astragaloside IV restrains pulmonary fibrosis progression via the circ_0008898/miR-211-5p/HMGB1 axis. Chem Biol Drug Des 2024; 103:e14508. [PMID: 38514749 DOI: 10.1111/cbdd.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Pulmonary Fibrosis (PF) is a fatal lung disease with complicated pathogenesis. Astragaloside IV (ASV) has been discovered to alleviate PF progression, and the potential molecular mechanism of ASV in the development of PF need to be further clarified. Bleomycin (BLM) was used to construct PF in vivo model. Expression levels of circ_0008898, miR-211-5p, high mobility group protein B1 (HMGB1), alpha smooth muscle Actin (α-SMA) and Collagen I were examined by Quantitative real time polymerase chain reaction (qRT-PCR) and western blot. Cell survival was analyzed using Cell Counting Kit-8 (CCK-8) and EdU (5-ethynyl-2'-deoxyuridine) assay. The invasion abilities were investigated by transwell assay. The levels of inflammatory factors were tested via using Enzyme-linked immunosorbent assay (ELISA). The relationship between circ_0008898 or HMGB1 and miR-211-5p was identified by dual-luciferase reporter assay. The results showed that ASV attenuated BLM-induced pulmonary fibrosis in vivo. In vitro study, ASV alleviated TGF-β1-induced fibrogenesis in HFL1 cells. Circ_0008898 was increased in TGF-β1-induced HFL1 cells. ASV-induced impacts were abrogated by circ_0008898 overexpression in TGF-β1-induced HFL1 cells. Mechanistically, circ_0008898 competitively bound to miR-211-5p to increase the expression of its target HMGB1. MiR-211-5p deficiency rescued ASV-mediated effects in TGF-β1-induced HFL1 cells. In addition, HMGB1 overexpression partially overturned circ_0008898 interference-induced impacts in HFL1 cells upon TGF-β1 treatment. In conclusion, our work manifested that ASV hindered PF process by mediating the circ_0008898/miR-211-5p/HMGB1 network.
Collapse
Affiliation(s)
- Min Zhu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Limin Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Xueying Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| | - Ruijuan Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou City, China
| |
Collapse
|
39
|
Yao L, Xu Z, Davies DE, Jones MG, Wang Y. Dysregulated bidirectional epithelial-mesenchymal crosstalk: a core determinant of lung fibrosis progression. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:27-33. [PMID: 38558961 PMCID: PMC7615773 DOI: 10.1016/j.pccm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive lung fibrosis is characterised by dysregulated extracellular matrix (ECM) homeostasis. Understanding of disease pathogenesis remains limited and has prevented the development of effective treatments. While an abnormal wound healing response is strongly implicated in lung fibrosis initiation, factors that determine why fibrosis progresses rather than regular tissue repair occurs are not fully explained. Within human lung fibrosis there is evidence of altered epithelial and mesenchymal lung populations as well as cells undergoing epithelial-mesenchymal transition (EMT), a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties. This review will focus upon the role of EMT and dysregulated epithelial-mesenchymal crosstalk in progressive lung fibrosis.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Zijian Xu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
40
|
Guan Y, Zhang J, Cai X, Cai Y, Song Z, Huang Y, Qian W, Pan Z, Zhang X. Astragaloside IV inhibits epithelial-mesenchymal transition and pulmonary fibrosis via lncRNA-ATB/miR-200c/ZEB1 signaling pathway. Gene 2024; 897:148040. [PMID: 38065426 DOI: 10.1016/j.gene.2023.148040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease involving multiple factors and genes. Astragaloside IV (ASV) is one of the main bioactive ingredients extracted from the root of Astragalus membranaceus, which plays an important role in anti-inflammatory, antioxidant and improve cardiopulmonary function. Epithelial-mesenchymal transition (EMT) is a key driver of the process of pulmonary fibrosis, and Zinc finger E-box-binding homeobox 1 (ZEB1) can promote pulmonary fibrosis in an EMT-dependent manner. Here, we found that ASV effectively inhibited the ZEB1 and EMT in both bleomycin (BLM)-induced rat pulmonary fibrosis and TGF-β1-treated A549 cells. To further elucidate the molecular mechanisms underlying effects of ASV in IPF, we explored the truth using bioinformatics, plasmid construction, immunofluorescence staining, western blotting and other experiments. Dual luciferase reporter assay and bioinformatics proved that miR-200c not only acts as an upstream regulatory miRNA of ZEB1 but also has binding sites for the lncRNA-ATB. In A549 cell-based EMT models, ASV reduced the expression of lncRNA-ATB and upregulated miR-200c. Furthermore, overexpression of lncRNA-ATB and silencing of miR-200c reversed the down-regulation of ZEB1 and the inhibition of EMT processes by ASV. In addition, the intervention of ASV prevented lncRNA-ATB as a ceRNA from regulating the expression of ZEB1 through sponging miR-200c. Taken together, the results showed that ASV inhibited the EMT process through the lncRNA-ATB/miR-200c/ZEB1 signaling pathway, which provides a novel approach to the treatment of IPF.
Collapse
Affiliation(s)
- Yanyun Guan
- Department of Poisoning and Occupational Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xinrui Cai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yanan Cai
- Department of General Surgery, Tai'an 88 Hospital, Tai'an 271000, China
| | - Ziqiong Song
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuan Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| | - Zhifeng Pan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| | - Xingguo Zhang
- Department of Poisoning and Occupational Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
41
|
Kobayashi H, Tachi A, Hagita S. Time course of histopathology of bleomycin-induced pulmonary fibrosis using an intratracheal sprayer in mice. Exp Anim 2024; 73:41-49. [PMID: 37518267 PMCID: PMC10877150 DOI: 10.1538/expanim.23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a poor prognosis disease that affects approximately 5 million people worldwide, and the detailed mechanisms underlying the pathogenesis of IPF remain unclear. Bleomycin-induced pulmonary fibrosis has been widely used as a representative animal model of IPF that induces fibrosis in lung tissue. The lungs of rodent consist of five lobes and each bronchus enters each lobe of the lung at a different bifurcation angle, path length, and diameter. The method of administration of bleomycin is considered as important thing to establish appropriate animal models. We conducted a time-dependent histopathological study to examine how pulmonary fibrosis develops in each lung lobe when bleomycin was intratracheally sprayed in ICR mice. And we then explored the suitable points for evaluation of anti-fibrotic agents in this model. As a result, we found that homogeneous fibrosis was induced in the 5 lobes of the lungs following initial inflammation. The expression of transforming growth factor (TGF)-β1 and phospho-Smad2 (pSmad2) was observed from Day 1, and their positivity increased until Day 21. In conclusion, we have observed a detailed time course of histological changes in bleomycin-induced pulmonary fibrosis in ICR mice using the aerosolization technique. We found that our protocol can induce a highly homogeneous lesion in the lung and that the most suitable time point to assess anti-fibrotic agents is 14 days after treatment in this model.
Collapse
Affiliation(s)
- Hideyuki Kobayashi
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Ayami Tachi
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Sumihiko Hagita
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| |
Collapse
|
42
|
Li Y, Chen R, Wu J, Xue X, Liu T, Peng G, Wu R, Wang L, Jia K, Cai Y, Li X. Salvianolic acid B protects against pulmonary fibrosis by attenuating stimulating protein 1-mediated macrophage and alveolar type 2 cell senescence. Phytother Res 2024; 38:620-635. [PMID: 37953063 DOI: 10.1002/ptr.8070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), as the most common idiopathic interstitial pneumonia, is caused by a complex interaction of pathological mechanisms. Interestingly, IPF frequently occurs in the middle-aged and elderly populations but rarely affects young people. Salvianolic acid B (SAB) exerts antioxidant, antiinflammatory, and antifibrotic bioactivities and is considered a promising drug for pulmonary disease treatment. However, the pharmacological effects and mechanisms of SAB on cellular senescence of lung cells and IPF development remain unclear. We used bleomycin (BLM)-induced pulmonary fibrosis mice and different lung cells to investigate the antisenescence impact of SAB and explain its underlying mechanism by network pharmacology and the Human Protein Atlas database. Here, we found that SAB significantly prevented pulmonary fibrosis and cellular senescence in mice, and reversed the senescence trend and typical senescence-associated secretory phenotype (SASP) factors released from lung macrophages and alveolar type II (AT2) epithelial cells, which further reduced lung fibroblasts activation. Additionally, SAB alleviated the epithelial-mesenchymal transition process of AT2 cells induced by transforming growth factor beta. By predicting potential targets of SAB that were then confirmed by chromatin immunoprecipitation-qPCR technology, we determined that SAB directly hampered the binding of transcription factor stimulating protein 1 to the promoters of SASPs (P21 and P16), thus halting lung cell senescence. We demonstrated that SAB reduced BLM-induced AT2 and macrophage senescence, and the subsequent release of SASP factors that activated lung fibroblasts, thereby dual-relieving IPF. This study provides a new scientific foundation and perspective for pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ranyun Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiegang Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guiying Peng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
44
|
Chen H, Liu C, Zhan Y, Wang Y, Hu Q, Zeng Z. Alpinetin ameliorates bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation. Biomed Pharmacother 2024; 171:116101. [PMID: 38228032 DOI: 10.1016/j.biopha.2023.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial lung disease with a poor prognosis. Alpinetin (ALP), derived from Alpinia katsumadai Hayata, has shown potential as a therapeutic measure of various diseases. However, the utilization of ALP in managing pulmonary fibrosis and its underlying mechanisms are still not fully understood. METHODS A well-established mouse model of pulmonary fibrosis induced by bleomycin (BLM) was used in this study. The antifibrotic effects of ALP on histopathologic manifestations and expression levels of fibrotic markers were examined. Subsequently, the impact of ALP on fibroblast differentiation, proliferation, apoptosis, and associated signaling pathways was investigated to elucidate the underlying mechanisms. RESULTS In the present study, we observed that ALP effectively mitigated BLM-induced pulmonary fibrosis in mice, as evidenced by histopathological manifestations and the expression levels of fibrotic markers. Furthermore, the in vitro experiments demonstrated that ALP treatment attenuated the ability of fibroblasts to differentiate into myofibroblasts. Mechanically, our findings provided evidence that ALP suppressed fibroblast-to-myofibroblast differentiation by repressing TGF-β/ALK5/Smad signaling pathway. ALP was found to possess the capability of inhibiting fibroblast proliferation and promoting apoptosis of fibroblasts induced by TGF-β. CONCLUSION In general, ALP may exert therapeutic effects on pulmonary fibrosis by modulating the differentiation, proliferation, and apoptosis of fibroblasts. Although its safety has been demonstrated in mice, further studies are required to investigate the efficacy of ALP in treatment of patients with IPF.
Collapse
Affiliation(s)
- Huilong Chen
- Department and Institute of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongjie Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilin Zeng
- Department and Institute of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
45
|
Tan J, Xue Q, Hu X, Yang J. Inhibitor of PD-1/PD-L1: a new approach may be beneficial for the treatment of idiopathic pulmonary fibrosis. J Transl Med 2024; 22:95. [PMID: 38263193 PMCID: PMC10804569 DOI: 10.1186/s12967-024-04884-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a globally prevalent, progressive disease with limited treatment options and poor prognosis. Because of its irreversible disease progression, IPF affects the quality and length of life of patients and imposes a significant burden on their families and social healthcare services. The use of the antifibrotic drugs pirfenidone and nintedanib can slow the progression of the disease to some extent, but it does not have a reverse effect on the prognosis. The option of lung transplantion is also limited owing to contraindications to transplantation, possible complications after transplantation, and the risk of death. Therefore, the discovery of new, effective treatment methods is an urgent need. Over recent years, various studies have been undertaken to investigate the relationship between interstitial pneumonia and lung cancer, suggesting that some immune checkpoints in IPF are similar to those in tumors. Immune checkpoints are a class of immunosuppressive molecules that are essential for maintaining autoimmune tolerance and regulating the duration and magnitude of immune responses in peripheral tissues. They can prevent normal tissues from being damaged and destroyed by the immune response. While current studies have focused on PD-1/PD-L1 and CTLA-4, PD-1/PD-L1 may be the only effective immune checkpoint IPF treatment. This review discusses the application of PD-1/PD-L1 checkpoint in IPF, with the aim of finding a new direction for IPF treatment.
Collapse
Affiliation(s)
- Jie Tan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Xiao Hu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
46
|
Hua Q, Ren L. The SIRT1/Nrf2 signaling pathway mediates the anti-pulmonary fibrosis effect of liquiritigenin. Chin Med 2024; 19:12. [PMID: 38238857 PMCID: PMC10795230 DOI: 10.1186/s13020-024-00886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND At present, the treatment options available for idiopathic pulmonary fibrosis are both limited and often come with severe side effects, emphasizing the pressing requirement for innovative therapeutic alternatives. Myofibroblasts, which hold a central role in pulmonary fibrosis, have a close association with the Smad signaling pathway induced by transforming growth factor-β1 (TGF-β1) and the transformation of myofibroblasts driven by oxidative stress. Liquiritigenin, an active compound extracted from the traditional Chinese herb licorice, boasts a wide array of biomedical properties, such as anti-fibrosis and anti-oxidation. The primary objective of this study was to examine the impact of liquiritigenin on bleomycin-induced pulmonary fibrosis in mice and the underlying mechanisms. METHODS The anti-pulmonary fibrosis and anti-oxidant effects of liquiritigenin in vivo were tested by HE staining, Masson staining, DHE staining and bio-chemical methods. In vitro, primary mouse lung fibroblasts were treated with TGF-β1 with or without liquiritigenin, the effects of liquiritigenin in inhibiting differentiation of myofibroblasts and facilitating the translocation of Nrf2 were valued using Quantitative real-time polymerase chain reaction (Q-PCR), western blotting and immunofluorescence. Nrf2 siRNA and SIRT1 siRNA were used to investigate the mechanism underlies liquiritigenin's effect in inhibiting myofibroblast differentiation. RESULTS Liquiritigenin displayed a dose-dependent reduction effect in bleomycin-induced fibrosis. In laboratory experiments, it was evident that liquiritigenin possessed the ability to enhance and activate sirtuin1 (SIRT1), thereby facilitating the nuclear translocation of Nrf2 and mitigating the oxidative stress-induced differentiation of primary mouse myofibroblasts. Moreover, our investigation unveiled that SIRT1 not only regulated myofibroblast differentiation via Nrf2-mediated antioxidant responses against oxidative stress but also revealed liquiritigenin's activation of SIRT1, enabling direct binding to Smad. This led to decreased phosphorylation of the Smad complex, constrained nuclear translocation, and suppressed acetylation of the Smad complex, ultimately curtailing the transcription of fibrotic factors. Validation in live subjects provided substantial evidence for the anti-fibrotic efficacy of liquiritigenin through the SIRT1/Nrf2 signaling pathway. CONCLUSIONS Our findings imply that targeting myofibroblast differentiation via the SIRT1/Nrf2 signaling pathway may constitute a pivotal strategy for liquiritigenin-based therapy against pulmonary fibrosis.
Collapse
Affiliation(s)
- Qingzhong Hua
- The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, 518101, Guangdong, China
| | - Lu Ren
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
47
|
Wang Q, Shang Y, Li Y, Li X, Wang X, He Y, Ma J, Ning S, Chen H. Identification of cuproptosis-related diagnostic biomarkers in idiopathic pulmonary fibrosis. Medicine (Baltimore) 2024; 103:e36801. [PMID: 38215148 PMCID: PMC10783416 DOI: 10.1097/md.0000000000036801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with clinical and pathological heterogeneity. Recent studies have identified cuproptosis as a novel cell death mechanism. However, the role of cuproptosis-related genes in the pathogenesis of IPF is still unclear. Two IPF datasets of the Gene Expression Omnibus database were studied. Mann-Whitney U test, correlation analysis, functional enrichment analyses, single-sample gene set enrichment analysis, CIBERSORT, unsupervised clustering, weighted gene co-expression network analysis, and receiver operating characteristic curve analysis were used to conduct our research. The dysregulated cuproptosis-related genes and immune responses were identified between IPF patients and controls. Two cuproptosis-related molecular clusters were established in IPF, the high immune score group (C1) and the low immune score group (C2). Significant heterogeneity in immunity between clusters was revealed by functional analyses results. The module genes with the strongest correlation to the 2 clusters were identified by weighted gene co-expression network analysis results. Seven hub genes were found using the Cytoscape software. Ultimately, 2 validated diagnostic biomarkers of IPF, CDKN2A and NEDD4, were obtained. Subsequently, the results were validated in GSE47460. Our investigation illustrates that CDKN2A and NEDD4 may be valid biomarkers that were useful for IPF diagnosis and copper-related clustering.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Shang
- Department of Respiration, The First Hospital of Harbin, Harbin, China
| | - Yupeng Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xincheng Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaowu He
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Li S, Hu G, Kuang L, Zhou T, Jiang H, Pang F, Li J, Chen X, Bao J, Li W, Li C, Li M, Wang L, Zhang D, Zhang J, Yang Z, Jin H. Unraveling the mechanism of ethyl acetate extract from Prismatomeris connata Y. Z. Ruan root in treating pulmonary fibrosis: insights from bioinformatics, network pharmacology, and experimental validation. Front Immunol 2024; 14:1330055. [PMID: 38259493 PMCID: PMC10801734 DOI: 10.3389/fimmu.2023.1330055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Pulmonary fibrosis is a terminal lung disease characterized by fibroblast proliferation, extracellular matrix accumulation, inflammatory damage, and tissue structure destruction. The pathogenesis of this disease, particularly idiopathic pulmonary fibrosis (IPF), remains unknown. Macrophages play major roles in organ fibrosis diseases, including pulmonary fibrosis. The phenotype and polarization of macrophages are closely associated with pulmonary fibrosis. A new direction in research on anti-pulmonary fibrosis is focused on developing drugs that maintain the stability of the pulmonary microenvironment. Methods We obtained gene sequencing data and clinical information for patients with IPF from the GEO datasets GSE110147, GSE15197, GSE24988, GSE31934, GSE32537, GSE35145, GSE53845, GSE49072, GSE70864, and GSE90010. We performed GO, KEGG enrichment analysis and GSEA analysis, and conducted weighted gene co-expression network analysis. In addition, we performed proteomic analysis of mouse lung tissue. To verify the results of bioinformatics analysis and proteomic analysis, mice were induced by intratracheal instillation of bleomycin (BLM), and gavaged for 14 days after modeling. Respiratory function of mice in different groups was measured. Lung tissues were retained for histopathological examination, Western Blot and real-time quantitative PCR, etc. In addition, lipopolysaccharide, interferon-γ and interleukin-4 were used to induce RAW264.7 cells for 12h in vitro to establish macrophage inflammation and polarization model. At the same time, HG2 intervention was given. The phenotype transformation and cytokine secretion of macrophages were investigated by Western Blot, RT-qPCR and flow cytometry, etc. Results Through bioinformatics analysis and experiments involving bleomycin-induced pulmonary fibrosis in mice, we confirmed the importance of macrophage polarization in IPF. The analysis revealed that macrophage polarization in IPF involves a change in the phenotypic spectrum. Furthermore, experiments demonstrated high expression of M2-type macrophage-associated biomarkers and inducible nitric oxide synthase, thus indicating an imbalance in M1/M2 polarization of pulmonary macrophages in mice with pulmonary fibrosis. Discussion Our investigation revealed that the ethyl acetate extract (HG2) obtained from the roots of Prismatomeris connata Y. Z. Ruan exhibits therapeutic efficacy against bleomycin-induced pulmonary fibrosis. HG2 modulates macrophage polarization, alterations in the TGF-β/Smad pathway, and downstream protein expression in the context of pulmonary fibrosis. On the basis of our findings, we believe that HG2 has potential as a novel traditional Chinese medicine component for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Sizheng Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Zhou
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Pang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Menglin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lulu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zengyan Yang
- Section of Science & Technology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| |
Collapse
|
49
|
Duan R, Hong CG, Wang X, Lu M, Xie H, Liu ZZ. Olfactory mucosa mesenchymal stem cells alleviate pulmonary fibrosis via the immunomodulation and reduction of inflammation. BMC Pulm Med 2024; 24:14. [PMID: 38178092 PMCID: PMC10768423 DOI: 10.1186/s12890-023-02834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive fibrosing interstitial pneumonia that leads to respiratory failure and other complications, which is ultimately fatal. Mesenchymal stem cells (MSCs) transplant is a promising strategy to solve this problem, while the procurement of MSCs from the patient for autotransplant remains a challenge. METHODS Here, we presented olfactory mucosa mesenchymal stem cells (OM-MSCs) from mouse turbinate and determined the preventing efficacy of allotransplant for PF. We demonstrated the antiinflammation and immunomodulatory effects of OM-MSCs. Flow cytometric analysis was used to verify the effect of OM-MSCs on monocyte-derived macrophage populations in the lung. RESULTS Administration of OM-MSCs reduces inflammation, attenuates the matrix metallopeptidase 13 (MMP13) expression level and restores the bleomycin (BLM)-induced pulmonary fibrosis by assessing the architecture of lung, collagen type I; (COL1A1), actin alpha 2, smooth muscle, aorta (ACTA2/α-SMA) and hydroxyproline. This therapeutic effect of OM-MSCs was related to the increase in the ratio of nonclassical monocytes to proinflammatory monocytes in the lung. CONCLUSIONS This study suggests that transplant of OM-MSCs represents an effective and safe treatment for PF.
Collapse
Affiliation(s)
- Ran Duan
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xin Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Ming Lu
- Department of Neurosurgery, Second affiliated Hospital of Hunan Normal University (921 Hospital of PLA), 410081, Changsha, Hunan, China
| | - Hui Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Zheng-Zhao Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
50
|
Song C, Xu Z, Liang Q, Mu Y, Liu M, Wu Z, Li X, Li J, Chen H, Wang Y, Gao S, Li A, Yao W, Liu G. OGG1 promoted lung fibrosis by activating fibroblasts via interacting with Snail1. Int Immunopharmacol 2024; 126:111148. [PMID: 37977070 DOI: 10.1016/j.intimp.2023.111148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
One of abundant DNA lesions induced by reactive oxygen species is 8-oxoguanine (8-oxoG), which compromises genetic instability. 8-oxoG is recognized by the DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) that not only participates in base excision repair but also involves in transcriptional regulation.OGG1 has an important role inIdiopathic Pulmonary Fibrosis (IPF) processing and targeting fibroblasts is a major strategy for the treatment of pulmonary fibrosis, but whether OGG1 activate fibroblast is not clear. In this study, we show that OGG1 expression level is increased at the fibroblast activation stage in mouse lungs induced by bleomycin (BLM) treatment. OGG1 promoted the expression level of fibroblast activation markers (CTGF, fibronectin, and collagen 1) in a pro-fibrotic gene transcriptional regulation pathway via interacting with Snail1, which dependent on 8-oxoG recognition. Global inhibition of OGG1 at the middle stage of lung fibrosis also relieved BLM-induced lung fibrosis in mice. Our results suggest that OGG1 is a target for inhibiting fibroblast activation and a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Chuge Song
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Respiratory Medicine, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zhiliang Xu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Dongguan Institute of Respiratory Medicine, Guangdong Medical University, Dongguan 523121, China.
| | - Qingyun Liang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yifan Mu
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Manqi Liu
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zijun Wu
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaomin Li
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jiali Li
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Hongqiao Chen
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Ao Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Weimin Yao
- Department of Respiratory Medicine, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|