1
|
Yang S, Wang Y, Wang W, Wang N, Yan R, Li S, Zhang T, Liu J, Zeng X, Zhao S, Zhang X, Dong Q, Luan H, Guo S, Qi G, Jia P. Analysis of WD40 genes in kiwifruit reveals the key role of the light-induced AcTTG1-AcMYB75-AcbHLH2 complex in anthocyanin accumulation. Int J Biol Macromol 2025; 297:139758. [PMID: 39809390 DOI: 10.1016/j.ijbiomac.2025.139758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
WD40 superfamily genes are integral to various aspects of plant growth and development. Despite the economic importance and agricultural significance of the kiwifruit (Actinidia chinensis), a comprehensive characterization of the WD40 superfamily in this species remains elusive. In this study, we identified 280 WD40-encoding genes within the kiwifruit genome and systematically analyzed their phylogenetic relationships, gene structures, functional domains, and synteny. Our results reveal that AcWD40 genes exhibit diverse expression profiles with distinct spatio-temporal patterns. AcWD40.063, encoding TTG1 homolog (designated AcTTG1), was upregulated during light-induced anthocyanin accumulation. Heterologous expression, yeast two-hybrid (Y2H) interaction assays, and dual-luciferase reporter experiments revealed that AcTTG1 interacts with AcMYB75 and AcbHLH2, collectively promoting anthocyanin accumulation and enhancing the expression of anthocyanin biosynthesis genes, particularly AcANS. This study provides a robust framework for understanding the roles of AcWD40 gene family members and offers valuable insights for molecular breeding strategies aimed at improving kiwifruit quality.
Collapse
Affiliation(s)
- Siyu Yang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Yuan Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| | - Wenxiu Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ning Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yan
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Siyu Li
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Tianle Zhang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jiale Liu
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinfeng Zeng
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Shengnan Zhao
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xuemei Zhang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Qinglong Dong
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Haoan Luan
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Suping Guo
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Guohui Qi
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| | - Peng Jia
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
2
|
Jiang R, Chen W, Li Q, Guo J, Lv Z, Chen W. Genome-wide identification of the WD40 protein family and functional characterization of AaTTG1 in Artemisia annua. Int J Biol Macromol 2025; 289:138834. [PMID: 39689807 DOI: 10.1016/j.ijbiomac.2024.138834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/19/2024]
Abstract
Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis. However, WD40 proteins have not been comprehensively identified in A. annua. In this study, we identified 236 WD40 proteins in the A. annua genome and examined their conserved domains, motifs, and cis-regulatory elements, gene structures, chromosomal distribution, duplication events of their encoding genes. Furthermore, we isolated and characterized TRANSPARENT TESTA GLABROUS 1 (AaTTG1), a homolog of Arabidopsis TTG1, and confirmed that AaTTG1 was localized to the nucleus and cytoplasm. Indeed, AaTTG1 can rescue the glabrous phenotype of the Arabidopsis ttg1 mutant and enhanced trichome production when heterologously expressed in wild-type Arabidopsis plants. Transgenic A. annua lines overexpressing AaTTG1 displayed a significantly higher density of glandular trichomes and higher artemisinin contents. Transgenic A. annua lines with inhibited AaTTG1 function had fewer glandular trichomes and lower artemisinin levels. Moreover, we demonstrated that AaTTG1 positively regulates glandular trichome development in A. annua through interactions with AaSPL9. This study thus provides fundamental insights into the role of WD40 proteins in A. annua and introduces a promising approach to enhance artemisinin production by manipulating glandular trichome development in this valuable medicinal plant.
Collapse
Affiliation(s)
- Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 610075, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
3
|
Wang Q, Wang DR, Liu X, Chen GL, Li HD, Ji WL, Qu MS, Yang R, You CX. Trimeric tetrapeptide repeat protein TPR16 positively regulates salt stress in apple. JOURNAL OF PLANT PHYSIOLOGY 2025; 305:154415. [PMID: 39793382 DOI: 10.1016/j.jplph.2024.154415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Plants are vulnerable to various abiotic stresses in the natural growing environment, among which salt stress can seriously affect plant growth, development and yield. Protein families containing trimeric tetrapeptide repeat sequences have a crucial function in plant resilience to non-living factors and participate in multiple aspects of plant growth and development. For this investigation, we acquired the apple MdTPR16 gene. The research demonstrated that ectopic expression of MdTPR16 in Arabidopsis resulted in increased resistance to salt stress. This was observed by a drop in malondialdehyde (MDA) levels and a reduction in the buildup of reactive oxygen species (ROS) under salt stress conditions. Meanwhile, apple calli, apple seedlings and apple rooting seedlings overexpressing MdTPR16 showed reduced sensitivity to salt stress. The results indicate that MdTPR16 has a critical positive regulatory function under salt stress, which may lay the foundation for a deeper understanding of the molecular pathways of salt tolerance in apple.
Collapse
Affiliation(s)
- Qing Wang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xin Liu
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Lin Chen
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - He-Dan Li
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wen-Long Ji
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Man-Shu Qu
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui Yang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
4
|
Selinski J, Frings S, Schmidt-Schippers R. Perception and processing of stress signals by plant mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2337-2355. [PMID: 39527570 DOI: 10.1111/tpj.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors. At the same time, mitochondrial function may fluctuate to a tolerable extent without the need to activate downstream retrograde signalling cascades for stress adaptation. In this Focus Review, we summarise the current state of knowledge on the perception and processing of stress signals by mitochondria and show which layers of retrograde signalling, that is, those involving transcription factors, metabolites, but also enzymes with moonlighting functions, enable communication with the nucleus. Also, light is shed on signal integration between mitochondria and chloroplasts as part of retrograde signalling. With this Focus Review, we aim to show ways in which organelle-specific communication can be further researched and the collected data used in the long-term to strengthen plant resilience in the context of climate change.
Collapse
Affiliation(s)
- Jennifer Selinski
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, D-24118, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| |
Collapse
|
5
|
Lee K, Hyun JO, Cho HT. An inquiry into the radial patterning of root hair cell distribution in eudicots. THE NEW PHYTOLOGIST 2024; 244:1931-1946. [PMID: 39327901 DOI: 10.1111/nph.20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
The root epidermis of tracheophytes consists of hair-forming cells (HCs) and nonhair cells (NCs). The HC distribution pattern is classified into three types: random (Type I), vertically alternating (Type II), and radial (Type III). Type III is found only in core eudicots and is known to be position-dependent in superrosids with HCs positioned between two underlying cortical cells. However, the evolution of Type III and the universality of its position dependency in eudicots remain unclear. We surveyed the HC distribution in basal and Type III-exhibiting core eudicots and conducted genomic analyses to get insight into whether eudicots share the same genetic network to establish Type III. Our survey revealed no canonical Type III in basal eudicots but a reverse Type III, with NCs between two cortical cells and HCs on a single cortical cell, in Papaveraceae of basal eudicots. Type III-exhibiting species from both superrosids and superasterids showed the canonical position dependency of HCs. However, some key components for Type III determination were absent in the genomes of Papaveraceae and Type III-exhibiting superasterids. Our findings identify a novel position-dependent type of HC patterning, reverse Type III, and suggest that Type III emerged independently or diversified during eudicot evolution.
Collapse
Affiliation(s)
- Kyeonghoon Lee
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jin-Oh Hyun
- Northeastern Asia Biodiversity Institute, Gyeonggi-do, 12982, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
6
|
Ariharasutharsan G, Akilan M, Dhasarathan M, Amaravel M, Divya S, Deivamani M, Sudha M, Pandiyan M, Karthikeyan A, Senthil N. De Novo Transcriptome Assembly of Rice Bean ( Vigna umbellata) and Characterization of WRKY Transcription Factors Response to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3170. [PMID: 39599379 PMCID: PMC11598158 DOI: 10.3390/plants13223170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Rice bean is an underutilized legume crop cultivated in Asia, and it is a good source of protein, minerals, and essential fatty acids for human consumption. Moreover, the leaves left over after harvesting rice bean seeds contain various biological constituents beneficial to humans and animals. In our study, we performed a de-novo transcriptome assembly of rice bean, characterized the WRKY transcription factors, and studied their response to aluminum stress. A total of 46.6 million clean reads, with a GC value of 43%, were generated via transcriptome sequencing. De novo assembly of the clean reads resulted in 90,933 transcripts and 74,926 unigenes, with minimum and maximum lengths of 301 bp and 24,052 bp, and N50 values of 1801 bp and 1710 bp, respectively. A total of 27,095 and 28,378 unigenes were annotated and subjected to GO and KEGG analyses. Among the unigenes, 15,593, 20,770, and 15,385 unigenes were identified in the domains of biological process, molecular function, and cellular component, respectively. A total of 16,132 unigenes were assigned to 188 pathways, including metabolic pathways (5500) and secondary metabolite biosynthesis (2858). Transcription factor analysis revealed 4860 unigenes from 98 different transcription factor families. For WRKY, a total of 95 unigenes were identified. Further analysis revealed the diverse response of WRKY transcription factors to aluminum stress. Collectively, the results of this study boost genomic resources and provide a baseline for further research on the role of WRKY transcription factors in aluminum tolerance in rice bean.
Collapse
Affiliation(s)
- Gunasekaran Ariharasutharsan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
| | - Manoharan Akilan
- Department of Genetics and Plant Breeding, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Trichy 620027, India
| | - Manickam Dhasarathan
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
- Agro Climate Research Centre, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Manivel Amaravel
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Centre of Excellence in Millets, Tamil Nadu Agricultural University, Tiruvannamalai 606603, India
| | - Sankaran Divya
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Mariyappan Deivamani
- ICAR-Krishi Vigyan Kendra, Tamil Nadu Agricultural University, Dharmapuri 636809, India
| | - Manickam Sudha
- Department of Plant Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Muthaiyan Pandiyan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Eachangkottai, Thanjavur 614902, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
7
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Khan FK, Sánchez-García M, Johannesson H, Ryberg M. High rate of gene family evolution in proximity to the origin of ectomycorrhizal symbiosis in Inocybaceae. THE NEW PHYTOLOGIST 2024; 244:219-234. [PMID: 39113397 DOI: 10.1111/nph.20007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 09/17/2024]
Abstract
The genomes of ectomycorrhizal (ECM) fungi have a reduced number of genes encoding Carbohydrate-Active EnZymes (CAZymes), expansions in transposable elements (TEs) and small secreted proteins (SSPs) compared with saprotrophs. Fewer genes for specific peptidases and lipases in ECM fungi are also reported. It is unclear whether these changes occur at the shift to the ECM habit or are more gradual throughout the evolution of ECM lineages. We generated a genomic dataset of 20 species in the ECM lineage Inocybaceae and compared them with six saprotrophic species. Inocybaceae genomes have fewer CAZymes, peptidases, lipases, secondary metabolite clusters and SSPs and higher TE content than their saprotrophic relatives. There was an increase in the rate of gene family evolution along the branch with the transition to the ECM lifestyle. This branch had very high rate of evolution in CAZymes and had the largest number of contractions. Other significant changes along this branch included expansions in transporters, transposons-related genes and communication genes such as fungal kinases. There is a high concentration of changes in proximity to the transition to the ECM lifestyle, which correspond to the identified key changes for the gain of this lifestyle.
Collapse
Affiliation(s)
- Faheema Kalsoom Khan
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| | - Marisol Sánchez-García
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- The Royal Swedish Academy of Sciences, Stockholm, 114 18, Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
9
|
Tang P, Huang J, Wang J, Wang M, Huang Q, Pan L, Liu F. Genome-wide identification of CaWD40 proteins reveals the involvement of a novel complex (CaAN1-CaDYT1-CaWD40-91) in anthocyanin biosynthesis and genic male sterility in Capsicum annuum. BMC Genomics 2024; 25:851. [PMID: 39261781 PMCID: PMC11389352 DOI: 10.1186/s12864-024-10681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.
Collapse
Affiliation(s)
- Peng Tang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jingcai Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Meiqi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qing Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Luzhao Pan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
10
|
Mei J, Che J, Shi Y, Fang Y, Wu R, Zhu X. Mapping the Influence of Light Intensity on the Transgenerational Genetic Architecture of Arabidopsis thaliana. Curr Issues Mol Biol 2024; 46:8148-8169. [PMID: 39194699 DOI: 10.3390/cimb46080482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Light is a crucial environmental factor that influences the phenotypic development of plants. Despite extensive studies on the physiological, biochemical, and molecular mechanisms of the impact of light on phenotypes, genetic investigations regarding light-induced transgenerational plasticity in Arabidopsis thaliana remain incomplete. In this study, we used thaliana as the material, then gathered phenotypic data regarding leaf number and plant height under high- and low-light conditions from two generations. In addition to the developed genotype data, a functional mapping model was used to locate a series of significant single-nucleotide polymorphisms (SNPs). Under low-light conditions, a noticeable adaptive change in the phenotype of leaf number in the second generation suggests the presence of transgenerational genetic effects in thaliana under environmental stress. Under different lighting treatments, 33 and 13 significant genes associated with transgenerational inheritance were identified, respectively. These genes are largely involved in signal transduction, technical hormone pathways, light responses, and the regulation of organ development. Notably, genes identified under high-light conditions more significantly influence plant development, whereas those identified under low-light conditions focus more on responding to external environmental stimuli.
Collapse
Affiliation(s)
- Jie Mei
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jincan Che
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yunzhu Shi
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yudian Fang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
12
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
13
|
Yang M, Chen S, Geng J, Gao S, Chen S, Li H. Comprehensive analysis of the Spartina alterniflora WD40 gene family reveals the regulatory role of SaTTG1 in plant development. FRONTIERS IN PLANT SCIENCE 2024; 15:1390461. [PMID: 38863548 PMCID: PMC11165199 DOI: 10.3389/fpls.2024.1390461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
Introduction The WD40 gene family, prevalent in eukaryotes, assumes diverse roles in cellular processes. Spartina alterniflora, a halophyte with exceptional salt tolerance, flood tolerance, reproduction, and diffusion ability, offers great potential for industrial applications and crop breeding analysis. The exploration of growth and development-related genes in this species offers immense potential for enhancing crop yield and environmental adaptability, particularly in industrialized plantations. However, the understanding of their role in regulating plant growth and development remains limited. Methods In this study, we conducted a comprehensive analysis of WD40 genes in S. alterniflora at the whole-genome level, delving into their characteristics such as physicochemical properties, phylogenetic relationships, gene architecture, and expression patterns. Additionally, we cloned the TTG1 gene, a gene in plant growth and development across diverse species. Results We identified a total of 582 WD40 proteins in the S. alterniflora genome, exhibiting an uneven distribution across chromosomes. Through phylogenetic analysis, we categorized the 582 SaWD40 proteins into 12 distinct clades. Examining the duplication patterns of SaWD40 genes, we observed a predominant role of segmental duplication in their expansion. A substantial proportion of SaWD40 gene duplication pairs underwent purifying selection through evolution. To explore the functional aspects, we selected SaTTG1, a homolog of Arabidopsis TTG1, for overexpression in Arabidopsis. Subcellular localization analysis revealed that the SaTTG1 protein localized in the nucleus and plasma membrane, exhibiting transcriptional activation in yeast cells. The overexpression of SaTTG1 in Arabidopsis resulted in early flowering and increased seed size. Discussion These outcomes significantly contribute to our understanding of WD40 gene functions in halophyte species. The findings not only serve as a valuable foundation for further investigations into WD40 genes in halophyte but also offer insights into the molecular mechanisms governing plant development, offering potential avenues in molecular breeding.
Collapse
Affiliation(s)
- Maogeng Yang
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| | - Shoukun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| | - Jiahui Geng
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| | - Shuqiang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| | - Shihua Chen
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
| |
Collapse
|
14
|
Odelgard A, Hägglund E, Guy L, Andersson SGE. Phylogeny and Expansion of Serine/Threonine Kinases in Phagocytotic Bacteria in the Phylum Planctomycetota. Genome Biol Evol 2024; 16:evae068. [PMID: 38547507 PMCID: PMC11032199 DOI: 10.1093/gbe/evae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/22/2024] Open
Abstract
The recently isolated bacterium "Candidatus Uabimicrobium amorphum" is the only known prokaryote that can engulf other bacterial cells. Its proteome contains a high fraction of proteins involved in signal transduction systems, which is a feature normally associated with multicellularity in eukaryotes. Here, we present a protein-based phylogeny which shows that "Ca. Uabimicrobium amorphum" represents an early diverging lineage that clusters with the Saltatorellus clade within the phylum Planctomycetota. A gene flux analysis indicated a gain of 126 protein families for signal transduction functions in "Ca. Uabimicrobium amorphum", of which 66 families contained eukaryotic-like Serine/Threonine kinases with Pkinase domains. In total, we predicted 525 functional Serine/Threonine kinases in "Ca. Uabimicrobium amorphum", which represent 8% of the proteome and is the highest fraction of Serine/Threonine kinases in a bacterial proteome. The majority of Serine/Threonine kinases in this species are membrane proteins and 30% contain long, tandem arrays of WD40 or TPR domains. The pKinase domain was predicted to be located in the cytoplasm, while the WD40 and TPR domains were predicted to be located in the periplasm. Such domain combinations were also identified in the Serine/Threonine kinases of other species in the Planctomycetota, although in much lower abundances. A phylogenetic analysis of the Serine/Threonine kinases in the Planctomycetota inferred from the Pkinase domain alone provided support for lineage-specific expansions of the Serine/Threonine kinases in "Ca. Uabimicrobium amorphum". The results imply that expansions of eukaryotic-like signal transduction systems are not restricted to multicellular organisms, but have occurred in parallel in prokaryotes with predatory lifestyles and phagocytotic-like behaviors.
Collapse
Affiliation(s)
- Anna Odelgard
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emil Hägglund
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Ding H, Feng Z, Hu K. GRWD1 Over-Expression Promotes Gastric Cancer Progression by Activating Notch Signaling Pathway via Up-Regulation of ADAM17. Dig Dis Sci 2024; 69:821-834. [PMID: 38172445 DOI: 10.1007/s10620-023-08208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Glutamate-rich WD repeat containing 1 (GRWD1) is over-expressed in a variety of malignant tumors and is considered to be a potential oncogene. However, its mechanism of action in gastric cancer (GC) is still unclear. METHODS Data analysis, Immunohistochemistry, and Western Blot (WB) were performed to verify the expression of GRWD1 in GC and para-cancerous tissues. The association between GRWD1 expression and tumor size, tissue differentiation, lymph node metastasis, TNM stage, and prognosis was analyzed according to the high and low expression levels of GRWD1. The relationship between GRWD1 and Notch pathway was verified by data analysis and WB. The effects of GRWD1 on the proliferation, migration, and invasion of GC cells were verified by cell proliferation, migration, and invasion assays. We confirmed that the high expression of GRWD1 promoted the proliferation of GC cells in vivo through the tumor formation assay in nude mice. RESULTS The expression of GRWD1 was higher in GC tissues than in para-cancerous tissues, and its expression was positively correlated with tumor size, lymph node metastasis, and TNM stage, but negatively correlated with differentiation grade and prognosis. GRWD1 over-expression increased ADAM metallopeptidase domain 17 (ADAM17) expression and promoted Notch1 intracellular domain (NICD) release to promote GC cell proliferation, migration, and invasion in vitro. Results from animal studies have shown that high GRWD1 expression could promote GC cell proliferation in vivo by activating the Notch signaling pathway. CONCLUSION GRWD1 promotes GC progression through ADAM17-dependent Notch signaling, and GRWD1 may be a novel tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Zhenyou Feng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Kongwang Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
| |
Collapse
|
16
|
Helmsorig G, Walla A, Rütjes T, Buchmann G, Schüller R, Hensel G, von Korff M. early maturity 7 promotes early flowering by controlling the light input into the circadian clock in barley. PLANT PHYSIOLOGY 2024; 194:849-866. [PMID: 37951242 PMCID: PMC10828213 DOI: 10.1093/plphys/kiad551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Abstract
Breeding for variation in photoperiod response is crucial to adapt crop plants to various environments. Plants measure changes in day length by the circadian clock, an endogenous timekeeper that allows plants to anticipate changes in diurnal and seasonal light-dark cycles. Here, we describe the early maturity 7 (eam7) locus in barley (Hordeum vulgare), which interacts with PHOTOPERIOD 1 (Ppd-H1) to cause early flowering under non-inductive short days. We identify LIGHT-REGULATED WD 1 (LWD1) as a putative candidate to underlie the eam7 locus in barley as supported by genetic mapping and CRISPR-Cas9-generated lwd1 mutants. Mutations in eam7 cause a significant phase advance and a misregulation of core clock and clock output genes under diurnal conditions. Early flowering was linked to an upregulation of Ppd-H1 during the night and consequent induction of the florigen FLOWERING LOCUS T1 under short days. We propose that EAM7 controls photoperiodic flowering in barley by controlling the light input into the clock and diurnal expression patterns of the major photoperiod response gene Ppd-H1.
Collapse
Affiliation(s)
- Gesa Helmsorig
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Agatha Walla
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Thea Rütjes
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Gabriele Buchmann
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Rebekka Schüller
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Götz Hensel
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow's Needs”, 40223 Düsseldorf, Germany
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
- Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, CZ-779 00 Olomouc, Czech
| | - Maria von Korff
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow's Needs”, 40223 Düsseldorf, Germany
| |
Collapse
|
17
|
Isaioglou I, Podia V, Velentzas AD, Kapolas G, Beris D, Karampelias M, Plitsi PK, Chatzopoulos D, Samakovli D, Roussis A, Merzaban J, Milioni D, Stravopodis DJ, Haralampidis K. APRF1 Interactome Reveals HSP90 as a New Player in the Complex That Epigenetically Regulates Flowering Time in Arabidopsis thaliana. Int J Mol Sci 2024; 25:1313. [PMID: 38279311 PMCID: PMC10816710 DOI: 10.3390/ijms25021313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
WD40 repeat proteins (WDRs) are present in all eukaryotes and include members that are implicated in numerous cellular activities. They act as scaffold proteins and thus as molecular "hubs" for protein-protein interactions, which mediate the assembly of multifunctional complexes that regulate key developmental processes in Arabidopsis thaliana, such as flowering time, hormonal signaling, and stress responses. Despite their importance, many aspects of their putative functions have not been elucidated yet. Here, we show that the late-flowering phenotype of the anthesis promoting factor 1 (aprf1) mutants is temperature-dependent and can be suppressed when plants are grown under mild heat stress conditions. To gain further insight into the mechanism of APRF1 function, we employed a co-immunoprecipitation (Co-IP) approach to identify its interaction partners. We provide the first interactome of APRF1, which includes proteins that are localized in several subcellular compartments and are implicated in diverse cellular functions. The dual nucleocytoplasmic localization of ARRF1, which was validated through the interaction of APRF1 with HEAT SHOCK PROTEIN 1 (HSP90.1) in the nucleus and with HSP90.2 in the cytoplasm, indicates a dynamic and versatile involvement of APRF1 in multiple biological processes. The specific interaction of APRF1 with the chaperon HSP90.1 in the nucleus expands our knowledge regarding the epigenetic regulation of flowering time in A. thaliana and further suggests the existence of a delicate thermoregulated mechanism during anthesis.
Collapse
Affiliation(s)
- Ioannis Isaioglou
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Varvara Podia
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Athanassios D. Velentzas
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Georgios Kapolas
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Despoina Beris
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Michael Karampelias
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Panagiota Konstantinia Plitsi
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Dimitris Chatzopoulos
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Despina Samakovli
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Andreas Roussis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Jasmeen Merzaban
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Dimitra Milioni
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Dimitrios J. Stravopodis
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Kosmas Haralampidis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| |
Collapse
|
18
|
Liu Z, Wang L, Li Y, Zhu J, Li Z, Chen L, Li H, Shi T, Yao P, Bi Z, Sun C, Bai J, Zhang J, Liu Y. Genome-wide analysis of the U-box E3 ligases gene family in potato (Solanum tuberosum L.) and overexpress StPUB25 enhance drought tolerance in transgenic Arabidopsis. BMC Genomics 2024; 25:10. [PMID: 38166714 PMCID: PMC10759479 DOI: 10.1186/s12864-023-09890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lei Wang
- Hebei North University, Zhangjiakou, 075000, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinyong Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyang Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tianbin Shi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
19
|
Palit S, Bhide AJ, Mohanasundaram B, Pala M, Banerjee AK. Peptides from conserved tandem direct repeats of SHORT-LEAF regulate gametophore development in moss P. patens. PLANT PHYSIOLOGY 2023; 194:434-455. [PMID: 37770073 DOI: 10.1093/plphys/kiad515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
Tandem direct repeat (TDR)-containing proteins, present across all domains of life, play crucial roles in plant development and defense mechanisms. Previously, we identified that disruption of a bryophyte-specific protein family, SHORT-LEAF (SHLF), possessing the longest reported TDRs, is the cause of the shlf mutant phenotype in Physcomitrium patens. shlf exhibits reduced apical dominance, altered auxin distribution, and 2-fold shorter leaves. However, the molecular role of SHLF was unclear due to the absence of known conserved domains. Through a series of protein domain deletion analyses, here, we demonstrate the importance of the signal peptide and the conserved TDRs and report a minimal functional protein (miniSHLF) containing the N-terminal signal peptide and first two TDRs (N-TDR1-2). We also demonstrate that SHLF behaves as a secretory protein and that the TDRs contribute to a pool of secreted peptides essential for SHLF function. Further, we identified that the mutant secretome lacks SHLF peptides, which are abundant in WT and miniSHLF secretomes. Interestingly, shlf mutants supplemented with the secretome or peptidome from WT or miniSHLF showed complete or partial phenotypic recovery. Transcriptomic and metabolomic analyses revealed that shlf displays an elevated stress response, including high ROS activity and differential accumulation of genes and metabolites involved in the phenylpropanoid pathway, which may affect auxin distribution. The TDR-specific synthetic peptide SHLFpep3 (INIINAPLQGFKIA) also rescued the mutant phenotypes, including the altered auxin distribution, in a dosage-dependent manner and restored the mutant's stress levels. Our study shows that secretory SHLF peptides derived from conserved TDRs regulate moss gametophore development.
Collapse
Affiliation(s)
- Shirsa Palit
- Department of Biology, Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | - Amey J Bhide
- Department of Biology, Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | | | - Madhusmita Pala
- Department of Biology, Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | - Anjan K Banerjee
- Department of Biology, Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| |
Collapse
|
20
|
Soto-Cardinault C, Childs KL, Góngora-Castillo E. Network Analysis of Publicly Available RNA-seq Provides Insights into the Molecular Mechanisms of Plant Defense against Multiple Fungal Pathogens in Arabidopsis thaliana. Genes (Basel) 2023; 14:2223. [PMID: 38137044 PMCID: PMC10743233 DOI: 10.3390/genes14122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fungal pathogens can have devastating effects on global crop production, leading to annual economic losses ranging from 10% to 23%. In light of climate change-related challenges, researchers anticipate an increase in fungal infections as a result of shifting environmental conditions. However, plants have developed intricate molecular mechanisms for effective defense against fungal attacks. Understanding these mechanisms is essential to the development of new strategies for protecting crops from multiple fungi threats. Public omics databases provide valuable resources for research on plant-pathogen interactions; however, integrating data from different studies can be challenging due to experimental variation. In this study, we aimed to identify the core genes that defend against the pathogenic fungi Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis thaliana. Using a custom framework to control batch effects and construct Gene Co-expression Networks in publicly available RNA-seq dataset from infected A. thaliana plants, we successfully identified a gene module that was responsive to both pathogens. We also performed gene annotation to reveal the roles of previously unknown protein-coding genes in plant defenses against fungal infections. This research demonstrates the potential of publicly available RNA-seq data for identifying the core genes involved in defending against multiple fungal pathogens.
Collapse
Affiliation(s)
- Cynthia Soto-Cardinault
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico;
| | - Kevin L. Childs
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA;
| | - Elsa Góngora-Castillo
- CONAHCYT-Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico
| |
Collapse
|
21
|
Ke S, Jiang Y, Zhou M, Li Y. Genome-Wide Identification, Evolution, and Expression Analysis of the WD40 Subfamily in Oryza Genus. Int J Mol Sci 2023; 24:15776. [PMID: 37958759 PMCID: PMC10648978 DOI: 10.3390/ijms242115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The WD40 superfamily is widely found in eukaryotes and has essential subunits that serve as scaffolds for protein complexes. WD40 proteins play important regulatory roles in plant development and physiological processes, such as transcription regulation and signal transduction; it is also involved in anthocyanin biosynthesis. In rice, only OsTTG1 was found to be associated with anthocyanin biosynthesis, and evolutionary analysis of the WD40 gene family in multiple species is less studied. Here, a genome-wide analysis of the subfamily belonging to WD40-TTG1 was performed in nine AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula, Oryza nivara, and Oryza longistaminata. In this study, 383 WD40 genes in the Oryza genus were identified, and they were classified into four groups by phylogenetic analysis, with most members in group C and group D. They were found to be unevenly distributed across 12 chromosomes. A total of 39 collinear gene pairs were identified in the Oryza genus, and all were segmental duplications. WD40s had similar expansion patterns in the Oryza genus. Ka/Ks analyses indicated that they had undergone mainly purifying selection during evolution. Furthermore, WD40s in the Oryza genus have similar evolutionary patterns, so Oryza sativa ssp. indica was used as a model species for further analysis. The cis-acting elements analysis showed that many genes were related to jasmonic acid and light response. Among them, OsiWD40-26/37/42 contained elements of flavonoid synthesis, and OsiWD40-15 had MYB binding sites, indicating that they might be related to anthocyanin synthesis. The expression profile analysis at different stages revealed that most OsiWD40s were expressed in leaves, roots, and panicles. The expression of OsiWD40s was further analyzed by qRT-PCR in 9311 (indica) under various hormone treatments and abiotic stresses. OsiWD40-24 was found to be responsive to both phytohormones and abiotic stresses, suggesting that it might play an important role in plant stress resistance. And many OsiWD40s might be more involved in cold stress tolerance. These findings contribute to a better understanding of the evolution of the WD40 subfamily. The analyzed candidate genes can be used for the exploration of practical applications in rice, such as cultivar culture for colored rice, stress tolerance varieties, and morphological marker development.
Collapse
Affiliation(s)
| | | | | | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.K.); (Y.J.); (M.Z.)
| |
Collapse
|
22
|
Zhang K, Qin Y, Sun W, Shi H, Zhao S, He L, Li C, Zhao J, Pan J, Wang G, Han Z, Zhao C, Yang X. Phylogenomic Analysis of Cytochrome P450 Gene Superfamily and Their Association with Flavonoids Biosynthesis in Peanut ( Arachis hypogaea L.). Genes (Basel) 2023; 14:1944. [PMID: 37895293 PMCID: PMC10606413 DOI: 10.3390/genes14101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cytochrome P450s (CYPs) constitute extensive enzyme superfamilies in the plants, playing pivotal roles in a multitude of biosynthetic and detoxification pathways essential for growth and development, such as the flavonoid biosynthesis pathway. However, CYPs have not yet been systematically studied in the cultivated peanuts (Arachis hypogaea L.), a globally significant cash crop. This study addresses this knowledge deficit through a comprehensive genome-wide analysis, leading to the identification of 589 AhCYP genes in peanuts. Through phylogenetic analysis, all AhCYPs were systematically classified into 9 clans, 43 gene families. The variability in the number of gene family members suggests specialization in biological functions. Intriguingly, both tandem duplication and fragment duplication events have emerged as pivotal drivers in the evolutionary expansion of the AhCYP superfamily. Ka/Ks analysis underscored the substantial influence of strong purifying selection on the evolution of AhCYPs. Furthermore, we selected 21 genes encoding 8 enzymes associated with the flavonoid pathway. The results of quantitative real-time PCR (qRT-PCR) experiments unveiled stage-specific expression patterns during the development of peanut testa, with discernible variations between pink and red testa. Importantly, we identified a direct correlation between gene expression levels and the accumulation of metabolites. These findings offer valuable insights into elucidating the comprehensive functions of AhCYPs and the underlying mechanisms governing the divergent accumulation of flavonoids in testa of different colors.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Yongmei Qin
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| | - Wei Sun
- Linyi Academy of Agricultural Sciences, Linyi 276003, China;
| | - Hourui Shi
- Shandong Seed Management Station, Jinan 250100, China;
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.H.); (Z.H.)
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Jin Zhao
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Guanghao Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Zhuqiang Han
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.H.); (Z.H.)
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Xiangli Yang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| |
Collapse
|
23
|
Yan Y, Zhao J, Lin S, Li M, Liu J, Raymond O, Vergne P, Kong W, Wu Q, Zhang X, Bao M, Bendahmane M, Fu X. Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5783-5804. [PMID: 37392434 DOI: 10.1093/jxb/erad253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 μmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 μmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.
Collapse
Affiliation(s)
- Yuhang Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiaxing Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Shengnan Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Mouliang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiayi Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Olivier Raymond
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Philippe Vergne
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Weilong Kong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Quanshu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Xiaoni Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Mohammed Bendahmane
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Superieure de Lyon, Lyon, France
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Shan C, Zhang L, Chen L, Li S, Zhang Y, Ye L, Lin Y, Kuang W, Shi X, Ma J, Adnan M, Sun X, Cui R. Interaction of negative regulator OsWD40-193 with OseEF1A1 inhibits Oryza sativa resistance to Hirschmanniella mucronata infection. Int J Biol Macromol 2023; 248:125841. [PMID: 37479204 DOI: 10.1016/j.ijbiomac.2023.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.
Collapse
Affiliation(s)
- Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Lanlan Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
26
|
Chen L, Cui Y, Yao Y, An L, Bai Y, Li X, Yao X, Wu K. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.). BMC Genomics 2023; 24:166. [PMID: 37016311 PMCID: PMC10074677 DOI: 10.1186/s12864-023-09240-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND WD40 transcription factors, a large gene family in eukaryotes, are involved in a variety of growth regulation and development pathways. WD40 plays an important role in the formation of MYB-bHLH-WD (MBW) complexes associated with anthocyanin synthesis, but studies of Qingke barley are lacking. RESULTS In this study, 164 barley HvWD40 genes were identified in the barley genome and were analyzed to determine their relevant bioinformatics. The 164 HvWD40 were classified into 11 clusters and 14 subfamilies based on their structural and phylogenetic protein profiles. Co-lineage analysis revealed that there were 43 pairs between barley and rice, and 56 pairs between barley and maize. Gene ontology (GO) enrichment analysis revealed that the molecular function, biological process, and cell composition were enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that the RNA transport pathway was mainly enriched. Based on the identification and analysis of the barley WD40 family and the transcriptome sequencing (RNA-seq) results, we found that HvWD40-140 (WD40 family; Gene ID: r1G058730), HvANT1 (MYB family; Gene ID: HORVU7Hr1G034630), and HvANT2 (bHLH family; Gene ID: HORVU2Hr1G096810) were important components of the MBW complex related to anthocyanin biosynthesis in Qingke, which was verified via quantitative real-time fluorescence polymerase chain reaction (qRT-PCR), subcellular location, yeast two-hybrid (Y2H), and bimolecular fluorescent complimentary (BiFC) and dual-luciferase assay analyses. CONCLUSIONS In this study, we identified 164 HvWD40 genes in barley and found that HvnANT1, HvnANT2, and HvWD40-140 can form an MBW complex and regulate the transcriptional activation of the anthocyanin synthesis related structural gene HvDFR. The results of this study provide a theoretical basis for further study of the mechanism of HvWD40-140 in the MBW complex related to anthocyanin synthesis in Qingke.
Collapse
Affiliation(s)
- Lin Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| |
Collapse
|
27
|
Nie H, Park H, Kim S, Kim D, Kim S, Kwon SY, Kim SH. Genetic diversity assessment and genome-wide association study reveal candidate genes associated with component traits in sweet potato (Ipomoea batatas (L.) Lam). Mol Genet Genomics 2023; 298:653-667. [PMID: 36943475 DOI: 10.1007/s00438-023-02007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
The Korean sweet potatoes were bred by various cultivars introduced from Japanese, American, Porto Rico, China, and Burundi. This issue enriched their genetic diversity but also resulted in a mixture of cultivars. For genotyping, we collected and sequenced 66 sweet potato germplasms from different localities around Korea, including 36 modern cultivars, 5 local cultivars, and 25 foreign cultivars. This identified 447.6 million trimmed reads and 324.8 million mapping reads and provided 39,424 single nucleotide polymorphisms (SNPs) markers. Phylogenetic clustering and population structure analysis distinctly classified these germplasms into 5 genetic groups, group 1, group 2, group 3, group 4, and group 5, containing 20, 15, 10, 7, and 14 accessions, respectively. Sixty-three significant SNPs were selected by genome-wide association for sugar composition-related traits (fructose, glucose, and total sugars), total starch, amylose content, and total carotenoid of the storage root. A total of 37 candidate genes encompassing these significant SNPs were identified, among which, 7 genes were annotated to involve in sugar and starch metabolism, including galactose metabolism (itf04g30630), starch and sucrose metabolism (itf03g13270, itf15g09320), carbohydrate metabolism (itf14g10250), carbohydrate and amino acid metabolism (itf12g19270), and amino sugar and nucleotide sugar metabolism (itf03g21950, itf15g04880). This results indicated that sugar and starch are important characteristics to determine the genetic diversity of sweet potatoes. These findings not only illustrate the importance of component traits to genotyping sweet potatoes but also explain an important reason resulting in genetic diversity of sweet potato.
Collapse
Affiliation(s)
- Hualin Nie
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, South Korea
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Hyungjun Park
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, South Korea
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Sujung Kim
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, 58545, Republic of Korea
| | - Doyeon Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, South Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, South Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
- Biosystems and Bioengineering Program, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, South Korea
| | - Sun-Hyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
28
|
Yue M, Jiang L, Zhang N, Zhang L, Liu Y, Lin Y, Zhang Y, Luo Y, Zhang Y, Wang Y, Li M, Wang X, Chen Q, Tang H. Regulation of flavonoids in strawberry fruits by FaMYB5/FaMYB10 dominated MYB-bHLH-WD40 ternary complexes. FRONTIERS IN PLANT SCIENCE 2023; 14:1145670. [PMID: 36993840 PMCID: PMC10040760 DOI: 10.3389/fpls.2023.1145670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Anthocyanins endowing strawberry fruit red color are regulated by the MYB-bHLH-WD40 complex. By analyzing the MYBs involved in the flavonoid biosynthesis in strawberry, we found that R2R3-FaMYB5 promoted the content of anthocyanin and proanthocyanidins in strawberry fruits. Yeast two-hybrid and BiFC assays confirmed that MBW complexes connected with flavonoid metabolism were FaMYB5/FaMYB10-FaEGL3 (bHLH)-FaLWD1/FaLWD1-like (WD40). Transient overexpression and qRT-PCR analysis revealed that disparate MBW models hold different patterns in the regulation of flavonoid biosynthesis in strawberry fruits. Compared with FaMYB10, FaMYB5 and its dominant complexes showed a more specific regulatory range on strawberry flavonoid biosynthetic pathway, while FaMYB10 was more extensive. In addition, the complexes involved in FaMYB5 facilitated PAs accumulation primarily through the LAR tributary while FaMYB10 mainly by the ANR branch. FaMYB9 and FaMYB11 tremendously elicited the accumulation of proanthocyanidins by up-regulating the expression levels of both LAR and ANR, and also affected anthocyanin metabolism by changing the ratio of Cy3G and Pg3G which were constituted as two major anthocyanin monomers in strawberries. Our study also illustrated that FaMYB5-FaEGL3-FaLWD1-like directly targeted the promoters of F3'H, LAR, and AHA10 thus committing to flavonoid accumulation. These results allow the specific members involved in the MBW complex to be deciphered and provide new insights into the regulatory mechanisms of anthocyanins and proanthocyanidins regulated by the MBW complex.
Collapse
Affiliation(s)
- Maolan Yue
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Leiyu Jiang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Nating Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lianxi Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Liu
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
29
|
Tanti GK, Pandey P, Shreya S, Jain BP. Striatin family proteins: The neglected scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119430. [PMID: 36638846 DOI: 10.1016/j.bbamcr.2023.119430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Germany.
| | - Prachi Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Smriti Shreya
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
30
|
Guo F, Islam MA, Lv C, Jin X, Sun L, Zhao K, Lu J, Yan R, Zhang W, Shi Y, Li N, Sun D. Insights into the Bioinformatics and Transcriptional Analysis of the Elongator Complexes ( ELPs) Gene Family of Wheat: TaELPs Contribute to Wheat Abiotic Stress Tolerance and Leaf Senescence. PLANTS (BASEL, SWITZERLAND) 2023; 12:952. [PMID: 36840300 PMCID: PMC9961319 DOI: 10.3390/plants12040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Elongator complexes (ELPs) are the protein complexes that promote transcription through histone acetylation in eukaryotic cells and interact with elongating RNA polymerase II (RNAPII). ELPs' role in plant growth and development, signal transduction, and response to biotic and abiotic stresses have been confirmed in model plants. However, the functions of the wheat ELP genes are not well documented. The present study identified 18 members of the ELPs from the wheat genome with a homology search. Further, bioinformatics and transcription patterns in response to different stress conditions were analyzed to dissect their potential regulatory mechanisms in wheat. Gene duplication analysis showed that 18 pairs of ELP paralogous genes were derived from segmental duplication, which was divided into six clades by protein phylogenetic and cluster analysis. The orthologous analysis of wheat TaELP genes showed that TaELP genes may have evolved from orthologous genes of other plant species or closely related plants. Moreover, a variety of cis-acting regulatory elements (CAREs) related to growth and development, hormone response, and biotic and abiotic stresses were identified in the TaELPs' promoter regions. The qRT-PCR analysis showed that the transcription of TaELPs was induced under hormone, salt, and drought stress and during leaf senescence. The TaELP2 gene was silenced with BSMV-VIGS, and TaELP2 was preliminarily verified to be involved in the regulation of wheat leaf senescence. Overall, TaELP genes might be regulated by hormone signaling pathways and response to abiotic stress and leaf senescence, which could be investigated further as potential candidate genes for wheat abiotic stress tolerance and yield improvement.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Md Ashraful Islam
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Chenxu Lv
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xiujuan Jin
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Lili Sun
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Kai Zhao
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Juan Lu
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Rongyue Yan
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Wenjun Zhang
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Yugang Shi
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Ning Li
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Daizhen Sun
- State Key Laboratory of Sustainable Dryland Agriculture, College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
31
|
Chen C, Yang Y, Pan L, Xia W, Xu L, Hua B, Zhang Z, Miao M. Genome-Wide Identification of WD40 Proteins in Cucurbita maxima Reveals Its Potential Functions in Fruit Development. Genes (Basel) 2023; 14:genes14010220. [PMID: 36672961 PMCID: PMC9859561 DOI: 10.3390/genes14010220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
WD40 proteins, a super gene family in eukaryotes, are involved in multiple biological processes. Members of this family have been identified in several plants and shown to play key roles in various development processes, including acting as scaffolding molecules with other proteins. However, WD40 proteins have not yet been systematically analyzed and identified in Cucurbita maxima. In this study, 231 WD40 proteins (CmWD40s) were identified in C. maxima and classified into five clusters. Eleven subfamilies were identified based on different conserved motifs and gene structures. The CmWD40 genes were distributed in 20 chromosomes; 5 and 33 pairs of CmWD40s were distinguished as tandem and segmental duplications, respectively. Overall, 58 pairs of orthologous WD40 genes in C. maxima and Arabidopsis thaliana, and 56 pairs of orthologous WD40 genes in C. maxima and Cucumis sativus were matched. Numerous CmWD40s had diverse expression patterns in fruits, leaf, stem, and root. Several genes were involved in responses to NaCl. The expression pattern of CmWD40s suggested their key role in fruit development and abiotic stress response. Finally, we identified 14 genes which might be involved in fruit development. Our results provide valuable basis for further functional verification of CmWD40s in C. maxima.
Collapse
Affiliation(s)
- Chen Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yating Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Liu Pan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Xia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lanruoyan Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
32
|
Pietsch J, Deneer A, Fleck C, Hülskamp M. Comparative expression analysis in three Brassicaceae species revealed compensatory changes of the underlying gene regulatory network. FRONTIERS IN PLANT SCIENCE 2023; 13:1086004. [PMID: 36684738 PMCID: PMC9845631 DOI: 10.3389/fpls.2022.1086004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Trichomes are regularly distributed on the leaves of Arabidopsis thaliana. The gene regulatory network underlying trichome patterning involves more than 15 genes. However, it is possible to explain patterning with only five components. This raises the questions about the function of the additional components and the identification of the core network. In this study, we compare the relative expression of all patterning genes in A. thaliana, A. alpina and C. hirsuta by qPCR analysis and use mathematical modelling to determine the relative importance of patterning genes. As the involved proteins exhibit evolutionary conserved differential complex formation, we reasoned that the genes belonging to the core network should exhibit similar expression ratios in different species. However, we find several striking differences of the relative expression levels. Our analysis of how the network can cope with such differences revealed relevant parameters that we use to predict the relevant molecular adaptations in the three species.
Collapse
Affiliation(s)
- Jessica Pietsch
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Anna Deneer
- Biometris, Department of Mathematical and Statistical Methods, Wageningen University, Wageningen, Netherlands
| | - Christian Fleck
- Spatial Systems Biology Group, Center for Data Analysis and Modeling, University of Freiburg, Freiburg, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| |
Collapse
|
33
|
Wang L, Li L, Zhao W, Fan L, Meng H, Zhang G, Wu W, Shi J, Wu G. Integrated metabolomic and transcriptomic analysis of the anthocyanin and proanthocyanidin regulatory networks in red walnut natural hybrid progeny leaves. PeerJ 2022; 10:e14262. [PMID: 36285329 PMCID: PMC9588303 DOI: 10.7717/peerj.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Background Walnuts are among the most important dry fruit crops worldwide, typically exhibiting green leaves and yellow-brown or gray-yellow seed coats. A specific walnut accession with red leaves and seed coats, 'RW-1', was selected for study because of its high anthocyanin and proanthocyanidin (PA) contents. Anthocyanins and PAs are important secondary metabolites and play key roles in plant responses to biotic and abiotic stresses. However, few studies have focused on the molecular mechanism of anthocyanin biosynthesis in walnuts. Methods In this study, we determined the anthocyanin and PA components and their contents in different color leaves of 'RW-1' natural hybrid progenies at various developmental stages. Integrated transcriptome and metabolome analyses were used to identify the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). We also performed conjoint analyses on DEGs and DAMs to ascertain the degree pathways, and explore the regulation of anthocyanin and PA biosynthesis. Results The results of widely targeted metabolome profiling and anthocyanin detection revealed 395 substances, including four PAs and 26 anthocyanins, in red (SR) and green leaves (SG) of 'RW-1' natural hybrid progenies. From the research, the contents of all anthocyanin components in SR were higher than that in SG. Among them, the contents of delphinidin 3-O-galactoside, cyanidin 3-O-galactoside, delphinidin 3-O-arabinoside and cyanidin 3-O-glucoside were significantly higher than others, and they were considered as the main types of anthocyanins. However, nine anthocyanins were detected only in SR. For PAs, the content of procyanidin C1 was higher in SR compared with SG, while procyanidin B1 and procyanidin B3 were higher in SR-1 and SR-3 but downregulated in SR-2 compared with the controls. Furthermore, transcriptome analysis revealed that the expressions of structural genes (C4H, F3H, F3'5'H, UFGT, LAR and ANR), three MYBs predicted as the activators of anthocyanin and PA biosynthesis, two MYBs predicted as the repressors of anthocyanin biosynthesis, and five WD40s in the anthocyanin and PA biosynthetic pathways were significantly higher in the SR walnuts. Gene-metabolite correlation analyses revealed a core set of 31 genes that were strongly correlated with four anthocyanins and one PA metabolites. The alteration of gene coding sequence altered the binding or regulation of regulatory factors to structural genes in different color leaves, resulting in the effective increase of anthocyanins and PAs accumulation in red walnut. Conclusions This study provides valuable information on anthocyanin and PA metabolites and candidate genes for anthocyanin and PA biosynthesis, yielding new insights into anthocyanin and PA biosynthesis in walnuts.
Collapse
Affiliation(s)
- Lei Wang
- Henan Agricultural University, Zhengzhou, China
| | - Lin Li
- Henan Agricultural University, Zhengzhou, China
| | - Wei Zhao
- Henan Agricultural University, Zhengzhou, China
| | - Lu Fan
- Henan Agricultural University, Zhengzhou, China
| | - Haijun Meng
- Henan Agricultural University, Zhengzhou, China
| | | | - Wenjiang Wu
- Henan Agricultural University, Zhengzhou, China
| | - Jiangli Shi
- Henan Agricultural University, Zhengzhou, China
| | - Guoliang Wu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
34
|
Lim SH, Kim DH, Lee JY. RsTTG1, a WD40 Protein, Interacts with the bHLH Transcription Factor RsTT8 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Raphanus sativus. Int J Mol Sci 2022; 23:ijms231911973. [PMID: 36233274 PMCID: PMC9570178 DOI: 10.3390/ijms231911973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
MBW complexes, consisting of MYB, basic helix–loop–helix (bHLH), and WD40 proteins, regulate multiple traits in plants, including anthocyanin and proanthocyanidin (PA) biosynthesis and the determination of epidermal cell fate. Here, a WD40 gene from Raphanus sativus, designated TRANSPARENT TESTA GLABRA 1 (RsTTG1), was cloned and functionally characterized. Heterologous expression of RsTTG1 in the Arabidopsis thaliana mutant ttg1-22 background restored accumulation of anthocyanin and PA in the mutant and rescued trichome development. In radish, RsTTG1 was abundantly expressed in all root and leaf tissues, independently of anthocyanin accumulation, while its MBW partners RsMYB1 and TRANSPARENT TESTA 8 (RsTT8) were expressed at higher levels in pigment-accumulating tissues. In yeast two-hybrid analysis, the full-length RsTTG1 protein interacted with RsTT8. Moreover, transient protoplast co-expression assays demonstrated that RsTTG1, which localized to both the cytoplasm and nucleus, moves from the cytoplasm to the nucleus in the presence of RsTT8. When co-expressed with RsMYB1 and RsTT8, RsTTG1 stably activated the promoters of the anthocyanin biosynthesis genes CHALCONE SYNTHASE (RsCHS) and DIHYDROFLAVONOL 4-REDUCTASE (RsDFR). Transient expression of RsTTG1 in tobacco leaves exhibited an increase in anthocyanin accumulation due to activation of the expression of anthocyanin biosynthesis genes when simultaneously expressed with RsMYB1 and RsTT8. These results indicate that RsTTG1 is a vital regulator of pigmentation and trichome development as a functional homolog of AtTTG1.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
- Correspondence: ; Tel.: +82-31-670-5105
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
35
|
Kuzbakova M, Khassanova G, Oshergina I, Ten E, Jatayev S, Yerzhebayeva R, Bulatova K, Khalbayeva S, Schramm C, Anderson P, Sweetman C, Jenkins CLD, Soole KL, Shavrukov Y. Height to first pod: A review of genetic and breeding approaches to improve combine harvesting in legume crops. FRONTIERS IN PLANT SCIENCE 2022; 13:948099. [PMID: 36186054 PMCID: PMC9523450 DOI: 10.3389/fpls.2022.948099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Height from soil at the base of plant to the first pod (HFP) is an important trait for mechanical harvesting of legume crops. To minimise the loss of pods, the HFP must be higher than that of the blades of most combine harvesters. Here, we review the genetic control, morphology, and variability of HFP in legumes and attempt to unravel the diverse terminology for this trait in the literature. HFP is directly related to node number and internode length but through different mechanisms. The phenotypic diversity and heritability of HFP and their correlations with plant height are very high among studied legumes. Only a few publications describe a QTL analysis where candidate genes for HFP with confirmed gene expression have been mapped. They include major QTLs with eight candidate genes for HFP, which are involved in auxin transport and signal transduction in soybean [Glycine max (L.) Merr.] as well as MADS box gene SOC1 in Medicago trancatula, and BEBT or WD40 genes located nearby in the mapped QTL in common bean (Phaseolus vulgaris L.). There is no information available about simple and efficient markers associated with HFP, which can be used for marker-assisted selection for this trait in practical breeding, which is still required in the nearest future. To our best knowledge, this is the first review to focus on this significant challenge in legume-based cropping systems.
Collapse
Affiliation(s)
- Marzhan Kuzbakova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Irina Oshergina
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Kazakhstan
| | - Raushan Yerzhebayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Kulpash Bulatova
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Sholpan Khalbayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Kazakhstan
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
36
|
Wen D, Bao L, Huang X, Qian X, Chen E, Shen B. OsABT Is Involved in Abscisic Acid Signaling Pathway and Salt Tolerance of Roots at the Rice Seedling Stage. Int J Mol Sci 2022; 23:10656. [PMID: 36142568 PMCID: PMC9504391 DOI: 10.3390/ijms231810656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Rice is a staple cereal crop worldwide, and increasing its yields is vital to ensuring global food security. Salinity is a major factor that affects rice yield. Therefore, it is necessary to investigate salt tolerance mechanisms in rice. Proteins containing WD40 repeats play important roles in eukaryotic development and environmental adaptation. Here, we showed that overexpression of OsABT, a gene encoding a WD40-repeat protein, enhanced salt tolerance in rice seedlings by regulating root activity, relative conductivity, malondialdehyde and H2O2 content, and O2•- production rate. Root ion concentrations indicated that OsABT overexpression lines could maintain lower Na+ and higher K+/Na+ ratios and upregulated expression of salt-related genes OsSOS1 and OsHAK5 compared with the wild-type (WT) Nipponbare plants. Furthermore, Overexpression of OsABT decreased the abscisic acid (ABA) content, while downregulating the ABA synthesis genes OsNCED3 and OsNCED4 and upregulating the ABA catabolic gene OsABA8ox2. The yeast two-hybrid and bimolecular fluorescence complementation analyses showed that OsABT interacted with the ABA receptor proteins OsPYL4, OsPYL10, and PP2C phosphatase OsABIL2. A transcriptome analysis revealed that the differentially expressed genes between OsABT overexpression lines and WT plants were enriched in plant hormone signal transduction, including ABA signaling pathway under salt stress. Thus, OsABT can improve the salt tolerance in rice seedling roots by inhibiting reactive oxygen species accumulation, thereby regulating the intracellular Na+/K+ balance, ABA content, and ABA signaling pathway.
Collapse
Affiliation(s)
- Danni Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lingran Bao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuanzhu Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueduo Qian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Eryong Chen
- Life School of Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
37
|
Chen S, Li D, Chen S, He J, Wang Z, Yang G, Lu Z. Identifying and expression analysis of WD40 transcription factors in walnut. THE PLANT GENOME 2022; 15:e20229. [PMID: 35904050 DOI: 10.1002/tpg2.20229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Walnut (Juglans regia L.) is an important woody oil plant and will be affected by abiotic and biological stress during its growth and development. The WD-repeat (WD40) protein is widely involved in plant growth, development, metabolism, and abiotic stress response. To explore the stress response mechanism of walnut, based on the complete sequencing results of the walnut genome, this study identified and analyzed the physiological, biochemical, genetic structure, and conservative protein motifs of 42 JrWD40 genes, whose expression to abnormal temperature were tested to predict the potential biological function. The results showed that the open reading frame (ORF) of theseWD40 genes were 807-2,460 bp, encoding peptides were 29,610.55-90,387.98 Da covering 268-819 amino acids, as well as 12-112 phosphorylation sites. JrWD40 proteins were highly conserved with four to five WD40 domains and shared certain similarity to WD40 proteins from Arabidopsis thaliana (L.) Heynh. JrWD40 genes can be induced to varying degrees by low and high temperature treatments. JrWD40-32, JrWD40-27, JrWD40-35, and JrWD40-21 are affected by high temperature more seriously and their expression levels are higher; while JrWD40-37, JrWD40-26, JrWD40-20, JrWD40-24, and other genes are inhibited under low temperature stress. JrWD40-40, JrWD40-28, and JrWD40-18 were first suppressed with low expression, while as the treatment time prolonging, the expression level was increased under cold condition. JrWD40-14, JrWD40-18, JrWD40-34, and JrWD40-3 displayed strong transcriptions response to both heat and cold stress. These results indicated that JrWD40 genes can participate in walnut adaptation to adversity and can be used as important candidates for walnut resistance molecular breeding.
Collapse
Affiliation(s)
- Shuwen Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Dapei Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Sisi Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Jianing He
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Zengbin Wang
- College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Zhoumin Lu
- College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| |
Collapse
|
38
|
Zhou Z, Li H, Wei R, Li D, Lu W, Weng Z, Yang Z, Guo Y, Lin Y, Chen H. RNA-seq reveals transcriptional differences in anthocyanin and vitamin biosynthetic pathways between black and white rice. Gene X 2022; 844:146845. [PMID: 36038026 DOI: 10.1016/j.gene.2022.146845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Anthocyanins and vitamins in black rice are the micronutrients vital to human health, both of which predominantly accumulate in the bran fraction. Some studies have demonstrated that black rice contains more vitamins compared with common white rice, indicating potential association between anthocyanin and vitamin accumulation. In this study, transcriptomes of pericarps collected from 27 black rice accessions and 49 white rice accessions at 10 days after flowering (DAF) were sequenced and analyzed. We identified 830 differentially expressed genes (DEGs) including 58 transcription factors (TFs) between black and white rice. Among 58 differentially expressed transcription factors, OsTTG1 was confirmed to be the one and only WD40 repeat protein regulating anthocyanin biosynthesis in the pericarp. Moreover, we identified 53 differentially expressed synthetic-related genes among 42 main synthesis enzymes in the biosynthesis pathway of seven vitamins including β-carotene, vitamin B1, vitamin B2, vitamin B5, vitamin B7, vitamin B9 and vitamin E. Collectively, our results provide valuable insights into the molecular mechanism of biosynthesis of anthocyanins and vitamins and the potential effect of anthocyanin biosynthesis on vitamin biosynthesis in black rice.
Collapse
Affiliation(s)
- Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Han Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ruixue Wei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dianwei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zijin Weng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zenan Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongmei Guo
- Food Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
The PH Domain and C-Terminal polyD Motif of Phafin2 Exhibit a Unique Concurrence in Animals. MEMBRANES 2022; 12:membranes12070696. [PMID: 35877899 PMCID: PMC9324892 DOI: 10.3390/membranes12070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Phafin2, a member of the Phafin family of proteins, contributes to a plethora of cellular activities including autophagy, endosomal cargo transportation, and macropinocytosis. The PH and FYVE domains of Phafin2 play key roles in membrane binding, whereas the C-terminal poly aspartic acid (polyD) motif specifically autoinhibits the PH domain binding to the membrane phosphatidylinositol 3-phosphate (PtdIns3P). Since the Phafin2 FYVE domain also binds PtdIns3P, the role of the polyD motif remains unclear. In this study, bioinformatics tools and resources were employed to determine the concurrence of the PH-FYVE module with the polyD motif among Phafin2 and PH-, FYVE-, or polyD-containing proteins from bacteria to humans. FYVE was found to be an ancient domain of Phafin2 and is related to proteins that are present in both prokaryotes and eukaryotes. Interestingly, the polyD motif only evolved in Phafin2 and PH- or both PH-FYVE-containing proteins in animals. PolyD motifs are absent in PH domain-free FYVE-containing proteins, which usually display cellular trafficking or autophagic functions. Moreover, the prediction of the Phafin2-interacting network indicates that Phafin2 primarily cross-talks with proteins involved in autophagy, protein trafficking, and neuronal function. Taken together, the concurrence of the polyD motif with the PH domain may be associated with complex cellular functions that evolved specifically in animals.
Collapse
|
40
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
41
|
Myat AA, Zhou Y, Gao Y, Zhao X, Liang C, Abid MA, Wang P, Akram U, Abbas M, Askari M, Guo S, Zhang R, Meng Z. Overexpression of GhKTI12 Enhances Seed Yield and Biomass Production in Nicotiana Tabacum. Genes (Basel) 2022; 13:426. [PMID: 35327981 PMCID: PMC8953243 DOI: 10.3390/genes13030426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Crop molecular breeding primarily focuses on increasing the trait of plant yield. An elongator-associated protein, KTI12, is closely associated with plant biomass and yield. KTI12 is involved in developmental processes of most organs, including the leaf, root, flower, and seed, through regulating cell division and differentiation. Previous work has shown that in upland cotton (Gossypium hirsutum), GhKTI12 regulates plant height, flowering, and tolerance to salt and drought stress. However, little is known about the molecular regulation mechanism of GhKTI12 in plant developmental processes. In this study, we identified the main GhKTI12 (Gh_D02G144400) gene and transformed it into tobacco (Nicotonia tabacum cv NC89). From seven transgenic lines, we obtained three (OE5, OE6 and OE8) with high expression of GhKTI12; compared with wild type plants, these three lines exhibited larger plant size, later flowering, and higher seed yield. Microscopic observation revealed that the number of leaf epidermal cells and stem parenchyma cells was increased by ~55%. Biochemical analysis showed that chlorophyll content and starch accumulation were significantly increased in younger leaves at the top canopy of transgenic plants, which may contribute to improved photosynthetic rate and, in turn, increased seed yield. To understand the molecular mechanism of GhKTI12 in transgenic plants development, two lines (OE6 and OE8) with higher expression levels of GhKTI12 were used as representative plants to conduct RNA-seq analysis. Through transcriptome analysis of the plant's shoot apical meristematic tissue of these two lines, we identified 518 upregulated genes and 406 downregulated genes common to both overexpression lines. A large number of cellular component genes associated with cell division and differentiation, such as RD21, TET8, KTN80, AOX1, AOX2, CP1, and KIC, were found to be upregulated, and genes showing the most downregulation included MADS-box genes related to flowering time, such as MADS6, AP1, AP3, AGL8, AGL6, SEP1, and SEP2. Downregulation of these genes caused delayed flowering time and longer vegetative stage during development. Combined with the upregulation of the yield-related gene RD21, the GhKTI12 transgenic plants could produce a higher seed yield. We here show that the overexpression of GhKTI12 could positively improve key agronomic traits in tobacco by regulating cell proliferation, photosynthesis, and organ development, and suggest that homologs of GhKTI12 may also be important in the genetic improvement of other crop plants.
Collapse
Affiliation(s)
- Aye Aye Myat
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Yu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Yuan Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Xiang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
- Institute of Plant Breeding and Biotechnology, MNS—University of Agriculture, Multan 60000, Pakistan
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.A.M.); (Y.Z.); (Y.G.); (X.Z.); (C.L.); (M.A.A.); (P.W.); (U.A.); (M.A.); (M.A.); (S.G.); (R.Z.)
| |
Collapse
|
42
|
Genome Wide Identification and Characterization of Apple WD40 Proteins and Expression Analysis in Response to ABA, Drought, and Low Temperature. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basic WD40 proteins, which are characterized by a conserved WD40 domain, comprise a superfamily of regulatory proteins in plants and play important roles in plant growth and development. However, WD40 genes have been rarely studied in apple (Malus × domestica Borkh.). In this study, 346 WD40 genes classified in 12 subfamilies, were identified in the apple genome. Evolutionary analysis of WD40 proteins in apple and Arabidopsis revealed that the genes were classifiable into 14 groups, and the exon/intron structure of each group showed a similar structure. Analysis of collinearity showed that the large-scale amplification of WD40 genes in apple was largely attributable to recent whole-genome replication events. Nineteen candidate stress-related genes, selected by GO annotation and comparison with Arabidopsis homologs, showed different expression profiles in six organs at different developmental stages in response to exogenous abscisic acid (ABA), drought, and low temperature. Eight genes (MdWD40-17, 24, 70, 74, 219, 256, 283, and 307) showed a distinct response to one or more treatments (ABA, drought, and low temperature) as indicated by quantitative real-time PCR analysis. Taken together, these data provide rich resources for further study of MdWD40 genes and their potential roles in stress responses in apple.
Collapse
|
43
|
Zhang Z, Xu C, Zhang S, Shi C, Cheng H, Liu H, Zhong B. Origin and adaptive evolution of UV RESISTANCE LOCUS 8-mediated signaling during plant terrestrialization. PLANT PHYSIOLOGY 2022; 188:332-346. [PMID: 34662425 PMCID: PMC8774840 DOI: 10.1093/plphys/kiab486] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses and acclimation to UV-B radiation by regulating the transcription of a series of transcription factors (TFs). However, the origin and evolution of UVR8-mediated signaling pathways remain largely unknown. In this study, we investigated the origin and evolution of the major components of the UVR8-mediated signaling pathway (UVR8, REPRESSOR OF UV-B PHOTOMORPHOGENESIS [RUP], BRI1-EMS-SUPPRESSOR1 [BES1], BES1-INTERACTING MYC-LIKE 1 (BIM1), WRKY DNA-BINDING PROTEIN 36 (WRKY36), MYB DOMAIN PROTEIN 73/77/13 [MYB73/MYB77/MYB13], and PHYTOCHROME INTERACTING FACTOR 4/5 [PIF4 and PIF5]) using comparative genomics and phylogenetic approaches. We showed that the central regulator UVR8 presented a conservative evolutionary route during plant evolution, and the evolutionary history of downstream negative regulators and TFs was different from that of green plant phylogeny. The canonical UVR8-CONSTITUTIVELY PHOTOMORPHOGENIC 1(COP1)/SUPPRESSOR OF PHYA-105 (SPA)-ELONGATED HYPOCOTYL 5 (HY5)-RUP signaling pathway originated in chlorophytes and conferred green algae the additional ability to cope with UV-B radiation. Moreover, the emergence of multiple UVR8-mediated signaling pathways in charophytes laid the foundations for the cross-talk between UV-B signals and endogenous hormone responses. Importantly, we observed signatures that reflect plant adaptations to high UV-B irradiance in subaerial/terrestrial environments, including positive selection in UVR8 and RUPs and increased copy number of some vital TFs. These results revealed that green plants not only experienced adaptive modifications in the canonical UVR8-COP1/SPA-HY5-RUP signaling pathway, but also diversified their UV-B signal transduction mechanisms through increasing cross-talk with other pathways, such as those associated with brassinosteroids and auxin. This study greatly expands our understanding of molecular evolution and adaptive mechanisms underlying plant UV-B acclimation.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chenjie Xu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chen Shi
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
44
|
Zuo J, Liu C, Ni H, Yu Z. WDR34 affects PI3K/Akt and Wnt/β-catenin pathways to regulates malignant biological behaviors of glioma cells. J Neurooncol 2022; 156:281-293. [PMID: 34981299 DOI: 10.1007/s11060-021-03932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Glioma is the most prevalent primary intracranial tumor globally. WDR34, a member of the WDR superfamily with five WD40 repeats, is involved in the pathogenesis of several tumors. However, the role of WDR34 in glioma progression is unknown. METHODS The expression and prognostic significance of WDR34 in glioma patients were analyzed using GEPIA. WDR34 expression was detected by qRT-PCR. Western blot was employed to determine the expression of Ki67, proliferating cell nuclear antigen (PCNA), matrix metallopeptidase (MMP)2, MMP9, phosphatase and tensin homolog, protein kinase B (Akt), phosphorylated Akt, β-catenin, and c-Myc. CCK-8, BrdU incorporation assay, Transwell invasion assay, flow cytometry analysis, and measurement of caspase-3 and caspase-9 activities were conducted to examine the effects of WDR34 knockdown on glioma cells. RESULTS WDR34 was upregulated in glioma, which predicted a poor prognosis in glioma patients. WDR34 knockdown inhibited cell proliferation and reduced the expression of Ki67 and PCNA in glioma cells. WDR34 knockdown repressed the invasive ability of glioma cells by decreasing MMP-2 and MMP-9 expression. WDR34 knockdown increased the apoptotic rate and caspase-3 and caspase-9 activities in glioma cells. The PI3K/Akt and Wnt/β-catenin pathways were inhibited after WDR34 knockdown in glioma cells. Moreover, overexpression of Akt or β-catenin reversed the function of WDR34 knockdown on proliferation, invasion, and apoptosis. WDR34 knockdown reduced tumor growth in vivo. CONCLUSIONS WDR34 knockdown inhibited malignant biological behaviors of glioma cells by inactivating the PI3K/Akt and Wnt/β-catenin signaling cascades.
Collapse
Affiliation(s)
- Jiandong Zuo
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Chun Liu
- Department of Neurosurgery, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 210009, People's Republic of China
| | - Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, 223002, People's Republic of China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
45
|
Wang Y, Tian H, Wang W, Wang X, Zheng K, Hussain S, Lin R, Wang T, Wang S. The Carboxyl-Terminus of TRANSPARENT TESTA GLABRA1 Is Critical for Its Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms221810039. [PMID: 34576199 PMCID: PMC8467004 DOI: 10.3390/ijms221810039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
The Arabidopsis WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulates cell fate determination, including trichome initiation and root hair formation, as well as secondary metabolism such as flavonoid biosynthesis and seed coat mucilage production. TTG1 regulates different processes via regulating the expression of its downstream target genes by forming MYB-bHLH-WD40 (MBW) activator complexes with different R2R3 MYB and bHLH transcription factors. Here, we report the identification of the carboxyl (C)-terminus as a critical domain for TTG1′s functions in Arabidopsis. We found that the ttg1Δ15aa mutant shows pleiotropic phenotypes identical to a TTG1 loss-of-function mutant. Gene sequencing indicates that a single nucleotide substitution in TTG1 led to a premature stop at the W327 residue, leading to the production of a truncated TTG1 protein with a deletion of the last 15 C-terminal amino acids. The expression of TTG1 under the control of its native promoter fully restored the ttg1Δ15aa mutant phenotypes. Consistent with these observations, the expression levels of TTG1 downstream genes such as GLABRA2 (GL2) and CAPRICE (CPC) were reduced in the ttg1Δ15aa mutant. Assays in Arabidopsis protoplast show that TTG1Δ15aa failed to interact with the bHLH transcription factor GL3, and the deletion of the last 3 C-terminal amino acids or the 339L amino acid alone fully abolished the interaction of TTG1 with GL3. Furthermore, the expression of TTG1Δ3aa under the control of TTG1 native promoter failed to restore the ttg1Δ15aa mutant phenotypes. Taken together, our results suggest that the C-terminal domain of TTG1 is required for its proper function in Arabidopsis.
Collapse
Affiliation(s)
- Yating Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
- Correspondence:
| |
Collapse
|
46
|
Mohanasundaram B, Bhide AJ, Palit S, Chaturvedi G, Lingwan M, Masakapalli SK, Banerjee AK. The unique bryophyte-specific repeat-containing protein SHORT-LEAF regulates gametophore development in moss. PLANT PHYSIOLOGY 2021; 187:203-217. [PMID: 34618137 PMCID: PMC8418407 DOI: 10.1093/plphys/kiab261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/18/2021] [Indexed: 05/29/2023]
Abstract
Convergent evolution of shoot development across plant lineages has prompted numerous comparative genetic studies. Though functional conservation of gene networks governing flowering plant shoot development has been explored in bryophyte gametophore development, the role of bryophyte-specific genes remains unknown. Previously, we have reported Tnt1 insertional mutants of moss defective in gametophore development. Here, we report a mutant (short-leaf; shlf) having two-fold shorter leaves, reduced apical dominance, and low plasmodesmata frequency. UHPLC-MS/MS-based auxin quantification and analysis of soybean (Glycine max) auxin-responsive promoter (GH3:GUS) lines exhibited a striking differential auxin distribution pattern in the mutant gametophore. Whole-genome sequencing and functional characterization of candidate genes revealed that a novel bryophyte-specific gene (SHORT-LEAF; SHLF) is responsible for the shlf phenotype. SHLF represents a unique family of near-perfect tandem direct repeat (TDR)-containing proteins conserved only among mosses and liverworts, as evident from our phylogenetic analysis. Cross-complementation with a Marchantia homolog partially recovered the shlf phenotype, indicating possible functional specialization. The distinctive structure (longest known TDRs), absence of any known conserved domain, localization in the endoplasmic reticulum, and proteolytic cleavage pattern of SHLF imply its function in bryophyte-specific cellular mechanisms. This makes SHLF a potential candidate to study gametophore development and evolutionary adaptations of early land plants.
Collapse
Affiliation(s)
- Boominathan Mohanasundaram
- Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | - Amey J. Bhide
- Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | - Shirsa Palit
- Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | - Gargi Chaturvedi
- Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | - Maneesh Lingwan
- School of Basic Sciences, Indian Institute of Technology (IIT), Himachal Pradesh, Mandi 175005, India
| | - Shyam Kumar Masakapalli
- School of Basic Sciences, Indian Institute of Technology (IIT), Himachal Pradesh, Mandi 175005, India
| | - Anjan K. Banerjee
- Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| |
Collapse
|
47
|
Thabet SG, Alomari DZ, Alqudah AM. Exploring natural diversity reveals alleles to enhance antioxidant system in barley under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:789-798. [PMID: 34218207 DOI: 10.1016/j.plaphy.2021.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/17/2021] [Indexed: 05/18/2023]
Abstract
Soil salinity stress causes osmotic/ionic imbalances and induces oxidative stress that causes cellular structure damage, perturbs metabolism, antioxidant system (comprising enzymatic and non-enzymatic components) and hence inhibits plant growth performance. In this study, we used genome-wide association scan (GWAS) in 174 diverse spring barley accessions which were exposed to salt stress under field conditions at the vegetative stage to uncover the genetic basis of antioxidant components and agronomic traits. High activities of enzymatic and content of non-enzymatic antioxidants were observed under salt stress compared to control conditions. Under salt stress, all the agronomic and yield-related traits were significantly reduced. Six genomic regions were associated with antioxidants and agronomic traits under salt stress conditions which were found to be linked with candidate genes. Several significant associations were physically located inside or near genes which are potentially involved in antioxidants. Two candidate genes at 2H (40,659,364 bp) and 7H (416,743,127 bp) were found to be involved in Dihydroflavonol 4-reductase/flavanone protein and Glyceraldehyde-3-phosphate dehydrogenase, respectively. The allelic variation at SNP of BK_07 at 7H inside the GAPDH gene demonstrates a negative selection of accessions carrying A allele. This allele appears in cultivars with lower activity of enzymatic antioxidants e.g. superoxide dismutase and catalases under salt stress conditions. These accessions are predominantly two-rowed, cultivars, originated from Europe, and carrying photoperiod sensitive alleles. The detected associated molecular markers in this work are considered as an important source for selection of increased amount of antioxidant compounds in barley under stress conditions.
Collapse
Affiliation(s)
- Samar G Thabet
- Department of Botany, Faculty of Science, Fayoum University, 63514, Fayoum, Egypt.
| | - Dalia Z Alomari
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466, Seeland, Germany
| | - Ahmad M Alqudah
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
48
|
He Y, Wang Z, Ge H, Liu Y, Chen H. Weighted gene co-expression network analysis identifies genes related to anthocyanin biosynthesis and functional verification of hub gene SmWRKY44. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110935. [PMID: 34134842 DOI: 10.1016/j.plantsci.2021.110935] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 05/01/2021] [Indexed: 05/08/2023]
Abstract
Eggplant is rich in anthocyanins, which are thought to be highly beneficial for human health. There is no study on weighted gene co-expression network analysis (WGCNA) of anthocyanin biosynthesis in eggplant. Here, transcriptome data of 33 eggplant pericarp samples treated with light were used for WGCNA to identify significant modules. Total 13000 DEGs and 12 modules were identified, and the most significant module was associated with the secondary metabolites pathways. In addition, the hub gene SmWRKY44 with high connectivity was selected and its function was verified. The expression of SmWRKY44 showed a significant correlation with anthocyanin accumulation in the eggplant peels, leaves, and flowers. SmWRKY44-OE Arabidopsis significantly increased the accumulation of anthocyanins. Yeast two-hybrid and BiFC assays showed that SmWRKY44 could interact with SmMYB1, and it was also found that they could jointly promote the biosynthesis of anthocyanins in eggplant leaves through transient expression analysis. Our work provides a new direction for studying the molecular mechanism of light-induced anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Yongjun He
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Zhaowei Wang
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Yang Liu
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
49
|
Ye Z, Yu J, Yan W, Zhang J, Yang D, Yao G, Liu Z, Wu Y, Hou X. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera. HORTICULTURE RESEARCH 2021; 8:157. [PMID: 34193845 PMCID: PMC8245520 DOI: 10.1038/s41438-021-00591-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
Camellia oleifera (C. oleifera) is one of the four major woody oil-bearing crops in the world and has relatively high ecological, economic, and medicinal value. Its seeds undergo a series of complex physiological and biochemical changes during ripening, which is mainly manifested as the accumulation and transformation of certain metabolites closely related to oil quality, especially flavonoids and fatty acids. To obtain new insights into the underlying molecular mechanisms, a parallel analysis of the transcriptome and proteome profiles of C. oleifera seeds at different maturity levels was conducted using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) complemented with gas chromatography-mass spectrometry (GC-MS) data. A total of 16,530 transcripts and 1228 proteins were recognized with significant differential abundances in pairwise comparisons of samples at various developmental stages. Among these, 317 were coexpressed with a poor correlation, and most were involved in metabolic processes, including fatty acid metabolism, α-linolenic acid metabolism, and glutathione metabolism. In addition, the content of total flavonoids decreased gradually with seed maturity, and the levels of fatty acids generally peaked at the fat accumulation stage; these results basically agreed with the regulation patterns of genes or proteins in the corresponding pathways. The expression levels of proteins annotated as upstream candidates of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) as well as their cognate transcripts were positively correlated with the variation in the flavonoid content, while shikimate O-hydroxycinnamoyltransferase (HCT)-encoding genes had the opposite pattern. The increase in the abundance of proteins and mRNAs corresponding to alcohol dehydrogenase (ADH) was associated with a reduction in linoleic acid synthesis. Using weighted gene coexpression network analysis (WGCNA), we further identified six unique modules related to flavonoid, oil, and fatty acid anabolism that contained hub genes or proteins similar to transcription factors (TFs), such as MADS intervening keratin-like and C-terminal (MIKC_MADS), type-B authentic response regulator (ARR-B), and basic helix-loop-helix (bHLH). Finally, based on the known metabolic pathways and WGCNA combined with the correlation analysis, five coexpressed transcripts and proteins composed of cinnamyl-alcohol dehydrogenases (CADs), caffeic acid 3-O-methyltransferase (COMT), flavonol synthase (FLS), and 4-coumarate: CoA ligase (4CL) were screened out. With this exploratory multiomics dataset, our results presented a dynamic picture regarding the maturation process of C. oleifera seeds on Hainan Island, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this tree species.
Collapse
Affiliation(s)
- Zhouchen Ye
- College of Horticulture, Hainan University, Haikou, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, China
| | - Wuping Yan
- College of Horticulture, Hainan University, Haikou, China
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou, China
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou, China
| | - Guanglong Yao
- College of Horticulture, Hainan University, Haikou, China
| | - Zijin Liu
- College of Horticulture, Hainan University, Haikou, China
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou, China.
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Institute of Plasma Engineering, Nanjing, China.
| |
Collapse
|
50
|
Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:198-214. [PMID: 33884679 DOI: 10.1111/tpj.15285] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins play an important role in the growth of plants, and are beneficial to human health. In plants, the MYB-bHLH-WD40 (MBW) complex activates the genes for anthocyanin biosynthesis. However, in rice, the WD40 regulators remain to be conclusively identified. Here, a crucial anthocyanin biosynthesis gene was fine mapped to a 43.4-kb genomic region on chromosome 2, and a WD40 gene OsTTG1 (Oryza sativa TRANSPARENT TESTA GLABRA1) was identified as ideal candidate gene. Subsequently, a homozygous mutant (osttg1) generated by CRISPR/Cas9 showed significantly decreased anthocyanin accumulation in various rice organs. OsTTG1 was highly expressed in various rice tissues after germination, and it was affected by light and temperature. OsTTG1 protein was localized to the nucleus, and can physically interact with Kala4, OsC1, OsDFR and Rc. Furthermore, a total of 59 hub transcription factor genes might affect rice anthocyanin biosynthesis, and LOC_Os01g28680 and LOC_Os02g32430 could have functional redundancy with OsTTG1. Phylogenetic analysis indicated that directional selection has driven the evolutionary divergence of the indica and japonica OsTTG1 alleles. Our results suggest that OsTTG1 is a vital regulator of anthocyanin biosynthesis, and an important gene resource for the genetic engineering of anthocyanin biosynthesis in rice and other plants.
Collapse
Affiliation(s)
- Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Junrui Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530007, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jie He
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yanyan Wu
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yu Zeng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhijian Xu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|