1
|
Grupp B, Graser JB, Seifermann J, Gerhardt S, Lemkul JA, Gehrke JF, Johnsson N, Gronemeyer T. Interface integrity in septin protofilaments is maintained by an arginine residue conserved from yeast to man. Mol Biol Cell 2025; 36:ar59. [PMID: 40137961 DOI: 10.1091/mbc.e25-01-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
The septins are conserved, filament-forming, guanine nucleotide binding cytoskeletal proteins. They assemble into palindromic protofilaments which polymerize further into higher-ordered structures that participate in essential intracellular processes such as cytokinesis or polarity establishment. Septins belong structurally to the P-Loop NTPases but, unlike their relatives Ras or Rho, do not mediate signals to effectors through GTP binding and hydrolysis. Biochemical approaches addressing how and why septins utilize nucleotides are hampered by the lack of nucleotide-free complexes. Using molecular dynamics simulations, we determined structural alterations and intersubunit binding free energies in human and yeast septin dimer structures and in their in silico generated apo forms. An interchain salt bridge network around the septin unique β-meander, conserved across all kingdoms of septin containing species, is destabilized upon nucleotide removal, concomitant with disruption of the entire G-interface. Within this network, we confirmed a conserved arginine residue, which coordinates the guanine base of the nucleotide, as the central interaction hub. The essential role of this arginine for interface integrity was experimentally confirmed to be conserved in septins from yeast to human.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Jano Benito Graser
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Julia Seifermann
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Stefan Gerhardt
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
| | - Jan Felix Gehrke
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| |
Collapse
|
2
|
Zhu J, Zhang W, Fan Y, Deng W, Zhang L, Wang S, Liu X, Xiang M. Septin AoCDC11 is involved in trap morphogenesis, conidiation, and vegetative growth in carnivorous Arthrobotrys oligospora. Fungal Genet Biol 2025; 177:103971. [PMID: 40023365 DOI: 10.1016/j.fgb.2025.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
Septins, a conserved family of cytoskeletal proteins with GTP-binding domains, play key roles in cell polarity, morphogenesis, cytoskeleton organization, and membrane remodeling. The nematode-trapping fungus Arthrobotrys oligospora can capture and kill nematodes using adhesive networks. It has been highlighted the importance of cell polarity, actin organization, and membrane remodeling in the process of trap formation, but the role of septins in adhesive-network forming remains unclear. In this study, we investigated the functions of AoCDC11, an ortholog of Saccharomyces cerevisiae CDC11, through gene disruption and multiphenotypic analysis. Disruption of AoCDC11 led to reduced trap production and abnormal trap morphology. Compared to the wild type, ΔAoCDC11 mutants significantly reduced trap formation to emerge more vegetative hyphae and produced more incompletely fused adhesive networks (45 % vs. 10 %) by fewer trap loops and septa. Additionally, ΔAoCDC11 mutants exhibited a 36 % reduction in hyphal growth and 88 % decrease in conidiation compared to the wild type. Transcriptomic analysis revealed that AoCDC11 regulated genes involved in trap development, including those related to the cell cycle, anatomical structure development, cellular morphogenesis, vesicle transport, and membrane trafficking. These findings suggest that AoCDC11 plays a crucial role in trap morphogenesis, vegetative growth, and conidiation by modulating multiple biological processes. This study expands our understanding of the functions of septins in morphogenesis and survival strategy of nematode-trapping fungi.
Collapse
Affiliation(s)
- Jieying Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin 300071, China
| | - Liao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin 300071, China.
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Perry JA, Werner ME, Omi S, Heck BW, Maddox PS, Mavrakis M, Maddox AS. Animal septins contain functional transmembrane domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.20.567915. [PMID: 38045322 PMCID: PMC10690161 DOI: 10.1101/2023.11.20.567915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Septins, a conserved family of filament-forming proteins, contribute to eukaryotic cell division, polarity, and membrane trafficking. Septins scaffold other proteins to cellular membranes, but it is not fully understood how septins associate with membranes. We identified and characterized an isoform of Caenorhabditis elegans septin UNC-61 that was predicted to contain a transmembrane domain (TMD). The TMD isoform is expressed in a subset of tissues where the known septins were known to act, and TMD function was required for tissue integrity of the egg-laying apparatus. We found predicted TMD-containing septins across much of opisthokont phylogeny and demonstrated that the TMD-containing sequence of a primate TMD-septin is sufficient for localization to cellular membranes. Together, our findings reveal a novel mechanism of septin-membrane association with profound implications for septin dynamics and regulation.
Collapse
Affiliation(s)
- Jenna A. Perry
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| | - Michael E. Werner
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Bryan W. Heck
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| | - Paul S. Maddox
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Amy S. Maddox
- Department of Biology, The University of North Carolina at Chapel Hill; Chapel Hill, North Carolina, 27599 USA
| |
Collapse
|
4
|
Theobald S, Vesth T, Nybo JL, Frisvad JC, Kjærbølling I, Mondo S, LaButti K, Haridas S, Riley R, Kuo AA, Salamov AA, Pangilinan J, Lipzen A, Koriabine M, Yan M, Barry K, Clum A, Lyhne EK, Drula E, Wiebenga A, Müller A, Lubbers RJ, Kun RS, dos Santos Gomes AC, Mäkelä MR, Henrissat B, Simmons BA, Magnuson JK, Hoof JB, Mortensen UH, Dyer PS, Momany M, Larsen TO, Grigoriev IV, Baker SE, de Vries RP, Andersen MR. Comparative genomics of Aspergillus nidulans and section Nidulantes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100342. [PMID: 39897699 PMCID: PMC11787670 DOI: 10.1016/j.crmicr.2025.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Aspergillus nidulans is an important model organism for eukaryotic biology and the reference for the section Nidulantes in comparative studies. In this study, we de novo sequenced the genomes of 25 species of this section. Whole-genome phylogeny of 34 Aspergillus species and Penicillium chrysogenum clarifies the position of clades inside section Nidulantes. Comparative genomics reveals a high genetic diversity between species with 684 up to 2433 unique protein families. Furthermore, we categorized 2118 secondary metabolite gene clusters (SMGC) into 603 families across Aspergilli, with at least 40 % of the families shared between Nidulantes species. Genetic dereplication of SMGC and subsequent synteny analysis provides evidence for horizontal gene transfer of a SMGC. Proteins that have been investigated in A. nidulans as well as its SMGC families are generally present in the section Nidulantes, supporting its role as model organism. The set of genes encoding plant biomass-related CAZymes is highly conserved in section Nidulantes, while there is remarkable diversity of organization of MAT-loci both within and between the different clades. This study provides a deeper understanding of the genomic conservation and diversity of this section and supports the position of A. nidulans as a reference species for cell biology.
Collapse
Affiliation(s)
- Sebastian Theobald
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tammi Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jane L. Nybo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Inge Kjærbølling
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Stephen Mondo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alan A. Kuo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf A. Salamov
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jasmyn Pangilinan
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maxim Koriabine
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mi Yan
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alicia Clum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ellen K. Lyhne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
- Biodiversité et Biotechnologie Fongiques, UMR 1163, INRAE, Marseille, France
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Astrid Müller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Ronnie J.M. Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Roland S. Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Finland
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Blake A. Simmons
- US Department of Energy Joint Bioenergy Institute, Berkeley, CA, USA
| | - Jon K. Magnuson
- US Department of Energy Joint Bioenergy Institute, Berkeley, CA, USA
| | - Jakob B. Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Uffe H. Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, Georgia, USA 30602
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Scott E. Baker
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, USA
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Mikael R. Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Das A, Kunwar A. Septins: Structural Insights, Functional Dynamics, and Implications in Health and Disease. J Cell Biochem 2025; 126:e30660. [PMID: 39324363 DOI: 10.1002/jcb.30660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility. Functionally, septins are essential to cell division, playing essential roles in cytokinetic furrow formation and maintaining the structural integrity of the contractile ring. They also regulate membrane trafficking and help organize intracellular organelles. In terms of physiology, septins facilitate cell migration, phagocytosis, and immune responses by maintaining membrane integrity and influencing cytoskeletal dynamics. Septin dysfunction is associated with pathophysiological conditions. Mutations in septin genes have been linked to neurodegenerative diseases, such as hereditary spastic paraplegias, underscoring their significance in neuronal function. Septins also play a role in cancer and infectious diseases, making them potential targets for therapeutic interventions. Septins serve as pivotal components of intracellular signaling networks, engaging with diverse proteins like kinases and phosphatases. By modulating the activity of these molecules, septins regulate vital cellular pathways. This integral role in signaling makes septins central to orchestrating cellular responses to environmental stimuli. This review mainly focuses on the human septins, their structural composition, regulatory functions, and implication in pathophysiological conditions underscores their importance in fundamental cellular biology. Moreover, their potential as therapeutic targets across various diseases further emphasizes their significance.
Collapse
Affiliation(s)
- Aurosikha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Berger C, Charlotte Kreß JK, Helmprobst F. Sept10 and sept12 are expressed in specific proliferating cells in zebrafish brain. Gene Expr Patterns 2024; 55:119387. [PMID: 39672481 DOI: 10.1016/j.gep.2024.119387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Septins are a group of cytoskeletal GTP binding proteins which are involved in different cellular processes, like cell division, exocytosis and axon growth. Their function, especially in the nervous system, is not clear. In zebrafish 16 different septins are described and for some of them the expression in the brain is described. Interestingly, the expression pattern of several of them is highly specific. Here we describe the expression of sept10 and sept12 in the developing zebrafish brain and found that these show a very defined expression pattern. Interestingly, they show an overlap with a group, but not all proliferating PCNA positive cells in nervous tissue.
Collapse
Affiliation(s)
- Constantin Berger
- University of Würzburg, Imaging Core Facility of the Biocenter, Theodor-Boveri-Institut, Am Hubland, 97074 Würzburg, Germany; University Hospital Würzburg, Chair for Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97074 Würzburg, Germany
| | - Julia Katharina Charlotte Kreß
- University of Würzburg, Imaging Core Facility of the Biocenter, Theodor-Boveri-Institut, Am Hubland, 97074 Würzburg, Germany; University of Würzburg, Institute of Pathology, 97080 Würzburg, Germany
| | - Frederik Helmprobst
- University of Würzburg, Imaging Core Facility of the Biocenter, Theodor-Boveri-Institut, Am Hubland, 97074 Würzburg, Germany; Phillips-University of Marburg, Institute for Neuropathology, Baldingerstraße, 35043 Marburg, Germany.
| |
Collapse
|
7
|
Foltman M, Sanchez-Diaz A. Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast. J Fungi (Basel) 2024; 10:662. [PMID: 39330421 PMCID: PMC11433125 DOI: 10.3390/jof10090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
8
|
Mendonça DC, Morais STB, Ciol H, Pinto APA, Leonardo DA, Pereira HD, Valadares NF, Portugal RV, Klaholz BP, Garratt RC, Araujo APU. Structural Insights into Ciona intestinalis Septins: Complexes Suggest a Mechanism for Nucleotide-dependent Interfacial Cross-talk. J Mol Biol 2024; 436:168693. [PMID: 38960133 DOI: 10.1016/j.jmb.2024.168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Septins are filamentous nucleotide-binding proteins which can associate with membranes in a curvature-dependent manner leading to structural remodelling and barrier formation. Ciona intestinalis, a model for exploring the development and evolution of the chordate lineage, has only four septin-coding genes within its genome. These represent orthologues of the four classical mammalian subgroups, making it a minimalist non-redundant model for studying the modular assembly of septins into linear oligomers and thereby filamentous polymers. Here, we show that C. intestinalis septins present a similar biochemistry to their human orthologues and also provide the cryo-EM structures of an octamer, a hexamer and a tetrameric sub-complex. The octamer, which has the canonical arrangement (2-6-7-9-9-7-6-2) clearly shows an exposed NC-interface at its termini enabling copolymerization with hexamers into mixed filaments. Indeed, only combinations of septins which had CiSEPT2 occupying the terminal position were able to assemble into filaments via NC-interface association. The CiSEPT7-CiSEPT9 tetramer is the smallest septin particle to be solved by Cryo-EM to date and its good resolution (2.7 Å) provides a well-defined view of the central NC-interface. On the other hand, the CiSEPT7-CiSEPT9 G-interface shows signs of fragility permitting toggling between hexamers and octamers, similar to that seen in human septins but not in yeast. The new structures provide insights concerning the molecular mechanism for cross-talk between adjacent interfaces. This indicates that C. intestinalis may represent a valuable tool for future studies, fulfilling the requirements of a complete but simpler system to understand the mechanisms behind the assembly and dynamics of septin filaments.
Collapse
Affiliation(s)
| | | | - Heloísa Ciol
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil
| | | | | | | | | | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil; Biotechnosciency Program, Federal University of ABC, Santo André, SP, Brazil
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 67404 Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France
| | | | - Ana P U Araujo
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Delic S, Shuman B, Lee S, Bahmanyar S, Momany M, Onishi M. The evolutionary origins and ancestral features of septins. Front Cell Dev Biol 2024; 12:1406966. [PMID: 38994454 PMCID: PMC11238149 DOI: 10.3389/fcell.2024.1406966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Septins are a family of membrane-associated cytoskeletal guanine-nucleotide binding proteins that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that membrane binding is an ancestral trait. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.
Collapse
Affiliation(s)
- Samed Delic
- Department of Biology, Duke University, Durham, NC, United States
| | - Brent Shuman
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA, United States
| | - Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA, United States
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
10
|
Marquardt J, Chen X, Bi E. Reciprocal regulation by Elm1 and Gin4 controls septin hourglass assembly and remodeling. J Cell Biol 2024; 223:e202308143. [PMID: 38448162 PMCID: PMC10913813 DOI: 10.1083/jcb.202308143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
The septin cytoskeleton is extensively regulated by posttranslational modifications, such as phosphorylation, to achieve the diversity of architectures including rings, hourglasses, and gauzes. While many of the phosphorylation events of septins have been extensively studied in the budding yeast Saccharomyces cerevisiae, the regulation of the kinases involved remains poorly understood. Here, we show that two septin-associated kinases, the LKB1/PAR-4-related kinase Elm1 and the Nim1/PAR-1-related kinase Gin4, regulate each other at two discrete points of the cell cycle. During bud emergence, Gin4 targets Elm1 to the bud neck via direct binding and phosphorylation to control septin hourglass assembly and stability. During mitosis, Elm1 maintains Gin4 localization via direct binding and phosphorylation to enable timely remodeling of the septin hourglass into a double ring. This mutual control between Gin4 and Elm1 ensures that septin architecture is assembled and remodeled in a temporally controlled manner to perform distinct functions during the cell cycle.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Delic S, Shuman B, Lee S, Bahmanyar S, Momany M, Onishi M. The Evolutionary Origins and Ancestral Features of Septins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586683. [PMID: 38585751 PMCID: PMC10996617 DOI: 10.1101/2024.03.25.586683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Septins are a family of membrane-associated cytoskeletal GTPases that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from rhodophyte red algae and glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that curvature-sensing is an ancestral trait of septin proteins. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.
Collapse
Affiliation(s)
- Samed Delic
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Brent Shuman
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
12
|
Cao H, Gong H, Yu M, Pan X, Song T, Yu J, Qi Z, Du Y, Zhang R, Liu Y. The Ras GTPase-activating protein UvGap1 orchestrates conidiogenesis and pathogenesis in the rice false smut fungus Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13448. [PMID: 38502297 PMCID: PMC10950028 DOI: 10.1111/mpp.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.
Collapse
Affiliation(s)
- Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Hao Gong
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Mina Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xiayan Pan
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Tianqiao Song
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Junjie Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Zhongqiang Qi
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan Du
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Rongsheng Zhang
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yongfeng Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
13
|
Zheng S, Zheng B, Fu C. The Roles of Septins in Regulating Fission Yeast Cytokinesis. J Fungi (Basel) 2024; 10:115. [PMID: 38392788 PMCID: PMC10890454 DOI: 10.3390/jof10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Cytokinesis is required to separate two daughter cells at the end of mitosis, and septins play crucial roles in many aspects of cytokinesis. While septins have been intensively studied in many model organisms, including the budding yeast Saccharomyces cerevisiae, septins have been relatively less characterized in the fission yeast Schizosaccharomyces pombe, which has proven to be an excellent model organism for studying fundamental cell biology. In this review, we summarize the findings of septins made in fission yeasts mainly from four aspects: the domain structure of septins, the localization of septins during the cell cycle, the roles of septins in regulating cytokinesis, and the regulatory proteins of septins.
Collapse
Affiliation(s)
- Shengnan Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Biyu Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
14
|
Hussain A, Nguyen VT, Reigan P, McMurray M. Evolutionary degeneration of septins into pseudoGTPases: impacts on a hetero-oligomeric assembly interface. Front Cell Dev Biol 2023; 11:1296657. [PMID: 38125875 PMCID: PMC10731463 DOI: 10.3389/fcell.2023.1296657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The septin family of eukaryotic proteins comprises distinct classes of sequence-related monomers that associate in a defined order into linear hetero-oligomers, which are capable of polymerizing into cytoskeletal filaments. Like actin and ⍺ and β tubulin, most septin monomers require binding of a nucleotide at a monomer-monomer interface (the septin "G" interface) for assembly into higher-order structures. Like ⍺ and β tubulin, where GTP is bound by both subunits but only the GTP at the ⍺-β interface is subject to hydrolysis, the capacity of certain septin monomers to hydrolyze their bound GTP has been lost during evolution. Thus, within septin hetero-oligomers and filaments, certain monomers remain permanently GTP-bound. Unlike tubulins, loss of septin GTPase activity-creating septin "pseudoGTPases"-occurred multiple times in independent evolutionary trajectories, accompanied in some cases by non-conservative substitutions in highly conserved residues in the nucleotide-binding pocket. Here, we used recent septin crystal structures, AlphaFold-generated models, phylogenetics and in silico nucleotide docking to investigate how in some organisms the septin G interface evolved to accommodate changes in nucleotide occupancy. Our analysis suggests that yeast septin monomers expressed only during meiosis and sporulation, when GTP is scarce, are evolving rapidly and might not bind GTP or GDP. Moreover, the G dimerization partners of these sporulation-specific septins appear to carry compensatory changes in residues that form contacts at the G interface to help retain stability despite the absence of bound GDP or GTP in the facing subunit. During septin evolution in nematodes, apparent loss of GTPase activity was also accompanied by changes in predicted G interface contacts. Overall, our observations support the conclusion that the primary function of nucleotide binding and hydrolysis by septins is to ensure formation of G interfaces that impose the proper subunit-subunit order within the hetero-oligomer.
Collapse
Affiliation(s)
- Alya Hussain
- Program in Structural Biology and Biochemistry, Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vu T. Nguyen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael McMurray
- Program in Structural Biology and Biochemistry, Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Marquardt J, Chen X, Bi E. Elucidating the Synergistic Role of Elm1 and Gin4 Kinases in Regulating Septin Hourglass Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566235. [PMID: 37986786 PMCID: PMC10659281 DOI: 10.1101/2023.11.08.566235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The septin cytoskeleton is extensively regulated by post-translational modifications such as phosphorylation to achieve the diversity of architectures including rings, hourglass, and gauzes. While many of the phosphorylation events of septins have been extensively studied in the budding yeast Saccharomyces cerevisiae, the regulation of the kinases involved remains poorly understood. Here we show that two septin-associated kinases, the LKB1/PAR-4-related kinase Elm1 and the Nim1/PAR-1-related kinase Gin4, regulate each other at two discrete points of the cell cycle. During bud emergence, Gin4 targets Elm1 to the bud neck via direct binding and phosphorylation to control septin hourglass assembly and stability. During mitosis, Elm1 maintains Gin4 localization via direct binding and phosphorylation to enable timely remodeling of the septin hourglass into a double ring. This unique synergy ensures that septin architecture is assembled and remodeled in a temporally controlled manner to perform distinct functions during the cell cycle.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Current affiliation: Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
16
|
Okada H, Chen X, Wang K, Marquardt J, Bi E. Bni5 tethers myosin-II to septins to enhance retrograde actin flow and the robustness of cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566094. [PMID: 37986946 PMCID: PMC10659389 DOI: 10.1101/2023.11.07.566094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The collaboration between septins and myosin-II in driving processes outside of cytokinesis remains largely uncharted. Here, we demonstrate that Bni5 in the budding yeast S. cerevisiae interacts with myosin-II, septin filaments, and the septin-associated kinase Elm1 via distinct domains at its N- and C-termini, thereby tethering the mobile myosin-II to the stable septin hourglass at the division site from bud emergence to the onset of cytokinesis. The septin and Elm1-binding domains, together with a central disordered region, of Bni5 control timely remodeling of the septin hourglass into a double ring, enabling the actomyosin ring constriction. The Bni5-tethered myosin-II enhances retrograde actin cable flow, which contributes to the asymmetric inheritance of mitochondria-associated protein aggregates during cell division, and also strengthens cytokinesis against various perturbations. Thus, we have established a biochemical pathway involving septin-Bni5-myosin-II interactions at the division site, which can inform mechanistic understanding of the role of myosin-II in other retrograde flow systems.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Current affiliation: Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Cavini IA, Winter AJ, D’Muniz Pereira H, Woolfson DN, Crump MP, Garratt RC. X-ray structure of the metastable SEPT14-SEPT7 coiled coil reveals a hendecad region crucial for heterodimerization. Acta Crystallogr D Struct Biol 2023; 79:881-894. [PMID: 37712436 PMCID: PMC10565730 DOI: 10.1107/s2059798323006514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Septins are membrane-associated, GTP-binding proteins that are present in most eukaryotes. They polymerize to play important roles as scaffolds and/or diffusion barriers as part of the cytoskeleton. α-Helical coiled-coil domains are believed to contribute to septin assembly, and those observed in both human SEPT6 and SEPT8 form antiparallel homodimers. These are not compatible with their parallel heterodimeric organization expected from the current model for protofilament assembly, but they could explain the interfilament cross-bridges observed by microscopy. Here, the first structure of a heterodimeric septin coiled coil is presented, that between SEPT14 and SEPT7; the former is a SEPT6/SEPT8 homolog. This new structure is parallel, with two long helices that are axially shifted by a full helical turn with reference to their sequence alignment. The structure also has unusual knobs-into-holes packing of side chains. Both standard seven-residue (heptad) and the less common 11-residue (hendecad) repeats are present, creating two distinct regions with opposite supercoiling, which gives rise to an overall straight coiled coil. Part of the hendecad region is required for heterodimerization and therefore may be crucial for selective septin recognition. These unconventional sequences and structural features produce a metastable heterocomplex that nonetheless has enough specificity to promote correct protofilament assembly. For instance, the lack of supercoiling may facilitate unzipping and transitioning to the antiparallel homodimeric state.
Collapse
Affiliation(s)
- Italo A. Cavini
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Ashley J. Winter
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Humberto D’Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
- BrisSynBio, University of Bristol, School of Chemistry, Bristol BS8 1TS, United Kingdom
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- BrisSynBio, University of Bristol, School of Chemistry, Bristol BS8 1TS, United Kingdom
| | - Richard C. Garratt
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| |
Collapse
|
18
|
Marques da Silva R, Christe Dos Reis Saladino G, Antonio Leonardo D, D'Muniz Pereira H, Andréa Sculaccio S, Paula Ulian Araujo A, Charles Garratt R. A key piece of the puzzle: The central tetramer of the Saccharomyces cerevisiae septin protofilament and its implications for self-assembly. J Struct Biol 2023; 215:107983. [PMID: 37315820 DOI: 10.1016/j.jsb.2023.107983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Septins, often described as the fourth component of the cytoskeleton, are structural proteins found in a vast variety of living beings. They are related to small GTPases and thus, generally, present GTPase activity which may play an important (although incompletely understood) role in their organization and function. Septins polymerize into long non-polar filaments, in which each subunit interacts with two others by alternating interfaces, NC and G. In Saccharomyces cerevisiae four septins are organized in the following manner, [Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11]n in order to form filaments. Although septins were originally discovered in yeast and much is known regarding their biochemistry and function, only limited structural information about them is currently available. Here we present crystal structures of Cdc3/Cdc10 which provide the first view of the physiological interfaces formed by yeast septins. The G-interface has properties which place it in between that formed by SEPT2/SEPT6 and SEPT7/SEPT3 in human filaments. Switch I from Cdc10 contributes significantly to the interface, whereas in Cdc3 it is largely disorded. However, the significant negative charge density of the latter suggests it may have a unique role. At the NC-interface, we describe an elegant means by which the sidechain of a glutamine from helix α0 imitates a peptide group in order to retain hydrogen-bond continuity at the kink between helices α5 and α6 in the neighbouring subunit, thereby justifying the conservation of the helical distortion. Its absence from Cdc11, along with this structure's other unusual features are critically discussed by comparison with Cdc3 and Cdc10.
Collapse
Affiliation(s)
- Rafael Marques da Silva
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | | | - Diego Antonio Leonardo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Humberto D'Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Susana Andréa Sculaccio
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Ana Paula Ulian Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil.
| |
Collapse
|
19
|
Cai T, Peng J, Omrane M, Benzoubir N, Samuel D, Gassama-Diagne A. Septin 9 Orients the Apico-Basal Polarity Axis and Controls Plasticity Signals. Cells 2023; 12:1815. [PMID: 37508480 PMCID: PMC10377970 DOI: 10.3390/cells12141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The cytoskeleton is a master organizer of the cellular cortex and membrane trafficking and therefore plays a crucial role in apico-basal polarity. Septins form a family of GTPases that assemble into non-polar filaments, which bind to membranes and recruit cytoskeletal elements such as microtubules and actin using their polybasic (PB) domains, to perform their broad biological functions. Nevertheless, the role of septins and the significance of their membrane-binding ability in apico-basal polarity remains under-investigated. Here, using 3D cultures, we demonstrated that septin 9 localizes to the basolateral membrane (BM). Its depletion induces an inverted polarity phenotype, decreasing β-catenin at BM and increasing transforming growth factor (TGFβ) and Epithelial-Mesenchymal Transition (EMT) markers. Similar effects were observed after deleting its two PB domains. The mutant became cytoplasmic and apical. The cysts with an inverted polarity phenotype displayed an invasive phenotype, with src and cortactin accumulating at the peripheral membrane. The inhibition of TGFβ-receptor and RhoA rescued the polarized phenotype, although the cysts from overexpressed septin 9 overgrew and presented a filled lumen. Both phenotypes corresponded to tumor features. This suggests that septin 9 expression, along with its assembly through the two PB domains, is essential for establishing and maintaining apico-basal polarity against tumor development.
Collapse
Affiliation(s)
- Tingting Cai
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Juan Peng
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Mohyeddine Omrane
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Nassima Benzoubir
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Didier Samuel
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
- AP-HP Hôpital Paul Brousse, Centre Hepato-Biliaire, F-94800 Villejuif, France
| | - Ama Gassama-Diagne
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| |
Collapse
|
20
|
Eisermann I, Garduño‐Rosales M, Talbot NJ. The emerging role of septins in fungal pathogenesis. Cytoskeleton (Hoboken) 2023; 80:242-253. [PMID: 37265147 PMCID: PMC10952683 DOI: 10.1002/cm.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Fungal pathogens undergo specific morphogenetic transitions in order to breach the outer surfaces of plants and invade the underlying host tissue. The ability to change cell shape and switch between non-polarised and polarised growth habits is therefore critical to the lifestyle of plant pathogens. Infection-related development involves remodelling of the cytoskeleton, plasma membrane and cell wall at specific points during fungal pathogenesis. Septin GTPases are components of the cytoskeleton that play pivotal roles in actin remodelling, micron-scale plasma membrane curvature sensing and cell polarity. Septin assemblages, such as rings, collars and gauzes, are known to have important roles in cell shape changes and are implicated in formation of specialised infection structures to enter plant cells. Here, we review and compare the reported functions of septins of plant pathogenic fungi, with a special focus on invasive growth. Finally, we discuss septins as potential targets for broad-spectrum antifungal plant protection strategies.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
21
|
de Freitas Fernandes A, Leonardo DA, Cavini IA, Rosa HVD, Vargas JA, D'Muniz Pereira H, Nascimento AS, Garratt RC. Conservation and divergence of the G-interfaces of Drosophila melanogaster septins. Cytoskeleton (Hoboken) 2023; 80:153-168. [PMID: 36576069 DOI: 10.1002/cm.21740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Septins possess a conserved guanine nucleotide-binding (G) domain that participates in the stabilization of organized hetero-oligomeric complexes which assemble into filaments, rings and network-like structures. The fruit fly, Drosophila melanogaster, has five such septin genes encoding Sep1, Sep2, Sep4, Sep5 and Pnut. Here, we report the crystal structure of the heterodimer formed between the G-domains of Sep1 and Sep2, the first from an insect to be described to date. A G-interface stabilizes the dimer (in agreement with the expected arrangement for the Drosophila hexameric particle) and this bears significant resemblance to its human counterparts, even down to the level of individual amino acid interactions. On the other hand, a model for the G-interface formed between the two copies of Pnut which occupy the centre of the hexamer, shows important structural differences, including the loss of a highly favourable bifurcated salt-bridge network. Whereas wild-type Pnut purifies as a monomer, the reintroduction of the salt-bridge network results in stabilizing the dimeric interface in solution as shown by size exclusion chromatography and thermal stability measurements. Adaptive steered molecular dynamics reveals an unzipping mechanism for dimer dissociation which initiates at a point of electrostatic repulsion within the switch II region. Overall, the data contribute to a better understanding of the molecular interactions involved in septin assembly/disassembly.
Collapse
Affiliation(s)
| | | | | | | | - Jhon Antoni Vargas
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | | | | |
Collapse
|
22
|
Grupp B, Lemkul JA, Gronemeyer T. An in silico approach to determine inter-subunit affinities in human septin complexes. Cytoskeleton (Hoboken) 2023; 80:141-152. [PMID: 36843207 DOI: 10.1002/cm.21749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
The septins are a conserved family of filament-forming guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. Correctly assembled septin structures are required for essential intracellular processes such as cytokinesis, vesicular transport, polarity establishment, and cellular adhesion. Structurally, septins belong to the P-Loop NTPases but they do not mediate signals to effectors through GTP binding and hydrolysis. GTP binding and hydrolysis are believed to contribute to septin complex integrity, but biochemical approaches addressing this topic are hampered by the stability of septin complexes after recombinant expression and the lack of nucleotide-depleted complexes. To overcome this limitation, we used a molecular dynamics-based approach to determine inter-subunit binding free energies in available human septin dimer structures and in their apo forms, which we generated in silico. The nucleotide in the GTPase active subunits SEPT2 and SEPT7, but not in SEPT6, was identified as a stabilizing element in the G interface. Removal of GDP from SEPT2 and SEPT7 results in flipping of a conserved Arg residue and disruption of an extensive hydrogen bond network in the septin unique element, concomitant with a decreased inter-subunit affinity. Based on these findings we propose a singular "lock-hydrolysis" mechanism stabilizing human septin filaments.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| |
Collapse
|
23
|
Werner B, Yadav S. Phosphoregulation of the septin cytoskeleton in neuronal development and disease. Cytoskeleton (Hoboken) 2023; 80:275-289. [PMID: 36127729 PMCID: PMC10025170 DOI: 10.1002/cm.21728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Septins are highly conserved GTP-binding proteins that oligomerize and form higher order structures. The septin cytoskeleton plays an important role in cellular organization, intracellular transport, and cytokinesis. Kinase-mediated phosphorylation of septins regulates various aspects of their function, localization, and dynamics. Septins are enriched in the mammalian nervous system where they contribute to neurodevelopment and neuronal function. Emerging research has implicated aberrant changes in septin cytoskeleton in several human diseases. The mechanisms through which aberrant phosphorylation by kinases contributes to septin dysfunction in neurological disorders are poorly understood and represent an important question for future research with therapeutic implications. This review summarizes the current state of knowledge of the diversity of kinases that interact with and phosphorylate mammalian septins, delineates how phosphoregulation impacts septin dynamics, and describes how aberrant septin phosphorylation contributes to neurological disorders.
Collapse
Affiliation(s)
- Bailey Werner
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
K S V Castro D, V D Rosa H, Mendonça DC, Cavini IA, P U Araujo A, Garratt RC. Dissecting the binding interface of the septin polymerization enhancer Borg BD3. J Mol Biol 2023; 435:168132. [PMID: 37121395 DOI: 10.1016/j.jmb.2023.168132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The molecular basis for septin filament assembly has begun to emerge over recent years. These filaments are essential for many septin functions which depend on their association with biological membranes or components of the cytoskeleton. Much less is known about how septins specifically interact with their binding partners. Here we describe the essential role played by the C-terminal domains in both septin polymerization and their association with the BD3 motif of the Borg family of Cdc42 effector proteins. We provide a detailed description, at the molecular level, of a previously reported interaction between BD3 and the NC-interface between SEPT6 and SEPT7. Upon ternary complex formation, the heterodimeric coiled coil formed by the C-terminal domains of the septins becomes stabilized and filament formation is promoted under conditions of ionic strength/protein concentration which are not normally permissible, likely by favouring hexamers over smaller oligomeric states. This demonstrates that binding partners, such as Borg's, have the potential to control filament assembly/disassembly in vivo in a way which can be emulated in vitro by altering the ionic strength. Experimentally validated models indicate that the BD3 peptide lies antiparallel to the coiled coil and is stabilized by a mixture of polar and apolar contacts. At its center, an LGPS motif, common to all human Borg sequences, interacts with charged residues from both helices of the coiled coil (K368 from SEPT7 and the conserved E354 from SEPT6) suggesting a universal mechanism which governs Borg-septin interactions.
Collapse
Affiliation(s)
- Danielle K S V Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Deborah C Mendonça
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
| |
Collapse
|
25
|
Cannon KS, Vargas-Muniz JM, Billington N, Seim I, Ekena J, Sellers JR, Gladfelter AS. A gene duplication of a septin reveals a developmentally regulated filament length control mechanism. J Cell Biol 2023; 222:e202204063. [PMID: 36786832 PMCID: PMC9960279 DOI: 10.1083/jcb.202204063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/20/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Septins are a family of conserved filament-forming proteins that function in multiple cellular processes. The number of septin genes within an organism varies, and higher eukaryotes express many septin isoforms due to alternative splicing. It is unclear if different combinations of septin proteins in complex alter the polymers' biophysical properties. We report that a duplication event within the CDC11 locus in Ashbya gossypii gave rise to two similar but distinct Cdc11 proteins: Cdc11a and Cdc1b. CDC11b transcription is developmentally regulated, producing different amounts of Cdc11a- and Cdc11b-complexes in the lifecycle of Ashbya gossypii. Deletion of either gene results in distinct cell polarity defects, suggesting non-overlapping functions. Cdc11a and Cdc11b complexes have differences in filament length and membrane-binding ability. Thus, septin subunit composition has functional consequences on filament properties and cell morphogenesis. Small sequence differences elicit distinct biophysical properties and cell functions of septins, illuminating how gene duplication could be a driving force for septin gene expansions seen throughout the tree of life.
Collapse
Affiliation(s)
- Kevin S. Cannon
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Jose M. Vargas-Muniz
- Microbiology Program, School of Biological Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Neil Billington
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ian Seim
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Joanne Ekena
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - James R. Sellers
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy. S. Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
26
|
Martins CS, Taveneau C, Castro-Linares G, Baibakov M, Buzhinsky N, Eroles M, Milanović V, Omi S, Pedelacq JD, Iv F, Bouillard L, Llewellyn A, Gomes M, Belhabib M, Kuzmić M, Verdier-Pinard P, Lee S, Badache A, Kumar S, Chandre C, Brasselet S, Rico F, Rossier O, Koenderink GH, Wenger J, Cabantous S, Mavrakis M. Human septins organize as octamer-based filaments and mediate actin-membrane anchoring in cells. J Cell Biol 2023; 222:213778. [PMID: 36562751 PMCID: PMC9802686 DOI: 10.1083/jcb.202203016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Septins are cytoskeletal proteins conserved from algae and protists to mammals. A unique feature of septins is their presence as heteromeric complexes that polymerize into filaments in solution and on lipid membranes. Although animal septins associate extensively with actin-based structures in cells, whether septins organize as filaments in cells and if septin organization impacts septin function is not known. Customizing a tripartite split-GFP complementation assay, we show that all septins decorating actin stress fibers are octamer-containing filaments. Depleting octamers or preventing septins from polymerizing leads to a loss of stress fibers and reduced cell stiffness. Super-resolution microscopy revealed septin fibers with widths compatible with their organization as paired septin filaments. Nanometer-resolved distance measurements and single-protein tracking further showed that septin filaments are membrane bound and largely immobilized. Finally, reconstitution assays showed that septin filaments mediate actin-membrane anchoring. We propose that septin organization as octamer-based filaments is essential for septin function in anchoring and stabilizing actin filaments at the plasma membrane.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France.,Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Cyntia Taveneau
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Mikhail Baibakov
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Nicolas Buzhinsky
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Mar Eroles
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Violeta Milanović
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Francois Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Léa Bouillard
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Stacey Lee
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Felix Rico
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Jerome Wenger
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| |
Collapse
|
27
|
Grupp B, Gronemeyer T. A biochemical view on the septins, a less known component of the cytoskeleton. Biol Chem 2023; 404:1-13. [PMID: 36423333 DOI: 10.1515/hsz-2022-0263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/30/2022] [Indexed: 11/25/2022]
Abstract
The septins are a conserved family of guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. They self-assemble into non-polar filaments and further into higher ordered structures. Properly assembled septin structures are required for a wide range of indispensable intracellular processes such as cytokinesis, vesicular transport, polarity establishment and cellular adhesion. Septins belong structurally to the P-Loop NTPases. However, unlike the small GTPases like Ras, septins do not mediate signals to effectors through GTP binding and hydrolysis. The role of nucleotide binding and subsequent GTP hydrolysis by the septins is rather controversially debated. We compile here the structural features from the existing septin crystal- and cryo-EM structures regarding protofilament formation, inter-subunit interface architecture and nucleotide binding and hydrolysis. These findings are supplemented with a summary of available biochemical studies providing information regarding nucleotide binding and hydrolysis of fungal and mammalian septins.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| |
Collapse
|
28
|
Appressoria-Small but Incredibly Powerful Structures in Plant-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24032141. [PMID: 36768468 PMCID: PMC9917257 DOI: 10.3390/ijms24032141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Plant-pathogenic fungi are responsible for many of the most severe crop diseases in the world and remain very challenging to control. Improving current protection strategies or designating new measures based on an overall understanding of molecular host-pathogen interaction mechanisms could be helpful for disease management. The attachment and penetration of the plant surface are the most important events among diverse plant-fungi interactions. Fungi evolved as small but incredibly powerful infection structure appressoria to facilitate attachment and penetration. Appressoria are indispensable for many diseases, such as rusts, powdery mildews, and blast diseases, as well as devastating oomycete diseases. Investigation into the formation of plant-pathogen appressoria contributes to improving the understanding of the molecular mechanisms of plant-pathogen interactions. Fungal host attachment is a vital step of fungal pathogenesis. Here, we review recent advances in the molecular mechanisms regulating the formation of appressoria. Additionally, some biocontrol agents were revealed to act on appressorium. The regulation of fungal adhesion during the infective process by acting on appressoria formation is expected to prevent the occurrence of crop disease caused by some pathogenic fungi.
Collapse
|
29
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
30
|
Neuronal-specific septin-3 binds Atg8/LC3B, accumulates and localizes to autophagosomes during induced autophagy. Cell Mol Life Sci 2022; 79:471. [PMID: 35932293 PMCID: PMC9356936 DOI: 10.1007/s00018-022-04488-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
In synapses that show signs of local apoptosis and mitochondrial stress and undergo neuro-immunological synapse pruning, an increase in the levels of the presynaptic protein, neuronal-specific septin-3 can be observed. Septin-3 is a member of the septin GTPase family with the ability to form multimers and contribute to the cytoskeleton. However, the function of septin-3 remains elusive. Here, we provide evidence that septin-3 is capable of binding the most-studied autophagy protein Atg8 homolog microtubule-associated protein 1 light chain 3B (LC3B), besides another homolog, GABA receptor-associated protein-like 2 (GABARAPL2). Moreover, we demonstrate that colocalization of septin-3 and LC3B increases upon chemical autophagy induction in primary neuronal cells. Septin-3 is accumulated in primary neurons upon autophagy enhancement or blockade, similar to autophagy proteins. Using electron microscopy, we also show that septin-3 localizes to LC3B positive membranes and can be found at mitochondria. However, colocalization results of septin-3 and the early mitophagy marker PTEN-induced kinase 1 (PINK1) do not support that binding of septin-3 to mitochondria is mitophagy related. We conclude that septin-3 correlates with synaptic/neuronal autophagy, binds Atg8 and localizes to autophagic membranes that can be enhanced with chemical autophagy induction. Based on our results, elevated septin-3 levels might indicate enhanced or impeded autophagy in neurons.
Collapse
|
31
|
Sohn MY, Choi KM, Joo MS, Kang G, Woo WS, Kim KH, Son HJ, Lee JH, Kim DH, Park CI. Molecular characterization and expression analysis of septin gene family and phagocytic function of recombinant septin 2, 3 and 8 of starry flounder (Platichthys stellatus). FISH & SHELLFISH IMMUNOLOGY 2022; 126:251-262. [PMID: 35577319 DOI: 10.1016/j.fsi.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Septin is an evolutionarily conserved family of GTP-binding proteins. Septins are known to be involved in a variety of cellular processes, including cell division, chromosome separation, cell polarity, motility, membrane dynamics, exocytosis, apoptosis, phagocytosis, DNA damage responses, and other immune responses. In this study, the sequences of the septin gene family of starry flounder were obtained using NGS sequencing, and the integrity of the sequences was verified through cloning and sequencing. At first, the amino acid sequence was annotated using the cDNA sequence, and then, the gene sequence was verified through multiple sequence alignment and phylogenetic analyses using the related conserved sequences. The septin gene family was classified into three subgroups based on the phylogenetic analysis. High conservation within the domain and homology between the genes reported in different species were confirmed. The expression level of septin gene family mRNA in each tissue of healthy starry flounder was evaluated to confirm the tissue- and gene-specific expression levels. Additionally, as a result of the analysis of mRNA expression after simulated pathogen infection, significant expression changes and characteristics were confirmed upon infection with bacteria (Streptococcus parauberis PH0710) and virus (VHSV). Based on the current results and that of previous studies, to confirm the immunological function, Septin 2, 3, and 8 were produced as recombinant proteins based on the amino acid sequences, and their role in phagocytosis was further investigated. The results of this study indicate that septin gene family plays a complex and crucial role in the host immune response to pathogens of starry flounder.
Collapse
Affiliation(s)
- Min-Young Sohn
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Gyoungsik Kang
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jeong-Ho Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, South Korea.
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
32
|
Fischer M, Frank D, Rösler R, Johnsson N, Gronemeyer T. Biochemical Characterization of a Human Septin Octamer. Front Cell Dev Biol 2022; 10:771388. [PMID: 35309913 PMCID: PMC8928218 DOI: 10.3389/fcell.2022.771388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Septins are part of the cytoskeleton and polymerize into non-polar filaments of heteromeric hexamers or octamers. They belong to the class of P-loop GTPases but the roles of GTP binding and hydrolysis on filament formation and dynamics are not well understood. The basic human septin building block is the septin rod, a hetero-octamer composed of SEPT2, SEPT6, SEPT7, and SEPT9 with a stoichiometry of 2:2:2:2 (2-6-7-9-9-7-6-2). Septin rods polymerize by end-to-end and lateral joining into linear filaments and higher ordered structures such as rings, sheets, and gauzes. We purified a recombinant human septin octamer from E. coli for in vitro experimentation that is able to polymerize into filaments. We could show that the C-terminal region of the central SEPT9 subunit contributes to filament formation and that the human septin rod decreases the rate of in vitro actin polymerization. We provide further first kinetic data on the nucleotide uptake- and exchange properties of human hexameric and octameric septin rods. We could show that nucleotide uptake prior to hydrolysis is a dynamic process and that a bound nucleotide is exchangeable. However, the hydrolyzed γ-phosphate is not released from the native protein complex. We consequently propose that GTP hydrolysis in human septins does not follow the typical mechanism known from other small GTPases.
Collapse
Affiliation(s)
- Martin Fischer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Dominik Frank
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
33
|
Shuman B, Momany M. Septins From Protists to People. Front Cell Dev Biol 2022; 9:824850. [PMID: 35111763 PMCID: PMC8801916 DOI: 10.3389/fcell.2021.824850] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Septin GTPases form nonpolar heteropolymers that play important roles in cytokinesis and other cellular processes. The ability to form heteropolymers appears to be critical to many septin functions and to have been a major driver of the high conservation of many septin domains. Septins fall into five orthologous groups. Members of Groups 1–4 interact with each other to form heterooligomers and are known as the “core septins.” Representative core septins are present in all fungi and animals so far examined and show positional orthology with monomer location in the heteropolymer conserved within groups. In contrast, members of Group 5 are not part of canonical heteropolymers and appear to interact only transiently, if at all, with core septins. Group 5 septins have a spotty distribution, having been identified in specific fungi, ciliates, chlorophyte algae, and brown algae. In this review we compare the septins from nine well-studied model organisms that span the tree of life (Homo sapiens, Drosophila melanogaster, Schistosoma mansoni, Caenorhabditis elegans, Saccharomyces cerevisiae, Aspergillus nidulans, Magnaporthe oryzae, Tetrahymena thermophila, and Chlamydomonas reinhardtii). We focus on classification, evolutionary relationships, conserved motifs, interfaces between monomers, and positional orthology within heteropolymers. Understanding the relationships of septins across kingdoms can give new insight into their functions.
Collapse
|
34
|
Baillet A, McMurray MA, Oakes PW. Meeting report - the ever-fascinating world of septins. J Cell Sci 2021; 134:jcs259552. [PMID: 34910818 PMCID: PMC10658896 DOI: 10.1242/jcs.259552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Septins are GTP-binding proteins that assemble into hetero-oligomers. They can interact with each other end-to-end to form filaments, making them the fourth element of the cytoskeleton. To update the current knowledge on the ever-increasing implications of these fascinating proteins in cellular functions, a hundred expert scientists from across the globe gathered from 12 to 15 October 2021 in Berlin for the first hybrid-format (on site and virtual) EMBO workshop Molecular and Cell Biology of Septins.
Collapse
Affiliation(s)
- Anita Baillet
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Michael A. McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153USA
| |
Collapse
|
35
|
Marquardt J, Chen X, Bi E. Septin Assembly and Remodeling at the Cell Division Site During the Cell Cycle. Front Cell Dev Biol 2021; 9:793920. [PMID: 34901034 PMCID: PMC8656427 DOI: 10.3389/fcell.2021.793920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The septin family of proteins can assemble into filaments that further organize into different higher order structures to perform a variety of different functions in different cell types and organisms. In the budding yeast Saccharomyces cerevisiae, the septins localize to the presumptive bud site as a cortical ring prior to bud emergence, expand into an hourglass at the bud neck (cell division site) during bud growth, and finally “split” into a double ring sandwiching the cell division machinery during cytokinesis. While much work has been done to understand the functions and molecular makeups of these structures, the mechanisms underlying the transitions from one structure to another have largely remained elusive. Recent studies involving advanced imaging and in vitro reconstitution have begun to reveal the vast complexity involved in the regulation of these structural transitions, which defines the focus of discussion in this mini-review.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Schuster T, Geiger H. Septins in Stem Cells. Front Cell Dev Biol 2021; 9:801507. [PMID: 34957123 PMCID: PMC8695968 DOI: 10.3389/fcell.2021.801507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 12/01/2022] Open
Abstract
Septins were first described in yeast. Due to extensive research in non-yeast cells, Septins are now recognized across all species as important players in the regulation of the cytoskeleton, in the establishment of polarity, for migration, vesicular trafficking and scaffolding. Stem cells are primarily quiescent cells, and this actively maintained quiescent state is critical for proper stem cell function. Equally important though, stem cells undergo symmetric or asymmetric division, which is likely linked to the level of symmetry found in the mother stem cell. Due to the ability to organize barriers and be able to break symmetry in cells, Septins are thought to have a significant impact on organizing quiescence as well as the mode (symmetric vs asymmetric) of stem cell division to affect self-renewal versus differentiation. Mechanisms of regulating mammalian quiescence and symmetry breaking by Septins are though still somewhat elusive. Within this overview article, we summarize current knowledge on the role of Septins in stem cells ranging from yeast to mice especially with respect to quiescence and asymmetric division, with a special focus on hematopoietic stem cells.
Collapse
Affiliation(s)
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
37
|
Cavini IA, Leonardo DA, Rosa HVD, Castro DKSV, D'Muniz Pereira H, Valadares NF, Araujo APU, Garratt RC. The Structural Biology of Septins and Their Filaments: An Update. Front Cell Dev Biol 2021; 9:765085. [PMID: 34869357 PMCID: PMC8640212 DOI: 10.3389/fcell.2021.765085] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
In order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition. Over the last few years, the amount of structural information available about these important cytoskeletal proteins has increased dramatically. This has allowed for a more detailed description of their individual domains and the different interfaces formed between them, which are the basis for stabilizing higher-order structures such as hexamers, octamers and fully formed filaments. The flexibility of these structures and the plasticity of the individual interfaces have also begun to be understood. Furthermore, recently, light has been shed on how filaments may bundle into higher-order structures by the formation of antiparallel coiled coils involving the C-terminal domains. Nevertheless, even with these advances, there is still some way to go before we fully understand how the structure and dynamics of septin assemblies are related to their physiological roles, including their interactions with biological membranes and other cytoskeletal components. In this review, we aim to bring together the various strands of structural evidence currently available into a more coherent picture. Although it would be an exaggeration to say that this is complete, recent progress seems to suggest that headway is being made in that direction.
Collapse
Affiliation(s)
- Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Danielle K S V Castro
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | | | | | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
38
|
Li L, Zhu XM, Su ZZ, Del Poeta M, Liu XH, Lin FC. Insights of roles played by septins in pathogenic fungi. Virulence 2021; 12:1550-1562. [PMID: 34097566 PMCID: PMC8189056 DOI: 10.1080/21505594.2021.1933370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Septins, a conserved family of GTP-binding proteins, are widely recognized as an essential cytoskeletal component, playing important roles in a variety of biological processes, including division, polarity, and membrane remodeling, in different eukaryotes. Although the roles played by septins were identified in the model organism Saccharomyces cerevisiae, their importance in other fungi, especially pathogenic fungi, have recently been determined. In this review, we summarize the functions of septins in pathogenic fungi in the cell cycle, autophagy, endocytosis and invasion host-microbe interactions that were reported in the last two years in the field of septin cell biology. These new discoveries may be expanded to investigate the functions of septin proteins in fungal pathogenesis and may be of wide interest to the readers of Microbiology and Molecular Pathology.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen-Zhu Su
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Devlin L, Okletey J, Perkins G, Bowen JR, Nakos K, Montagna C, Spiliotis ET. Proteomic profiling of the oncogenic septin 9 reveals isoform-specific interactions in breast cancer cells. Proteomics 2021; 21:e2100155. [PMID: 34409731 DOI: 10.1002/pmic.202100155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Septins are a family of multimeric GTP-binding proteins, which are abnormally expressed in cancer. Septin 9 (SEPT9) is an essential and ubiquitously expressed septin with multiple isoforms, which have differential expression patterns and effects in breast cancer cells. It is unknown, however, if SEPT9 isoforms associate with different molecular networks and functions. Here, we performed a proteomic screen in MCF-7 breast cancer cells to identify the interactome of GFP-SEPT9 isoforms 1, 4 and 5, which vary significantly in their N-terminal extensions. While all three isoforms associated with SEPT2 and SEPT7, the truncated SEPT9_i4 and SEPT9_i5 interacted with septins of the SEPT6 group more promiscuously than SEPT9_i1, which bound predominately SEPT8. Spatial mapping and functional clustering of non-septin partners showed isoform-specific differences in interactions with proteins of distinct subcellular organelles (e.g., nuclei, centrosomes, cilia) and functions such as cell signalling and ubiquitination. The interactome of the full length SEPT9_i1 was more enriched in cytoskeletal regulators, while the truncated SEPT9_i4 and SEPT9_i5 exhibited preferential and isoform-specific interactions with nuclear, signalling, and ubiquitinating proteins. These data provide evidence for isoform-specific interactions, which arise from truncations in the N-terminal extensions of SEPT9, and point to novel roles in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Louis Devlin
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.,Sanofi Pasteur, Swiftwater, Pennsylvania, USA
| | - Joshua Okletey
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Jonathan R Bowen
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Nakos
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cristina Montagna
- Department of Radiology & Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Iv F, Martins CS, Castro-Linares G, Taveneau C, Barbier P, Verdier-Pinard P, Camoin L, Audebert S, Tsai FC, Ramond L, Llewellyn A, Belhabib M, Nakazawa K, Di Cicco A, Vincentelli R, Wenger J, Cabantous S, Koenderink GH, Bertin A, Mavrakis M. Insights into animal septins using recombinant human septin octamers with distinct SEPT9 isoforms. J Cell Sci 2021; 134:jcs258484. [PMID: 34350965 DOI: 10.1242/jcs.258484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Septin GTP-binding proteins contribute essential biological functions that range from the establishment of cell polarity to animal tissue morphogenesis. Human septins in cells form hetero-octameric septin complexes containing the ubiquitously expressed SEPT9 subunit (also known as SEPTIN9). Despite the established role of SEPT9 in mammalian development and human pathophysiology, biochemical and biophysical studies have relied on monomeric SEPT9, thus not recapitulating its native assembly into hetero-octameric complexes. We established a protocol that enabled, for the first time, the isolation of recombinant human septin octamers containing distinct SEPT9 isoforms. A combination of biochemical and biophysical assays confirmed the octameric nature of the isolated complexes in solution. Reconstitution studies showed that octamers with either a long or a short SEPT9 isoform form filament assemblies, and can directly bind and cross-link actin filaments, raising the possibility that septin-decorated actin structures in cells reflect direct actin-septin interactions. Recombinant SEPT9-containing octamers will make it possible to design cell-free assays to dissect the complex interactions of septins with cell membranes and the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Francois Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Cyntia Taveneau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Australia; Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Australia
| | - Pascale Barbier
- Aix-Marseille Univ, CNRS, UMR 7051, Institut de Neurophysiopathologie (INP), 13005 Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, 13009 Marseille, France
| | - Luc Camoin
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Feng-Ching Tsai
- Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Laurie Ramond
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Alex Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Koyomi Nakazawa
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS UMR7257, Aix Marseille Univ, 13009 Marseille, France
| | - Jerome Wenger
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Aurélie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, 13013 Marseille, France
| |
Collapse
|
41
|
Woods BL, Cannon KS, Vogt EJD, Crutchley JM, Gladfelter AS. Interplay of septin amphipathic helices in sensing membrane-curvature and filament bundling. Mol Biol Cell 2021; 32:br5. [PMID: 34319771 PMCID: PMC8684760 DOI: 10.1091/mbc.e20-05-0303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the nonessential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In a septin mutant strain lacking a fully functional Cdc12 AH domain (cdc12-6), the C-terminal extension of Shs1, containing an AH domain, becomes essential. Additionally, we find that the Cdc12 AH domain is important for regulating septin filament bundling, suggesting septin AH domains have multiple, distinct functions and that bundling and membrane binding may be coordinately controlled.
Collapse
Affiliation(s)
- Benjamin L Woods
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin S Cannon
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John M Crutchley
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
42
|
Spiliotis ET, Kesisova IA. Spatial regulation of microtubule-dependent transport by septin GTPases. Trends Cell Biol 2021; 31:979-993. [PMID: 34253430 DOI: 10.1016/j.tcb.2021.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
The intracellular long-range transport of membrane vesicles and organelles is mediated by microtubule motors (kinesins, dynein) which move cargo with spatiotemporal accuracy and efficiency. How motors navigate the microtubule network and coordinate their activity on membrane cargo are fundamental but poorly understood questions. New studies show that microtubule-dependent membrane traffic is spatially controlled by septins - a unique family of multimerizing GTPases that associate with microtubules and membrane organelles. We review how septins selectively regulate motor interactions with microtubules and membrane cargo. We posit that septins provide a novel traffic code that specifies the movement and directionality of select motor-cargo complexes on distinct microtubule tracks.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| | - Ilona A Kesisova
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Spiliotis ET, McMurray MA. Masters of asymmetry - lessons and perspectives from 50 years of septins. Mol Biol Cell 2021; 31:2289-2297. [PMID: 32991244 PMCID: PMC7851956 DOI: 10.1091/mbc.e19-11-0648] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Septins are a unique family of GTPases, which were discovered 50 years ago as essential genes for the asymmetric cell shape and division of budding yeast. Septins assemble into filamentous nonpolar polymers, which associate with distinct membrane macrodomains and subpopulations of actin filaments and microtubules. While structurally a cytoskeleton-like element, septins function predominantly as spatial regulators of protein localization and interactions. Septin scaffolds and barriers have provided a long-standing paradigm for the generation and maintenance of asymmetry in cell membranes. Septins also promote asymmetry by regulating the spatial organization of the actin and microtubule cytoskeleton, and biasing the directionality of membrane traffic. In this 50th anniversary perspective, we highlight how septins have conserved and adapted their roles as effectors of membrane and cytoplasmic asymmetry across fungi and animals. We conclude by outlining principles of septin function as a module of symmetry breaking, which alongside the monomeric small GTPases provides a core mechanism for the biogenesis of molecular asymmetry and cell polarity.
Collapse
Affiliation(s)
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
44
|
Abstract
Septins are an integral component of the cytoskeleton, assembling into higher-order oligomers and filamentous polymers that associate with actin filaments, microtubules and membranes. Here, we review septin interactions with actin and microtubules, and septin-mediated regulation of the organization and dynamics of these cytoskeletal networks, which is critical for cellular morphogenesis. We discuss how actomyosin-associated septins function in cytokinesis, cell migration and host defense against pathogens. We highlight newly emerged roles of septins at the interface of microtubules and membranes with molecular motors, which point to a 'septin code' for the regulation of membrane traffic. Additionally, we revisit the functions of microtubule-associated septins in mitosis and meiosis. In sum, septins comprise a unique module of cytoskeletal regulators that are spatially and functionally specialized and have properties of bona fide actin-binding and microtubule-associated proteins. With many questions still outstanding, the study of septins will continue to provide new insights into fundamental problems of cytoskeletal organization and function.
Collapse
|
45
|
Mela A, Momany M. Septins coordinate cell wall integrity and lipid metabolism in a sphingolipid-dependent process. J Cell Sci 2021; 135:256543. [PMID: 33912961 DOI: 10.1242/jcs.258336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.
Collapse
Affiliation(s)
- Alexander Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| |
Collapse
|
46
|
Szuba A, Bano F, Castro-Linares G, Iv F, Mavrakis M, Richter RP, Bertin A, Koenderink GH. Membrane binding controls ordered self-assembly of animal septins. eLife 2021; 10:63349. [PMID: 33847563 PMCID: PMC8099429 DOI: 10.7554/elife.63349] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.
Collapse
Affiliation(s)
- Agata Szuba
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands
| | - Fouzia Bano
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Gerard Castro-Linares
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Francois Iv
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Gijsje H Koenderink
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
47
|
Dulal N, Rogers AM, Proko R, Bieger BD, Liyanage R, Krishnamurthi VR, Wang Y, Egan MJ. Turgor-dependent and coronin-mediated F-actin dynamics drive septin disc-to-ring remodeling in the blast fungus Magnaporthe oryzae. J Cell Sci 2021; 134:jcs.251298. [PMID: 33414165 DOI: 10.1242/jcs.251298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The fungus Magnaporthe oryzae uses a specialized pressure-generating infection cell called an appressorium to break into rice leaves and initiate disease. Appressorium functionality is dependent on the formation of a cortical septin ring during its morphogenesis, but precisely how this structure assembles is unclear. Here, we show that F-actin rings are recruited to the circumference of incipient septin disc-like structures in a pressure-dependent manner, and that this is necessary for their contraction and remodeling into rings. We demonstrate that the structural integrity of these incipient septin discs requires both an intact F-actin and microtubule cytoskeleton and provide fundamental new insight into their functional organization within the appressorium. Lastly, using proximity-dependent labeling, we identify the actin modulator coronin as a septin-proximal protein and show that F-actin-mediated septin disc-to-ring remodeling is perturbed in the genetic absence of coronin. Taken together, our findings provide new insight into the dynamic remodeling of infection-specific higher-order septin structures in a globally significant fungal plant pathogen.
Collapse
Affiliation(s)
- Nawaraj Dulal
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Rinalda Proko
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA.,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Baronger Dowell Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA.,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Yong Wang
- Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA.,Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA.,Microelectronics-Photonics graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA .,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
48
|
Takagi J, Cho C, Duvalyan A, Yan Y, Halloran M, Hanson-Smith V, Thorner J, Finnigan GC. Reconstructed evolutionary history of the yeast septins Cdc11 and Shs1. G3-GENES GENOMES GENETICS 2021; 11:6025175. [PMID: 33561226 PMCID: PMC7849910 DOI: 10.1093/g3journal/jkaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
Septins are GTP-binding proteins conserved across metazoans. They can polymerize into extended filaments and, hence, are considered a component of the cytoskeleton. The number of individual septins varies across the tree of life—yeast (Saccharomyces cerevisiae) has seven distinct subunits, a nematode (Caenorhabditis elegans) has two, and humans have 13. However, the overall geometric unit (an apolar hetero-octameric protomer and filaments assembled there from) has been conserved. To understand septin evolutionary variation, we focused on a related pair of yeast subunits (Cdc11 and Shs1) that appear to have arisen from gene duplication within the fungal clade. Either Cdc11 or Shs1 occupies the terminal position within a hetero-octamer, yet Cdc11 is essential for septin function and cell viability, whereas Shs1 is not. To discern the molecular basis of this divergence, we utilized ancestral gene reconstruction to predict, synthesize, and experimentally examine the most recent common ancestor (“Anc.11-S”) of Cdc11 and Shs1. Anc.11-S was able to occupy the terminal position within an octamer, just like the modern subunits. Although Anc.11-S supplied many of the known functions of Cdc11, it was unable to replace the distinct function(s) of Shs1. To further evaluate the history of Shs1, additional intermediates along a proposed trajectory from Anc.11-S to yeast Shs1 were generated and tested. We demonstrate that multiple events contributed to the current properties of Shs1: (1) loss of Shs1–Shs1 self-association early after duplication, (2) co-evolution of heterotypic Cdc11–Shs1 interaction between neighboring hetero-octamers, and (3) eventual repurposing and acquisition of novel function(s) for its C-terminal extension domain. Thus, a pair of duplicated proteins, despite constraints imposed by assembly into a highly conserved multi-subunit structure, could evolve new functionality via a complex evolutionary pathway.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Christina Cho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Angela Duvalyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
49
|
Kim J, Cooper JA. Junctional Localization of Septin 2 Is Required for Organization of Junctional Proteins in Static Endothelial Monolayers. Arterioscler Thromb Vasc Biol 2021; 41:346-359. [PMID: 33147991 PMCID: PMC7769918 DOI: 10.1161/atvbaha.120.315472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Septin 2 is localized at junctions in human microvascular endothelial monolayers. The junctional localization of septin 2 is necessary for organization of cell-cell adhesion proteins of endothelial cells. Approach and Results: Septin 2 was depleted at junctions by suppression of expression using shRNA, treatment with inflammatory cytokine, TNF (tumor necrosis factor)-α, and ectopic overexpression of septin 2 phosphatidylinositol 4,5-bisphosphate binding mutant defect in interaction with plasma membrane. Under those conditions, organizations and expression levels of various junctional proteins were analyzed. Confocal images of immunofluorescence staining showed substantial disorganization of adherens junctional proteins, nectin-2 and afadin, TJP (tight junction protein), ZO (zonula occludens)-1, and intercellular adhesion protein, PECAM-1 (platelet-endothelial cell adhesion molecule-1). Immunoblots for those proteins did not show significant changes in expression except for nectin-2 that highly increased in expression. Significant differential gene expression profiles and biological pathway analysis by septin 2 suppression and by TNF-α treatment using RNA-seq showed common overlapping pathways. The commonalities in expression may be consistent with the similar effects on the overall organization of cell-cell adhesion proteins. CONCLUSIONS Localization of septin 2 at cell junctions are required for the arrangement of junctional proteins and the integrity of the barrier formed by endothelial monolayers.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - John A. Cooper
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
50
|
Martinez Barrera S, Byrum S, Mackintosh SG, Kozubowski L. Registered report protocol: Quantitative analysis of septin Cdc10-associated proteome in Cryptococcus neoformans. PLoS One 2020; 15:e0242381. [PMID: 33315917 PMCID: PMC7735571 DOI: 10.1371/journal.pone.0242381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous yeast that primarily infects immunocompromised individuals. C. neoformans can thrive during infections due to its three main virulence-related characteristics: the ability to grow at host temperature (37°C), formation of carbohydrate capsule, and its ability to produce melanin. C. neoformans strains lacking septin proteins Cdc3 or Cdc12 are viable at 25°C; however, they fail to proliferate at 37°C and are avirulent in the murine model of infection. The basis of septin contribution to growth at host temperature remains unknown. Septins are a family of conserved filament-forming GTPases with roles in cytokinesis and morphogenesis. In the model organism Saccharomyces cerevisiae septins are essential. S. cerevisiae septins form a higher order complex at the mother-bud neck to scaffold over 80 proteins, including those involved in cell wall organization, cell polarity, and cell cycle control. In C. neoformans, septins also form a complex at the mother-bud neck but the septin interacting proteome in this species remains largely unknown. Moreover, it remains possible that septins play other roles important for high temperature stress that are independent of their established role in cytokinesis. Therefore, we propose to perform a global analysis of septin Cdc10 binding partners in C. neoformans, including those that are specific to high temperature stress. This analysis will shed light on the underlying mechanism of survival of this pathogenic yeast during infection and can potentially lead to the discovery of novel drug targets.
Collapse
Affiliation(s)
- Stephani Martinez Barrera
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, United States of America
| |
Collapse
|