1
|
Khodir SA, Shaban AM, Sweed E, El-Aziz NMA, Mostafa BA, Latif AAA, El-Kalshy MM, Elgizawy EI. METRNL mitigates oxidative stress and inflammatory drawbacks in ovalbumin/lipopolysaccharide-induced allergic airway diseases via the IKK/IκB/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04070-6. [PMID: 40244452 DOI: 10.1007/s00210-025-04070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
This study aimed to examine the potential impacts of METRNL as an antioxidant and anti-inflammatory through IκB kinase/inhibitor of nuclear factor-kappa B/nuclear factor-kappa-light-chain signaling pathway on many biomarkers and lung structure in rats with bronchial asthma induced by ovalbumin/lipopolysaccharide (OVA/LPS). Forty rats were randomly divided into four equal groups: control group, vehicle group, diseased (OVA/LPS) group OVA 2.5 ml/kg intratracheal installation/LPS 1.5 mg/kg intraperitoneally, and treated (OVA/LPS + METRNL) group, METRNL at a dose of 2 mg/rat/day IV. After 4 weeks, plasma and lung tissues were analyzed to assess oxidative stress inflammatory markers. Additionally, a histological assessment was conducted on lung tissues. Bronchial asthma was confirmed when increased levels of total serum IgE, total cell count, neutrophils, eosinophils, macrophages, and lymphocyte counts in the BAL fluid were observed. Moreover, OVA/LPS resulted in a reduction in levels of superoxide dismutase (SOD) while raising levels of malondialdehyde (MDA). Furthermore, it elevated concentrations of plasma inflammatory mediators, including tumor necrosis factor-alpha (TNF-alpha), interleukin 17 (IL-17), and transforming growth factor beta (TGF-β). The protective effects of METRNL were analyzed. The observed impacts are believed to result from the drug's anti-inflammatory and antioxidant properties and its action on the IKK/IκB/NF-κB signaling pathway. This investigation indicates that METRNL treatment positively improved rats' biochemical and histological aspects of OVA/LPS-induced airway allergic inflammation.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| | - Anwaar M Shaban
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia, Egypt
- Clinical Pharmacology Department, Menoufia National University, Menoufia, Egypt
| | | | - Basma Abdelnaby Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia, Egypt
- Medical Biochemistry and Molecular Biology Department, Menoufia National University, Menoufia, Egypt
| | - Asmaa A Abdel Latif
- Public Health and Community Medicine Department, Faculty of Medicine, Industrial Medicine and Occupational Health Specialty, Menoufia University, Menoufia, Egypt
| | - Mai M El-Kalshy
- Department of Chest Diseases, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman I Elgizawy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt.
| |
Collapse
|
2
|
Latayan J, Akkenapally SV, Madala SK. Emerging Concepts in Cytokine Regulation of Airway Remodeling in Asthma. Immunol Rev 2025; 330:e70020. [PMID: 40116139 PMCID: PMC11926778 DOI: 10.1111/imr.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Asthma, a chronic respiratory condition that has seen a dramatic rise in prevalence over the past few decades, now affects more than 300 million people globally and imposes a significant burden on healthcare systems. The key pathological features of asthma include inflammation, airway hyperresponsiveness, mucus cell metaplasia, smooth muscle hypertrophy, and subepithelial fibrosis. Cytokines released by lung epithelial cells, stromal cells, and immune cells during asthma are critical to pathological tissue remodeling in asthma. Over the past few decades, researchers have made great strides in understanding key cells involved in asthma and the cytokines that they produce. Epithelial cells as well as many adaptive and innate immune cells are activated by environmental signals to produce cytokines, namely, type 2 cytokines (IL-4, IL-5, IL-13), IFN-γ, IL-17, TGF-β, and multiple IL-6 family members. However, the precise mechanisms through which these cytokines contribute to airway remodeling remain elusive. Additionally, multiple cell types can produce the same cytokines, making it challenging to decipher how specific cell types and cytokines uniquely contribute to asthma pathogenesis. This review highlights recent advances and provides a comprehensive overview of the key cells involved in the production of cytokines and how these cytokines modulate airway remodeling in asthma.
Collapse
Affiliation(s)
- Jana Latayan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe University of CincinnatiCincinnatiOhioUSA
- Immunology Graduate ProgramUniversity of CincinnatiCincinnatiOhioUSA
| | - Santhoshi V. Akkenapally
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe University of CincinnatiCincinnatiOhioUSA
| | - Satish K. Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe University of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
3
|
Turkbey M, Karaguzel D, Uzunkaya AD, Aracagok YD, Karaaslan C. The immune response of upper and lower airway epithelial cells to Aspergillus fumigatus and Candida albicans-derived β-glucan in Th17 type cytokine environment. Arch Microbiol 2025; 207:70. [PMID: 39992431 DOI: 10.1007/s00203-025-04266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
The fungal cell wall component β-glucan activates inflammation via the Dectin-1 receptor and IL-17 coordinates the antifungal immunity. However, the molecular crosstalk between IL-17, Dectin-1, and β-glucan in epithelial cells and fungal immunity remains unclear. We investigated the impact of A.fumigatus-derived β-glucan (AFBG) and C.albicans-derived β-glucan (CABG) on Dectin-1 and cytokines in nasal epithelial cells (NECs) and bronchial epithelial cells (BECs) in the presence of IL-17. CABG reduced BEC viability more than AFBG despite similar Dectin-1 expression. IL-17 reduced β-glucan-dependent Dectin-1 expression in NECs but increased it in BECs after 12 h. AFBG synergized with IL-17, enhancing pro-inflammatory cytokines and chemokine expressions. IL-6 and IL-8 production increased in the presence of IL-17. Th17 cytokine influenced the Dectin-1 response to fungal β-glucan in NECs and BECs, impacting the initiation and nature of epithelial cell reactions to AFBG and CABG. Uncovering the molecular mechanisms of fungal β-glucans in the respiratory tract could lead to novel strategies for preventing fungal diseases.
Collapse
Affiliation(s)
- Murat Turkbey
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye
| | - Dilara Karaguzel
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye
| | - Ali Doruk Uzunkaya
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye
| | - Yusuf Doruk Aracagok
- Department of Biology, Biotechnology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, 06800, Ankara, Türkiye.
| |
Collapse
|
4
|
Joveini S, Yarmohammadi F, Iranshahi M, Nikpoor AR, Askari VR, Attaranzadeh A, Etemad L, Taherzadeh Z. Distinct therapeutic effects of auraptene and umbelliprenin on TNF-α and IL-17 levels in a murine model of chronic inflammation. Heliyon 2024; 10:e40731. [PMID: 39687160 PMCID: PMC11648749 DOI: 10.1016/j.heliyon.2024.e40731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Objective To compare the anti-arthritic potential of orally administered auraptene (AUR) and umbellliprenin (UMB) in chronic inflammation by exploring the differential effect on regulating TNF-α and IL-17. Methods & materials Sixty male rats were divided into ten groups, and after confirming chronic inflammation, the treatment groups received AUR or UMB orally for 9 days. On day 16, histopathological changes were evaluated. Altered serum levels of the inflammatory cytokines TNF-α and IL-17 were examined as the underlying mechanisms. Results Administering AUR orally at 16 mM/kg caused a significant increase in body weight gain compared to the baseline (p < 0.05), while UMB at a dose of 64 mM/kg significantly reduced edema size (p < 0.01). TNF-α levels were significantly lower in all doses of AUR and UMB treatments compared to the arthritis control group (p < 0.05). Treatment with AUR at all relative doses resulted in a significant decrease in IL-17 levels compared to the arthritis control group (p < 0.05), whereas UMB treatment did not show a significant effect on IL-17 levels. Conclusion AUR and UMB regulate TNF-α and IL-17 differently; AUR inhibits both, showing broad therapeutic potential, while UMB specifically targets TNF-α, showing a specialized role.
Collapse
Affiliation(s)
- Saeid Joveini
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Armin Attaranzadeh
- Department of Medical Genetics, Faculty of Medicines, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhila Taherzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Pury S, Saranz RJ, Irastorza MJ, Sasia LV, Visconti P, Alegre G, Lozano NA, Berardi YV, Lozano A. [Monoclonal Antibodies in Allergic Diseases: Development, Pharmacology, and Clinical Applications]. REVISTA DE LA FACULTAD DE CIENCIAS MÉDICAS 2024; 81:804-823. [PMID: 39670906 PMCID: PMC11905782 DOI: 10.31053/1853.0605.v81.n4.44413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 12/14/2024] Open
Abstract
The understanding of immunological processes associated with allergic diseases and advancements in antibody bioengineering has driven the development of specific biological therapies. Monoclonal antibodies, selectively targeting cytokines involved in the pathogenesis of allergic processes or their receptors, have emerged as a promising tool in treating various conditions, including asthma, allergic rhinitis, urticaria, and severe atopic dermatitis. Since the approval of the first anti-CD3 mouse monoclonal antibody in 1986, remarkable progress has been achieved, marked by the development of chimeric, 'humanized,' and 'fully human' antibodies. The 'humanization' of monoclonal antibodies has played a crucial role in reducing the risk of immunogenicity and minimizing adverse effects, thereby notably enhancing the safety and efficacy of these therapeutic interventions. The aim of this article is to address the characterization, development, pharmacokinetics, pharmacodynamics, and clinical utility of monoclonal antibodies, with a primary focus on allergic diseases.
Collapse
|
6
|
Emala CW, Saroya TK, Miao Y, Wang S, Sang S, DiMango EA. Low-Dose Oral Ginger Improves Daily Symptom Scores in Asthma. Pharmaceuticals (Basel) 2024; 17:1651. [PMID: 39770492 PMCID: PMC11728807 DOI: 10.3390/ph17121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objective: A significant number of individuals with asthma have poorly controlled daily symptoms and utilize dietary supplements such as ginger in a quest for improved symptom control; however, its effectiveness at improving the control of symptoms is unproven. We questioned whether low-dose oral ginger would improve subjective and objective measurements of asthma control in mild-to-moderate asthmatics. Methods: We performed a randomized, placebo-controlled, double-blinded study of a low dose (1 g twice daily) of a dietary supplement of ginger in 32 mild-to-moderate uncontrolled asthmatics over a 2-month trial period while maintaining daily conventional asthma therapies. The planned primary outcomes included an increased tolerance to inhaled methacholine and decreased concentrations of fractional excretion of exhaled nitric oxide (FeNO). Secondary planned outcomes included measurements of asthma control by the Asthma Control Test (ACT), a 2-week symptom recall test, and the Juniper mini Asthma Quality of Life Questionnaire (AQLQ), and blood eosinophils and asthma-associated cytokines. Results: Exhaled nitric oxide or blood eosinophils were not changed by oral ginger. However, three different measures of asthma symptom control were improved by the 28-day time point of oral ginger. Asthma-associated serum cytokines (IL-13 and IL-17A) were modulated by oral ginger. Conclusions: This is the first demonstration that a small daily dose of a dietary supplement of ginger may improve asthma symptoms and reduce inflammation in human asthmatics. These findings support the need for additional studies using larger doses of ginger in specific endotypes of asthmatics that may identify a novel therapeutic for asthma.
Collapse
Affiliation(s)
- Charles W. Emala
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, 628 W. 168th St. PH 505 Center, New York, NY 10032, USA
| | - Tarnjot K. Saroya
- Department of Medicine (Pulmonology, Allergy and Critical Care), Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yuqi Miao
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10027, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10027, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Emily A. DiMango
- Department of Medicine (Pulmonology, Allergy and Critical Care), Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
7
|
Mei A, Luan M, Li P, Chen J, Mou K. Knowledge, attitude, and practice of psoriatic arthritis among patients with psoriasis. Front Med (Lausanne) 2024; 11:1382806. [PMID: 39640973 PMCID: PMC11617161 DOI: 10.3389/fmed.2024.1382806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction This study aimed to investigate the knowledge, attitude and practice (KAP) of psoriatic arthritis among patients with psoriasis. The KAP questionnaire is a widely used tool in public health research, designed to assess individuals' understanding (knowledge), beliefs (attitude), and behaviors (practice) related to a specific health condition. Methods A cross-sectional study was conducted at Sinopharm Dongfeng General Hospital from September to November 2023. Demographic information and KAP scores were assessed using a structured questionnaire, which evaluated patient knowledge about psoriatic arthritis, their attitude toward managing it, and their practical engagement in preventive or treatment behaviors. Results In this study, 392 valid questionnaires were analyzed. Of these, 290 respondents (74.0%) were male, and 296 (75.5%) reported no comorbid conditions. The median scores for knowledge, attitude, and practice were 8 (interquartile range [IQR]: 6-10), 21 (IQR: 19-24), and 14 (IQR: 8-22), respectively. Multivariate logistic regression analysis indicated that practice was independently associated with being female (OR = 0.426, 95% CI: 0.259-0.703, p = 0.001), being aged 30-39 years (OR = 2.159, 95% CI: 1.223-3.811, p = 0.008) or 40-49 years (OR = 2.002, 95% CI: 1.019-3.936, p = 0.044), having a Dermatology Life Quality Index (DLQI) score of 11-30 (OR = 2.569, 95% CI: 1.158-5.700, p = 0.020), and not having psoriatic arthritis (OR = 0.300, 95% CI: 0.168-0.537, p < 0.001). Conclusion Patients with psoriasis had suboptimal knowledge, positive attitude and inactive practice toward psoriatic arthritis. To address this, healthcare providers should prioritize educational interventions, with a specific focus on younger patients, females, and individuals with a higher DLQI score, to enhance awareness and promote proactive management of psoriatic arthritis among this patient population.
Collapse
Affiliation(s)
- Aihua Mei
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Dermatology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mei Luan
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Chen
- Department of Dermatology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Franz T, Stegemann-Koniszewski S, Schreiber J, Müller A, Bruder D, Dudeck A, Boehme JD, Kahlfuss S. Metabolic and ionic control of T cells in asthma endotypes. Am J Physiol Cell Physiol 2024; 327:C1300-C1307. [PMID: 39374078 DOI: 10.1152/ajpcell.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
CD4+ T cells play a central role in orchestrating the immune response in asthma, with dysregulated ion channel profiles and altered metabolic signatures contributing to disease progression and severity. An important classification of asthma is based on the presence of T-helper cell type 2 (Th2) inflammation, dividing patients into Th2-high and Th2-low endotypes. These distinct endotypes have implications for disease severity, treatment response, and prognosis. By elucidating how ion channels and energy metabolism control Th cells in asthma, this review contributes to the pathophysiological understanding and the prospective development of personalized therapeutic treatment strategies for patients suffering from distinct asthma endotypes.
Collapse
Affiliation(s)
- Tobias Franz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
9
|
Cunico D, Giannì G, Scavone S, Buono EV, Caffarelli C. The Relationship Between Asthma and Food Allergies in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1295. [PMID: 39594870 PMCID: PMC11592619 DOI: 10.3390/children11111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Asthma and food allergy are two complex allergic diseases with an increasing prevalence in childhood. They share risk factors, including atopic family history, atopic dermatitis, allergen sensitization, and T2 inflammatory pathways. Several studies have shown that in children with a food allergy, the risk of developing asthma, particularly in early childhood, is high. Food allergen intake or the inhalation of aerosolized allergens can induce respiratory symptoms such as bronchospasm. Patients with both conditions have an increased risk of severe asthma exacerbations, hospitalization, and mortality. The current management of clinical food hypersensitivity primarily involves the dietary avoidance of food allergens and the use of self-injectable adrenaline for severe reactions. Poorly controlled asthma limits the prescription of oral immunotherapy to foods, which has emerged as an alternative therapy for managing food allergies. Biological therapies that are effective in severe asthma have been explored for treating food allergies. Omalizumab improves asthma control and, either alone or in combination with oral immunotherapy, increases the threshold of allergen tolerance. Understanding the interplay between asthma and food allergy is crucial for developing successful treatment approaches and ameliorating patient results.
Collapse
Affiliation(s)
| | | | | | | | - Carlo Caffarelli
- Clinica Pediatrica, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (D.C.); (G.G.); (S.S.); (E.V.B.)
| |
Collapse
|
10
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
11
|
Wu D, Zhang X, Zimmerly KM, Wang R, Livingston A, Iwawaki T, Kumar A, Wu X, Campen M, Mandell MA, Liu M, Yang XO. Unconventional Activation of IRE1 Enhances Th17 Responses and Promotes Airway Neutrophilia. Am J Respir Cell Mol Biol 2024; 71:169-181. [PMID: 38593442 PMCID: PMC11299091 DOI: 10.1165/rcmb.2023-0424oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Heightened unfolded protein responses (UPRs) are associated with the risk for asthma, including severe asthma. Treatment-refractory severe asthma manifests a neutrophilic phenotype with T helper (Th)17 responses. However, how UPRs participate in the deregulation of Th17 cells leading to neutrophilic asthma remains elusive. This study found that the UPR sensor IRE1 is induced in the murine lung with fungal asthma and is highly expressed in Th17 cells relative to naive CD4+ T cells. Cytokine (e.g., IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse Th17 cells. Ern1 (encoding IRE1) deficiency decreases the expression of endoplasmic reticulum stress factors and impairs the differentiation and cytokine secretion of Th17 cells. Genetic ablation of Ern1 leads to alleviated Th17 responses and airway neutrophilia in a fungal airway inflammation model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances Th17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPR-mediated secretory function of Th17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in Th17-biased TH2-low asthma.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology and
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, and
| | | | - Ruoning Wang
- Department of Molecular Genetics and Microbiology and
| | | | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas; and
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology and
- Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Matthew Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | | | - Meilian Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, and
| | | |
Collapse
|
12
|
Olejnik AE, Kuźnar-Kamińska B. Association of Obesity and Severe Asthma in Adults. J Clin Med 2024; 13:3474. [PMID: 38930006 PMCID: PMC11204497 DOI: 10.3390/jcm13123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The incidence of obesity and asthma continues to enhance, significantly impacting global public health. Adipose tissue is an organ that secretes hormones and cytokines, causes meta-inflammation, and contributes to the intensification of bronchial hyperreactivity, oxidative stress, and consequently affects the different phenotypes of asthma in obese people. As body weight increases, the risk of severe asthma increases, as well as more frequent exacerbations requiring the use of glucocorticoids and hospitalization, which consequently leads to a deterioration of the quality of life. This review discusses the relationship between obesity and severe asthma, the underlying molecular mechanisms, changes in respiratory function tests in obese people, its impact on the occurrence of comorbidities, and consequently, a different response to conventional asthma treatment. The article also reviews research on possible future therapies for severe asthma. The manuscript is a narrative review of clinical trials in severe asthma and comorbid obesity. The articles were found in the PubMed database using the keywords asthma and obesity. Studies on severe asthma were then selected for inclusion in the article. The sections: 'The classification connected with asthma and obesity', 'Obesity-related changes in pulmonary functional tests', and 'Obesity and inflammation', include studies on subjects without asthma or non-severe asthma, which, according to the authors, familiarize the reader with the pathophysiology of obesity-related asthma.
Collapse
Affiliation(s)
- Aneta Elżbieta Olejnik
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland;
| | | |
Collapse
|
13
|
Maher SA, AbdAllah NB, Ageeli EA, Riad E, Kattan SW, Abdelaal S, Abdelfatah W, Ibrahim GA, Toraih EA, Awadalla GA, Fawzy MS, Ibrahim A. Impact of Interleukin-17 Receptor A Gene Variants on Asthma Susceptibility and Clinical Manifestations in Children and Adolescents. CHILDREN (BASEL, SWITZERLAND) 2024; 11:657. [PMID: 38929236 PMCID: PMC11202101 DOI: 10.3390/children11060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Several single nucleotide polymorphisms (SNPs) in multiple interleukin receptor genes could be associated with asthma risk and/or phenotype. Interleukin-17 (IL-17) has been implicated in tissue inflammation and autoimmune diseases. As no previous studies have uncovered the potential role of IL17 receptor A (RA) gene variants in asthma risk, we aimed to explore the association of four IL17RA SNPs (i.e., rs4819554A/G, rs879577C/T, rs41323645G/A, and rs4819555C/T) with asthma susceptibility/phenotype in our region. TaqMan allelic discrimination analysis was used to genotype 192 individuals. We found that the rs4819554 G/G genotype significantly reduced disease risk in the codominant (OR = 0.15, 95%CI = 0.05-0.45, p < 0.001), dominant (OR = 0.49, 95%CI = 0.26-0.93, p = 0.028), and recessive (OR = 0.18, 95%CI = 0.07-0.52, p < 0.001) models. Similarly, rs879577 showed reduced disease risk associated with the T allele across all genetic models. However, the A allele of rs41323645 was associated with increased disease risk in all models. The G/A and A/A genotypes have higher ORs of 2.47 (95%CI = 1.19-5.14) and 3.86 (95%CI = 1.62-9.18), respectively. Similar trends are observed in the dominant 2.89 (95%CI = 1.47-5.68, p = 0.002) and recessive 2.34 (95%CI = 1.10-4.98, p = 0.025) models. For the rs4819555 variant, although there was no significant association identified under any models, carriers of the rs4819554*A demonstrated an association with a positive family history of asthma (71.4% in carriers vs. 27% in non-carriers; p = 0.025) and the use of relievers for >2 weeks (52.2% of carriers vs. 28.8% of non-carriers; p = 0.047). Meanwhile, the rs4819555*C carriers displayed a significant divergence in the asthma phenotype, specifically atopic asthma (83.3% vs. 61.1%; p = 0.007), showed a higher prevalence of chest tightness (88.9% vs. 61.5%; p = 0.029), and were more likely to report comorbidities (57.7% vs. 16.7%, p = 0.003). The most frequent haplotype in the asthma group was ACAC, with a frequency of 22.87% vs. 1.36% in the controls (p < 0.001). In conclusion, the studied IL17RA variants could be essential in asthma susceptibility and phenotype in children and adolescents.
Collapse
Affiliation(s)
- Shymaa Ahmed Maher
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Nouran B. AbdAllah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| | - Essam Al Ageeli
- Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan 45141, Saudi Arabia;
| | - Eman Riad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (E.R.); (W.A.)
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia;
| | - Sherouk Abdelaal
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| | - Wagdy Abdelfatah
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (E.R.); (W.A.)
| | - Gehan A. Ibrahim
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Ghada A. Awadalla
- Biochemistry Department, Animal Health Research Institute, Mansoura Branch, Giza 12618, Egypt;
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
| | - Ahmed Ibrahim
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| |
Collapse
|
14
|
Xu Y, Li Y. Association between lipid-lowering drugs and allergic diseases: A Mendelian randomization study. World Allergy Organ J 2024; 17:100899. [PMID: 38623319 PMCID: PMC11017355 DOI: 10.1016/j.waojou.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
Background Several observational studies suggest a possible link between lipid-lowering drugs and allergic diseases. However, inferring causality from these studies can be challenging due to issues such as bias, reverse causation, and residual confounding. To investigate the potential causal effect of lipid-lowering drugs, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitors, on allergic diseases (allergic asthma, allergic conjunctivitis, atopic dermatitis, allergic rhinitis, and allergic urticaria), we performed a Mendelian randomization (MR)-based study. Methods We employed MR and summary-data-based MR (SMR), analyzing genome-wide association study (GWAS) data from people of European descent. Single nucleotide polymorphisms (SNPs) were employed as instrumental variables. We selected 2 types of genetic measures to represent the impact of lipid-lowering drugs, including genetic variants near or within drug target genes correlated with low-density lipoprotein cholesterol (LDL-C), and expression quantitative trait loci of drug target genes. The inverse-variance weighted (IVW)-MR approach was the primary utilized MR method, while sensitivity analyses were used to test the robustness of the results. We used SMR analysis as a supplementary analytical method, applying the heterogeneity in dependent instruments (HEIDI) test to assess if the observed correlation between gene expression and outcome was due to a linkage situation. Results The IVW-MR analysis revealed significant evidence for an association between PCSK9-mediated LDL-C reduction and a decrease in the risk of allergic asthma (odds ratio [OR] = 1.31, 95% confidence interval [CI] = 1.11-1.56; P < 0.01). Likewise, SMR analysis discovered an augmented expression of PCSK9 being linked with a heightened susceptibility to allergic asthma (OR = 1.21, 95% CI = 1.03-1.43; P = 0.02). No consistent evidence was found for other associations in either analysis. Conclusion Our findings support a potential causal relationship between PCSK9 activity and an increased risk of allergic asthma. Thus, PCSK9 inhibitors, which reduce PCSK9 activity, might be considered a priority in future clinical trials investigating drugs for allergic asthma prevention or treatment.
Collapse
Affiliation(s)
- Yinsong Xu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
- Ya'an Polytechnic College, Ya'an, 625000, Sichuan, China
| | - Yuanzhi Li
- Department of Anorectal Surgery, Shenzhen TCM Anorectal Hospital (Futian), Shenzhen, 518000, China
- Department of Traditional Chinese Medicine, The Afliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
15
|
Bourdin A, Brusselle G, Couillard S, Fajt ML, Heaney LG, Israel E, McDowell PJ, Menzies-Gow A, Martin N, Mitchell PD, Petousi N, Quirce S, Schleich F, Pavord ID. Phenotyping of Severe Asthma in the Era of Broad-Acting Anti-Asthma Biologics. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:809-823. [PMID: 38280454 DOI: 10.1016/j.jaip.2024.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/29/2024]
Abstract
Severe asthma is associated with significant morbidity and mortality despite the maximal use of inhaled corticosteroids and additional controller medications, and has a high economic burden. Biologic therapies are recommended for the management of severe, uncontrolled asthma to help to prevent exacerbations and to improve symptoms and health-related quality of life. The effective management of severe asthma requires consideration of clinical heterogeneity that is driven by varying clinical and inflammatory phenotypes, which are reflective of distinct underlying disease mechanisms. Phenotyping patients using a combination of clinical characteristics such as the age of onset or comorbidities and biomarker profiles, including blood eosinophil counts and levels of fractional exhaled nitric oxide and serum total immunoglobulin E, is important for the differential diagnosis of asthma. In addition, phenotyping is beneficial for risk assessment, selection of treatment, and monitoring of the treatment response in patients with asthma. This review describes the clinical and inflammatory phenotypes of asthma, provides an overview of biomarkers routinely used in clinical practice and those that have recently been explored for phenotyping, and aims to assess the value of phenotyping in severe asthma management in the current era of biologics.
Collapse
Affiliation(s)
- Arnaud Bourdin
- PhyMedExp, University of Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Simon Couillard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Merritt L Fajt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Liam G Heaney
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Elliot Israel
- Pulmonary and Critical Care Medicine, Allergy & Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - P Jane McDowell
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew Menzies-Gow
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, United Kingdom; Royal Brompton and Harefield Hospitals, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, United Kingdom; University of Leicester, Leicester, United Kingdom
| | | | - Nayia Petousi
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Florence Schleich
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Lab, University of Liege, Liege, Belgium
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Sha J, Zhang M, Feng J, Shi T, Li N, Jie Z. Promyelocytic leukemia zinc finger controls type 2 immune responses in the lungs by regulating lineage commitment and the function of innate and adaptive immune cells. Int Immunopharmacol 2024; 130:111670. [PMID: 38373386 DOI: 10.1016/j.intimp.2024.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Type 2 immune responses are critical for host defense, mediate allergy and Th2-high asthma. The transcription factor, promyelocytic leukemia zinc finger (PLZF), has emerged as a significant regulator of type 2 inflammation in the lung; however, its exact mechanism remains unclear. In this review, we summarized recent findings regarding the ability of PLZF to control the development and function of innate lymphoid cells (ILCs), iNKT cells, memory T cells, basophils, and other immune cells that drive type 2 responses. We discussed the important role of PLZF in the pathogenesis of Th2-high asthma. Collectively, prior studies have revealed the critical role of PLZF in the regulation of innate and adaptive immune cells involved in type 2 inflammation in the lung. Therefore, targeting PLZF signaling represents a promising therapeutic approach to suppress Th2-high asthma.
Collapse
Affiliation(s)
- Jiafeng Sha
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Yu X, Li L, Cai B, Zhang W, Liu Q, Li N, Shi X, Yu L, Chen R, Qiu C. Single-cell analysis reveals alterations in cellular composition and cell-cell communication associated with airway inflammation and remodeling in asthma. Respir Res 2024; 25:76. [PMID: 38317239 PMCID: PMC10845530 DOI: 10.1186/s12931-024-02706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease characterized by airway inflammation and remodeling, whose pathogenetic complexity was associated with abnormal responses of various cell types in the lung. The specific interactions between immune and stromal cells, crucial for asthma pathogenesis, remain unclear. This study aims to determine the key cell types and their pathological mechanisms in asthma through single-cell RNA sequencing (scRNA-seq). METHODS A 16-week mouse model of house dust mite (HDM) induced asthma (n = 3) and controls (n = 3) were profiled with scRNA-seq. The cellular composition and gene expression profiles were assessed by bioinformatic analyses, including cell enrichment analysis, trajectory analysis, and Gene Set Enrichment Analysis. Cell-cell communication analysis was employed to investigate the ligand-receptor interactions. RESULTS The asthma model results in airway inflammation coupled with airway remodeling and hyperresponsiveness. Single-cell analysis revealed notable changes in cell compositions and heterogeneities associated with airway inflammation and remodeling. GdT17 cells were identified to be a primary cellular source of IL-17, related to inflammatory exacerbation, while a subpopulation of alveolar macrophages exhibited numerous significantly up-regulated genes involved in multiple pathways related to neutrophil activities in asthma. A distinct fibroblast subpopulation, marked by elevated expression levels of numerous contractile genes and their regulators, was observed in increased airway smooth muscle layer by immunofluorescence analysis. Asthmatic stromal-immune cell communication significantly strengthened, particularly involving GdT17 cells, and macrophages interacting with fibroblasts. CXCL12/CXCR4 signaling was remarkedly up-regulated in asthma, predominantly bridging the interaction between fibroblasts and immune cell populations. Fibroblasts and macrophages could jointly interact with various immune cell subpopulations via the CCL8/CCR2 signaling. In particular, fibroblast-macrophage cell circuits played a crucial role in the development of airway inflammation and remodeling through IL1B paracrine signaling. CONCLUSIONS Our study established a mouse model of asthma that recapitulated key pathological features of asthma. ScRNA-seq analysis revealed the cellular landscape, highlighting key pathological cell populations associated with asthma pathogenesis. Cell-cell communication analysis identified the crucial ligand-receptor interactions contributing to airway inflammation and remodeling. Our findings emphasized the significance of cell-cell communication in bridging the possible causality between airway inflammation and remodeling, providing valuable hints for therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Xiu Yu
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Bicheng Cai
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Wei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Quan Liu
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Nan Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Xing Shi
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Li Yu
- Longgang Central Hospital of Shenzhen, LongGang District, Shenzhen, 518116, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China.
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China.
| |
Collapse
|
18
|
Mowahedi M, Aramesh A, Khouzani MS, Khouzani MS, Daryanoush S, Samet M, Samadi M. Association of Interleukin-4 Receptor α Chain I50V Gene Variant (rs1805010) and Asthma in Iranian Population: A Case-control Study. Open Respir Med J 2024; 18:e18743064266613. [PMID: 38660682 PMCID: PMC11037512 DOI: 10.2174/0118743064266613231123103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 04/26/2024] Open
Abstract
Background Asthma is one of the respiratory disorders caused by chronic airway inflammation. IL-4 has been identified as one of the participating interleukins in the severity of asthma. Objective A case-control study was conducted to determine the association of rs1805010, a single nucleotide polymorphism in the interleukin 4 receptor α chain, with asthma and immunoglobulin E and IL-17A serum levels in Iranian populations. Methods ELISA was used to investigate the relationship between three different varieties of SNP I50V and serum IL-17A levels, as well as total IgE levels. Based on GINA criteria, patients were classified into mild, moderate, and severe groups based on the association between SNP I50V, IL-17A, and total IgE. In order to analyze the data, the student-t-test and the one-way ANOVA were used. Results The SNP I50V was associated with asthma in a significant way (p = 0.001). IL-17A and total IgE levels were significantly higher in asthmatic patients than in control participants (p 0.05 and p 0.021, respectively), but neither showed any association with SNP I50V in the asthmatic patients. Conclusion Asthma patients have a higher prevalence of the I allele, reflecting the significance of Th2 cells. Although total IgE and IL-17A levels increased in both disease subgroups, total IgE level augmentation correlates directly with disease severity, while IL-17A level enhancement does not.
Collapse
Affiliation(s)
- Masouma Mowahedi
- Abortion Research Center, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azam Aramesh
- Thalassemia and Hemophilia Research Center, Shahid Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Marjan Sorkhi Khouzani
- Cellular and Molecular Biology - Genetic Center, Falavarjan Azad University, Isfahan, Iran
| | - Saeed Daryanoush
- Thalassemia and Hemophilia Research Center, Shahid Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Samet
- Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Samadi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Chen CY, Wu KH, Guo BC, Lin WY, Chang YJ, Wei CW, Lin MJ, Wu HP. Personalized Medicine in Severe Asthma: From Biomarkers to Biologics. Int J Mol Sci 2023; 25:182. [PMID: 38203353 PMCID: PMC10778979 DOI: 10.3390/ijms25010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Severe asthma is a complex and heterogeneous clinical condition presented as chronic inflammation of the airways. Conventional treatments are mainly focused on symptom control; however, there has been a shift towards personalized medicine. Identification of different phenotypes driven by complex pathobiological mechanisms (endotypes), especially those driven by type-2 (T2) inflammation, has led to improved treatment outcomes. Combining biomarkers with T2-targeting monoclonal antibodies is crucial for developing personalized treatment strategies. Several biological agents, including anti-immunoglobulin E, anti-interleukin-5, and anti-thymic stromal lymphopoietin/interleukin-4, have been approved for the treatment of severe asthma. These biological therapies have demonstrated efficacy in reducing asthma exacerbations, lowering eosinophil count, improving lung function, diminishing oral corticosteroid use, and improving the quality of life in selected patients. Severe asthma management is undergoing a profound transformation with the introduction of ongoing and future biological therapies. The availability of novel treatment options has facilitated the adoption of phenotype/endotype-specific approaches and disappearance of generic interventions. The transition towards precision medicine plays a crucial role in meticulously addressing the individual traits of asthma pathobiology. An era of tailored strategies has emerged, allowing for the successful targeting of immune-inflammatory responses that underlie uncontrolled T2-high asthma. These personalized approaches hold great promise for improving the overall efficacy and outcomes in the management of severe asthma. This article comprehensively reviews currently available biological agents and biomarkers for treating severe asthma. With the expanding repertoire of therapeutic options, it is becoming increasingly crucial to comprehend the influencing factors, understand the pathogenesis, and track treatment progress in severe asthma.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 435403, Taiwan; (C.-Y.C.); (C.-W.W.)
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Wen-Ya Lin
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Taichung Veteran General Hospital, Taichung 43503, Taiwan;
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Chih-Wei Wei
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 435403, Taiwan; (C.-Y.C.); (C.-W.W.)
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
20
|
Tee JH, Vijayakumar U, Shanmugasundaram M, Lam TYW, Liao W, Yang Y, Wong WSF, Ge R. Isthmin-1 attenuates allergic Asthma by stimulating adiponectin expression and alveolar macrophage efferocytosis in mice. Respir Res 2023; 24:269. [PMID: 37932719 PMCID: PMC10626717 DOI: 10.1186/s12931-023-02569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Allergic asthma is a common respiratory disease that significantly impacts human health. Through in silico analysis of human lung RNASeq, we found that asthmatic lungs display lower levels of Isthmin-1 (ISM1) expression than healthy lungs. ISM1 is an endogenous anti-inflammatory protein that is highly expressed in mouse lungs and bronchial epithelial cells, playing a crucial role in maintaining lung homeostasis. However, how ISM1 influences asthma remains unclear. This study aims to investigate the potential involvement of ISM1 in allergic airway inflammation and uncover the underlying mechanisms. METHODS We investigated the pivotal role of ISM1 in airway inflammation using an ISM1 knockout mouse line (ISM1-/-) and challenged them with house dust mite (HDM) extract to induce allergic-like airway/lung inflammation. To examine the impact of ISM1 deficiency, we analyzed the infiltration of immune cells into the lungs and cytokine levels in bronchoalveolar lavage fluid (BALF) using flow cytometry and multiplex ELISA, respectively. Furthermore, we examined the therapeutic potential of ISM1 by administering recombinant ISM1 (rISM1) via the intratracheal route to rescue the effects of ISM1 reduction in HDM-challenged mice. RNA-Seq, western blot, and fluorescence microscopy techniques were subsequently used to elucidate the underlying mechanisms. RESULTS ISM1-/- mice showed a pronounced worsening of allergic airway inflammation and hyperresponsiveness upon HDM challenge. The heightened inflammation in ISM1-/- mice correlated with enhanced lung cell necroptosis, as indicated by higher pMLKL expression. Intratracheal delivery of rISM1 significantly reduced the number of eosinophils in BALF and goblet cell hyperplasia. Mechanistically, ISM1 stimulates adiponectin secretion by type 2 alveolar epithelial cells partially through the GRP78 receptor and enhances adiponectin-facilitated apoptotic cell clearance via alveolar macrophage efferocytosis. Reduced adiponectin expression under ISM1 deficiency also contributed to intensified necroptosis, prolonged inflammation, and heightened severity of airway hyperresponsiveness. CONCLUSIONS This study revealed for the first time that ISM1 functions to restrain airway hyperresponsiveness to HDM-triggered allergic-like airway/lung inflammation in mice, consistent with its persistent downregulation in human asthma. Direct administration of rISM1 into the airway alleviates airway inflammation and promotes immune cell clearance, likely by stimulating airway adiponectin production. These findings suggest that ISM1 has therapeutic potential for allergic asthma.
Collapse
Affiliation(s)
- Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Udhaya Vijayakumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, A*STAR, Singapore, 138668, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, 138602, Singapore.
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore, 117600, Singapore.
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
21
|
Agarwal R, Muthu V, Sehgal IS. Relationship between Aspergillus and asthma. Allergol Int 2023; 72:507-520. [PMID: 37633774 DOI: 10.1016/j.alit.2023.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
Fungal sensitization is highly prevalent in severe asthma. The relationship between fungus and asthma, especially Aspergillus fumigatus, has been the subject of extensive research. The ubiquitous presence of A. fumigatus, its thermotolerant nature, the respirable size of its conidia, and its ability to produce potent allergens are pivotal in worsening asthma control. Due to the diverse clinical manifestations of fungal asthma and the lack of specific biomarkers, its diagnosis remains intricate. Diagnosing fungal asthma requires carefully assessing the patient's clinical history, immunological tests, and imaging. Depending on the severity, patients with fungal asthma require personalized treatment plans, including inhaled corticosteroids and bronchodilators, and antifungal therapy. This review provides a comprehensive overview of the association between Aspergillus and asthma by reviewing the relevant literature and highlighting key findings. We discuss the diagnosis of various entities included in fungal asthma. We also debate whether newer definitions, including allergic fungal airway disease, offer any additional advantages over the existing ones. Finally, we provide the current treatment options for the individual entities, including A. fumigatus-associated asthma, severe asthma with fungal sensitization, and allergic bronchopulmonary mycoses.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
22
|
Wu D, Zhang X, Zimmerly KM, Wang R, Wang C, Hunter R, Wu X, Campen M, Liu M, Yang XO. Unfolded protein response factor ATF6 augments T helper cell responses and promotes mixed granulocytic airway inflammation. Mucosal Immunol 2023; 16:499-512. [PMID: 37209959 PMCID: PMC10530451 DOI: 10.1016/j.mucimm.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
The unfolded protein response (UPR) is associated with the risk of asthma, including treatment-refractory severe asthma. Recent studies demonstrated a pathogenic role of activating transcription factor 6a (ATF6a or ATF6), an essential UPR sensor, in airway structural cells. However, its role in T helper (TH) cells has not been well examined. In this study, we found that ATF6 was selectively induced by signal transducer and activator of transcription6 (STAT6) and STAT3 in TH2 and TH17 cells, respectively. ATF6 upregulated UPR genes and promoted the differentiation and cytokine secretion of TH2 and TH17 cells. T cell-specific Atf6-deficiency impaired TH2 and TH17 responses in vitro and in vivo and attenuated mixed granulocytic experimental asthma. ATF6 inhibitor Ceapin A7 suppressed the expression of ATF6 downstream genes and TH cell cytokines by both murine and human memory clusters of differentiation 4 (CD4)+ T cells. At the chronic stage of asthma, administration of Ceapin A7 lessened TH2 and TH17 responses, leading to alleviation of both airway neutrophilia and eosinophilia. Thus, our results demonstrate a critical role of ATF6 in TH2 and TH17 cell-driven mixed granulocytic airway disease, suggesting a novel option to combat steroid-resistant mixed and even T2-low endotypes of asthma by targeting ATF6.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Kourtney M Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Ruoning Wang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Russell Hunter
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA; Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA.
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
23
|
Wu D, Zhang X, Zimmerly KM, Wang R, Livingston A, Iwawaki T, Kumar A, Wu X, Mandell MA, Liu M, Yang XO. Unconventional Activation of IRE1 Enhances TH17 Responses and Promotes Neutrophilic Airway Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547286. [PMID: 37461622 PMCID: PMC10349957 DOI: 10.1101/2023.06.30.547286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Treatment-refractory severe asthma manifests a neutrophilic phenotype associated with TH17 responses. Heightened unfolded protein responses (UPRs) are associated with the risk of asthma, including severe asthma. However, how UPRs participate in the deregulation of TH17 cells leading to this type of asthma remains elusive. In this study, we investigated the role of the UPR sensor IRE1 in TH17 cell function and neutrophilic airway inflammation. We found that IRE1 is induced in fungal asthma and is highly expressed in TH17 cells relative to naïve CD4+ T cells. Cytokine (e.g. IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by TH17 cells. Ern1 (encoding IRE1)-deficiency decreases the expression of ER stress factors and impairs the differentiation and cytokine secretion of TH17 cells. Genetic ablation of Ern1 leads to alleviated TH17 responses and airway neutrophilia in a Candida albicans asthma model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances TH17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPRmediated secretory function of TH17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in TH17-biased TH2-low asthma.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kourtney M. Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Ruoning Wang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Amanda Livingston
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
24
|
Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol 2023; 14:1149203. [PMID: 37377958 PMCID: PMC10291091 DOI: 10.3389/fimmu.2023.1149203] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Prosperous advances in understanding the cellular and molecular mechanisms of chronic inflammation and airway remodeling in asthma have been made over the past several decades. Asthma is a chronic inflammatory disease of the airways characterized by reversible airway obstruction that is self-resolving or remits with treatment. Around half of asthma patients are "Type-2-high" asthma with overexpression of type 2 inflammatory pathways and elevated type 2 cytokines. When stimulated by allergens, airway epithelial cells secrete IL-25, IL-33, and TSLP to derive a Th2 immune response. First ILC2 followed by Th2 cells produces a series of cytokines such as IL-4, IL-5, and IL-13. TFH cells control IgE synthesis by secreting IL-4 to allergen-specific B cells. IL-5 promotes eosinophil inflammation, while IL-13 and IL-4 are involved in goblet cell metaplasia and bronchial hyperresponsiveness. Currently, "Type-2 low" asthma is defined as asthma with low levels of T2 biomarkers due to the lack of reliable biomarkers, which is associated with other Th cells. Th1 and Th17 are capable of producing cytokines that recruit neutrophils, such as IFN-γ and IL-17, to participate in the development of "Type-2-low" asthma. Precision medicine targeting Th cells and related cytokines is essential in the management of asthma aiming at the more appropriate patient selection and better treatment response. In this review, we sort out the pathogenesis of Th cells in asthma and summarize the therapeutic approaches involved as well as potential research directions.
Collapse
Affiliation(s)
| | - Hequan Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Ouyang L, Su G, Quan J, Xiong Z, Lai T. Emerging roles and therapeutic implications of HDAC2 and IL-17A in steroid-resistant asthma. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:108-112. [PMID: 39170824 PMCID: PMC11332885 DOI: 10.1016/j.pccm.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 08/23/2024]
Abstract
Steroid resistance represents a major clinical problem in the treatment of severe asthma, and therefore a better understanding of its pathogenesis is warranted. Recent studies indicated that histone deacetylase 2 (HDAC2) and interleukin 17A (IL-17A) play important roles in severe asthma. HDAC2 activity is reduced in patients with severe asthma and smoking-induced asthma, perhaps accounting for the amplified expression of inflammatory genes, which is associated with increased acetylation of glucocorticoid receptors. Neutrophilic inflammation contributes to severe asthma and may be related to T helper (Th) 17 rather than Th2 cytokines. IL-17A levels are elevated in severe asthma and correlate with the presence of neutrophils. Restoring the activity of HDAC2 or targeting the Th17 signaling pathway is a potential therapeutic approach to reverse steroid insensitivity.
Collapse
Affiliation(s)
- Lihuan Ouyang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Guomei Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jingyun Quan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhilin Xiong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Tianwen Lai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
26
|
Matsuyama T, Machida K, Mizuno K, Matsuyama H, Dotake Y, Shinmura M, Takagi K, Inoue H. The Functional Role of Group 2 Innate Lymphoid Cells in Asthma. Biomolecules 2023; 13:893. [PMID: 37371472 DOI: 10.3390/biom13060893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation. Group 2 innate lymphoid cells (ILC2) play an important role in the pathogenesis of asthma. ILC2s lack antigen-specific receptors and respond to epithelial-derived cytokines, leading to the induction of airway eosinophilic inflammation in an antigen-independent manner. Additionally, ILC2s might be involved in the mechanism of steroid resistance. Numerous studies in both mice and humans have shown that ILC2s induce airway inflammation through inflammatory signals, including cytokines and other mediators derived from immune or non-immune cells. ILC2s and T helper type 2 (Th2) cells collaborate through direct and indirect interactions to organize type 2 immune responses. Interestingly, the frequencies or numbers of ILC2 are increased in the blood and bronchoalveolar lavage fluid of asthma patients, and the numbers of ILC2s in the blood and sputum of severe asthmatics are significantly larger than those of mild asthmatics. These findings may contribute to the regulation of the immune response in asthma. This review article highlights our current understanding of the functional role of ILC2s in asthma.
Collapse
Affiliation(s)
- Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromi Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yoichi Dotake
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masahiro Shinmura
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
27
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
28
|
Brown MA, Morgan SB, Donachie GE, Horton KL, Pavord ID, Arancibia-Cárcamo CV, Hinks TSC. Epithelial immune activation and intracellular invasion by non-typeable Haemophilus influenzae. Front Cell Infect Microbiol 2023; 13:1141798. [PMID: 37180449 PMCID: PMC10167379 DOI: 10.3389/fcimb.2023.1141798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Type-2 low asthma affects 30-50% of people with severe asthma and includes a phenotype characterized by sputum neutrophilia and resistance to corticosteroids. Airways inflammation in type-2 low asthma or COPD is potentially driven by persistent bacterial colonization of the lower airways by bacteria such as non-encapsulated Haemophilus influenzae (NTHi). Although pathogenic in the lower airways, NTHi is a commensal of the upper airways. It is not known to what extent these strains can invade airway epithelial cells, persist intracellularly and activate epithelial cell production of proinflammatory cytokines, and how this differs between the upper and lower airways. We studied NTHi infection of primary human bronchial epithelial cells (PBECs), primary nasal epithelial cells (NECs) and epithelial cell lines from upper and lower airways. NTHi strains differed in propensity for intracellular and paracellular invasion. We found NTHi was internalized within PBECs at 6 h, but live intracellular infection did not persist at 24 h. Confocal microscopy and flow cytometry showed NTHi infected secretory, ciliated and basal PBECs. Infection of PBECs led to induction of CXCL8, interleukin (IL)-1β, IL-6 and TNF. The magnitude of cytokine induction was independent of the degree of intracellular invasion, either by differing strains or by cytochalasin D inhibition of endocytosis, with the exception of the inflammasome-induced mediator IL-1β. NTHi-induced activation of TLR2/4, NOD1/2 and NLR inflammasome pathways was significantly stronger in NECs than in PBECs. These data suggest that NTHi is internalized transiently by airway epithelial cells and has capacity to drive inflammation in airway epithelial cells.
Collapse
Affiliation(s)
- Mary A. Brown
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gillian E. Donachie
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Katie L. Horton
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Ian D. Pavord
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Quoc QL, Cao TBT, Kim SH, Choi Y, Ryu MS, Choi Y, Park HS, Shin YS. Endocrine-disrupting chemical exposure augments neutrophilic inflammation in severe asthma through the autophagy pathway. Food Chem Toxicol 2023; 175:113699. [PMID: 36871881 DOI: 10.1016/j.fct.2023.113699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Corticosteroid resistance, progressive lung function decline, and frequent asthma exacerbations are the hallmarks of neutrophilic asthma (NA). However, the potential contributors and their mechanisms of NA aggravation have not yet been fully clarified. This study was conducted to assess the precise mechanism and inflammatory effects of endocrine-disrupting chemicals using mono-n-butyl phthalate (MnBP) on an NA model. BALB/c mice from normal control and LPS/OVA-induced NA groups were treated with or without MnBP. The effects of MnBP on the airway epithelial cells (AECs), macrophages (Mφ), and neutrophils were investigated in vitro and in vivo. NA mice exposed to MnBP had significantly increased airway hyperresponsiveness, total and neutrophil cell counts in the bronchoalveolar lavage fluid, and the percentage of M1Mφ in the lung tissues compared to those non-exposed to MnBP. In in vitro study, MnBP induced the human neutrophil activation to release neutrophil DNA extracellular traps, Mφ polarizing toward M1Mφ, and AEC damage. Treatment with hydroxychloroquine (an autophagy inhibitor) reduced the effects of MnBP in vivo and in vitro. The results of our study suggest that MnBP exposure may increase the risk of neutrophilic inflammation in severe asthma and autophagy pathway-targeted therapeutics can help control MnBP-induced harmful effects in asthma.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Seo-Hee Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Yeji Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
30
|
Tinè M, Padrin Y, Bonato M, Semenzato U, Bazzan E, Conti M, Saetta M, Turato G, Baraldo S. Extracellular Vesicles (EVs) as Crucial Mediators of Cell-Cell Interaction in Asthma. Int J Mol Sci 2023; 24:ijms24054645. [PMID: 36902079 PMCID: PMC10003413 DOI: 10.3390/ijms24054645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Asthma is the most common chronic respiratory disorder worldwide and accounts for a huge health and economic burden. Its incidence is rapidly increasing but, in parallel, novel personalized approaches have emerged. Indeed, the improved knowledge of cells and molecules mediating asthma pathogenesis has led to the development of targeted therapies that significantly increased our ability to treat asthma patients, especially in severe stages of disease. In such complex scenarios, extracellular vesicles (EVs i.e., anucleated particles transporting nucleic acids, cytokines, and lipids) have gained the spotlight, being considered key sensors and mediators of the mechanisms controlling cell-to-cell interplay. We will herein first revise the existing evidence, mainly by mechanistic studies in vitro and in animal models, that EV content and release is strongly influenced by the specific triggers of asthma. Current studies indicate that EVs are released by potentially all cell subtypes in the asthmatic airways, particularly by bronchial epithelial cells (with different cargoes in the apical and basolateral side) and inflammatory cells. Such studies largely suggest a pro-inflammatory and pro-remodelling role of EVs, whereas a minority of reports indicate protective effects, particularly by mesenchymal cells. The co-existence of several confounding factors-including technical pitfalls and host and environmental confounders-is still a major challenge in human studies. Technical standardization in isolating EVs from different body fluids and careful selection of patients will provide the basis for obtaining reliable results and extend their application as effective biomarkers in asthma.
Collapse
Affiliation(s)
- Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Ylenia Padrin
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Matteo Bonato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
- Pulmonology Unit, Ospedale Cà Foncello, Azienda Unità Locale Socio-Sanitaria 2 Marca Trevigiana, 31100 Treviso, Italy
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128 Padova, Italy
- Correspondence:
| |
Collapse
|
31
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
32
|
O'Byrne PM, Panettieri RA, Taube C, Brindicci C, Fleming M, Altman P. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther 2023; 78:102184. [PMID: 36535465 DOI: 10.1016/j.pupt.2022.102184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, acts as a key mediator in airway inflammation and modulates the function of multiple cell types, including dendritic cells and group 2 innate lymphoid cells. TSLP plays a role in asthma pathogenesis as an upstream cytokine, and data suggest that TSLP blockade with the anti-TSLP monoclonal antibody, tezepelumab, could be efficacious in a broad asthma population. Currently approved asthma biologic therapies target allergic or eosinophilic disease and require phenotyping; therefore, an unmet need exists for a therapy that can address Type 2 (T2)-high and T2-low inflammation in asthma. All currently approved biologic treatments are delivered intravenously or subcutaneously; an inhaled therapy route that allows direct targeting of the lung with reduced systemic impact may offer advantages. Currently in development, ecleralimab (CSJ117) represents the first inhaled anti-TSLP antibody fragment that binds soluble TSLP and prevents TSLP receptor activation, thereby inhibiting further inflammatory signalling cascades. This anti-TSLP antibody fragment is being developed for patients with severe uncontrolled asthma despite standard of care inhaled therapy. A Phase IIa proof of concept study, using allergen bronchoprovocation as a model for asthma exacerbations, found that ecleralimab was well-tolerated and reduced allergen-induced bronchoconstriction in adult patients with mild asthma. These results suggest ecleralimab may be a promising, new therapeutic class for asthma treatment.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada.
| | | | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, New Jersey, USA.
| |
Collapse
|
33
|
Thio CLP, Lai ACY, Wang JC, Chi PY, Chang YL, Ting YT, Chen SY, Chang YJ. Identification of a PD-L1+Tim-1+ iNKT subset that protects against fine particulate matter-induced airway inflammation. JCI Insight 2022; 7:164157. [PMID: 36477357 PMCID: PMC9746902 DOI: 10.1172/jci.insight.164157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
Although air pollutants such as fine particulate matter (PM2.5) are associated with acute and chronic lung inflammation, the etiology of PM2.5-induced airway inflammation remains poorly understood. Here we report that PM2.5 triggered airway hyperreactivity (AHR) and neutrophilic inflammation with concomitant increases in Th1 and Th17 responses and epithelial cell apoptosis. We found that γδ T cells promoted neutrophilic inflammation and AHR through IL-17A. Unexpectedly, we found that invariant natural killer T (iNKT) cells played a protective role in PM2.5-induced pulmonary inflammation. Specifically, PM2.5 activated a suppressive CD4- iNKT cell subset that coexpressed Tim-1 and programmed cell death ligand 1 (PD-L1). Activation of this suppressive subset was mediated by Tim-1 recognition of phosphatidylserine on apoptotic cells. The suppressive iNKT subset inhibited γδ T cell expansion and intrinsic IL-17A production, and the inhibitory effects of iNKT cells on the cytokine-producing capacity of γδ T cells were mediated in part by PD-1/PD-L1 signaling. Taken together, our findings underscore a pathogenic role for IL-17A-producing γδ T cells in PM2.5-elicited inflammation and identify PD-L1+Tim-1+CD4- iNKT cells as a protective subset that prevents PM2.5-induced AHR and neutrophilia by inhibiting γδ T cell function.
Collapse
Affiliation(s)
| | | | - Jo-Chiao Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Lin Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Tse Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Mostafa DHD, Hemshekhar M, Piyadasa H, Altieri A, Halayko AJ, Pascoe CD, Mookherjee N. Characterization of sex-related differences in allergen house dust mite-challenged airway inflammation, in two different strains of mice. Sci Rep 2022; 12:20837. [PMID: 36460835 PMCID: PMC9718733 DOI: 10.1038/s41598-022-25327-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Biological sex impacts disease prevalence, severity and response to therapy in asthma, however preclinical studies often use only one sex in murine models. Here, we detail sex-related differences in immune responses using a house dust mite (HDM)-challenge model of acute airway inflammation, in adult mice of two different strains (BALB/c and C57BL/6NJ). Female and male mice were challenged (intranasally) with HDM extract (~ 25 μg) for 2 weeks (N = 10 per group). Increase in serum HDM-specific IgE showed a female bias, which was statistically significant in BALB/c mice. We compared naïve and HDM-challenged mice to define immune responses in the lungs by assessing leukocyte accumulation in the bronchoalveolar lavage fluid (BALF), and profiling the abundance of 29 different cytokines in BALF and lung tissue lysates. Our results demonstrate specific sex-related and strain-dependent differences in airway inflammation. For example, HDM-driven accumulation of neutrophils, eosinophils and macrophages were significantly higher in females compared to males, in BALB/c mice. In contrast, HDM-mediated eosinophil accumulation was higher in males compared to females, in C57BL/6NJ mice. Differences in lung cytokine profiles indicated that HDM drives a T-helper (Th)17-biased response with higher IL-17 levels in female BALB/c mice compared to males, whereas female C57BL/6NJ mice elicit a mixed Th1/Th2-skewed response. Male mice of both strains showed higher levels of specific Th2-skewed cytokines, such as IL-21, IL-25 and IL-9, in response to HDM. Overall, this study details sex dimorphism in HDM-mediated airway inflammation in mice, which will be a valuable resource for preclinical studies in allergic airway inflammation and asthma.
Collapse
Affiliation(s)
- Dina H. D. Mostafa
- grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada ,grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Mahadevappa Hemshekhar
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Hadeesha Piyadasa
- grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada ,grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA 94304 USA
| | - Anthony Altieri
- grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada ,grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Andrew J. Halayko
- grid.21613.370000 0004 1936 9609Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| | - Christopher D. Pascoe
- grid.21613.370000 0004 1936 9609Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| | - Neeloffer Mookherjee
- grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada ,grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
35
|
Identification of miRNA-mRNA-TFs regulatory network and crucial pathways involved in asthma through advanced systems biology approaches. PLoS One 2022; 17:e0271262. [PMID: 36264868 PMCID: PMC9584516 DOI: 10.1371/journal.pone.0271262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.
Collapse
|
36
|
Brown MA, Jabeen M, Bharj G, Hinks TSC. Non-typeable Haemophilus influenzae airways infection: the next treatable trait in asthma? Eur Respir Rev 2022; 31:220008. [PMID: 36130784 PMCID: PMC9724834 DOI: 10.1183/16000617.0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a complex, heterogeneous condition that affects over 350 million people globally. It is characterised by bronchial hyperreactivity and airways inflammation. A subset display marked airway neutrophilia, associated with worse lung function, higher morbidity and poor response to treatment. In these individuals, recent metagenomic studies have identified persistent bacterial infection, particularly with non-encapsulated strains of the Gram-negative bacterium Haemophilus influenzae. Here we review knowledge of non-typeable H. influenzae (NTHi) in the microbiology of asthma, the immune consequences of mucosal NTHi infection, various immune evasion mechanisms, and the clinical implications of NTHi infection for phenotyping and targeted therapies in neutrophilic asthma. Airway neutrophilia is associated with production of neutrophil chemokines and proinflammatory cytokines in the airways, including interleukin (IL)-1β, IL-6, IL-8, IL-12, IL-17A and tumour necrosis factor. NTHi adheres to and invades the lower respiratory tract epithelium, inducing the NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes. NTHi reduces expression of tight-junction proteins, impairing epithelial integrity, and can persist intracellularly. NTHi interacts with rhinoviruses synergistically via upregulation of intracellular cell adhesion molecule 1 and promotion of a neutrophilic environment, to which NTHi is adapted. We highlight the clinical relevance of this emerging pathogen and its relevance for the efficacy of long-term macrolide therapy in airways diseases, we identify important unanswered questions and we propose future directions for research.
Collapse
Affiliation(s)
- Mary Ashley Brown
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Maisha Jabeen
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Gurpreet Bharj
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Wang B, Hou X, Sun Y, Lei C, Yang S, Zhu Y, Jiang Y, Song L. Interleukin-17A influences the vulnerability rather than the size of established atherosclerotic plaques in apolipoprotein E-deficient mice. Open Life Sci 2022; 17:1104-1115. [PMID: 36133421 PMCID: PMC9462543 DOI: 10.1515/biol-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Interleukin (IL)-17A plays a role in the development of atherosclerotic plaques; however, the mechanism remains unclear. In this study, apolipoprotein E-deficient (ApoE–/–) mice were fed a high-fat diet to induce atherosclerosis, followed by the treatment with exogenous recombinant IL-17A or the neutralizing antibody to confirm the impact of IL-17A on the established atherosclerotic plaques. We found that both the stimulation of IL-17A and blockage of endogenous IL-17 via antibody did not affect the size of the established plaques. However, IL-17A significantly increased the vulnerability of plaques characterized by the accumulation of lipids and T cells with a concurrent decrease in the number of smooth muscle cells. In addition, the blockage by IL-17 neutralizing antibody attenuated plaque vulnerability. Furthermore, we found that although IL-17A did not affect the efferocytosis of macrophages to apoptotic cells, it promoted the apoptosis of macrophages in the presence of oxidized low-density lipoprotein in vitro. Also, IL-17A upregulated chemokines MCP-1 and CXCL-10 expression in the plaques. Our data indicated that IL-17A controlled both SMC and macrophage accumulation and the apoptosis within the plaque, which may further weaken the aorta wall. This study suggests that IL-17A may be a potential therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Yaning Sun
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Chao Lei
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Sha Yang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Yao Zhu
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Yingming Jiang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Li Song
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining City, 272067, Shandong Province, China
| |
Collapse
|
38
|
Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022; 11:cells11172764. [PMID: 36078171 PMCID: PMC9454904 DOI: 10.3390/cells11172764] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a heterogeneous lung disease with variable phenotypes (clinical presentations) and distinctive endotypes (mechanisms). Over the last decade, considerable efforts have been made to dissect the cellular and molecular mechanisms of asthma. Aberrant T helper type 2 (Th2) inflammation is the most important pathological process for asthma, which is mediated by Th2 cytokines, such as interleukin (IL)-5, IL-4, and IL-13. Approximately 50% of mild-to-moderate asthma and a large portion of severe asthma is induced by Th2-dependent inflammation. Th2-low asthma can be mediated by non-Th2 cytokines, including IL-17 and tumor necrosis factor-α. There is emerging evidence to demonstrate that inflammation-independent processes also contribute to asthma pathogenesis. Protein kinases, adapter protein, microRNAs, ORMDL3, and gasdermin B are newly identified molecules that drive asthma progression, independent of inflammation. Eosinophils, IgE, fractional exhaled nitric oxide, and periostin are practical biomarkers for Th2-high asthma. Sputum neutrophils are easily used to diagnose Th2-low asthma. Despite progress, more studies are needed to delineate complex endotypes of asthma and to identify new and practical biomarkers for better diagnosis, classification, and treatment.
Collapse
|
39
|
Oral Bacille Calmette-Guérin (BCG) vaccination induces long-term potentiation of memory immune response to Ovalbumin airway challenge in mice. Immunol Lett 2022; 249:43-52. [PMID: 36031026 DOI: 10.1016/j.imlet.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
The Bacille Calmette-Guérin (BCG) is a potent immunomodulator. It was initially used by oral administration, but it is mostly used subcutaneously nowadays. This study shows that oral BCG vaccination modifies the immune response to a second non-related antigen (Ovalbumin) systemic immunization. Airway Ovalbumin challenge six months after the systemic intraperitoneal immunization resulted in a potent γδ+ T cell response in the lungs biased to IFN-γ and IL-17 production ex vivo and a mixed Th1, Th2, and Th17 T cells upon further stimulation with anti-CD3 mAb in vitro. Higher percentages of CD4+ T cells accompanied the augmented T cell response in oral BCG vaccinated mice. Also, the proportion of Foxp-3+ Tregs was diminished compared to PBS-gavaged and OVA-immunized mice. The anti-OVA-specific antibody response was also influenced by oral exposure to BCG so that these mice produced more IgG2a and less IgE detected in the sera. These results suggest that oral BCG vaccination can modify future immune responses to vaccines and improve immunity to pathogen infections, especially in the mucosal interfaces.
Collapse
|
40
|
El-Shal AS, Shalaby SM, Abdel-Nour HM, Sarhan WM, Hamed Gehad M, Mohamed Yousif Y. Impact of cytokines genes polymorphisms and their serum levels on childhood asthma in Egyptian population. Cytokine 2022; 157:155933. [PMID: 35728502 DOI: 10.1016/j.cyto.2022.155933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Asthma is chronic immune-mediated airway inflammation, and it is affected by a complex network of interacting cytokines. To date, the exact role of each cytokine and its genetic polymorphisms in childhood asthma development and its severity has remained poorly understood. The purpose of this study was to explore potential roles of four cytokine genes polymorphism and serum levels l [(T helper-2 (Th2) cytokine); Interleukin-4 (IL-4) 590, (Th3 cytokine); and transforming growth factor β1 (TGF-β1) 509T; (Th17) including tumor necrosis factor-alpha (TNF-α), and IL17A rs8193036] in childhood asthma risk and control in Egyptian children, for the 1st time. MATERIALS AND METHODS This case-control study included two children subgroups; Group1 included 216 non-asthmatic controls and (Group 2) 216 cases diagnosed with asthma (clinically and spirometry-based) were classified as controlled, partly controlled, and uncontrolled. Polymorphisms of TGF-β1-509, IL-4 590, and TNF-α-308 genes were detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). IL-17 was genotyped using tetra-primer amplification refractory mutation system polymerase chain reaction (ARMS-PCR). Serum cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Serum total IgE, TGF-β1, IL4, TNF-α, and IL17A levels were significantly higher in asthmatic compared to controls. Also, significant increases in serum total IgE, IL-4, TGF-β1, and TNF-α levels are combined with poor asthma control, while no significant IL17A changes. There were significant changes of IL-4-590, TNF-α-308, and IL17A genotypes and allele distributions between asthmatic and controls groups as well as different asthma control levels; while no impact of TGF-β1 SNP on asthma risk and control level. Four cytokines SNPs affected their serum levels among asthmatic patients. CONCLUSION There are impacts of cytokine gene polymorphisms (IL-4-590, TNF-α-308, and IL17A); but not TGF-β1 on asthma susceptibility and poor asthma control in Egyptian children.
Collapse
Affiliation(s)
- Amal S El-Shal
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Medical Biochemistry and Molecular Biology Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt.
| | - Sally M Shalaby
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanim M Abdel-Nour
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa M Sarhan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona Hamed Gehad
- Pediatrics Department, Faculty of Medicine, Zagazig University, Egypt
| | | |
Collapse
|
41
|
Bożek A, Zalejska Fiolka J, Czuba Z, Miodońska M, Kozłowska R. Allergy to Der p 23 influences the cytokine profile in patients with allergic asthma - a preliminary study. J Asthma 2022; 59:2491-2494. [PMID: 35645174 DOI: 10.1080/02770903.2022.2083635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Der p 23 is a major allergen of Dermatophagoides pteronyssinus, which could contribute to allergic asthma. The study compared the cytokine profile (Il-1beta, Il-4, Il-5, Il-6, Il-13, Il-17, TNF-alpha) in patients with allergic asthma, with confirmed allergy to D. pteronyssinus and with the presence or absence of allergy to Der p 23. METHODS Among 173 included patients, the following combinations were analyzed: profile A - Der p 1 (+), Der p 2 (+), and Der p 23 (-) observed in 38 (22%) patients; profile B - Der p 1 (+), Der p 2 (+), and Der p 23 (+) in 87 (50.3%) patients; and profile C - Der p 1 (-), Der p 2 (-), and Der p 23 (+) in 15 (8.7%) patients. RESULTS The mean concentration of Il-1beta was significantly lower in profile A than in profiles B and C: 10.51 ± 5.22 (pg/ml) vs. 21.92 ± 11.34 vs. 23.1 ± 8.56 (A vs. B for p = 0.03 and A vs. C for p = 0.019). Similar trends were observed for Il-5: 38.5 ± 10.45 (pg/ml) vs. 94.8 ± 54.11 vs. 103.61 ± 34.9 (A vs. B for p = 0.008 and A vs. C for p = 0.001). CONCLUSION The higher Il-1 and Il-5 activities observed in profiles B and C with Der p 23 (+) could be responsible for the more effective acceleration of allergic inflammation than in profile A with Der p 23.
Collapse
Affiliation(s)
- Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Department of Internal Diseases, Dermatology and Allergology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jolanta Zalejska Fiolka
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Martyna Miodońska
- Clinical Department of Internal Diseases and Geriatrics, Department of Internal Diseases, Dermatology and Allergology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Renata Kozłowska
- Clinical Department of Internal Diseases and Geriatrics, Department of Internal Diseases, Dermatology and Allergology, Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
42
|
John C, Guyatt AL, Shrine N, Packer R, Olafsdottir TA, Liu J, Hayden LP, Chu SH, Koskela JT, Luan J, Li X, Terzikhan N, Xu H, Bartz TM, Petersen H, Leng S, Belinsky SA, Cepelis A, Hernández Cordero AI, Obeidat M, Thorleifsson G, Meyers DA, Bleecker ER, Sakoda LC, Iribarren C, Tesfaigzi Y, Gharib SA, Dupuis J, Brusselle G, Lahousse L, Ortega VE, Jonsdottir I, Sin DD, Bossé Y, van den Berge M, Nickle D, Quint JK, Sayers I, Hall IP, Langenberg C, Ripatti S, Laitinen T, Wu AC, Lasky-Su J, Bakke P, Gulsvik A, Hersh CP, Hayward C, Langhammer A, Brumpton B, Stefansson K, Cho MH, Wain LV, Tobin MD. Genetic Associations and Architecture of Asthma-COPD Overlap. Chest 2022; 161:1155-1166. [PMID: 35104449 PMCID: PMC9131047 DOI: 10.1016/j.chest.2021.12.674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.
Collapse
Affiliation(s)
- Catherine John
- Department of Health Sciences, University of Leicester, Leicester, England.
| | - Anna L Guyatt
- Department of Health Sciences, University of Leicester, Leicester, England
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, England
| | - Richard Packer
- Department of Health Sciences, University of Leicester, Leicester, England
| | | | - Jiangyuan Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lystra P Hayden
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jukka T Koskela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, England
| | - Xingnan Li
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine and Department of Biostatistics, University of Washington, Seattle, WA
| | - Hans Petersen
- Lovelace Respiratory Research Institute, Albuquerque, NM
| | - Shuguang Leng
- Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM
| | | | - Aivaras Cepelis
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Levanger, Norway
| | | | - Ma'en Obeidat
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Gudmar Thorleifsson
- deCODE Genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA
| | | | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology and UW Medicine Sleep Center, Medicine, University of Washington, Seattle, WA
| | - Josée Dupuis
- Cardiovascular Health Research Unit, Department of Medicine and Department of Biostatistics, University of Washington, Seattle, WA
| | - Guy Brusselle
- Department of Biostatistics, Boston University School of Public Health, Boston, MA; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Victor E Ortega
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec, QC, Canada
| | - Maarten van den Berge
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, and GRIAC Research Institute, Groningen, the Netherlands
| | - David Nickle
- Global Health, University of Washington, Seattle, WA; Gossamer Bio, San Diego, CA
| | - Jennifer K Quint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ian Sayers
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England; Biodiscovery Institute, University of Nottingham, Nottingham, England
| | - Ian P Hall
- Division of Respiratory Medicine and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, England
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, England
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Tarja Laitinen
- Division of Medicine, Department of Pulmonary Diseases, Turku University Hospital, Turku, Finland; Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
| | - Ann C Wu
- Center for Healthcare Research in Pediatrics (CHeRP) and PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Arnulf Langhammer
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Levanger, Norway
| | - Ben Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Thoracic and Occupational Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, England; Leicester NIHR Biomedical Research Centre, Leicester, England
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, England; Leicester NIHR Biomedical Research Centre, Leicester, England
| |
Collapse
|
43
|
Tabaa MME, Fattah AMK, Shaalan M, Rashad E, El Mahdy NA. Dapagliflozin mitigates ovalbumin-prompted airway inflammatory-oxidative successions and associated bronchospasm in a rat model of allergic asthma. Expert Opin Ther Targets 2022; 26:487-506. [PMID: 35549595 DOI: 10.1080/14728222.2022.2077723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/11/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory lung disease that universally affects millions of people. Despite numerous well-defined medications, asthma is poorly managed. This study aims to clarify the potential therapeutic effect of Dapagliflozin (DAPA) against lung inflammation, oxidative stress, and associated bronchospasm in OVA-sensitized rat asthma model. RESEARCH DESIGN AND METHODS Twenty-five rats were allocated into (Control, Asthma, DEXA, DAPA, and DAPA+DEXA). All treatments were administered orally once a day for two weeks. The BALF levels of IL-17, TNFα, IL-1β, and MCP-1 were determined to assess airway inflammation. For oxidative stress determination, BALF MDA levels and TAC were measured. The BALF S100A4 level and NO/sGC/cGMP pathway were detected. Lung histopathological findings and immunohistochemical investigation of eNOS and iNOS activities were recorded. RESULTS DAPA significantly reduced (p < 0.001) airway inflammatory-oxidative markers (IL-17, TNFα, IL-1β, MCP1, and MDA), but increased (p < 0.001) TAC, and mitigated bronchospasm by activating NO/sGC/cGMP and reducing S100A4 (p < 0.001). The biochemical and western blot studies were supported by histopathological and immunohistochemical investigations. CONCLUSIONS DAPA presents a new prospective possibility for future asthma therapy due to its anti-inflammatory, anti-oxidant, and bronchodilator properties. DAPA has the property of reducing Dexamethasone (DEXA)-associated unfavorable effects during asthma treatment.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, Egypt
| | | | - Mohamed Shaalan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nageh Ahmed El Mahdy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
44
|
Ekpruke CD, Silveyra P. Sex Differences in Airway Remodeling and Inflammation: Clinical and Biological Factors. FRONTIERS IN ALLERGY 2022; 3:875295. [PMID: 35769576 PMCID: PMC9234861 DOI: 10.3389/falgy.2022.875295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Patricia Silveyra
| |
Collapse
|
45
|
Mann TS, Larcombe AN, Wang KCW, Shamsuddin D, Landwehr KR, Noble PB, Henry PJ. Azithromycin inhibits mucin secretion, mucous metaplasia, airway inflammation and airways hyperresponsiveness in mice exposed to house dust mite extract. Am J Physiol Lung Cell Mol Physiol 2022; 322:L683-L698. [PMID: 35348023 DOI: 10.1152/ajplung.00487.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excessive production, secretion and retention of abnormal mucus is a pathologic feature of many obstructive airways diseases including asthma, chronic obstructive pulmonary disease, cystic fibrosis and bronchiectasis. Azithromycin is an antibiotic that also possesses immunomodulatory and mucoregulatory activities, which may contribute to the clinical effectiveness of azithromycin in these obstructive airway diseases. The current study investigated these non-antibiotic activities of azithromycin (or saline) in mice exposed daily to intranasal house dust mite (HDM) extract (or SHAM inoculation) for 10 days. HDM-exposed mice exhibited airways hyperresponsiveness to aerosolised methacholine, a pronounced mixed eosinophilic and neutrophilic inflammatory response, increased airway smooth muscle (ASM) thickness and elevated levels of epithelial mucin staining (compared to SHAM mice). Azithromycin (50 mg/kg s.c., 2 h prior to each HDM exposure) significantly attenuated HDM-induced airways hyperresponsiveness to methacholine, airways inflammation (bronchoalveolar lavage eosinophil and neutrophils numbers, and cytokine/chemokine levels), and epithelial mucin staining (mucous metaplasia) (P<0.05, 2-way ANOVA). Isolated tracheal segments of HDM-exposed mice secreted Muc5ac and Muc5b (above baseline levels) in response to exogenous ATP. Moreover, ATP-induced secretion of mucins was significantly attenuated in segments obtained from azithromycin-treated, HDM-exposed mice (P<0.05, 2-way ANOVA). In additional ex vivo studies, ATP-induced secretion of Muc5ac from HDM-exposed tracheal segments was inhibited by in vitro exposure to azithromycin. In vitro azithromycin also inhibited ATP-induced secretion of Muc5ac and Muc5b in tracheal segments from IL-13-exposed mice. In summary, azithromycin inhibited ATP-induced mucin secretion and airways inflammation in HDM-exposed mice, both of which are likely to contribute to suppression of airways hyperresponsiveness.
Collapse
Affiliation(s)
- Tracy S Mann
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alexander N Larcombe
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia.,School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Kimberley C W Wang
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Danial Shamsuddin
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Katherine R Landwehr
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia.,School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter J Henry
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
46
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
47
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
48
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
49
|
Intranasal curcumin and dexamethasone combination ameliorates inflammasome (NLRP3) activation in lipopolysachharide exposed asthma exacerbations. Toxicol Appl Pharmacol 2022; 436:115861. [PMID: 34998855 DOI: 10.1016/j.taap.2021.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022]
Abstract
The inflammasome NOD-like receptor (NLR) family, the pyrin domain containing 3 (NLRP3) is closely associated with exacerbation of asthma as endotoxin (lipopolysaccharide, LPS) is one of its activators present in the environment. Present study is undertaken to investigate anti-inflammatory effects of a well known phytochemical, curcumin, which might regulate LPS exposed asthma exacerbations by modulating NLRP3 activation if given through intranasal route. Balb/c mice were sensitized with intraperitoneal injection of OVA (Ovalbumin; 100 μg of OVA with alum) from day 1 to 8 and exposed to LPS with 1% OVA aerosol from day 9 to 15. LPS (0.1 μg) was given an hour before sensitization and OVA-aerosol challenge. Significant decrease in inflammatory cell recruitment and restoration of structural changes in lungs, alterations in mRNA and protein expressions of TLR-4, NF-κB, NLRP3, Caspase-1, IL-1β, MMP-9, IL-5 and IL-17 in intranasal curcumin alone and corticosteroid combined pretreatment group.
Collapse
|
50
|
Ghirardo S, Mazzolai M, Di Marco A, Petreschi F, Ullmann N, Ciofi Degli Atti ML, Cutrera R. Biological Treatments and Target Therapies for Pediatric Respiratory Medicine: Not Only Asthma. Front Pediatr 2022; 10:837667. [PMID: 35242725 PMCID: PMC8885732 DOI: 10.3389/fped.2022.837667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
We present a description of pediatric pneumology biological medications and other target therapies. The article aims at introducing the importance of a molecular approach to improve treatments. The first item treated was T2-High asthma and its current biological treatment and prescribing indications to propose a flow-chart to guide the clinical choice. Molecular rationales of such treatments are used to introduce a more general description of the biological and molecular approach to target therapies application. We introduce a general interpretation approach to neutrophilic asthma using the molecular plausibility one in order to propose possible future treatments mainly targeting interleukin-1 (IL-1), IL-17, IL-12, and IL-23. Indeed, cytokines can be excellent targets for several biological treatments. Downregulation of specific cytokines can be crucial in treating autoinflammatory and rheumatological diseases with a pulmonary involvement. Such conditions, although rare, should be early recognized as they can involve significant improvement with a properly targeted therapy. We face these conditions in a cherry-picking fashion picturing SAVI (STING-associated vasculopathy with onset in infancy), CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature), and COPA (coat proteins alpha syndrome) syndrome pulmonary involvement. Such examples are functional to introduce molecular-based approach for patients with rare conditions. Molecular plausibility can be highly valuable in treating patients with not-approved but possibly highly effective therapies. Due to the rarity of these conditions, we stress the concept of basket trials using the example of cytokinin-directed immunosuppressive treatment. Lastly, we provide an example of augmentative therapy using the alpha1 antitrypsin deficiency as a model. In summary, the article presents a collection of the most recent achievements and some possible future developments of target therapies for pediatric pulmonary conditions.
Collapse
Affiliation(s)
- Sergio Ghirardo
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Clinical, Management and Technology Innovation Research Unit, Medical Direction, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Michele Mazzolai
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Antonio Di Marco
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesca Petreschi
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicola Ullmann
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marta Lucia Ciofi Degli Atti
- Clinical, Management and Technology Innovation Research Unit, Medical Direction, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Renato Cutrera
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|