1
|
Li J, Yu Q, Liu C, Zhang N, Xu W. Flavonoids as key players in cold tolerance: molecular insights and applications in horticultural crops. HORTICULTURE RESEARCH 2025; 12:uhae366. [PMID: 40070400 PMCID: PMC11894532 DOI: 10.1093/hr/uhae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/22/2024] [Indexed: 03/14/2025]
Abstract
Cold stress profoundly affects the growth, development, and productivity of horticultural crops. Among the diverse strategies plants employ to mitigate the adverse effects of cold stress, flavonoids have emerged as pivotal components in enhancing plant resilience. This review was written to systematically highlight the critical role of flavonoids in plant cold tolerance, aiming to address the increasing need for sustainable horticultural practices under climate stress. We provide a comprehensive overview of the role of flavonoids in the cold tolerance of horticultural crops, emphasizing their biosynthesis pathways, molecular mechanisms, and regulatory aspects under cold stress conditions. We discuss how flavonoids act as antioxidants, scavenging reactive oxygen species (ROS) generated during cold stress, and how they regulate gene expression by modulating stress-responsive genes and pathways. Additionally, we explore the application of flavonoids in enhancing cold tolerance through genetic engineering and breeding strategies, offering insights into practical interventions for improving crop resilience. Despite significant advances, a research gap remains in understanding the precise molecular mechanisms by which specific flavonoids confer cold resistance, especially across different crop species. By addressing current knowledge gaps, proposing future research directions and highlighting implications for sustainable horticulture, we aim to advance strategies to enhance cold tolerance in horticultural crops.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Chang Liu
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Ningbo Zhang
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
| | - Weirong Xu
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
| |
Collapse
|
2
|
Lu B, Lin Y, He C, Wang Z, Li X, He X. Effects of dark septate endophyte on root growth, physiology and transcriptome of Ammopiptanthus mongolicus seedlings under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109367. [PMID: 39631347 DOI: 10.1016/j.plaphy.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/26/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
As the only evergreen relict species in the desert environment of western China, Ammopiptanthus mongolicus (Leguminosae) roots is colonized with dark septate endophytes (DSE), but the potential of DSE to alleviate the adverse effects of drought on seedling roots remains uncertain. This study examined the effects of DSE on root growth, physiology and transcriptome of A. mongolicus under drought stress. Drought drastically reduced root biomass by 47.7%, while all DSE strains established positive symbiosis with A.mongolicus, with G.hyphopodioides having the most pronounced promoting effect. Inoculation with G. hyphopodioides alleviated drought stress injury by increasing CAT activity, AsA content and soluble sugar content in the roots, with a significant reduction in MDA accumulation by 97.7%. G. hyphopodioides also significantly increased zeatin and brassinosteroid contents, which in turn regulated the root structure and increased root activity, resulting in a 208.6% increase in root biomass. Transcriptome analysis screened 1246 differentially expressed genes (542 up-regulated and 704 down-regulated) between G. hyphopodioides inoculation under drought treatment, mainly associated with phenylpropanoid biosynthesis, ascorbic acid and aldehyde metabolism, hormone synthesis and signalling, sucrose and starch metabolism, and vitamin B6 metabolism, and further investigated and identified key potential genes and transcription factors (DREB, ERF, NAC, MYB, C2H2). These findings reveal the physiological and molecular mechanisms by which DSE symbiosis improves the drought resistance of A. mongolicus seedlings, providing valuable guidance on the use of DSE resources to promote ecological construction and production of desert plants.
Collapse
Affiliation(s)
- Bin Lu
- School of Life Sciences, Hebei University, Baoding, 071002, China; College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071001, China
| | - Yuli Lin
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhenzhou Wang
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xia Li
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xueli He
- School of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Wang N, Zhu Y, Zhou Y, Gao F, Cui S. Transcriptome Analysis Reveals the Crucial Role of Phenylalanine Ammonia-Lyase in Low Temperature Response in Ammopiptanthus mongolicus. Genes (Basel) 2024; 15:1465. [PMID: 39596665 PMCID: PMC11593641 DOI: 10.3390/genes15111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Ammopiptanthus mongolicus is a rare temperate evergreen shrub with high tolerance to low temperature, and understanding the related gene expression regulatory network can help advance research on the mechanisms of plant tolerance to abiotic stress. Methods: Here, time-course transcriptome analysis was applied to investigate the gene expression network in A. mongolicus under low temperature stress. Results: A total of 12,606 differentially expressed genes (DEGs) were identified at four time-points during low temperature stress treatment, and multiple pathways, such as plant hormones, secondary metabolism, and cell membranes, were significantly enriched in the DEGs. Trend analysis found that the expression level of genes in cluster 19 continued to upregulate under low temperatures, and the genes in cluster 19 were significantly enriched in plant hormone signaling and secondary metabolic pathways. Based on the transcriptome data, the expression profiles of the genes in abscisic acid, salicylic acid, and flavonoid metabolic pathways were analyzed. It was found that biosynthesis of abscisic acid and flavonoids may play crucial roles in the response to low temperature stress. Furthermore, members of the phenylalanine ammonia-lyase (PAL) family in A. mongolicus were systematically identified and their structures and evolution were characterized. Analysis of cis-acting elements showed that the PAL genes in A. mongolicus were closely related to abiotic stress response. Expression pattern analysis showed that PAL genes responded to various environmental stresses, such as low temperature, supporting their involvement in the low temperature response in A. mongolicus. Conclusions: Our study provides important data for understanding the mechanisms of tolerance to low temperatures in A. mongolicus.
Collapse
Affiliation(s)
- Ning Wang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China;
| | - Yilin Zhu
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing 100048, China
| |
Collapse
|
4
|
Feng L, Teng F, Li N, Zhang JC, Zhang BJ, Tsai SN, Yue XL, Gu LF, Meng GH, Deng TQ, Tong SW, Wang CM, Li Y, Shi W, Zeng YL, Jiang YM, Yu W, Ngai SM, An LZ, Lam HM, He JX. A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms. PLANT COMMUNICATIONS 2024; 5:100891. [PMID: 38561965 PMCID: PMC11287142 DOI: 10.1016/j.xplc.2024.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.
Collapse
Affiliation(s)
- Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Fei Teng
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Na Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Jia-Cheng Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Bian-Jiang Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Sau-Na Tsai
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Xiu-Le Yue
- School of Life Sciences and Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730030, China
| | - Li-Fei Gu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Guang-Hua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Tian-Quan Deng
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Suk-Wah Tong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Chun-Ming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wei Shi
- BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong-Lun Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yue-Ming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weichang Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Sai-Ming Ngai
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Li-Zhe An
- School of Life Sciences and Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730030, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Hon-Ming Lam
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| |
Collapse
|
5
|
Ge B, Dong K, Li R, Bi X, Liu Q, Zhang W, Chen Y, Lu C. Isolation and functional characterization of cold-induced gene (AmCIP) promoter from Ammopiptanthus mongolicus. Gene 2024; 909:148311. [PMID: 38401831 DOI: 10.1016/j.gene.2024.148311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AmCIP is a dehydrin-like protein which involved in abiotic stress tolerance in xerophytes evergreen woody plant A. mongolicus. AmCIP could be induced in the cotyledon and radicle during cold acclimation. To further elucidate the regulation of the upstream region of the gene, we isolated and characterized the promoter of AmCIP. Herein, a 1115 bp 5'-flanking region of AmCIP genomic DNA was isolated and cloned by genome walking from A. mongolicus and the segment sequence was identified as "PrAmCIP" promoter. Analysis of the promoter sequence revealed the presences of some basic cis-acting elements, which were related to various environmental stresses and plant hormones. GUS histochemical staining of transgene tobacco showed that PrAmCIP was induced by 4℃, 55℃, NaCl, mannitol and ABA, whereas it could hardly drive GUS gene expression under normal conditions. Furthermore, we constructed three deletion fragments and genetically transformed them into Arabidopsis thaliana. GUS histochemical staining showed that the MYCATERD1 element of the CP7 fragment (-189 ∼ -1) may be a key element in response to drought. In conclusion, we provide an inducible promoter, PrAmCIP, which can be applied to the development of transgenic plants for abiotic stresse tolerance.
Collapse
Affiliation(s)
- Bohao Ge
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kuo Dong
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rongchen Li
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaorui Bi
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qianru Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhen Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Cunfu Lu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Liu M, Liu Y, Hu W, Yin B, Liang B, Li Z, Zhang X, Xu J, Zhou S. Transcriptome and metabolome analyses reveal the regulatory role of MdPYL9 in drought resistance in apple. BMC PLANT BIOLOGY 2024; 24:452. [PMID: 38789915 PMCID: PMC11118111 DOI: 10.1186/s12870-024-05146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The mechanisms by which the apple MdPYL9 gene mediates the response to drought stress remain unclear. Here, transcriptome and metabolome analyses of apple plants under drought were used to investigate the mechanisms by which MdPYL9 regulates the response to drought stress in apple. MdPYL9-overexpressed transgenic and non-transgenic apple histoculture seedlings were rooted, transplanted, and subjected to drought treatments to clarify the mechanisms underlying the responses of apples to drought stress through phenotypic observations, physiological and biochemical index measurements, and transcriptomic and metabolomic analyses. RESULTS Under drought stress treatment, transgenic plants were less affected by drought stress than non-transgenic plants. Decreases in the net photosynthetic rate, stomatal conductance, and transpiration rate of transgenic apple plants were less pronounced in transgenic plants than in non-transgenic plants, and increases in the intercellular CO2 concentration were less pronounced in transgenic plants than in non-transgenic plants. The relative electrical conductivity and content of malondialdehyde, superoxide anion, and hydrogen peroxide were significantly lower in transgenic plants than in non-transgenic plants, and the chlorophyll content and activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) were significantly higher in transgenic plants than in non-transgenic plants. The number of differentially expressed genes (DEGs) involved in the response to drought stress was lower in transgenic plants than in non-transgenic plants, and the most significant and highly annotated DEGs in the transgenic plants were involved in the flavonoid biosynthesis pathway, and the most significant and highly annotated DEGs in control plants were involved in the phytohormone signal transduction pathway. The number of differentially accumulated metabolites involved in the response to drought stress was lower in transgenic plants than in non-transgenic plants, and up-regulated metabolites were significantly enriched in apigenin-7-O-glucoside in transgenic plants and in abscisic acid in non-transgenic plants. In the flavonoid biosynthetic pathway, the expression of genes encoding chalcone synthase (CHS) and chalcone isomerase (CHI) was more significantly down-regulated in non-transgenic plants than in transgenic plants, and the expression of the gene encoding 4-coumarate-CoA ligase (4CL) was more significantly up-regulated in transgenic plants than in non-transgenic plants, which resulted in the significant up-regulation of apigenin-7-O-glucoside in transgenic plants. CONCLUSIONS The above results indicated that the over-expression of MdPYL9 increased the drought resistance of plants under drought stress by attenuating the down-regulation of the expression of genes encoding CHS and CHI and enhancing the up-regulated expression of the gene encoding 4CL, which enhanced the content of apigenin-7-O-glucoside.
Collapse
Affiliation(s)
- Mingxiao Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yitong Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Wei Hu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Baoying Yin
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhongyong Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xueying Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Shasha Zhou
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
7
|
Zhang Y, Wang D, Wu F, Huang X, Chai X, Yang L. Transcriptome Analysis on the Quality of Epimedium koreanum in Different Soil Moisture Conditions at Harvesting Stage. Genes (Basel) 2024; 15:528. [PMID: 38790157 PMCID: PMC11120683 DOI: 10.3390/genes15050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Epimedium koreanum is a traditional Chinese tonic herb. Its main medicinal components are secondary metabolites such as flavonoids and flavonol glycosides, but the biosynthetic mechanism is still unclear. Moisture conditions are a key environmental factor affecting E. koreanum medicinal components during harvesting. Different stages of E. koreanum under natural conditions after rainfall were selected to study changes in physiological properties, herb quality, and transcriptome. Malondialdehyde (MDA) content increased significantly in the D3 stage after rainfall, and protective enzyme levels also rose. Additionally, the flavonol glycoside content was relatively high. We sequenced the transcriptomes of D1, D3, and D9 (R) and identified differentially expressed genes (DEGs) related to flavonoid synthesis. This analysis allowed us to predict the roadmap and key genes involved in flavonoid biosynthesis for E. koreanum. These results suggest that the E. koreanum quality can be enhanced by natural drought conditions in the soil after precipitation during harvest. The harvesting period of E. koreanum is optimal when soil moisture naturally dries to a relative water content of 26% after precipitation. These conditions help E. koreanum tolerate a certain level of water scarcity, resulting in increased expression of flavonoid-related genes and ultimately enhancing the quality of the herb.
Collapse
Affiliation(s)
| | | | | | | | | | - Limin Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management of Jilin Province and Ministry of Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (D.W.); (F.W.); (X.H.); (X.C.)
| |
Collapse
|
8
|
Sumbur B, Zhou M, Dorjee T, Bing J, Ha S, Xu X, Zhou Y, Gao F. Chemical and Transcriptomic Analyses of Leaf Cuticular Wax Metabolism in Ammopiptanthus mongolicus under Osmotic Stress. Biomolecules 2024; 14:227. [PMID: 38397464 PMCID: PMC10886927 DOI: 10.3390/biom14020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Plant cuticular wax forms a hydrophobic structure in the cuticle layer covering epidermis as the first barrier between plants and environments. Ammopiptanthus mongolicus, a leguminous desert shrub, exhibits high tolerances to multiple abiotic stress. The physiological, chemical, and transcriptomic analyses of epidermal permeability, cuticular wax metabolism and related gene expression profiles under osmotic stress in A. mongolicus leaves were performed. Physiological analyses revealed decreased leaf epidermal permeability under osmotic stress. Chemical analyses revealed saturated straight-chain alkanes as major components of leaf cuticular wax, and under osmotic stress, the contents of total wax and multiple alkane components significantly increased. Transcriptome analyses revealed the up-regulation of genes involved in biosynthesis of very-long-chain fatty acids and alkanes and wax transportation under osmotic stress. Weighted gene co-expression network analysis identified 17 modules and 6 hub genes related to wax accumulation, including 5 enzyme genes coding KCS, KCR, WAX2, FAR, and LACS, and an ABCG transporter gene. Our findings indicated that the leaf epidermal permeability of A. mongolicus decreased under osmotic stress to inhibit water loss via regulating the expression of wax-related enzyme and transporter genes, further promoting cuticular wax accumulation. This study provided new evidence for understanding the roles of cuticle lipids in abiotic stress tolerance of desert plants.
Collapse
Affiliation(s)
- Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Minqi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Sijia Ha
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaojing Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
9
|
Dorjee T, Cui Y, Zhang Y, Liu Q, Li X, Sumbur B, Yan H, Bing J, Geng Y, Zhou Y, Gao F. Characterization of NAC Gene Family in Ammopiptanthus mongolicus and Functional Analysis of AmNAC24, an Osmotic and Cold-Stress-Induced NAC Gene. Biomolecules 2024; 14:182. [PMID: 38397419 PMCID: PMC10886826 DOI: 10.3390/biom14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The NAC family of transcription factors (TFs) is recognized as a significant group within the plant kingdom, contributing crucially to managing growth and development processes in plants, as well as to their response and adaptation to various environmental stressors. Ammopiptanthus mongolicus, a temperate evergreen shrub renowned for its remarkable resilience to low temperatures and drought stress, presents an ideal subject for investigating the potential involvement of NAC TFs in stress response mechanisms. Here, the structure, evolution, and expression profiles of NAC family TFs were analyzed systematically, and a cold and osmotic stress-induced member, AmNAC24, was selected and functionally characterized. A total of 86 NAC genes were identified in A. mongolicus, and these were divided into 15 groups. Up to 48 and 8 NAC genes were generated by segmental duplication and tandem duplication, respectively, indicating that segmental duplication is a predominant mechanism in the expansion of the NAC gene family in A. mongolicus. A considerable amount of NAC genes, including AmNAC24, exhibited upregulation in response to cold and osmotic stress. This observation is in line with the detection of numerous cis-acting elements linked to abiotic stress response in the promoters of A. mongolicus NAC genes. Subcellular localization revealed the nuclear residence of the AmNAC24 protein, coupled with demonstrable transcriptional activation activity. AmNAC24 overexpression enhanced the tolerance of cold and osmotic stresses in Arabidopsis thaliana, possibly by maintaining ROS homeostasis. The present study provided essential data for understanding the biological functions of NAC TFs in plants.
Collapse
Affiliation(s)
- Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yican Cui
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuxin Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xuting Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hongxi Yan
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Yuke Geng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (T.D.); (Y.C.); (Y.Z.); (Q.L.); (X.L.); (B.S.); (H.Y.); (Y.G.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
10
|
Ferrante R, Campagni C, Vettori C, Checcucci A, Garosi C, Paffetti D. Meta-analysis of plant growth-promoting rhizobacteria interaction with host plants: implications for drought stress response gene expression. FRONTIERS IN PLANT SCIENCE 2024; 14:1282553. [PMID: 38288406 PMCID: PMC10823023 DOI: 10.3389/fpls.2023.1282553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
Introduction The molecular and physiological mechanisms activated in plants during drought stress tolerance are regulated by several key genes with both metabolic and regulatory roles. Studies focusing on crop gene expression following plant growth-promoting rhizobacteria (PGPR) inoculation may help understand which bioinoculant is closely related to the induction of abiotic stress responses. Methods Here, we performed a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarise information regarding plant-PGPR interactions, focusing on the regulation of nine genes involved in plant drought stress response. The literature research yielded 3,338 reports, of which only 41 were included in the meta-analysis based on the chosen inclusion criteria. The meta-analysis was performed on four genes (ACO, APX, ACS and DREB2); the other five genes (ERD15, MYB, MYC, acdS, WRKY) had an insufficient number of eligible articles. Results Forest plots obtained through each meta-analysis showed that the overexpression of ACO, APX, ACS and DREB2 genes was not statistically significant. Unlike the other genes, DREB2 showed statistically significant results in both the presence and absence of PGPR. Considering I2>75 %, the results showed a high heterogeneity among the studies included, and the cause for this was examined using subgroup analysis. Moreover, the funnel plot and Egger's test showed that the analyses were affected by strong publication bias. Discussion This study argues that the presence of PGPR may not significantly influence the expression of drought stress response-related crop genes. This finding may be due to high heterogeneity, lack of data on the genes examined, and significant publication bias.
Collapse
Affiliation(s)
- Roberta Ferrante
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Chiara Campagni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Cristina Vettori
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
- Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino, Italy
| | - Alice Checcucci
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Cesare Garosi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Donatella Paffetti
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
11
|
Sumbur B, Gao F, Liu Q, Feng D, Bing J, Dorjee T, Li X, Sun H, Zhou Y. The Characterization of R2R3-MYB Genes in Ammopiptanthus nanus Uncovers That the miR858-AnaMYB87 Module Mediates the Accumulation of Anthocyanin under Osmotic Stress. Biomolecules 2023; 13:1721. [PMID: 38136592 PMCID: PMC10741500 DOI: 10.3390/biom13121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
R2R3-MYB transcription factors (TFs) participate in the modulation of plant development, secondary metabolism, and responses to environmental stresses. Ammopiptanthus nanus, a leguminous dryland shrub, tolerates a high degree of environmental stress, including drought and low-temperature stress. The systematic identification, structural analysis, evolutionary analysis, and gene profiling of R2R3-MYB TFs under cold and osmotic stress in A. nanus were performed. Up to 137 R2R3-MYB TFs were identified and clustered into nine clades, with most A. nanus R2R3-MYB members belonging to clade VIII. Tandem and segmental duplication events drove the expansion of the A. nanus R2R3-MYB family. Expression profiling revealed that multiple R2R3-MYB genes significantly changed under osmotic and cold stress conditions. MiR858 and miR159 targeted 88 R2R3-MYB genes. AnaMYB87, an miR858-targeted clade VIII R2R3-MYB TF, was up-regulated under both osmotic and cold stress. A transient expression assay in apples showed that the overexpression of AnaMYB87 promoted anthocyanin accumulation. A luciferase reporter assay in tobacco demonstrated that AnaMYB87 positively affected the transactivation of the dihydroflavonol reductase gene, indicating that the miR858-MYB87 module mediates anthocyanin accumulation under osmotic stress by regulating the dihydroflavonol reductase gene in A. nanus. This study provides new data to understand the roles of R2R3-MYB in plant stress responses.
Collapse
Affiliation(s)
- Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Dandan Feng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xuting Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Huigai Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
12
|
Nath A, Sharma A, Singh SK, Sundaram S. Bio Prospecting of Endophytes and PGPRs in Artemisinin Production for the Socio-economic Advancement. Curr Microbiol 2023; 81:4. [PMID: 37947887 DOI: 10.1007/s00284-023-03516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/07/2023] [Indexed: 11/12/2023]
Abstract
The growing demand for Artemisia annua plants in healthcare, food, and pharmaceutical industries has led to increased cultivation efforts to extract a vital compound, Artemisinin. The efficacy of Artemisinin as a potent drug against malaria disease is well established but its limited natural abundance. However, the common practice of using chemical fertilizers for maximum yield has adverse effects on plant growth, development, and the quality of phytochemicals. To address these issues, the review discusses the alternative approach of harnessing beneficial rhizosphere microbiota, particularly plant growth-promoting rhizobacteria (PGPR). Microbes hold substantial biotechnological potential for augmenting medicinal plant production, offering an environmentally friendly and cost-effective means to enhance medicinal plant production. This review article aims to identify a suitable endophytic population capable of enabling Artemisia sp. to thrive amidst abiotic stress while simultaneously enhancing Artemisinin production, thereby broadening its availability to a larger population. Furthermore, by subjecting endophytes to diverse combinations of harsh conditions, this review sheds light on the modulation of essential artemisinin biosynthesis pathway genes, both up regulated and down regulated. The collective findings suggest that through the in vitro engineering of endophytic communities and their in vivo application to Artemisia plants cultivated in tribal population fields, artemisinin production can be significantly augmented. The overall aim of this review to explore the potential of harnessing microbial communities, their functions, and services to enhance the cultivation of medicinal plants. It outlines a promising path toward bolstering artemisinin production, which holds immense promise in the fight against malaria.
Collapse
Affiliation(s)
- Adi Nath
- Department of Botany, Nehru Gram Bharati Deemed to University, Prayagraj, 221505, India.
| | - Abhijeet Sharma
- Centres of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | | | - Shanthy Sundaram
- Centres of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
13
|
Zhu M, Dong Q, Bing J, Songbuerbatu, Zheng L, Dorjee T, Liu Q, Zhou Y, Gao F. Combined lncRNA and mRNA Expression Profiles Identified the lncRNA–miRNA–mRNA Modules Regulating the Cold Stress Response in Ammopiptanthus nanus. Int J Mol Sci 2023; 24:ijms24076502. [PMID: 37047474 PMCID: PMC10095008 DOI: 10.3390/ijms24076502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in plants. Ammopiptanthus nanus can survive under severe low-temperature stress, and lncRNAs may play crucial roles in the gene regulation network underlying the cold stress response in A. nanus. To investigate the roles of lncRNAs in the cold stress response of A. nanus, a combined lncRNA and mRNA expression profiling under cold stress was conducted. Up to 4890 novel lncRNAs were identified in A. nanus and 1322 of them were differentially expressed under cold stress, including 543 up-regulated and 779 down-regulated lncRNAs. A total of 421 lncRNAs were found to participate in the cold stress response by forming lncRNA–mRNA modules and regulating the genes encoding the stress-related transcription factors and enzymes in a cis-acting manner. We found that 31 lncRNAs acting as miRNA precursors and 8 lncRNAs acting as endogenous competitive targets of miRNAs participated in the cold stress response by forming lncRNA–miRNA–mRNA regulatory modules. In particular, a cold stress-responsive lncRNA, TCONS00065739, which was experimentally proven to be an endogenous competitive target of miR530, contributed to the cold stress adaptation by regulating TZP in A. nanus. These results provide new data for understanding the biological roles of lncRNAs in response to cold stress in plants.
Collapse
|
14
|
Lu Z, Yang Z, Tian Z, Gui Q, Dong R, Chen C. Genome-wide analysis and identification of microRNAs in Medicago truncatula under aluminum stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137764. [PMID: 36778703 PMCID: PMC9911878 DOI: 10.3389/fpls.2023.1137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Numerous studies have shown that plant microRNAs (miRNAs) play key roles in plant growth and development, as well as in response to biotic and abiotic stresses; however, the role of miRNA in legumes under aluminum (Al) stress have rarely been reported. Therefore, here, we aimed to investigate the role of miRNAs in and their mechanism of Al tolerance in legumes. To this end, we sequenced a 12-strand-specific library of Medicago truncatula under Al stress. A total of 195.80 M clean reads were obtained, and 876 miRNAs were identified, of which, 673 were known miRNAs and 203 were unknown. A total of 55 miRNAs and their corresponding 2,502 target genes were differentially expressed at various time points during Al stress. Further analysis revealed that mtr-miR156g-3p was the only miRNA that was significantly upregulated at all time points under Al stress and could directly regulate the expression of genes associated with root cell growth. Three miRNAs, novel_miR_135, novel_miR_182, and novel_miR_36, simultaneously regulated the expression of four Al-tolerant transcription factors, GRAS, MYB, WRKY, and bHLH, at an early stage of Al stress, indicating a response to Al stress. In addition, legume-specific miR2119 and miR5213 were involved in the tolerance mechanism to Al stress by regulating F-box proteins that have protective effects against stress. Our results contribute to an improved understanding of the role of miRNAs in Al stress in legumes and provide a basis for studying the molecular mechanisms of Al stress regulation.
Collapse
Affiliation(s)
- Zhongjie Lu
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhengyu Yang
- Department of Vehicle Engineering, Guizhou Technological College of Machinery and Electricity, Duyun, China
| | - Zheng Tian
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Qihui Gui
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Rui Dong
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Nokhsorov VV, Senik SV, Sofronova VE, Kotlova ER, Misharev AD, Chirikova NK, Dudareva LV. Role of Lipids of the Evergreen Shrub Ephedra monosperma in Adaptation to Low Temperature in the Cryolithozone. PLANTS (BASEL, SWITZERLAND) 2022; 12:15. [PMID: 36616144 PMCID: PMC9823733 DOI: 10.3390/plants12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Lipids are the fundamental components of cell membranes and they play a significant role in their integrity and fluidity. The alteration in lipid composition of membranes has been reported to be a major response to abiotic environmental stresses. Seasonal dynamics of membrane lipids in the shoots of Ephedra monosperma J.G. Gmel. ex C.A. Mey. growing in natural conditions of permafrost ecosystems was studied using HPTLC, GC-MS and ESI-MS. An important role of lipid metabolism was established during the autumn-winter period when the shoots of the evergreen shrub were exposed to low positive (3.6 °C), negative (-8.3 °C) and extremely low temperatures (-38.4 °C). Maximum accumulation of phosphatidic acid (PA), the amount of which is times times greater than the sum of phosphatidylcholine and phosphatidylethanolamine (PC + PE) was noted in shoots of E. monosperma in the summer-autumn period. The autumn hardening period (3.6 °C) is accompanied by active biosynthesis and accumulation of membrane lipids, a decrease of saturated 34:1 PCs, 34:1 PEs and 34:1 PAs, and an increase in unsaturated long-chain 38:5 PEs, 38:6 PEs, indicating that the adaptation of E. monosperma occurs not at the level of lipid classes but at the level of molecular species. At a further decrease of average daily air temperature in October (-8.3 °C) a sharp decline of PA level was registered. At an extreme reduction of environmental temperature (-38.4 °C) the content of non-bilayer PE and PA increases, the level of unsaturated fatty acids (FA) rises due to the increase of C18:2(Δ9,12) and C18:3(Δ9,12,15) acids and the decrease of C16:0 acids. It is concluded that changes in lipid metabolism reflect structural and functional reorganization of cell membranes and are an integral component of the complex process of plant hardening to low temperatures, which contributes to the survival of E. monosperma monocotyledonous plants in the extreme conditions of the Yakutia cryolithozone.
Collapse
Affiliation(s)
- Vasiliy V. Nokhsorov
- Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, 41 Lenina Av., 677000 Yakutsk, Russia
| | - Svetlana V. Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., 197376 St. Petersburg, Russia
| | - Valentina E. Sofronova
- Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, 41 Lenina Av., 677000 Yakutsk, Russia
| | - Ekaterina R. Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., 197376 St. Petersburg, Russia
| | - Alexander D. Misharev
- Chemical Analysis and Materials Research Centre, Saint-Petersburg State University, 198504 St. Petersburg, Russia
| | - Nadezhda K. Chirikova
- Institute of Natural Science, North-Eastern Federal University, 58 Belinsky str., 677027 Yakutsk, Russia
| | - Lyubov V. Dudareva
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, 132 Lermontova str., 664033 Irkutsk, Russia
| |
Collapse
|
16
|
Huan X, Li L, Liu Y, Kong Z, Liu Y, Wang Q, Liu J, Zhang P, Guo Y, Qin P. Integrating transcriptomics and metabolomics to analyze quinoa ( Chenopodium quinoa Willd.) responses to drought stress and rewatering. FRONTIERS IN PLANT SCIENCE 2022; 13:988861. [PMID: 36388589 PMCID: PMC9645111 DOI: 10.3389/fpls.2022.988861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 06/01/2023]
Abstract
The crop production of quinoa (Chenopodium quinoa Willd.), the only plant meeting basic human nutritional requirements, is affected by drought stress. To better understand the drought tolerance mechanism of quinoa, we screened the drought-tolerant quinoa genotype "Dianli 129" and studied the seedling leaves of the drought-tolerant quinoa genotype after drought and rewatering treatments using transcriptomics and targeted metabolomics. Drought-treatment, drought control, rewatering-treated, and rewatered control were named as DR, DC, RW, and RC, respectively. Among four comparison groups, DC vs. DR, RC vs. RW, RW vs. DR, and RC vs. DC, we identified 10,292, 2,307, 12,368, and 3 differentially expressed genes (DEGs), and 215, 192, 132, and 19 differentially expressed metabolites (DEMs), respectively. A total of 38,670 genes and 142 pathways were annotated. The results of transcriptome and metabolome association analysis showed that gene-LOC110713661 and gene-LOC110738152 may be the key genes for drought tolerance in quinoa. Some metabolites accumulated in quinoa leaves in response to drought stress, and the plants recovered after rewatering. DEGs and DEMs participate in starch and sucrose metabolism and flavonoid biosynthesis, which are vital for improving drought tolerance in quinoa. Drought tolerance of quinoa was correlated with gene expression differences, metabolite accumulation and good recovery after rewatering. These findings improve our understanding of drought and rewatering responses in quinoa and have implications for the breeding of new drought-tolerance varieties while providing a theoretical basis for drought-tolerance varieties identification.
Collapse
Affiliation(s)
- Xiuju Huan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yongjiang Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Zhiyou Kong
- College of Resources and Environment, Baoshan College, Baoshan, China
| | - Yeju Liu
- Graduate Office, Yunnan Agricultural University, Kunming, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yirui Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
17
|
Luo D, Liu J, Wu Y, Zhang X, Zhou Q, Fang L, Liu Z. NUCLEAR TRANSPORT FACTOR 2-LIKE improves drought tolerance by modulating leaf water loss in alfalfa (Medicago sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:429-450. [PMID: 36006043 DOI: 10.1111/tpj.15955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major environmental factor that limits the production of alfalfa (Medicago sativa). In the present study, M. sativa NUCLEAR TRANSPORT FACTOR 2-LIKE (MsNTF2L) was identified as a nucleus-, cytoplasm-, and plasma membrane-localized protein. Its transcriptional expression was highly induced by ABA and drought stress. Overexpression of MsNTF2L in Arabidopsis resulted in hypersensitivity to ABA during both the seed germination and seedling growth stages. However, transgenic Arabidopsis plants exhibited enhanced tolerance to drought stress by reducing the levels of reactive oxygen species (ROS) and increasing the expression of stress/ABA-inducible genes. Consistently, analysis of MsNTF2L overexpression (OE) and RNA interference (RNAi) alfalfa plants revealed that MsNTF2L confers drought tolerance through promoting ROS scavenging, a decrease in stomatal density, ABA-induced stomatal closure, and epicuticular wax crystal accumulation. MsNTF2L highly affected epicuticular wax deposition, as a large group of wax biosynthesis and transport genes were influenced in the alfalfa OE and RNAi lines. Furthermore, transcript profiling of drought-treated alfalfa WT, OE, and RNAi plants showed a differential drought response for genes related to stress/ABA signaling, antioxidant defense, and photosynthesis. Taken together, these results reveal that MsNTF2L confers drought tolerance in alfalfa via modulation of leaf water loss (by regulating both stomata and wax deposition), antioxidant defense, and photosynthesis.
Collapse
Affiliation(s)
- Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jie Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuguo Wu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xi Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Longfa Fang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
18
|
Yang YZ, Luo MX, Pang LD, Gao RH, Chang JT, Liao PC. Parallel adaptation prompted core-periphery divergence of Ammopiptanthus mongolicus. FRONTIERS IN PLANT SCIENCE 2022; 13:956374. [PMID: 36092420 PMCID: PMC9449729 DOI: 10.3389/fpls.2022.956374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Range expansion requires peripheral populations to shift adaptive optima to breach range boundaries. Opportunities for range expansion can be assessed by investigating the associations of core-periphery environmental and genetic differences. This study investigates differences in the core-periphery adaptation of Ammopiptanthus mongolicus, a broad-leaved evergreen shrub species in a relatively homogeneous temperate Asian desert environment, to explore the environmental factors that limit the expansion of desert plants. Temperate deserts are characterized by severe drought, a large diurnal temperature range, and seasonality. Long-standing adaptation to the harsh desert environment may confine the genetic diversity of A. mongolicus, despite its distribution over a wide range of longitude, latitude, and altitude. Since range edges defined by climate niches may have different genetic responses to environmental extremes, we compared genome-wide polymorphisms between nine environmental core populations and ten fragmented peripheral populations to determine the "adaptive peripheral" populations. At least four adaptive peripheral populations had similar genetic-environmental association patterns. High elevations, summer drought, and winter cold were the three main determinants of converging these four adaptive peripheral populations. Elevation mainly caused similar local climates among different geographic regions. Altitudinal adaptation resulting from integrated environmental-genetic responses was a breakthrough in breaching niche boundaries. These peripheral populations are also located in relatively humid and warmer environments. Relaxation of the drought and cold constraints facilitated the genetic divergence of these peripheral populations from the core population's adaptive legacy. We conclude that pleiotropic selection synchronized adaptative divergence to cold and drought vs. warm and humid environments between the core and peripheral populations. Such parallel adaptation of peripheral populations relies on selection under a background of abundant new variants derived from the core population's standing genetic variation, i.e., integration of genetic surfing and local adaptation.
Collapse
Affiliation(s)
- Yong-Zhi Yang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| | - Min-Xin Luo
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Dong Pang
- College Resource and Environmental Economics, Inner Mongolia University of Finance and Economics, Huhhot, China
| | - Run-Hong Gao
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| | - Jui-Tse Chang
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
19
|
Li Q, Tian X, Gu P, Yang G, Deng H, Zhang J, Zheng Z. Transcriptomic analysis reveals phytohormone and photosynthetic molecular mechanisms of a submerged macrophyte in response to microcystin-LR stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106119. [PMID: 35220087 DOI: 10.1016/j.aquatox.2022.106119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/04/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms impose a substantial risk for submerged macrophytes in aquatic environments. This study investigated the cellular and transcriptomic responses of Vallisneria natans to microcystin-LR (MCLR) exposure, as well as abscisic acid (ABA) and strigolactone (SL), which are the major compounds in signaling networks that regulate plant defense. The results revealed that MCLR significantly (p <0.05) decreased the photosynthetic pigments and significantly (p < 0.05) increased the contents of the ABA and SL stress-related phytohormones under MCLR stress. Related genes involved in the photosynthetic pathways were down-regulated, including psbO, psbP, psbQ and psbR. In the SL biosynthetic pathway of roots under MCLR stress, related genes, such as D27 and CCD7, were down-regulated, while the CCD8 and MAX1 genes were up-regulated. In the ABA synthetic pathway, the genes LUT5, ZEP, NCED, ABA2 and AAO3 were up-regulated. Furthermore, a reduction in the content of SL enriched ABA after 3 days under MCLR stress. The potential molecular mechanism of the interactions between SL and ABA were confirmed with the relative up- and down-regulated genes in the pathway, and ABA could play a major role in plant physiology under MCLR stress. This study provides valuable information to understand the stress-related mechanisms of response of submerged macrophytes to cyanobacterial blooms.
Collapse
Affiliation(s)
- Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Xueping Tian
- CAS key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Peng Gu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China
| | - Guili Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, P.R. China
| | - Hong Deng
- School of Ecological and Environmental Science, East China Normal University, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Institute of Eco-Chongming, Shanghai 200241, P.R. China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China.
| |
Collapse
|
20
|
Capsicum Leaves under Stress: Using Multi-Omics Analysis to Detect Abiotic Stress Network of Secondary Metabolism in Two Species. Antioxidants (Basel) 2022; 11:antiox11040671. [PMID: 35453356 PMCID: PMC9029244 DOI: 10.3390/antiox11040671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The plant kingdom contains an enormous diversity of bioactive compounds which regulate plant growth and defends against biotic and abiotic stress. Some of these compounds, like flavonoids, have properties which are health supporting and relevant for industrial use. Many of these valuable compounds are synthesized in various pepper (Capsicum sp.) tissues. Further, a huge amount of biomass residual remains from pepper production after harvest, which provides an important opportunity to extract these metabolites and optimize the utilization of crops. Moreover, abiotic stresses induce the synthesis of such metabolites as a defense mechanism. Two different Capsicum species were therefore exposed to chilling temperature (24/18 ℃ vs. 18/12 ℃), to salinity (200 mM NaCl), or a combination thereof for 1, 7 and 14 days to investigate the effect of these stresses on the metabolome and transcriptome profiles of their leaves. Both profiles in both species responded to all stresses with an increase over time. All stresses resulted in repression of photosynthesis genes. Stress involving chilling temperature induced secondary metabolism whereas stresses involving salt repressed cell wall modification and solute transport. The metabolome analysis annotated putatively many health stimulating flavonoids (apigetrin, rutin, kaempferol, luteolin and quercetin) in the Capsicum biomass residuals, which were induced in response to salinity, chilling temperature or a combination thereof, and supported by related structural genes of the secondary metabolism in the network analysis.
Collapse
|
21
|
Differential Expression of Calycosin-7-O-β-D-glucoside Biosynthesis Genes and Accumulation of Related Metabolites in Different Organs of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao Under Drought Stress. Appl Biochem Biotechnol 2022; 194:3182-3195. [PMID: 35349087 DOI: 10.1007/s12010-022-03883-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
Abstract
Calycosin-7-O-β-D-glycoside (CG), as a flavonoid, plays an important role in the abiotic stress response of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus). CG is also an active ingredient in A. mongholicus with high medicinal value. However, the response mechanism of the CG biosynthetic pathway of drought stress is not clear. In this research, drought stress was inflicted upon A. mongholicus, and the variations in flavonoid metabolites and the correlating gene expression in CG biosynthesis were studied in roots, stems, and leaves of A. mongholicus by UHPLC-MRM-MS/MS and qRT-PCR. Drought stress reduced the dry weight and increased the content of malondialdehyde (MDA) and proline. Drought was beneficial to the accumulation of L-phenylalanine and 4-coumaric acid in leaves and promoted the accumulation of all target compounds in the roots, except calycosin. Overexpression of AmIOMT was observed in the leaves, but the content of formononetin which is the product of isoflavone O-methyltransferase (IOMT) catalysis was higher in stems than in leaves. This research aims to further understand the acclimation of abiotic stress and the regulation mechanism of flavonoid accumulation in A. mongholicus.
Collapse
|
22
|
Metabolic Pathways Involved in the Drought Stress Response of Nitraria tangutorum as Revealed by Transcriptome Analysis. FORESTS 2022. [DOI: 10.3390/f13040509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drought resistance in plants is controlled by multiple genes. To identify the genes that mediate drought stress responses and to assess the associated metabolic pathways in the desert shrub Nitraria tangutorum, we conducted a transcriptome analysis of plants under control (maximum field capacity) and drought (20% of the maximum field capacity) conditions. We analyzed differentially expressed genes (DEGs) of N. tangutorum and their enrichment in the KEGG metabolic pathways database, and explored the molecular biological mechanisms underlying the answer to its drought tolerance. Between the control and drought groups, 119 classified metabolic pathways annotated 3047 DEGs in the KEGG database. For drought tolerance, nitrate reductase (NR) gene expression was downregulated, indicating that NR activity was decreased to improve drought tolerance. In ammonium assimilation, drought stress inhibited glutamine formation. Protochlorophyllide reductase (1.3.1.33) expression was upregulated to promote chlorophyll a synthesis, whereas divinyl reductase (1.3.1.75) expression was downregulated to inhibit chlorophyll-ester a synthesis. The expression of the chlorophyll synthase (2.5.1.62) gene was downregulated, which affected the synthesis of chlorophyll a and b. Overall, drought stress appeared to improve the ability to convert chlorophyll b into chlorophyll a. Our data serve as a theoretical foundation for further elucidating the growth regulatory mechanism of desert xerophytes, thereby facilitating the development and cultivation of new, drought-resistant genotypes for the purpose of improving desert ecosystems.
Collapse
|
23
|
Hu J, Peiying Y, Chang L, Zhang H. Characterization of the complete chloroplast genome of Ammopiptanthus mongolicus (Leguminosae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3162-3163. [PMID: 34746393 PMCID: PMC8567949 DOI: 10.1080/23802359.2021.1987174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ammopiptanthus mongolicus is the only evergreen broadleaf shrub in the northwest desert of China, which can survive in long-term aridity and extremely cold environments. In this study, the complete chloroplast genome sequence of A. mongolicus was reported based on the Illumina NovaSeq Platform (Illumina, San Diego, CA). The chloroplast genome is 156,077 bp in length, containing a pair of inverted repeated (IR) regions (14,698 bp) that are separated by a large single copy (LSC) region of 88,025 bp, and a small single copy (SSC) region of 36,606 bp. Moreover, a total of 115 functional genes were annotated, including 81 mRNA, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis based on 16 chloroplast genomics indicates that A. mongolicus is closely related to A. nanus.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| | - Yan Peiying
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| | - Li Chang
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| | - Huiwen Zhang
- State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou, China
| |
Collapse
|
24
|
Reimer JJ, Thiele B, Biermann RT, Junker-Frohn LV, Wiese-Klinkenberg A, Usadel B, Wormit A. Tomato leaves under stress: a comparison of stress response to mild abiotic stress between a cultivated and a wild tomato species. PLANT MOLECULAR BIOLOGY 2021; 107:177-206. [PMID: 34677706 PMCID: PMC8553704 DOI: 10.1007/s11103-021-01194-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/16/2021] [Indexed: 05/03/2023]
Abstract
Tomato is one of the most produced crop plants on earth and growing in the fields and greenhouses all over the world. Breeding with known traits of wild species can enhance stress tolerance of cultivated crops. In this study, we investigated responses of the transcriptome as well as primary and secondary metabolites in leaves of a cultivated and a wild tomato to several abiotic stresses such as nitrogen deficiency, chilling or warmer temperatures, elevated light intensities and combinations thereof. The wild species responded different to varied temperature conditions compared to the cultivated tomato. Nitrogen deficiency caused the strongest responses and induced in particular the secondary metabolism in both species but to much higher extent in the cultivated tomato. Our study supports the potential of a targeted induction of valuable secondary metabolites in green residues of horticultural production, that will otherwise only be composted after fruit harvest. In particular, the cultivated tomato showed a strong induction in the group of mono caffeoylquinic acids in response to nitrogen deficiency. In addition, the observed differences in stress responses between cultivated and wild tomato can lead to new breeding targets for better stress tolerance.
Collapse
Affiliation(s)
- Julia J Reimer
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, PtJ, 52425, Jülich, Germany
| | - Björn Thiele
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Robin T Biermann
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., 14979, Großbeeren, Germany
| | - Laura V Junker-Frohn
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Anika Wiese-Klinkenberg
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Bioinformatics (IBG-4), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Björn Usadel
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Bioinformatics (IBG-4), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Heinrich-Heine-University, Chair of Biological Data Science, 40225, Düsseldorf, Germany
| | - Alexandra Wormit
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
25
|
Lv Z, Zhang C, Shao C, Liu B, Liu E, Yuan D, Zhou Y, Shen C. Research progress on the response of tea catechins to drought stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5305-5313. [PMID: 34031895 DOI: 10.1002/jsfa.11330] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Drought stress (DS) is the most important abiotic stress affecting yield and quality of tea worldwide. DS causes oxidative stress to cells due to the accumulation of reactive oxygen species (ROS). As non-enzymatic antioxidants, tea catechins can scavenge excess ROS in response to DS. Further, catechin accumulation contributes to the formation of oxidative polymerization products (e.g. theaflavins and thearubigins) that improve the quality of black tea. However, there are no systematic reports on the response of tea catechins to DS. First, we reviewed the available literature on the response of tea plants to DS. Second, we summarized the current knowledge of ROS production in tea leaves under DS and typical antioxidant response mechanisms. Third, we conducted a detailed review of the changes in catechin levels in tea under different drought conditions. We found that the total amounts of catechin and o-quinone increased under DS conditions. We propose that the possible mechanisms underlying tea catechin accumulation under DS conditions include (i) autotrophic formation of o-quinone, (ii) polymerization of proanthocyanidins that directly scavenge excess ROS, and (iii) formation of metal ion complexes and by influencing the antioxidant systems that indirectly eliminate excess ROS. Finally, we discuss ways of potentially improving black tea quality using drought before picking in the summer/fall dry season. In summary, we mainly discuss the antioxidant mechanisms of tea catechins under DS and the possibility of using drought to improve black tea quality. Our review provides a theoretical basis for the production of high-quality black tea under DS conditions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Baogui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Enshuo Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Danni Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yuebing Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Ni L, Wang Z, Guo J, Pei X, Liu L, Li H, Yuan H, Gu C. Full-Length Transcriptome Sequencing and Comparative Transcriptome Analysis to Evaluate Drought and Salt Stress in Iris lactea var. chinensis. Genes (Basel) 2021; 12:434. [PMID: 33803672 PMCID: PMC8002972 DOI: 10.3390/genes12030434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Iris lactea var. chinensis (I. lactea var. chinensis) is a perennial herb halophyte with salt and drought tolerance. In this study, full-length transcripts of I. lactea var. chinensis were sequenced using the PacBio RSII sequencing platform. Moreover, the transcriptome was investigated under NaCl or polyethylene glycol (PEG) stress. Approximately 30.89 G subreads were generated and 31,195 unigenes were obtained by clustering the same isoforms by the PacBio RSII platform. A total of 15,466 differentially expressed genes (DEGs) were obtained under the two stresses using the Illumina platform. Among them, 9266 and 8390 DEGs were obtained under high concentrations of NaCl and PEG, respectively. In total, 3897 DEGs with the same expression pattern under the two stresses were obtained. The transcriptome expression profiles of I. lactea var. chinensis under NaCl or PEG stress obtained in this study may provide a resource for the same and different response mechanisms against different types of abiotic stress. Furthermore, the stress-related genes found in this study can provide data for future molecular breeding.
Collapse
Affiliation(s)
- Longjie Ni
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.N.); (Z.W.); (J.G.); (X.P.); (L.L.); (H.Y.)
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.N.); (Z.W.); (J.G.); (X.P.); (L.L.); (H.Y.)
| | - Jinbo Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.N.); (Z.W.); (J.G.); (X.P.); (L.L.); (H.Y.)
| | - Xiaoxiao Pei
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.N.); (Z.W.); (J.G.); (X.P.); (L.L.); (H.Y.)
| | - Liangqin Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.N.); (Z.W.); (J.G.); (X.P.); (L.L.); (H.Y.)
| | - Huogen Li
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.N.); (Z.W.); (J.G.); (X.P.); (L.L.); (H.Y.)
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.N.); (Z.W.); (J.G.); (X.P.); (L.L.); (H.Y.)
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China;
- Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
27
|
Qiu F, Bachle S, Estes R, Duvall MR, Nippert JB, Ungerer MC. Transcriptional responses to water stress and recovery in a drought-tolerant fescue wild grass ( Festuca ovina; Poaceae). Genome 2020; 64:15-27. [PMID: 33002373 DOI: 10.1139/gen-2020-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water stress associated with drought-like conditions is a major factor limiting plant growth and impacts productivity of natural plant communities and agricultural crops. Molecular responses of plants to water stress have been studied most extensively in model species and crops, few of which have evolved natural drought tolerance. In the current study, we examined physiological and transcriptomic responses at multiple timepoints during increasing water stress and following initial recovery from stress in a drought-tolerant C3 species, Festuca ovina. Results demonstrated non-linear transcriptomic changes during increasing stress, but largely linear declines in physiological measurements during this same period. Transcription factors represented approximately 12.7% of all differentially expressed genes. In total, 117 F. ovina homologs of previously identified and molecularly characterized drought-responsive plant genes were identified. This information will be valuable for further investigations of the molecular mechanisms involved in drought tolerance in C3 plants.
Collapse
Affiliation(s)
- Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Seton Bachle
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ryan Estes
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Melvin R Duvall
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
28
|
Qiu F, Bachle S, Nippert JB, Ungerer MC. Comparing control options for time-series RNA sequencing experiments in nonmodel organisms: An example from grasses. Mol Ecol Resour 2020; 20. [PMID: 31957196 DOI: 10.1111/1755-0998.13137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/13/2020] [Indexed: 01/23/2023]
Abstract
RNA sequencing (RNA-seq) is a widely used approach to investigate gene expression and increasingly is used in time-course studies to characterize transcriptomic changes over time. Two primary options are available as controls in time-course experiments: samples collected at the first sampling time are used as controls (temporal control, TC) and samples collected in parallel at each individual sampling time are used as controls (biological control, BC). While both approaches are used in experimental studies, we know of no analyses performed to date that directly compare effects of control type choices on identifying differentially expressed genes (DEGs) and subsequent functional analysis. In the current study, we compare experimental results using these different control types for time-course RNA-seq drought stress experiments in two wild grass species in the genus Paspalum. Our results showed BC assemblies gave a higher number of loci in both species. The number of DEGs increased with increasing stress and then decreased dramatically at the recovery time point using both control types. Expression levels of the same DEGs were highly correlated between control types in both species, ranging from r = .653 to r = .852. We also observed similar rank orders of shared enriched Gene Ontology term lists using the two different control types. Collectively, our findings suggest similar results in differential gene expression and functional annotation between control types. The ultimate choice of control type will rely on the experimental length and organism type, with labour time and sequencing costs as additional factors to be considered.
Collapse
Affiliation(s)
- Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Seton Bachle
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
29
|
Comprehensive Transcriptome Analysis Revealed the Effects of the Light Quality, Light Intensity, and Photoperiod on Phlorizin Accumulation in Lithocarpus polystachyus Rehd. FORESTS 2019. [DOI: 10.3390/f10110995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lithocarpus polystachyus Rehd. is an important medicinal plant species grown in southern China, with phlorizin as its main active substance. The effects of light conditions on phlorizin biosynthesis in L. polystachyus remain unclear. Thus, we analyzed the transcriptomes of L. polystachyus plants cultivated under diverse light qualities, light intensities, and photoperiods. The light treatments resulted in 5977–8027 differentially expressed genes (DEGs), which were functionally annotated based on the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Genes encoding transcription factors from 89 families were differentially expressed after the light treatments, implying these transcription factors are photoresponsive. Phenylalanine ammonia lyase (PAL) and 4-coumarate-CoA ligase (4CL) are the key enzymes for the accumulation of phlorizin. The transcription levels of PAL2, PAL, 4CL1 (DN121614), 4CLL7, and 4CL1 (DN102161) were positively correlated with phlorizin accumulation, suggesting that these genes are important for phlorizin biosynthesis. An ultra-high-performance liquid chromatography method was used to quantify the phlorizin content. Phlorizin accumulated in response to the green light treatment and following appropriate decreases in the light intensity or appropriate increases in the duration of the light exposure. The green light, 2000 lx, and 3000 lx treatments increased the PAL activity of L. polystachyus, but the regulatory effects of the light intensity treatments on PAL activity were relatively weak. This study represents the first comprehensive analysis of the light-induced transcriptome of L. polystachyus. The study results may form the basis of future studies aimed at elucidating the molecular mechanism underlying phlorizin biosynthesis in L. polystachyus. Moreover, this study may be relevant for clarifying the regulatory effects of light on the abundance of bioactive components in medicinal plants.
Collapse
|
30
|
Ren M, Wang Z, Xue M, Wang X, Zhang F, Zhang Y, Zhang W, Wang M. Constitutive expression of an A-5 subgroup member in the DREB transcription factor subfamily from Ammopiptanthus mongolicus enhanced abiotic stress tolerance and anthocyanin accumulation in transgenic Arabidopsis. PLoS One 2019; 14:e0224296. [PMID: 31644601 PMCID: PMC6808444 DOI: 10.1371/journal.pone.0224296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
Dehydration-responsive element-binding (DREB) transcription factors (TFs) are key regulators of stress-inducible gene expression in plants. Anthocyanins, an important class of flavonoids, protect plants from reactive oxygen species produced under abiotic stresses. However, regulation of DREBs on anthocyanin accumulation is largely unknown. Here, an A-5 subgroup DREB gene (AmDREB3) isolated from Ammopiptanthus mongolicus, a desert broadleaf shrub with very high tolerance to harsh environments, was characterized in terms of both abiotic stress tolerance and anthocyanin accumulation. AmDREB3 does not contain the transcriptional repression motif EAR, and the protein was located in the nucleus and has transcriptional activation capacity. The transcription of AmDREB3 was differentially induced in the shoots and roots of A. mongolicus seedlings under drought, salt, heat, cold, ultraviolet B, and abscisic acid treatments. Moreover, the transcript levels in twigs, young leaves, and roots were higher than in other organs of A. mongolicus shrubs. Constitutively expressing AmDREB3 improved the tolerance of transgenic Arabidopsis to drought, high salinity and heat, likely by inducing the expression of certain stress-inducible genes. The transgenic Arabidopsis seedlings also exhibited an obvious purple coloration and significant increases in anthocyanin accumulation and/or oxidative stress tolerance under drought, salt, and heat stresses. These results suggest that the AmDREB3 TF may be an important positive regulator of both stress tolerance and anthocyanin accumulation.
Collapse
Affiliation(s)
- Meiyan Ren
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhilin Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Min Xue
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuefeng Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Maoyan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
- * E-mail:
| |
Collapse
|
31
|
Xue M, Guo T, Ren M, Wang Z, Tang K, Zhang W, Wang M. Constitutive expression of chloroplast glycerol-3-phosphate acyltransferase from Ammopiptanthus mongolicus enhances unsaturation of chloroplast lipids and tolerance to chilling, freezing and oxidative stress in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:375-387. [PMID: 31542639 DOI: 10.1016/j.plaphy.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 05/02/2023]
Abstract
Chloroplast glycerol-3-phosphate acyltransferase (GPAT) is the first key enzyme determining the unsaturation of phosphatidylglycerol (PG) in thylakoid membranes and is involved in the tolerance of plants to chilling, heat and high salinity. However, whether the GPAT affects plant tolerance to other stressors has been scarcely reported. Ammopiptanthus mongolicus is the only evergreen broadleaf shrub growing in the central Asian desert, and it has a high tolerance to harsh environments, especially extreme cold. This study aimed to characterize the physiological function of AmGPAT from A. mongolicus. The transcription of AmGPAT was markedly induced by cold and drought but differentially suppressed by heat and high salinity in the laboratory-cultured seedlings. The gene also had the highest transcription levels in the leaves of shrubs naturally growing in the wild during the late autumn and winter months throughout the year. Moreover, AmGPAT was most abundantly expressed in leaves and immature pods rather than other organs of the shrubs. Constitutive expression of AmGPAT in Arabidopsis increased the levels of cis-unsaturated fatty acids, especially that of linolenic acid (18:3), mainly in PG but also in other chloroplast lipids in transgenic lines. More importantly, the transgene significantly increased the tolerance of the transgenics not only to chilling but also to freezing and oxidative stress at both the cellular and whole-plant levels. In contrast, this gene reduced heat tolerance of the transgenic plants. This study improves the current understanding of chloroplast GPAT in plant tolerance against abiotic stressors through regulating the unsaturation of chloroplast lipids, mainly that of PG.
Collapse
Affiliation(s)
- Min Xue
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Ting Guo
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Meiyan Ren
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Zhilin Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Kuangang Tang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Wenjun Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Maoyan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| |
Collapse
|
32
|
Gu H, Yang Y, Xing M, Yue C, Wei F, Zhang Y, Zhao W, Huang J. Physiological and transcriptome analyses of Opisthopappus taihangensis in response to drought stress. Cell Biosci 2019; 9:56. [PMID: 31312427 PMCID: PMC6611040 DOI: 10.1186/s13578-019-0318-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/25/2019] [Indexed: 11/15/2022] Open
Abstract
Background Water scarcity is considered to be a severe environmental constraint to plant survival and productivity. Studies on drought-tolerant plants would definitely promote a better understanding of the regulatory mechanism lying behind the adaptive response of plants to drought. Opisthopappus taihangensis (ling) shih is a typical drought-tolerant perennial plant species endemically distributed across the Taihang Mountains in China, but the underlying mechanism for drought tolerance of this particular species remains elusive. Results To mimic natural drought stress, O. taihangensis plants were treated with two different concentrations (25% and 5%) of polyethylene glycol (PEG6000), which represent the H group (high salinity) and the L group (low salinity), respectively. The physiological characteristics of these two groups of plants, including relative water content maintenance (RWC), proline content and chlorophyll content were assessed and compared with plants in the control group (CK), which had normal irrigation. There was not a significant difference in RWC when comparing plants in the L group with the control group. Proline was accumulated to a higher level, and chlorophyll content was decreased slightly in plants under low drought stress. In plants from the H group, a lower RWC was observed. Proline was accumulated to an even higher level when compared with plants from the L group, and chlorophyll content was further reduced in plants under high drought stress. Transcriptomic analysis was carried out to look for genes that are differentially expressed (DEGs) in O. taihangensis plants coping adaptively with the two levels of drought stress. A total of 23,056 genes are differentially expressed between CK and L, among which 12,180 genes are up-regulated and 10,876 genes are down-regulated. Between H and L, 6182 genes are up-regulated and 1850 genes are down-regulated, which gives a total of 8032 genes. The highest number of genes, that are differentially expressed, was obtained when a comparison was made between CK and H. A total of 43,074 genes were found to be differentially expressed with 26,977 genes up-regulated and 16,097 genes down-regulated. Further analysis of these genes suggests that many of the up-regulated genes are enriched in pathways involved in amino acid metabolism. Besides, 39 transcription factors (TFs) were found to be continuously up-regulated with the increase of drought stress level. Conclusion Taken together, the results indicate that O. taihangensis plants are able to live adaptively under drought stress by responding physiologically and regulating the expression of a substantial number of drought-responsive genes and TFs to avoid adverse effects. Electronic supplementary material The online version of this article (10.1186/s13578-019-0318-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huihui Gu
- 1School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China.,2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Yan Yang
- 2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China.,3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Minghui Xing
- 2School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Caipeng Yue
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Fang Wei
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Yanjie Zhang
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Wenen Zhao
- 1School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| | - Jinyong Huang
- 3School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001 People's Republic of China
| |
Collapse
|
33
|
Pang X, Xue M, Ren M, Nan D, Wu Y, Guo H. Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses. Genet Mol Biol 2019; 42:624-634. [PMID: 31424071 PMCID: PMC6905445 DOI: 10.1590/1678-4685-gmb-2018-0101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/11/2019] [Indexed: 12/02/2022] Open
Abstract
Drought and cold are the primary factors limiting plant growth worldwide. The Ammopiptanthus mongolicus NAC11 (AmNAC11) gene encodes a stress-responsive transcription factor. Expression of the AmNAC11 gene was induced by drought, cold and high salinity. The AmNAC11 protein was localized in the nucleus and plays an important role in tolerance to drought, cold and salt stresses. We also found that differential expression of AmNAC11 was induced in the early stages of seed germination and was related to root growth. When the AmNAC11 gene was introduced into Arabidopsis thaliana by an Agrobacterium-mediated method, the transgenic lines expressing AmNAC11 displayed significantly enhanced tolerance to drought and freezing stresses compared to wild-type Arabidopsis thaliana plants. These results indicated that over-expression of the AmNAC11 gene in Arabidopsis could significantly enhance its tolerance to drought and freezing stresses. Our study provides a promising approach to improve the tolerance of crop cultivars to abiotic stresses through genetic engineering.
Collapse
Affiliation(s)
- Xinyue Pang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Cotton Biology, Anyang, China
- Key Laboratory of Desert and Desertification, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Min Xue
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Meiyan Ren
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Dina Nan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yaqi Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiqin Guo
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
34
|
Transcriptome analysis provides insights into the stress response crosstalk in apple (Malus × domestica) subjected to drought, cold and high salinity. Sci Rep 2019; 9:9071. [PMID: 31227734 PMCID: PMC6588687 DOI: 10.1038/s41598-019-45266-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Drought, cold, and high salinity are three major abiotic stresses effecting apple tree growth and fruit production. Understanding the genetic mechanisms of crosstalk between stress responses signalling networks and identifying the genes involved in apple has potential importance for crop improvement and breeding strategies. Here, the transcriptome profiling analysis of in vitro-grown apple plants subjected to drought, cold and high salinity stress, showed a total of 377 upregulated and 211 downregulated common differentially expressed genes (DEGs) to all 3 stress treatments compared with the control. Gene Ontology (GO) analysis indicated that these common DEGs were enriched in ‘metabolic process’ under the ‘biological process’ category, as well as in ‘binding’ and ‘catalytic activity’ under the ‘molecular function’ category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that common DEGs were mainly belong to the ‘biological functions’ category and 17 DEGs were identified in ‘environmental information processing’ sub-category which may act as signal transduction components in response crosstalk regulation. Overexpression of 5 upregulated genes individually, out of these 17 common DEGs in apple calli promoted the consistent upregulation of DREB6, CBF1 and ZAT10 and increased the mass weight and antioxidase ability, implying these five common DEGs involved in multiple pathways and improved comprehensive resistance to stress.
Collapse
|
35
|
Choudhary S, Thakur S, Jaitak V, Bhardwaj P. Gene and metabolite profiling reveals flowering and survival strategies in Himalayan Rhododendron arboreum. Gene 2019; 690:1-10. [DOI: 10.1016/j.gene.2018.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
|
36
|
Luo D, Zhou Q, Wu Y, Chai X, Liu W, Wang Y, Yang Q, Wang Z, Liu Z. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2019; 19:32. [PMID: 30665358 PMCID: PMC6341612 DOI: 10.1186/s12870-019-1630-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Alfalfa is the most extensively cultivated forage legume. Salinity is a major environmental factor that impacts on alfalfa's productivity. However, little is known about the molecular mechanisms underlying alfalfa responses to salinity, especially the relative contribution of the two important components of osmotic and ionic stress. RESULTS In this study, we constructed the first full-length transcriptome database for alfalfa root tips under continuous NaCl and mannitol treatments for 1, 3, 6, 12, and 24 h (three biological replicates for each time points, including the control group) via PacBio Iso-Seq. This resulted in the identification of 52,787 full-length transcripts, with an average length of 2551 bp. Global transcriptional changes in the same 33 stressed samples were then analyzed via BGISEQ-500 RNA-Seq. Totals of 8861 NaCl-regulated and 8016 mannitol-regulated differentially expressed genes (DEGs) were identified. Metabolic analyses revealed that these DEGs overlapped or diverged in the cascades of molecular networks involved in signal perception, signal transduction, transcriptional regulation, and antioxidative defense. Notably, several well characterized signalling pathways, such as CDPK, MAPK, CIPK, and PYL-PP2C-SnRK2, were shown to be involved in osmotic stress, while the SOS core pathway was activated by ionic stress. Moreover, the physiological shifts of catalase and peroxidase activity, glutathione and proline content were in accordance with dynamic transcript profiles of the relevant genes, indicating that antioxidative defense system plays critical roles in response to salinity stress. CONCLUSIONS Overall, our study provides evidence that the response to salinity stress in alfalfa includes both osmotic and ionic components. The key osmotic and ionic stress-related genes are candidates for future studies as potential targets to improve resistance to salinity stress via genetic engineering.
Collapse
Affiliation(s)
- Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Yuguo Wu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Xutian Chai
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000 People’s Republic of China
| | - Zengyu Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Core Research & Transformation, Noble Research Institute, Ardmore, OK 73401 USA
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
37
|
Li C, Dong J, Zhang X, Zhong H, Jia H, Fang Z, Dong K. Gene expression profiling of Bothriochloa ischaemum leaves and roots under drought stress. Gene 2018; 691:77-86. [PMID: 30593916 DOI: 10.1016/j.gene.2018.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Drought is a common environmental factor that limits plant growth, development and productivity. To understand the effect of drought on the perennial grass Bothriochloa ischaemum, we applied high-throughput Illumina sequencing technology and analyzed the transcriptional expression profile of Bothriochloa ischaemum leaves and roots under drought and normal growth conditions. Compared to the controls, drought-treated samples had 7989 differentially expressed genes in leaves and 15,675 differentially expressed genes in roots. Of these, 4489 and 5010 genes were up-regulated genes in leaves and roots, respectively. Of the 2012 differentially expressed genes that were shared between leaves and roots, 1068 were up-regulated. We identified common and distinct biological processes and metabolic pathways involved in drought stress between the two tissues. Most notably, there was a dramatic up-regulation of genes involved in plant hormone signal transduction especially ABA signal transduction components and flavonoid biosynthesis enzymes or regulation factors in drought stress treated leaves. Therefore, these two cellular processes likely confer resistance to drought stress in Bothriochloa ischaemum. Overall, our findings provided new insights into a mechanism involving the synergistic interaction between ABA signaling and secondary metabolism during the drought adaptation of Bothriochloa ischaemum.
Collapse
Affiliation(s)
- Chunyan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; Institute of Animal Husbandry and Veterinary, Shanxi Academy of Agricultural Sciences, Taiyuan, 030032, Shanxi, China
| | - Jie Dong
- Beijing Science and Technology Information Institute, Beijing 100044, China
| | - Xuebin Zhang
- Institute of Plant stress Biology, State Key laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Hua Zhong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Huili Jia
- Institute of Animal Husbandry and Veterinary, Shanxi Academy of Agricultural Sciences, Taiyuan, 030032, Shanxi, China
| | - Zhihong Fang
- Institute of Animal Husbandry and Veterinary, Shanxi Academy of Agricultural Sciences, Taiyuan, 030032, Shanxi, China
| | - Kuanhu Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
38
|
Meng HL, Zhang W, Zhang GH, Wang JJ, Meng ZG, Long GQ, Yang SC. Unigene-based RNA-seq provides insights on drought stress responses in Marsdenia tenacissima. PLoS One 2018; 13:e0202848. [PMID: 30500823 PMCID: PMC6268015 DOI: 10.1371/journal.pone.0202848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Marsdenia tenacissima is a well-known anti-cancer medicinal plant used in traditional Chinese medicine, which often grows on the karst landform and the water conservation capacity of land is very poorly and drought occurrences frequently. We found M. tenacissima has strong drought resistance because of continuousdrought16 d, the leaves of M. tenacissima were fully curly and dying. But the leaves were fully almost recovering after re-watering 24h. The activity of SOD and POD were almost doubled under drought stress. The content of osmotic regulating substance proline and soluble sugar were three times than control group. But after re-watering, these indexes were declined rapidly. Three cDNA libraries of control, drought stress, and re-watering treatments were constructed. There were 43,129,228, 47,116,844, and 42,815,454 clean reads with Q20 values of 98.06, 98.04, and 97.88respectively.SRA accession number of raw data was PRJNA498187 on NCBI. A total of 8672, 6043, and 6537 differentially expressed genes (DEGs) were identified in control vs drought stress, control vs re-watering, and drought stress vs re-watering, respectively. In addition, 1039, 1016, and 980 transcription factors (TFs) were identified, respectively. Among them, 363, 267, and 299 TFs were identified as DEGs in drought stress, re-watering, and drought stress and re-watering, respectively. These differentially expressed TFs mainly belonged to the bHLH, bZIP, C2H2, ERF, MYB, MYB-related, and NAC families. A comparative analysis found that 1174 genes were up-regulated and 2344 were down-regulated under drought stress and this pattern was the opposite to that found after re-watering. Among the up-regulated genes, 64 genes were homologous to known functional genes that directly protect plants against drought stress. Furthermore, 44 protein kinases and 38 TFs with opposite expression patterns under drought stress and re-watering were identified, which are possibly candidate regulators for drought stress resistance in M. tenacissima. Our study is the first to characterize the M. tenacissima transcriptome in response to drought stress, and will serve as a useful resource for future studies on the functions of candidate protein kinases and TFs involved in M. tenacissima drought stress resistance.
Collapse
Affiliation(s)
- Heng-Ling Meng
- The Life Science and Technology College, Honghe University, Mengzi, Yunnan, People’s Republic of China
| | - Wei Zhang
- The Life Science and Technology College, Honghe University, Mengzi, Yunnan, People’s Republic of China
| | - Guang-Hui Zhang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
| | - Jian-Jun Wang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
| | - Zhen-Gui Meng
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
| | - Guang-Qiang Long
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
- * E-mail: (GQL); (SCY)
| | - Sheng-Chao Yang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural University, Kunming,Yunnan, People’s Republic of China
- * E-mail: (GQL); (SCY)
| |
Collapse
|
39
|
Hao X, Tang H, Wang B, Yue C, Wang L, Zeng J, Yang Y, Wang X. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. TREE PHYSIOLOGY 2018; 38:1655-1671. [PMID: 29688561 DOI: 10.1093/treephys/tpy038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Green tea has attracted an increasing number of consumers worldwide due to its multiple health benefits. With the increase in global warming, more frequent cold spells in the spring often cause more serious damage to green tea production because of the young leaves used. We recorded the changes in climatic conditions during a typical cold spell and the damage symptoms caused by the cold spell in different tea cultivars and breeding lines. By simulating the low temperature of a cold spell under controlled conditions, comparative transcriptome and metabolic analyses were performed with sprouting shoots. Many pathways and genes were regulated differentially by the cold spell conditions. Taking into account the metabolic analysis, the results suggested that the mitogen-activated protein kinase (MAPK)-dependent ethylene and calcium signalling pathways were two major early cold-responsive mechanisms involved in sprouting shoots and were followed by the induction of the Inducer of CBF Expressions (ICE)-C-repeat binding factors (CBF)-cold-responsive (COR) signalling pathway to augment cold tolerance. During the cold shock, growth, photosynthesis and secondary metabolism-mainly involving flavonoid biosynthesis-were remarkably affected. Notably, the increased starch metabolism, which might be dependent on the high expression of β-amylase3 (BAM3) induced by CBF, played crucial roles in protecting young shoots against freezing cold. A schematic diagram of cold spell response mechanisms specifically involved in the sprouting shoots of the tea plant is ultimately proposed. Some essential transcriptional and metabolic changes were further confirmed in the plant materials under natural cold spell conditions. Our results provide a global view of the reprograming of transcription and metabolism in sprouting tea shoots during a cold spell and meaningful information for future practices.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Hu Tang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Bo Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuan Yue
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
40
|
Zhou Q, Luo D, Chai X, Wu Y, Wang Y, Nan Z, Yang Q, Liu W, Liu Z. Multiple Regulatory Networks Are Activated during Cold Stress in Medicago sativa L. Int J Mol Sci 2018; 19:ijms19103169. [PMID: 30326607 PMCID: PMC6214131 DOI: 10.3390/ijms19103169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cultivated alfalfa (Medicago sativa L.) is one of the most important perennial legume forages in the world, and it has considerable potential as a valuable forage crop for livestock. However, the molecular mechanisms underlying alfalfa responses to cold stress are largely unknown. In this study, the transcriptome changes in alfalfa under cold stress at 4 °C for 2, 6, 24, and 48 h (three replicates for each time point) were analyzed using the high-throughput sequencing platform, BGISEQ-500, resulting in the identification of 50,809 annotated unigenes and 5283 differentially expressed genes (DEGs). Metabolic pathway enrichment analysis demonstrated that the DEGs were involved in carbohydrate metabolism, photosynthesis, plant hormone signal transduction, and the biosynthesis of amino acids. Moreover, the physiological changes of glutathione and proline content, catalase, and peroxidase activity were in accordance with dynamic transcript profiles of the relevant genes. Additionally, some transcription factors might play important roles in the alfalfa response to cold stress, as determined by the expression pattern of the related genes during 48 h of cold stress treatment. These findings provide valuable information for identifying and characterizing important components in the cold signaling network in alfalfa and enhancing the understanding of the molecular mechanisms underlying alfalfa responses to cold stress.
Collapse
Affiliation(s)
- Qiang Zhou
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Dong Luo
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xutian Chai
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yuguo Wu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhibiao Nan
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Wenxian Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhipeng Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
41
|
Yin Y, Jiang X, Ren M, Xue M, Nan D, Wang Z, Xing Y, Wang M. AmDREB2C, from Ammopiptanthus mongolicus, enhances abiotic stress tolerance and regulates fatty acid composition in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:517-528. [PMID: 30096686 DOI: 10.1016/j.plaphy.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/08/2018] [Accepted: 08/02/2018] [Indexed: 05/24/2023]
Abstract
Dehydration-responsive element-binding (DREB) transcription factors (TFs) play a vital role in plant response to abiotic stresses. However, little is known about DREB TFs in plants adapted to harsh environments and in the formation of polyunsaturated fatty acids (PUFAs), a major membrane component closely associated with plant stress tolerance. Here, we characterized AmDREB2C in Ammopiptanthus mongolicus (Maxim. ex kom.) Cheng F., a desert evergreen broadleaf shrub with a high tolerance to harsh environments. AmDREB2C encodes a canonical DREB2-type TF, and the protein was localized in the nucleus. AmDREB2C had the highest expression levels in leaves of naturally growing shrubs in the wild during the winter season of a year of sampling. The expression was also induced by cold, heat and drought stresses in laboratory-cultured seedlings. Moreover, AmDREB2C was most abundantly expressed in young leaves and immature seeds rather than other tissues of the shrubs. Constitutive expression of AmDREB2C in Arabidopsis enhanced freezing, heat and drought tolerances of the transgenic plants, likely through inducing the expression of important stress-responsive genes. The transgene also increased the level of linolenic acid (C18:3), a major PUFA in most plant species, in leaves and seeds of the transgenic plants. Correspondingly, the transcription of FAD3, FAD7 and FAD8, three genes encoding fatty acid desaturases (FADs) responsible for the production of C18:3, showed a differential up-regulation in these two organs. This study provides new insight into the underlying molecular mechanisms of A. mongolicus' ability to endure harsh environments and DREB TF regulation of fatty acid desaturation.
Collapse
Affiliation(s)
- Yumei Yin
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Xiaoxu Jiang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Meiyan Ren
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Min Xue
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Dina Nan
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Zhilin Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Yanping Xing
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Maoyan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| |
Collapse
|
42
|
Gao F, Wang X, Li X, Xu M, Li H, Abla M, Sun H, Wei S, Feng J, Zhou Y. Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub. Gigascience 2018; 7:5039704. [PMID: 29917074 PMCID: PMC6048559 DOI: 10.1093/gigascience/giy074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/28/2017] [Accepted: 06/11/2018] [Indexed: 11/14/2022] Open
Abstract
Background Ammopiptanthus nanus is a rare broad-leaved shrub that is found in the desert and arid regions of Central Asia. This plant species exhibits extremely high tolerance to drought and freezing and has been used in abiotic tolerance research in plants. As a relic of the tertiary period, A. nanus is of great significance to plant biogeographic research in the ancient Mediterranean region. Here, we report a draft genome assembly using the Pacific Biosciences (PacBio) platform and gene annotation for A. nanus. Findings A total of 64.72 Gb of raw PacBio sequel reads were generated from four 20-kb libraries. After filtering, 64.53 Gb of clean reads were obtained, giving 72.59× coverage depth. Assembly using Canu gave an assembly length of 823.74 Mb, with a contig N50 of 2.76 Mb. The final size of the assembled A. nanus genome was close to the 889 Mb estimated by k-mer analysis. The gene annotation completeness was evaluated using Benchmarking Universal Single-Copy Orthologs; 1,327 of the 1,440 conserved genes (92.15%) could be found in the A. nanus assembly. Genome annotation revealed that 74.08% of the A. nanus genome is composed of repetitive elements and 53.44% is composed of long terminal repeat elements. We predicted 37,188 protein-coding genes, of which 96.53% were functionally annotated. Conclusions The genomic sequences of A. nanus could be a valuable source for comparative genomic analysis in the legume family and will be useful for understanding the phylogenetic relationships of the Thermopsideae and the evolutionary response of plant species to the Qinghai Tibetan Plateau uplift.
Collapse
Affiliation(s)
- Fei Gao
- College of Life and Evironmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Beijing, 100081, China
| | - Xue Wang
- College of Life and Evironmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Beijing, 100081, China
| | - Xuming Li
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Mingyue Xu
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Huayun Li
- Annoroad Genomics, Building B1, Yard 88, Kechuang six Road, Beijing Economic-Technological Development Area, Fengtai District, Beijing, 100176, China
| | - Merhaba Abla
- College of Life and Evironmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Beijing, 100081, China
| | - Huigai Sun
- College of Life and Evironmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Beijing, 100081, China
| | - Shanjun Wei
- College of Life and Evironmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Beijing, 100081, China
| | - Jinchao Feng
- College of Life and Evironmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Beijing, 100081, China
| | - Yijun Zhou
- College of Life and Evironmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
43
|
Jin M, Guo M, Yue G, Li J, Yang S, Zhao P, Su Y. An unusual strategy of stomatal control in the desert shrub Ammopiptanthus mongolicus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:13-26. [PMID: 29413627 DOI: 10.1016/j.plaphy.2018.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/22/2018] [Indexed: 05/27/2023]
Abstract
Water deficit is one of the main environmental constraints that limit plant growth. Accordingly, plants evoke rather complex strategies to respond and/or acclimate to such frustrating circumstances. Due to insufficient understandings of acclimatory mechanisms of plants' tolerance to persistent water deficit, a desert shrub of an ancient origin, Ammopiptanthus mongolicus, has recently attracted growing attentions. Differed from Arabidopsis, the opening of stomata of A. mongolicus is constrained by low external K+ concentration of the guard cells. Although as a general consequence, a raised level of ABA is also induced in A. mongolicus following water deficit, this does not accordingly result in efficient stomatal closure. In consistent with this phenomenon, the expression of genes coding for the negative regulators of the ABA signaling cascade-the type 2C protein phosphatases (PP2Cs) are notably induced, whereas the transcription of the downstream SnRK2 protein kinase genes or the destination ion fluxing channel genes remain almost unaffected under water deficit treatments. Therefore, in term of stomatal control in response to water deficit, A. mongolicus seemingly employs an unusual strategy: a constrained stomatal opening controlled by extracellular K+ concentrations rather than a prompt stomatal closure triggered by ABA-induced signaling pathway. Additionally, an acute accumulation of proline is induced by water deficit which may partly compromise the activation of antioxidant enzymes in A. mongolicus. Such strategy of stomatal control found in A. mongolicus may in certain extents, reflect the acclimatory divergence for plants' coping with persistent stress of water deficit.
Collapse
Affiliation(s)
- Man Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Manyuan Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guangzhen Yue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China
| | - Junlin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shunying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China
| | - Pengshu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, China.
| |
Collapse
|
44
|
Wei T, Deng K, Wang H, Zhang L, Wang C, Song W, Zhang Y, Chen C. Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis. Int J Mol Sci 2018. [PMID: 29534548 PMCID: PMC5877688 DOI: 10.3390/ijms19030827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A-expressing transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904 differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the 'signal transduction mechanisms' category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs associated with "ribosome", "plant hormone signal transduction", photosynthesis", "plant-pathogen interaction", "glycolysis/gluconeogenesis" and "carbon fixation" are hypothesized to perform major functions in drought resistance in AtDREB1A-expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.
Collapse
Affiliation(s)
- Tao Wei
- National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin 300071, China.
- College of Life Sciences, Nankai University, Tianjin 300071, China.
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Hongbin Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Lipeng Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Wenqin Song
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
45
|
Transcriptome changes induced by abiotic stresses in Artemisia annua. Sci Rep 2018; 8:3423. [PMID: 29467423 PMCID: PMC5821844 DOI: 10.1038/s41598-018-21598-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
Artemisia annua is known to be the source of artemisinin worldwide which is an antimalarial compound but is synthesised in very limited amount in the plant. Most research laid emphasis on the methods of enhancing artemisinin but our study has been planned in a way that it may simultaneously address two problems encountered by the plant. Firstly, to know the effect on the artemisinin content in the era of climate change because the secondary metabolites tend to increase under stress. Secondly, to identify some of the stress responsive genes that could help in stress tolerance of the plant under abiotic stress. Hence, the A. annua plants were subjected to four abiotic stresses (salt, cold, drought and water-logging) and it was observed that the artemisinin content increased in all the stress conditions except drought. Next, in order to identify the stress responsive genes, the transcriptome sequencing of the plants under stress was carried out resulting in 89,362 transcripts for control and 81,328, 76,337, 90,470 and 96,493 transcripts for salt, cold, drought, and water logging stresses. This investigation provides new insights for functional studies of genes involved in multiple abiotic stresses and potential candidate genes for multiple stress tolerance in A. annua.
Collapse
|
46
|
Transcript profiling and gene expression analysis under drought stress in Ziziphus nummularia (Burm.f.) Wright & Arn. Mol Biol Rep 2018; 45:163-174. [PMID: 29417346 DOI: 10.1007/s11033-018-4149-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Drought is one of the prime abiotic stresses responsible for limiting agricultural productivity. A number of drought responsive genes have been isolated and functionally characterized but these studies have been restricted to a few model plant systems. Very few drought responsive genes have been reported till date from non model drought tolerant plants. The present study aimed at identifying differentially expressed genes from a drought tolerant, non-model plant, Ziziphus nummularia (Burm.f.) Wight & Arn. One month old seedlings of Z. nummularia were subjected to drought stress by 30% Polyethylene glycol (PEG 6000) treatment for 6, 12, 24, 48 and 72 h. A significant reduction in RWC and increase in proline was observed at 24 h and 48 h of treatment. Suppression subtractive hybridization (SSH) library was constructed with drought stressed seedlings after 24 h and 48 h of PEG 6000 treatment. A total of 142 and 530 unigenes from 24 h and 48 h library were identified respectively. Gene ontology studies revealed that about 9.78% and 15.07% unigenes from 24 h and 48 h SSH libraries were expressed in "response to stress". Fifteen putative drought responsive genes identified in SSH library were validated for drought responsive differential expression by RT-qPCR. Significant changes in fold expressions were observed with time in the treated samples compared to the control. A heat map revealing the expression profile of genes was constructed by hierarchical clustering. Various genes identified in SSH libraries can serve as a resource for marker discovery and selection of candidate genes to improve drought tolerance in other susceptible crops.
Collapse
|
47
|
Yadav R, Lone SA, Gaikwad K, Singh NK, Padaria JC. Transcriptome sequence analysis and mining of SSRs in Jhar Ber (Ziziphus nummularia (Burm.f.) Wight & Arn) under drought stress. Sci Rep 2018; 8:2406. [PMID: 29402924 PMCID: PMC5799245 DOI: 10.1038/s41598-018-20548-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/02/2018] [Indexed: 11/09/2022] Open
Abstract
Ziziphus nummularia (Burm.f.) Wight & Arn., a perennial shrub that thrives in the arid regions, is naturally tolerant to drought. However, there are limited studies on the genomics of drought tolerance in Ziziphus sp. In this study, RNA-sequencing of one month old seedlings treated with PEG 6000 was performed using Roche GS-FLX454 Titanium pyrosequencing. A total of 367,176 raw sequence reads were generated, and upon adapter trimming and quality filtration 351,872 reads were assembled de novo into 32,739 unigenes. Further characterization of the unigenes indicated that 73.25% had significant hits in the protein database. Kyoto encyclopedia of genes and genomes database (KEGG) identified 113 metabolic pathways from the obtained unigenes. A large number of drought-responsive genes were obtained and among them differential gene expression of 16 highly induced genes was validated by qRT-PCR analysis. To develop genic-markers, 3,425 simple sequence repeats (SSRs) were identified in 2,813 unigene sequences. The data generated shall serve as an important reservoir for the identification and characterization of drought stress responsive genes for development of drought tolerant crops.
Collapse
Affiliation(s)
- Radha Yadav
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India
| | - Showkat Ahmad Lone
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Kishor Gaikwad
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India
| | - Nagendra Kumar Singh
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India
| | - Jasdeep Chatrath Padaria
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India.
| |
Collapse
|
48
|
Chen LR, Ko CY, Folk WR, Lin TY. Chilling susceptibility in mungbean varieties is associated with their differentially expressed genes. BOTANICAL STUDIES 2017; 58:7. [PMID: 28510190 PMCID: PMC5432936 DOI: 10.1186/s40529-017-0161-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/02/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Mungbean (Vigna radiata L. Wilczek) is an economically important legume of high nutritional value, however, its cultivation is limited by susceptibility to chilling. Varieties NM94 and VC1973A, with differential susceptibility to stress, serve as good materials for uncovering how they differ in chilling tolerance. This study aimed to identify the ultrastructural, physiological and molecular changes to provide new insights on the differential susceptibility to chilling between varieties VC1973A and NM94. RESULTS Chilling stress caused a greater reduction in relative growth rate, a more significant decrease in maximum photochemical efficiency of PSII and DPPH scavenging activity and more-pronounced ultrastructural changes in VC1973A than in NM94 seedlings. Comparative analyses of transcriptional profiles in NM94 and VC1973A revealed that the higher expression of chilling regulated genes (CORs) in NM94. The transcript levels of lipid transfer protein (LTP), dehydrin (DHN) and plant defensin (PDF) in NM94 seedlings after 72 h at 4 °C was higher than that in its parental lines VC1973A, 6601 and VC2768A. CONCLUSIONS Our results suggested that LTP, DHN and PDF may mediate chilling tolerance in NM94 seedlings.
Collapse
Affiliation(s)
- Li-Ru Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114 Taiwan
| | - Chia-Yun Ko
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - William R. Folk
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
| | - Tsai-Yun Lin
- Department of Life Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
49
|
Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots. Int J Mol Sci 2017; 18:ijms18102158. [PMID: 29039783 PMCID: PMC5666839 DOI: 10.3390/ijms18102158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 01/12/2023] Open
Abstract
Drought is one of the major abiotic stresses that negatively affects plant growth and development. Ammopiptanthus mongolicus is an ecologically important shrub in the mid-Asia desert region and used as a model for abiotic tolerance research in trees. Protein phosphorylation participates in the regulation of various biological processes, however, phosphorylation events associated with drought stress signaling and response in plants is still limited. Here, we conducted a quantitative phosphoproteomic analysis of the response of A. mongolicus roots to short-term drought stress. Data are available via the iProx database with project ID IPX0000971000. In total, 7841 phosphorylation sites were found from the 2019 identified phosphopeptides, corresponding to 1060 phosphoproteins. Drought stress results in significant changes in the abundance of 103 phosphopeptides, corresponding to 90 differentially-phosphorylated phosphoproteins (DPPs). Motif-x analysis identified two motifs, including [pSP] and [RXXpS], from these DPPs. Functional enrichment and protein-protein interaction analysis showed that the DPPs were mainly involved in signal transduction and transcriptional regulation, osmotic adjustment, stress response and defense, RNA splicing and transport, protein synthesis, folding and degradation, and epigenetic regulation. These drought-corresponsive phosphoproteins, and the related signaling and metabolic pathways probably play important roles in drought stress signaling and response in A. mongolicus roots. Our results provide new information for understanding the molecular mechanism of the abiotic stress response in plants at the posttranslational level.
Collapse
|
50
|
Li J, Liu H, Xia W, Mu J, Feng Y, Liu R, Yan P, Wang A, Lin Z, Guo Y, Zhu J, Chen X. De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Int J Mol Sci 2017; 18:E1155. [PMID: 28590406 PMCID: PMC5485979 DOI: 10.3390/ijms18061155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/16/2022] Open
Abstract
Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase (CIPKs), receptor-like protein kinases, and protein kinases. The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata. These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata. In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance.
Collapse
Affiliation(s)
- Jin Li
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Hailiang Liu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200065, China.
| | - Wenwen Xia
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Jianqiang Mu
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Yujie Feng
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Ruina Liu
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Panyao Yan
- ShengTing Bioinformatics Institute, Christiansburg, VA 24073, USA.
| | - Aiying Wang
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Zhongping Lin
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
- College of Life Sciences, Perking University, Beijing 100871, China.
| | - Yong Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
| | - Xianfeng Chen
- College of Life Sciences, Shihezi University, Shihezi 832000, China.
- ShengTing Bioinformatics Institute, Christiansburg, VA 24073, USA.
| |
Collapse
|