1
|
Darawshy F, Tsay JCJ, Segal LN, Pass H. Microbial biomarker development for detection and prognosis of early-stage non-small cell lung cancer. Cancer Biomark 2025; 42:18758592251322045. [PMID: 40302376 DOI: 10.1177/18758592251322045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause for cancer-related mortality despite advances in treatment. Early detection is crucial for improving patient outcomes, yet current diagnostic and prognostic molecular biomarkers lack the sensitivity and specificity necessary to become clinically useful. Recent studies revealed that the lower airway microbiome play a role in NSCLC and that microbial signatures are associated with NSCLC development, progression, and prognosis, suggesting the potential for microbiome-based biomarkers for early diagnosis and risk stratification. Here we review recent advances in the role of the local and systemic microbiome in early-stage NSCLC. Primarily, several studies have identified specific microbial taxa associated with lung cancer suggesting novel insights into disease pathogenesis and progression. Integration of microbiome data with other 'omics' platforms, such as host transcriptomics and metabolomics, has the potential to enhance our understanding of microbial-host interactions and may provide more comprehensive biomarker signatures. While promising, challenges remain to the development of microbiome-based biomarkers such as those related to differences in samples utilized, sequencing methods, and data analysis. Here, we discuss such challenges as well as future directions for research needed to fulfil the promise of microbiome-based biomarkers for changing early detection and management strategies in NSCLC.
Collapse
Affiliation(s)
- Fares Darawshy
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Hadassah Medical Center, The Institute of Pulmonary Medicine, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jun-Chieh J Tsay
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Division of Pulmonary and Critical Care Medicine, VA New York Harbor Healthcare System, New York, NY, USA
| | - Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, NYU School of Medicine, New York, USA
| |
Collapse
|
2
|
Lin T, Chang P, Lo C, Chuang H, Lee C, Chang C, Yu C, Hsieh M, Liu C, Kuo CS, Lin S. Correlation Between mRNA Expression of Activated Eosinophils and Air Pollutant Exposure in Patients With Asthma. Immun Inflamm Dis 2024; 12:e70065. [PMID: 39575691 PMCID: PMC11582923 DOI: 10.1002/iid3.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Eosinophil activation is associated with asthma. Whether air pollution affects the activation of blood eosinophils in patients with asthma remains unknown. In this study, we investigated the correlation between transcriptional activity in eosinophils and air pollutant exposure in patients receiving different levels of Global Initiative for Asthma (GINA) treatment. METHODS We evaluated the expression levels of activation- and function-related genes in eosinophils from patients with GINA 4 or 5 (n = 20), those with GINA 3 (n = 12), and normal individuals (n = 7); the eosinophils were activated with interleukin (IL)-5 or IL-17. A land use regression model was used to estimate air pollutant exposure. The correlations between mRNA expression, lung function, and air pollutant exposure were investigated. RESULTS The expression levels of TGFB1, IL7R, and TLR3 were significantly higher for patients with GINA 4 or 5 than for those with GINA 3 or normal individuals. The expression of certain genes, particularly in IL-17-activated eosinophils, was correlated with lung function decline in patients with GINA 4 or 5. For patients with GINA 4 or 5, NO2 exposure was correlated with upregulated TGFB1 expression in IL-5-activated eosinophils. For patients with GINA 3, O3 exposure was correlated with upregulated CCR5, IL5RA, IL7R, and TGFB1 expression in IL-17-activated eosinophils and upregulated IL7R expression in IL-5-activated eosinophils. CONCLUSION Patients with GINA 4 or 5 may exhibit elevated transcriptional activity in eosinophils; this elevation is correlated with lung function decline. Air pollution may affect eosinophil mRNA expression in patients with asthma.
Collapse
Affiliation(s)
- Ting‐Yu Lin
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Po‐Jui Chang
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chun‐Yu Lo
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Hsiao‐Chi Chuang
- National Heart and Lung InstituteImperial College LondonLondonUK
- Division of Pulmonary Medicine, Department of Internal MedicineShuang Ho Hospital, Taipei Medical UniversityNew Taipei CityTaiwan
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Cell Physiology and Molecular Image Research CenterWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chung‐Shu Lee
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Pulmonary and Critical Care MedicineNew Taipei Municipal Tucheng HospitalNew Taipei CityTaiwan
| | - Chih‐Hao Chang
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Pulmonary and Critical Care MedicineNew Taipei Municipal Tucheng HospitalNew Taipei CityTaiwan
| | - Chih‐Teng Yu
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Meng‐Heng Hsieh
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chien‐Ying Liu
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chih‐Hsi Scott Kuo
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Shu‐Min Lin
- Department of Thoracic MedicineChang Gung Memorial HospitalTaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| |
Collapse
|
3
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Chatziparasidis G, Bush A, Chatziparasidi MR, Kantar A. Airway epithelial development and function: A key player in asthma pathogenesis? Paediatr Respir Rev 2023; 47:51-61. [PMID: 37330410 DOI: 10.1016/j.prrv.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Though asthma is a common and relatively easy to diagnose disease, attempts at primary or secondary prevention, and cure, have been disappointing. The widespread use of inhaled steroids has dramatically improved asthma control but has offered nothing in terms of altering long-term outcomes or reversing airway remodeling and impairment in lung function. The inability to cure asthma is unsurprising given our limited understanding of the factors that contribute to disease initiation and persistence. New data have focused on the airway epithelium as a potentially key factor orchestrating the different stages of asthma. In this review we summarize for the clinician the current evidence on the central role of the airway epithelium in asthma pathogenesis and the factors that may alter epithelial integrity and functionality.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece; Faculty of Nursing, Thessaly University, Greece.
| | - Andrew Bush
- National Heart and Lung Institute, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| |
Collapse
|
5
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
6
|
Wen X, Nian S, Wei G, Kang P, Yang Y, Li L, Ye Y, Zhang L, Wang S, Yuan Q. Changes in the phenotype and function of mucosal-associated invariant T cells in neutrophilic asthma. Int Immunopharmacol 2022; 106:108606. [PMID: 35180624 DOI: 10.1016/j.intimp.2022.108606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022]
Abstract
Asthma is a chronic heterogeneous inflammatory disease. Most neutrophilic asthma (NA) cases are severe asthma involving many inflammatory cells and mediators, although the specific pathogenesis is not clear. Mucosal-associated invariant T (MAIT) cells as innate-like T lymphocytes play an important role in the immune response in asthma by producing cytokines. In this study, we evaluated the phenotype and function of circulating MAIT cells in patients with NA and inflammatory-related cytokines in plasma and induced sputum supernatants using flow cytometry. The results showed that the frequency of circulating MAIT cells in asthma patients, particularly NA patients, decreased significantly, and CD8+ MAIT and MAIT Temra cells also decreased significantly. Increased expression of CD69 and PD-1 on MAIT cells indicated excessive activation and depletion, leading to the decrease in MAIT cells. Levels of IL-17A and TNF-α secreted by MAIT cells of NA patients increased, whereas IFN-γ levels decreased, indicating that MAIT cells in NA are biased to the Th17 subtype. MAIT cells were also negatively correlated with clinical parameters, indicating that these cells are related to asthma severity. Pro-inflammatory cytokines in plasma and sputum supernatant increased to varying degrees, whereas IL-10 declined, corresponding with asthma severity. We speculate that increased IL-17A and TNF-α synergistically stimulated respiratory epithelial cells to secrete IL-6 and IL-8, thereby recruiting neutrophils to inflammatory sites and aggravating asthma symptoms. Therefore, MAIT cells could serve as a potential therapeutic target in NA immunity, thus providing a new strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Xue Wen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, P.R. China.
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Gang Wei
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| | - Pengyuan Kang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yaqi Yang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Lulu Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Songping Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
7
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
8
|
Corrado A, Rotondo C, Sanpaolo ER, Altomare A, Maruotti N, Cici D, Cantatore FP. 1,25OH-Vitamin D3 and IL-17 Inhibition Modulate Pro-Fibrotic Cytokines Production in Peripheral Blood Mononuclear Cells of Patients with Systemic Sclerosis. Int J Med Sci 2022; 19:867-877. [PMID: 35693738 PMCID: PMC9149638 DOI: 10.7150/ijms.70984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives: IL-17 modulates the synthesis of several molecules involved in the pathogenesis of Systemic Sclerosis (SSc). Vitamin D (1,25(OH)2D3) shows anti-fibrotic properties and it is able to affect the IL-17 production in several experimental conditions. The aim of this study is to assess the production of IL-17A and pro-fibrotic cytokines in peripheral blood mononuclear cells (PBMCs) from subjects with SSc in basal conditions and after treatment with 1,25(OH)2D3 and IL-17A neutralizing antibodies. Methods: The production of IL-17A and pro-fibrotic cytokines (TGFβ, CTGF and FGF2) in PBMCs obtained from 51 SSc patients and 31 healthy subjects was assessed both in basal conditions and in presence of anti-IL17A antibodies and several concentrations of 1,25(OH)2D3. The association of cytokines production with clinical disease characteristics and the in vitro effect of 1,25(OH)2D3 and IL-17A inhibition were assessed. Results: PBMCs from SSc subjects produced higher amount IL-17A, TGFβ, CTGF and FGF2 compared to healthy controls. IL17, TGFβ, CTGF and FGF2 levels were higher in SSc patients with interstitial lung disease and digital ulcers, whereas IL-17A production was lower in patients with PAH. IL- 17A inhibition reduced the production of FGF2, whereas enhanced the synthesis of TGFβ and CTGF. 1,25(OH)2D3 decreased the production of IL17A and pro-fibrotic cytokines in a dose- dependent manner. Conclusions: IL-17A is involved in the regulation of fibrogenesis in SSc, and could represent an intriguing potential therapeutic target, even if its role remains controversial. 1,25(OH)2D3 inhibits both IL-17A and pro-fibrotic cytokines, confirming its potential anti-fibrotic effect.
Collapse
Affiliation(s)
- Addolorata Corrado
- Rheumatology Clinic - Department of Medical and Surgical Sciences, University of Foggia, Foggia- Italy
| | - Cinzia Rotondo
- Rheumatology Clinic - Department of Medical and Surgical Sciences, University of Foggia, Foggia- Italy
| | - Eliana Rita Sanpaolo
- Rheumatology Clinic - Department of Medical and Surgical Sciences, University of Foggia, Foggia- Italy
| | - Alberto Altomare
- Rheumatology Clinic - Department of Medical and Surgical Sciences, University of Foggia, Foggia- Italy
| | - Nicola Maruotti
- Rheumatology Clinic - Department of Medical and Surgical Sciences, University of Foggia, Foggia- Italy
| | - Daniela Cici
- Rheumatology Clinic - Department of Medical and Surgical Sciences, University of Foggia, Foggia- Italy
| | - Francesco Paolo Cantatore
- Rheumatology Clinic - Department of Medical and Surgical Sciences, University of Foggia, Foggia- Italy
| |
Collapse
|
9
|
Fung KY, Louis C, Metcalfe RD, Kosasih CC, Wicks IP, Griffin MDW, Putoczki TL. Emerging roles for IL-11 in inflammatory diseases. Cytokine 2021; 149:155750. [PMID: 34689057 DOI: 10.1016/j.cyto.2021.155750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.
Collapse
Affiliation(s)
- Ka Yee Fung
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| | - Cynthia Louis
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Ian P Wicks
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Rheumatology Unit, The Royal Melbourne Hospital, Victoria 3050, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| |
Collapse
|
10
|
Deng Y, Chen S, Song S, Huang Y, Chen R, Tao A. Anti-DLL4 ameliorates toluene diisocyanate-induced experimental asthma by inhibiting Th17 response. Int Immunopharmacol 2021; 94:107444. [PMID: 33578263 DOI: 10.1016/j.intimp.2021.107444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Toluene diisocyanate (TDI) exhibits an ability to induce steroid insensitive asthma with the involvement of Th17 cells. And emerging evidence has indicated that DLL4 signaling promotes Th17 differentiation through directly upregulating Rorc and IL-17 transcription. Thus, we sought to evaluate the effects of DLL4 blocking antibody on TDI-induced asthma model. Female BALB/c mice were sensitized and challenged with TDI to generate an asthma model. TDI-exposed mice were intraperitoneally injected with anti-DLL4 antibody and then analyzed for various parameters of the airway inflammatory responses. Increased expression of DLL4 in spleen and lung was detected in TDI-exposed mice. Furthermore, anti-DLL4 treatment alleviated TDI-induced airway hyperreactivity (AHR), airway inflammation, airway epithelial injury and airway smooth muscle (ASM) thickening. In the meantime, neutralizing DLL4 also blunted Th17 response via downregulation of ROR-γt expression, while had no effect on Th2 cells and regulatory T (Treg) cells. Overall, anti-DLL4 ameliorated TDI-induced experimental asthma by inhibiting Th17 response, implying the feasibility of targeting DLL4 for therapy of Th17-predominant severe asthma.
Collapse
Affiliation(s)
- Yao Deng
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Shuyu Chen
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shijie Song
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Yin Huang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Ailin Tao
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
11
|
Ng B, Cook SA, Schafer S. Interleukin-11 signaling underlies fibrosis, parenchymal dysfunction, and chronic inflammation of the airway. Exp Mol Med 2020; 52:1871-1878. [PMID: 33262481 PMCID: PMC7705429 DOI: 10.1038/s12276-020-00531-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/16/2023] Open
Abstract
Interleukin (IL)-11 evolved as part of the innate immune response. In the human lung, IL-11 upregulation has been associated with viral infections and a range of fibroinflammatory diseases, including idiopathic pulmonary fibrosis. Transforming growth factor-beta (TGFβ) and other disease factors can initiate an autocrine loop of IL-11 signaling in pulmonary fibroblasts, which, in a largely ERK-dependent manner, triggers the translation of profibrotic proteins. Lung epithelial cells also express the IL-11 receptor and transition into a mesenchymal-like state in response to IL-11 exposure. In mice, therapeutic targeting of IL-11 with antibodies can arrest and reverse bleomycin-induced pulmonary fibrosis and inflammation. Intriguingly, fibroblast-specific blockade of IL-11 signaling has anti-inflammatory effects, which suggests that lung inflammation is sustained, in part, through IL-11 activity in the stroma. Proinflammatory fibroblasts and their interaction with the damaged epithelium may represent an important but overlooked driver of lung disease. Initially thought of as a protective cytokine, IL-11 is now increasingly recognized as an important determinant of lung fibrosis, inflammation, and epithelial dysfunction.
Collapse
Affiliation(s)
- Benjamin Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Sebastian Schafer
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore. .,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
12
|
Janulaityte I, Januskevicius A, Kalinauskaite-Zukauske V, Bajoriuniene I, Malakauskas K. In Vivo Allergen-Activated Eosinophils Promote Collagen I and Fibronectin Gene Expression in Airway Smooth Muscle Cells via TGF- β1 Signaling Pathway in Asthma. Int J Mol Sci 2020; 21:E1837. [PMID: 32155894 PMCID: PMC7084581 DOI: 10.3390/ijms21051837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
Eosinophils infiltration and releasing TGF-β1 in the airways has been implicated in the pathogenesis of asthma, especially during acute episodes provoked by an allergen. TGF-β1 is a major mediator involved in pro-inflammatory responses and fibrotic tissue remodeling in asthma. We aimed to evaluate the effect of in vivo allergen-activated eosinophils on the expression of COL1A1 and FN in ASM cells in asthma. A total of 12 allergic asthma patients and 11 healthy subjects were examined. All study subjects underwent bronchial challenge with D. pteronyssinus allergen. Eosinophils from peripheral blood were isolated before and 24 h after the bronchial allergen challenge using high-density centrifugation and magnetic separation. Individual co-cultures of blood eosinophils and immortalized human ASM cells were prepared. The TGF-β1 concentration in culture supernatants was analyzed using ELISA. Gene expression was analyzed using qRT-PCR. Eosinophils integrins were suppressed with linear RGDS peptide before co-culture with ASM cells. Results: The expression of TGF-β1 in asthmatic eosinophils significantly increased over non-activated asthmatic eosinophils after allergen challenge, p < 0.001. The TGF-β1 concentration in culture supernatants was significantly higher in samples with allergen-activated asthmatic eosinophils compared to baseline, p < 0.05. The effect of allergen-activated asthmatic eosinophils on the expression of TGF-β1, COL1A1, and FN in ASM cells was more significant compared to non-activated eosinophils, p < 0.05, however, no difference was found on WNT-5A expression. The incubation of allergen-activated asthmatic eosinophils with RGDS peptide was more effective compared to non-activated eosinophils as the gene expression in ASM cells was downregulated equally to the same level as healthy eosinophils.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (K.M.)
| | | | - Ieva Bajoriuniene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
13
|
Li C, Dai J, Dong G, Ma Q, Li Z, Zhang H, Yan F, Zhang J, Wang B, Shi H, Zhu Y, Yao X, Si C, Xiong H. Interleukin-16 aggravates ovalbumin-induced allergic inflammation by enhancing Th2 and Th17 cytokine production in a mouse model. Immunology 2019; 157:257-267. [PMID: 31120548 DOI: 10.1111/imm.13068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/12/2019] [Indexed: 01/12/2023] Open
Abstract
Asthma is a chronic inflammatory disease that involves a variety of cytokines and cells. Interleukin-16 (IL-16) is highly expressed during allergic airway inflammation and is involved in its development. However, its specific mechanism of action remains unclear. In the present study, we used an animal model of ovalbumin (OVA)-induced allergic asthma with mice harboring an IL-16 gene deletion to investigate the role of this cytokine in asthma, in addition to its underlying mechanism. Increased IL-16 expression was observed during OVA-induced asthma in C57BL/6J mice. However, when OVA was used to induce asthma in IL-16-/- mice, a diminished inflammatory reaction, decreased bronchoalveolar lavage fluid (BALF) eosinophil numbers, and the suppression of OVA-specific IgE levels in the serum and BALF were observed. The results also demonstrated decreased levels of T helper type 2 (Th2) and Th17 cytokines upon OVA-induced asthma in IL-16-/- mice. Hence, we confirmed that IL-16 enhances the lung allergic inflammatory response and suggest a mechanism possibly associated with the up-regulation of IgE and the promotion of Th2 and Th17 cytokine production. This work explored the mechanism underlying the regulation of IL-16 in asthma and provides a new target for the clinical treatment of asthma.
Collapse
Affiliation(s)
- Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Bo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yuzhen Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xiaoying Yao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Huabao Xiong
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Ahmed S, Misra DP, Agarwal V. Interleukin-17 pathways in systemic sclerosis-associated fibrosis. Rheumatol Int 2019; 39:1135-1143. [PMID: 31073660 DOI: 10.1007/s00296-019-04317-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Fibrosis is unregulated tissue repair that may cause impairment of organ function, especially in end-organ damage. Systemic sclerosis (SSc) is the prototype systemic fibrosing disorder. Classical targets for fibrosis in SSc like transforming growth factor Beta (TGF-β), Interleukin-6 (IL-6), and multiple tyrosine kinases, have not yielded therapeutic benefit. There is multitude of evidence from across different tissues like the heart, lung, skin, liver, colon, and, to some extent, the kidney, that interleukin-17 (IL-17) and its downstream pathways are strongly associated with the initiation and propagation of fibrosis. Data from scleroderma patients, as well as from animal models of SSc, mirror these findings. Interestingly, hitherto unknown to be related to IL-17, newer molecules like Programmed Death-protein1 (PD-1), the phosphatase SHP2, along with known signal transducers like signal transducer and activator of transcription (STAT3), have been recently shown to be involved in the pathogenesis of fibrosis. Related molecules include the intracellular signalling molecules Ras/Erk, mammalian target organ of rapamycin (mTOR), and complement components. The biology of these pathways has not yet been fully elucidated to predict regulatory mechanisms, redundancies, and potential off-target effects. All these need to be better understood in the context of each other, in an effort to arrive at the optimal target to modulate fibrosis.
Collapse
Affiliation(s)
- Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, 751024, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| |
Collapse
|
15
|
Owen JL, Vakharia PP, Silverberg JI. The Role and Diagnosis of Allergic Contact Dermatitis in Patients with Atopic Dermatitis. Am J Clin Dermatol 2018; 19:293-302. [PMID: 29305764 DOI: 10.1007/s40257-017-0340-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients with atopic dermatitis (AD) have increased penetration of allergens, immune dysregulation (including shared cytokine pathways), and frequent use of emollients and topical medications, all of which may predispose toward developing allergic contact dermatitis (ACD). Recent systematic reviews have suggested that ACD is a significant clinical problem in both children and adults with AD. While this remains controversial, ACD remains an important comorbidity and potential exacerbant of AD in clinical practice. Common relevant allergens, include lanolin, neomycin, formaldehyde, sesquiterpene lactone mix, compositae mix, and fragrances that are commonly found in AD patients' personal care products. We herein review the clinical scenarios where patch testing is indicated in AD. In addition, we review the contraindications, preferred patch-testing series, pitfalls, and challenges determining the relevance of positive patch-test reactions in AD patients.
Collapse
Affiliation(s)
- Joshua L Owen
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Paras P Vakharia
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jonathan I Silverberg
- Departments of Dermatology, Preventive Medicine and Medical Social Sciences, Northwestern University Feinberg School of Medicine, 676 N. St. Clair St, Suite 1600, Chicago, IL, 60611, USA.
- Northwestern Medicine Multidisciplinary Eczema Center, Chicago, USA.
| |
Collapse
|
16
|
Camargo LDN, Righetti RF, Aristóteles LRDCRB, Dos Santos TM, de Souza FCR, Fukuzaki S, Cruz MM, Alonso-Vale MIC, Saraiva-Romanholo BM, Prado CM, Martins MDA, Leick EA, Tibério IDFLC. Effects of Anti-IL-17 on Inflammation, Remodeling, and Oxidative Stress in an Experimental Model of Asthma Exacerbated by LPS. Front Immunol 2018; 8:1835. [PMID: 29379497 PMCID: PMC5760512 DOI: 10.3389/fimmu.2017.01835] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation plays a central role in the development of asthma, which is considered an allergic disease with a classic Th2 inflammatory profile. However, cytokine IL-17 has been examined to better understand the pathophysiology of this disease. Severe asthmatic patients experience frequent exacerbations, leading to infection, and subsequently show altered levels of inflammation that are unlikely to be due to the Th2 immune response alone. This study estimates the effects of anti-IL-17 therapy in the pulmonary parenchyma in a murine asthma model exacerbated by LPS. BALB/c mice were sensitized with intraperitoneal ovalbumin and repeatedly exposed to inhalation with ovalbumin, followed by treatment with or without anti-IL-17. Twenty-four hours prior to the end of the 29-day experimental protocol, the two groups received LPS (0.1 mg/ml intratracheal OVA-LPS and OVA-LPS IL-17). We subsequently evaluated bronchoalveolar lavage fluid, performed a lung tissue morphometric analysis, and measured IL-6 gene expression. OVA-LPS-treated animals treated with anti-IL-17 showed decreased pulmonary inflammation, edema, oxidative stress, and extracellular matrix remodeling compared to the non-treated OVA and OVA-LPS groups (p < 0.05). The anti-IL-17 treatment also decreased the numbers of dendritic cells, FOXP3, NF-κB, and Rho kinase 1- and 2-positive cells compared to the non-treated OVA and OVA-LPS groups (p < 0.05). In conclusion, these data suggest that inhibition of IL-17 is a promising therapeutic avenue, even in exacerbated asthmatic patients, and significantly contributes to the control of Th1/Th2/Th17 inflammation, chemokine expression, extracellular matrix remodeling, and oxidative stress in a murine experimental asthma model exacerbated by LPS.
Collapse
Affiliation(s)
| | - Renato Fraga Righetti
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | | - Silvia Fukuzaki
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maysa Mariana Cruz
- Department of Biological Sciences, Institute of Biomedical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Carla Máximo Prado
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Edna Aparecida Leick
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
17
|
Rucki AA, Xiao Q, Muth S, Chen J, Che X, Kleponis J, Sharma R, Anders RA, Jaffee EM, Zheng L. Dual Inhibition of Hedgehog and c-Met Pathways for Pancreatic Cancer Treatment. Mol Cancer Ther 2017; 16:2399-2409. [PMID: 28864680 DOI: 10.1158/1535-7163.mct-16-0452] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/08/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most chemotherapy- and radiotherapy-resistant tumors. The c-Met and Hedgehog (Hh) pathways have been shown previously by our group to be key regulatory pathways in the primary tumor growth and metastases formation. Targeting both the HGF/c-Met and Hh pathways has shown promising results in preclinical studies; however, the benefits were not readily translated into clinical trials with PDAC patients. In this study, utilizing mouse models of PDAC, we showed that inhibition of either HGF/c-Met or Hh pathways sensitize the PDAC tumors to gemcitabine, resulting in decreased primary tumor volume as well as significant reduction of metastatic tumor burden. However, prolonged treatment of single HGF/c-Met or Hh inhibitor leads to resistance to these single inhibitors, likely because the single c-Met treatment leads to enhanced expression of Shh, and vice versa. Targeting both the HGF/c-Met and Hh pathways simultaneously overcame the resistance to the single-inhibitor treatment and led to a more potent antitumor effect in combination with the chemotherapy treatment. Mol Cancer Ther; 16(11); 2399-409. ©2017 AACR.
Collapse
Affiliation(s)
- Agnieszka A Rucki
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qian Xiao
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgical Oncology, the Second Affiliated Hospital of the Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, University School of Medicine, Hangzhou, China
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianlin Chen
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xu Che
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Pancreatic and Gastric Surgery Department, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer Kleponis
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajni Sharma
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Univer- sity School of Medicine, Baltimore, Maryland. .,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Gurczynski SJ, Moore BB. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol 2017; 314:L6-L16. [PMID: 28860146 DOI: 10.1152/ajplung.00344.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The IL-17 family of cytokines has emerged over the last two decades as a pleiotropic group of molecules that function in a wide variety of both beneficial and detrimental (pathological) processes, mainly in mucosal barrier tissue. The beneficial effects of IL-17 expression are especially important in the lung, where exposure to foreign agents is abundant. IL-17A plays an important role in protection from both extracellular bacteria and fungi, as well as viruses that infect cells of the mucosal tracts. IL-17 coregulated cytokines, such as IL-22, are involved in maintaining epithelial cell homeostasis and participate in epithelial cell repair/regeneration following inflammatory insults. Thus, the IL-17/IL-22 axis is important in both responding to, and recovering from, pathogens. However, aberrant expression or overexpression of IL-17 cytokines contributes to a number of pathological outcomes, including asthma, pneumonitis, and generation or exacerbation of pulmonary fibrosis. This review covers the good, bad, and ugly aspects of IL-17 in the lung.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
19
|
Otsuka A, Nomura T, Rerknimitr P, Seidel JA, Honda T, Kabashima K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol Rev 2017; 278:246-262. [DOI: 10.1111/imr.12545] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Atsushi Otsuka
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Takashi Nomura
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Pawinee Rerknimitr
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Division of Dermatology; Department of Medicine; Faculty of Medicine, Allergy and Clinical Immunology Research Group; Chulalongkorn University; Bangkok Thailand
| | - Judith A. Seidel
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tetsuya Honda
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Singapore Immunology Network (SIgN) and Institute of Medical Biology; Agency for Science, Technology and Research (A*STAR); Biopolis; Singapore
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Th17 lymphocytes are now widely believed to be critical for the regulation of various chronic immune diseases, including asthma and chronic obstructive pulmonary disease. In this review, we discuss the current understanding of the role of Th17 cells in the pathogenesis of different asthma phenotypes and chronic obstructive pulmonary disease. RECENT FINDINGS It has been recently reported that Th17 cells and also a new population of Th17/Th2 cells accumulate in bronchoalveolar lavage fluid of asthmatic patients, and positively correlated with airway obstruction and steroid resistance. These patients often have steroid resistant severe asthma and a predominant bronchial neutrophilic inflammation. SUMMARY Steroid resistant severe asthma with predominant bronchial neutrophilic inflammation could benefit from IL-17 targeted therapies. In this view, the definition of clinical phenotypes and inflammatory endotypes of asthma in each patient will be necessary for personalizing the therapeutic approach.
Collapse
|
21
|
Gurczynski SJ, Procario MC, O'Dwyer DN, Wilke CA, Moore BB. Loss of CCR2 signaling alters leukocyte recruitment and exacerbates γ-herpesvirus-induced pneumonitis and fibrosis following bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol 2016; 311:L611-27. [PMID: 27448666 DOI: 10.1152/ajplung.00193.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022] Open
Abstract
CCR2-expressing leukocytes are required for the progression of fibrosis in models of induced lung injury as well as models of bone marrow transplant (BMT)-related idiopathic pneumonia syndrome. Infection with murid γ-herpesvirus-68 (γHV-68) results in severe pneumonitis and pulmonary fibrosis following syngeneic BMT; however, the roles that various proinflammatory leukocyte populations play in this process remain unclear. Deletion of CCR2 in both non-BMT and BMT mice increased early lytic viral replication and resulted in a reduction in the numbers of lung-infiltrating GR1+,F4/80+ and CXCR1+ cells, while maintaining robust neutrophil infiltration. Similarly, in γHV-68-infected CCR2(-/-) BMT mice, recruitment of monocytes and lymphocytes were reduced whereas neutrophil recruitment was increased compared with wild-type (WT) BMT mice. Interestingly, levels of profibrotic IL-17 were increased in infected CCR2 BMT mice compared with WT BMT. Furthermore, an increase in lung-associated collagen was detected even though there was an overall decrease in the number of profibrotic CCR2+ fibrocytes detected in the lungs of CCR2(-/-) BMT mice. These data indicate that, contrary to most models of fibrosis, deletion of CCR2 offers no protection from γ-herpesvirus-induced pneumonitis and fibrosis, and, indeed, CCR2+ cells play a suppressive role during the development of pulmonary fibrosis following γ-herpesvirus infection post-BMT by limiting IL-7 and collagen production.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan;
| | - Megan C Procario
- Graduate Program in Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - David N O'Dwyer
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan
| | - Carol A Wilke
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Park YA, Kim YH, Sol IS, Yoon SH, Hong JY, Kim MN, Lee KE, Kim KW, Kim KE, Sohn MH. Relationship Between Serum Interleukin-17F Level and Severity of Atopic Dermatitis in Children. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2015; 28:112-116. [PMID: 26155368 DOI: 10.1089/ped.2014.0482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/25/2015] [Indexed: 11/12/2022]
Abstract
Background: Recent discovery of the Th17 pathway is providing new opportunities for understanding chronic immune-mediated diseases. The Th17 pathway has been historically associated with chronic inflammatory diseases such as psoriasis, multiple sclerosis, and rheumatoid arthritis. Among Th17 cytokines, pathogenic roles of IL-17A and IL-17F in asthma have been well described. Recently, the number of peripheral blood Th17 cells was found to correlate with disease severity in patients with atopic dermatitis (AD). This study aimed to investigate serum IL-17F levels in children with AD and to correlate this with severity of the disease. Methods: Enzyme-linked immunosorbent assay was used to measure IL-17F levels in the sera of 228 patients with AD and 62 control children. The SCORing Atopic Dermatitis (SCORAD) tool was used to determine the severity of disease. Results: The mean serum level of IL-17F in children with AD was significantly higher than that in the control group (p<0.05) Serum IL-17F levels were also higher in patients with severe AD than in those with mild AD (p<0.001), and IL-17F levels and SCORAD scores were positively correlated (p<0.05). Conclusions: Serum IL-17F level might be a useful marker in children with AD.
Collapse
Affiliation(s)
- Young A Park
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Yoon Hee Kim
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - In Suk Sol
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Seo Hee Yoon
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Jung Yeon Hong
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Mi Na Kim
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Kyung Eun Lee
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Kyu-Earn Kim
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, Severance Children's Hospital, Yonsei University College of Medicine , Seoul, Republic of Korea
| |
Collapse
|
23
|
Yang B, Liu R, Yang T, Jiang X, Zhang L, Wang L, Wang Q, Luo Z, Liu E, Fu Z. Neonatal Streptococcus pneumoniae infection may aggravate adulthood allergic airways disease in association with IL-17A. PLoS One 2015; 10:e0123010. [PMID: 25816135 PMCID: PMC4376740 DOI: 10.1371/journal.pone.0123010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
Epidemiologic studies have demonstrated that some bacteria colonization or infections in early-life increased the risk for subsequent asthma development. However, little is known about the mechanisms by which early-life bacterial infection increases this risk. The aim of this study was to investigate the effect of neonatal Streptococcus pneumoniae infection on the development of adulthood asthma, and to explore the possible mechanism. A non-lethal S. pneumoniae lung infection was established by intranasal inoculation of neonatal (1-week-old) female mice with D39. Mice were sensitized and challenged with ovalbumin in adulthood to induce allergic airways disease (AAD). Twenty-four hours later, the lungs and bronchoalveolar lavage fluid (BALF) were collected to assess AAD. Neonatal S. pneumoniae infection exacerbated adulthood hallmark features of AAD, with enhanced airway hyperresponsiveness and increased neutrophil recruitment into the airways, increased Th17 cells and interleukin (IL)-17A productions. Depletion of IL-17A by i.p. injection of a neutralizing monoclonal antibody reduced neutrophil recruitment into the airways, alleviated airway inflammation and decreased airway hyperresponsiveness. Furthermore, IL-17A depletion partially restored levels of inteferon-γ, but had no effect on the release of IL-5 or IL-13. Our data suggest that neonatal S. pneumoniae infection may promote the development of adulthood asthma in association with increased IL-17A production.
Collapse
Affiliation(s)
- Baohui Yang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Ru Liu
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Ting Yang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoli Jiang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Liqun Zhang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Lijia Wang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Qinghong Wang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- The Central Laboratory of Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, Chongqing, China
- * E-mail:
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Chesné J, Braza F, Mahay G, Brouard S, Aronica M, Magnan A. IL-17 in severe asthma. Where do we stand? Am J Respir Crit Care Med 2015; 190:1094-101. [PMID: 25162311 DOI: 10.1164/rccm.201405-0859pp] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Asthma is a major chronic disease ranging from mild to severe refractory disease and is classified into various clinical phenotypes. Severe asthma is difficult to treat and frequently requires high doses of systemic steroids. In some cases, severe asthma even responds poorly to steroids. Several studies have suggested a central role of IL-17 (also called IL-17A) in severe asthma. Indeed, high levels of IL-17 are found in induced sputum and bronchial biopsies obtained from patients with severe asthma. The recent identification of a steroid-insensitive pathogenic Th17 pathway is therefore of major interest. In addition, IL-17A has been described in multiple aspects of asthma pathogenesis, including structural alterations of epithelial cells and smooth muscle contraction. In this perspective article, we frame the topic of IL-17A effects in severe asthma by reviewing updated information from human studies. We summarize and discuss the implications of IL-17 in the induction of neutrophilic airway inflammation, steroid insensitivity, the epithelial cell profile, and airway remodeling.
Collapse
Affiliation(s)
- Julie Chesné
- 1 Institut national de la santé et de la recherche médicale (INSERM), Unité mixte de recherche (UMR) 1087, l'Institut du Thorax, Nantes, France
| | | | | | | | | | | |
Collapse
|
25
|
Vos R, Verleden SE, Ruttens D, Vandermeulen E, Bellon H, Neyrinck A, Van Raemdonck DE, Yserbyt J, Dupont LJ, Verbeken EK, Moelants E, Mortier A, Proost P, Schols D, Cox B, Verleden GM, Vanaudenaerde BM. Azithromycin and the treatment of lymphocytic airway inflammation after lung transplantation. Am J Transplant 2014; 14:2736-48. [PMID: 25394537 DOI: 10.1111/ajt.12942] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 01/25/2023]
Abstract
Lymphocytic airway inflammation is a major risk factor for chronic lung allograft dysfunction, for which there is no established treatment. We investigated whether azithromycin could control lymphocytic airway inflammation and improve allograft function. Fifteen lung transplant recipients demonstrating acute allograft dysfunction due to isolated lymphocytic airway inflammation were prospectively treated with azithromycin for at least 6 months (NCT01109160). Spirometry (FVC, FEV1 , FEF25-75 , Tiffeneau index) and FeNO were assessed before and up to 12 months after initiation of azithromycin. Radiologic features, local inflammation assessed on airway biopsy (rejection score, IL-17(+) cells/mm(2) lamina propria) and broncho-alveolar lavage fluid (total and differential cell counts, chemokine and cytokine levels); as well as systemic C-reactive protein levels were compared between baseline and after 3 months of treatment. Airflow improved and FeNO decreased to baseline levels after 1 month of azithromycin and were sustained thereafter. After 3 months of treatment, radiologic abnormalities, submucosal cellular inflammation, lavage protein levels of IL-1β, IL-8/CXCL-8, IP-10/CXCL-10, RANTES/CCL5, MIP1-α/CCL3, MIP-1β/CCL4, Eotaxin, PDGF-BB, total cell count, neutrophils and eosinophils, as well as plasma C-reactive protein levels all significantly decreased compared to baseline (p < 0.05). Administration of azithromycin was associated with suppression of posttransplant lymphocytic airway inflammation and clinical improvement in lung allograft function.
Collapse
Affiliation(s)
- R Vos
- Department of Clinical and Experimental Medicine, Lab of Pneumology, Katholieke Universiteit Leuven and University Hospital Gasthuisberg, Leuven, Belgium; Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospital Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Modeling the role of TGF-β in regulation of the Th17 phenotype in the LPS-driven immune system. Bull Math Biol 2014; 76:1045-80. [PMID: 24610093 DOI: 10.1007/s11538-014-9946-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/21/2014] [Indexed: 02/07/2023]
Abstract
Airway exposure levels of lipopolysaccharide (LPS) are known to determine type I versus type II helper T cell induced experimental asthma. While low doses of LPS derive Th2 inflammatory responses, high (and/or intermediate) LPS levels induce Th1- or Th17-dominant responses. The present paper develops a mathematical model of the phenotypic switches among three Th phenotypes (Th1, Th2, and Th17) in response to various LPS levels. In the present work, we simplify the complex network of the interactions between cells and regulatory molecules. The model describes the nonlinear cross-talks between the IL-4/Th2 activities and a key regulatory molecule, transforming growth factor β (TGF-β), in response to high, intermediate, and low levels of LPS. The model characterizes development of three phenotypes (Th1, Th2, and Th17) and predicts the onset of a new phenotype, Th17, under the tight control of TGF-β. Analysis of the model illustrates the mono-, bi-, and oneway-switches in the key regulatory parameter sets in the absence or presence of time delays. The model also predicts coexistence of those phenotypes and Th1- or Th2-dominant immune responses in a spatial domain under various biochemical and bio-mechanical conditions in the microenvironment.
Collapse
|
27
|
Rucki AA, Zheng L. Pancreatic cancer stroma: Understanding biology leads to new therapeutic strategies. World J Gastroenterol 2014; 20:2237-2246. [PMID: 24605023 PMCID: PMC3942829 DOI: 10.3748/wjg.v20.i9.2237] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/14/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the deadliest cancers in the United States and in the world. Late diagnosis, early metastasis and lack of effective therapy are among the reasons why only 6% of patients diagnosed with PDA survive past 5 years. Despite development of targeted therapy against other cancers, little progression has been made in the treatment of PDA. Therefore, there is an urgent need for the development of new treatments. However, in order to proceed with treatments, the complicated biology of PDA needs to be understood first. Interestingly, majority of the tumor volume is not made of malignant epithelial cells but of stroma. In recent years, it has become evident that there is an important interaction between the stromal compartment and the less prevalent malignant cells, leading to cancer progression. The stroma not only serves as a growth promoting source of signals but it is also a physical barrier to drug delivery. Understanding the tumor-stroma signaling leading to development of desmoplastic reaction and tumor progression can lead to the development of therapies to decrease stromal activity and improve drug delivery. In this review, we focus on how the current understanding of biology of the pancreatic tumor microenvironment can be translated into the development of targeted therapy.
Collapse
|
28
|
Angaswamy N, Klein C, Tiriveedhi V, Gaut J, Anwar S, Rossi A, Phelan D, Wellen JR, Shenoy S, Chapman WC, Mohanakumar T. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy. Am J Transplant 2014; 14:685-93. [PMID: 24410875 DOI: 10.1111/ajt.12592] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023]
Abstract
Antibodies (Abs) to donor HLA (donor-specific antibodies [DSA]) have been associated with transplant glomerulopathy (TG) following kidney transplantation (KTx). Immune responses to tissue-restricted self-antigens (self-Ags) have been proposed to play a role in chronic rejection. We determined whether KTx with TG have immune responses to self-Ags, Collagen-IV (Col-IV) and fibronectin (FN). DSA were determined by solid phase assay, Abs against Col-IV and FN by enzyme-linked immunosorbent assay and CD4+ T cells secreting interferon gamma (IFN-γ), IL-17 or IL-10 by ELISPOT. Development of Abs to self-Ags following KTx increased the risk for TG with an odds ratio of 22 (p-value = 0.001). Abs to self-Ags were IgG and IgM isotypes. Pretransplant Abs to self-Ags increased the risk of TG (22% vs. 10%, p < 0.05). Abs to self-Ags were identified frequently in KTx with DSA. TG patients demonstrated increased Col-IV and FN specific CD4+ T cells secreting IFN-γ and IL-17 with reduction in IL-10. We conclude that development of Abs to self-Ags is a risk factor and having both DSA and Abs to self-Ags increases the risk for TG. The increased frequency of self-Ag-specific IFN-γ and IL-17 cells with reduction in IL-10 demonstrate tolerance breakdown to self-Ags which we propose play a role in the pathogenesis of TG.
Collapse
Affiliation(s)
- N Angaswamy
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang L, Gao H, Yang T, Yang B, Jiang X, Wang L, Wang Q, Luo Z, Liu E, Fu Z. Infant 7-valent pneumococcal conjugate vaccine immunization alters young adulthood CD4(+)T cell subsets in allergic airway disease mouse model. Vaccine 2014; 32:2079-85. [PMID: 24560673 DOI: 10.1016/j.vaccine.2014.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/28/2013] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
7-Valent pneumococcal conjugate vaccine (PCV7) immunization in adulthood can inhibit allergic asthma in mouse model. The aim of this study is to investigate the effects of infant PCV7 immunization on young adulthood CD4(+)T cell subsets in a murine allergic airway disease (AAD) model. Our study indicated that infant PCV7 immunization can inhibit young adulthood airway inflammation and airway hyperresponsiveness (AHR) by inducing the production of Foxp3(+)Treg, Th1 cells and their cytokines IL-10 and IFN-γ, inhibiting the production of Th2, Th17 cells and their cytokines IL-13 and IL-17A in BALB/c mice model. These results suggested that infant PCV7 immunization may serve as an effective measure to prevent young adulthood mice AAD.
Collapse
Affiliation(s)
- Liqun Zhang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Hui Gao
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China; Ultrasound division, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Ting Yang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Baohui Yang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Xiaoli Jiang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Lijia Wang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Qinghong Wang
- Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China; The Central Laboratory of Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory, Children's Hospital, Chongqing Medical University, Chongqing, China.
| | - Enmei Liu
- Department of Respiratory, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Zhou Fu
- Department of Respiratory, Children's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Simon D, Aeberhard C, Erdemoglu Y, Simon HU. Th17 cells and tissue remodeling in atopic and contact dermatitis. Allergy 2014; 69:125-31. [PMID: 24372156 DOI: 10.1111/all.12351] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Eczematous skin lesions of atopic dermatitis (AD) as well as allergic and irritant contact dermatitis (ACD, ICD) are characterized by the same typical clinical signs, although due to different causes. In both AD and ACD, the presence of T helper 17 cells which play an important role in host defense, has been reported. Furthermore, IL-17 is involved in tissue repair and remodeling. This study aimed to investigate IL-17 expression in acute eczematous skin lesions and correlate it with markers of remodeling in AD, ACD, and ICD. METHODS Skin specimens were taken from positive patch test reactions to aeroallergens, contact allergens, and irritants at days 2, 3, and 4. Inflammatory cells as well as the expression of cytokines and extracellular matrix proteins were evaluated by immunofluorescence staining and confocal microscopy. RESULTS Allergic contact dermatitis and ICD were characterized by IFN-γ expression, whereas in AD lesions, IL-13 expression and high numbers of eosinophils were the prominent phenotype. Expression of IL-17, but also IL-21 and IL-22, was observed in all eczema subtypes. The number of IL-22+ T cells correlated with the number of eosinophils. Markers of remodeling such as MMP-9, procollagen-3, and tenascin C were observed in all acute eczematous lesions, while a correlation of IL-17+ T cell numbers with tenascin C-expressing cells and MMP-9+ eosinophils was apparent. CONCLUSION The expression of IL-17 and related cytokines, such as IL-22, was demonstrated in acute eczematous lesions independent of their pathogenesis. Our results suggest a potential role for IL-17 in remodeling of the skin.
Collapse
Affiliation(s)
- D. Simon
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - C. Aeberhard
- Institute of Pharmacology; University of Bern; Bern Switzerland
| | - Y. Erdemoglu
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - H.-U. Simon
- Institute of Pharmacology; University of Bern; Bern Switzerland
| |
Collapse
|
31
|
Th17-associated cytokines as a therapeutic target for steroid-insensitive asthma. Clin Dev Immunol 2013; 2013:609395. [PMID: 24454477 PMCID: PMC3886588 DOI: 10.1155/2013/609395] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 12/05/2013] [Indexed: 02/04/2023]
Abstract
Steroid-insensitive asthma is an infrequent but problematic airway disease that presents with persistent symptoms, airflow limitation, or recurrent exacerbations even when treated with steroid-based therapies. Because of unsatisfactory results obtained from currently available therapies for steroid-insensitive asthma, a better understanding of its pathogenesis and the development of new targeted molecular therapies are warranted. Recent studies indicated that levels of interleukin (IL)-17 are increased and both eosinophils and neutrophils infiltrate the airways of severe asthmatics. IL-17 is a proinflammatory cytokine mainly secreted from helper T (Th) 17 cells and is important for the induction of neutrophil recruitment and migration at sites of inflammation. This review focuses on the pathogenetic role of Th17 cells and their associated cytokines in steroid-insensitive asthma and discusses the prospects of novel therapeutic options targeting the Th17 signaling pathway.
Collapse
|
32
|
Bargut TCL, Ferreira TPT, Daleprane JB, Martins MA, Silva PMR, Aguila MB. Fish oil has beneficial effects on allergen-induced airway inflammation and hyperreactivity in mice. PLoS One 2013; 8:e75059. [PMID: 24040386 PMCID: PMC3765396 DOI: 10.1371/journal.pone.0075059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
Background Fish oil (FO) is rich in n-3 polyunsaturated fatty acids (PUFA), which have been suggested to be anti-inflammatory and are associated with improvement of several inflammatory diseases. In this study, we investigated the influence of FO on allergen-induced lung inflammation and airway hyperreactivity in mice. Methods Male A/J mice were fed either a standard-chow (SC) or a FO diet (FO) for 8 weeks. After 4 weeks, each group was further randomized for ovalbumin (SC-OVA and FO-OVA) or saline (SC-SAL and FO-SAL) challenge. Resistance and elastance were measured at baseline and after aerosolized methacholine, 24h after the last challenge. Bronchoalveolar lavage (BAL) was performed for leukocyte counts. Lung tissue mucus deposition, peribronchiolar matrix deposition and eosinophil infiltration were quantified. Serum immunoglobulin E (IgE) and IgG1 (ref 2.2), lung IL-4, IL-5, IL-10, IL-13, IL-17, INFγ and eotaxin-1 and 2 were detected by ELISA and nuclear factor kappa B (NFκB), GATA-3 and peroxisome proliferator-activated receptor gamma (PPARγ) expression was measured by Western blot. Results Levels of serum IgE and IgG1 were significantly higher in OVA sensitized mice. OVA challenge resulted in increased eosinophil infiltration, increased inflammatory cytokine production, peribronchiolar matrix and mucus deposition and airway hyperreactivity to aerosolized methacholine. Elevated lung NFκB and GATA-3 expression was noted in OVA-challenged mice. These changes were attenuated in mice fed with FO diet. Higher PPARγ expression was also detected in the lungs from the FO-fed groups. Conclusion Our results demonstrate that FO intake attenuated classical asthma features by suppressing the systemic sensitization, thus providing evidence that FO might be a prophylactic alternative for asthma prevention.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Paula Teixeira Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|