1
|
Lu J, Xu L, Wang Y, Guan B. lncRNAs regulate cell stemness in physiology and pathology during differentiation and development. AMERICAN JOURNAL OF STEM CELLS 2024; 13:59-74. [PMID: 38765805 PMCID: PMC11101988 DOI: 10.62347/vhvu7361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/06/2024] [Indexed: 05/22/2024]
Abstract
Long non-coding RNA (lncRNA) are an important class of ubiquitous genes involved in diverse biological functions. lncRNAs, defined as noncoding RNAs with a length exceeding 200 nucleotides, are abundantly expressed throughout cells; however, their precise functions remain largely elusive. From embryonic stem cell proliferation and differentiation to cancer cell proliferation and invasion, lncRNAs play multifaceted regulatory roles across various cellular stages. Moreover, lncRNAs participate in the regulation of differentiation and regeneration during cellular development processes while also playing a pivotal role in maintaining and regulating cell stemness. In this article, we comprehensively review the current knowledge regarding lncRNAs in this field, discussing their biological functions and mechanisms underlying stemness regulation along with the factors implicated in these processes. We emphasize the growing evidence supporting the significance of lncRNAs in governing cell stemness while indicating that disruptions or mutations within them may serve as fundamental causes for certain developmental disorders.
Collapse
Affiliation(s)
- Jie Lu
- Department of Otolaryngology Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou, Jiangsu, China
| | - Li Xu
- Department of Otolaryngology Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou, Jiangsu, China
| | - Ying Wang
- Department of Otolaryngology Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou, Jiangsu, China
| | - Bing Guan
- Department of Otolaryngology Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Shi Y, Yao M, Shen S, Wang L, Yao D. Abnormal expression of Krüppel-like transcription factors and their potential values in lung cancer. Heliyon 2024; 10:e28292. [PMID: 38560274 PMCID: PMC10979174 DOI: 10.1016/j.heliyon.2024.e28292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer still is one of the most common malignancy tumors in the world. However, the mechanisms of its occurrence and development have not been fully elucidated. Zinc finger protein family (ZNFs) is the largest transcription factor family in human genome. Recently, the more and more basic and clinical evidences have confirmed that ZNFs/Krüppel-like factors (KLFs) refer to a group of conserved zinc finger-containing transcription factors that are involved in lung cancer progression, with the functions of promotion, inhibition, dual roles and unknown classifications. Based on the recent literature, some of the oncogenic KLFs are promising molecular biomarkers for diagnosis, prognosis or therapeutic targets of lung cancer. Interestingly, a novel computational approach has been proposed by using machine learning on features calculated from primary sequences, the XGBoost-based model with accuracy of 96.4 % is efficient in identifying KLF proteins. This paper reviews the recent some progresses of the oncogenic KLFs with their potential values for diagnosis, prognosis and molecular target in lung cancer.
Collapse
Affiliation(s)
- Yang Shi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
- Department of Thoracic Surgery, First People's Hospital of Yancheng, Yancheng 224001, China
| | - Min Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Shuijie Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu, China
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Tatavosian R, Donovan MG, Galbraith MD, Duc HN, Szwarc MM, Joshi MU, Frieman A, Bilousova G, Cao Y, Smith KP, Song K, Rachubinski AL, Andrysik Z, Espinosa JM. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ 2023; 30:952-965. [PMID: 36681780 PMCID: PMC10070495 DOI: 10.1038/s41418-023-01113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Micah G Donovan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria M Szwarc
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Molishree U Joshi
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amy Frieman
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Wei Y, Li H, Qu Q. miR-484 suppresses endocrine therapy-resistant cells by inhibiting KLF4-induced cancer stem cells in estrogen receptor-positive cancers. Breast Cancer 2020; 28:175-186. [PMID: 32865695 DOI: 10.1007/s12282-020-01152-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Endocrine therapy (mainly anti-estrogen therapy) is the mainstay of treatment for estrogen receptor (ER) positive breast cancer (BCa). However, approximately one-third of BCa patients who receive endocrine therapy may develop resistance. The detailed mechanism is still unclear. MCF7 and T-47D cells were treated with ERα antagonist tamoxifen for 2 months until they became tamoxifen-resistant. qPCR was used to detect the stem markers like CD44, OCT4 and SOX2. Flow cytometry and sphere formation were performed to test the stemness. Cell growth and invasiveness were measured by MTS assay, xenograft mouse model, and invasion assay. We found that tamoxifen resistant BCa cells acquired certain malignant phenotypes, such as higher expression of KLF4, stemness and enhanced invasiveness. Furthermore, miR-484 was found to act as a tumor suppressor and directly downregulated KLF4. KLF4-induced cancer stem cell (CSCs) contributes to anti-ER therapy resistant and is a potential target in endocrine therapy-resistant cancers.
Collapse
Affiliation(s)
- Yulei Wei
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Hong Li
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Quanxin Qu
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
5
|
Dhaliwal NK, Miri K, Davidson S, Tamim El Jarkass H, Mitchell JA. KLF4 Nuclear Export Requires ERK Activation and Initiates Exit from Naive Pluripotency. Stem Cell Reports 2018; 10:1308-1323. [PMID: 29526737 PMCID: PMC6000723 DOI: 10.1016/j.stemcr.2018.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 01/27/2023] Open
Abstract
Cooperative action of a transcription factor complex containing OCT4, SOX2, NANOG, and KLF4 maintains the naive pluripotent state; however, less is known about the mechanisms that disrupt this complex, initiating exit from pluripotency. We show that, as embryonic stem cells (ESCs) exit pluripotency, KLF4 protein is exported from the nucleus causing rapid decline in Nanog and Klf4 transcription; as a result, KLF4 is the first pluripotency transcription factor removed from transcription-associated complexes during differentiation. KLF4 nuclear export requires ERK activation, and phosphorylation of KLF4 by ERK initiates interaction of KLF4 with nuclear export factor XPO1, leading to KLF4 export. Mutation of the ERK phosphorylation site in KLF4 (S132) blocks KLF4 nuclear export, the decline in Nanog, Klf4, and Sox2 mRNA, and differentiation. These findings demonstrate that relocalization of KLF4 to the cytoplasm is a critical first step in exit from the naive pluripotent state and initiation of ESC differentiation.
Collapse
Affiliation(s)
- Navroop K Dhaliwal
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Kamelia Miri
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Scott Davidson
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hala Tamim El Jarkass
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
6
|
Clark BS, Blackshaw S. Understanding the Role of lncRNAs in Nervous System Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:253-282. [PMID: 28815543 DOI: 10.1007/978-981-10-5203-3_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diversity of lncRNAs has expanded within mammals in tandem with the evolution of increased brain complexity, suggesting that lncRNAs play an integral role in this process. In this chapter, we will highlight the identification and characterization of lncRNAs in nervous system development. We discuss the potential role of lncRNAs in nervous system and brain evolution, along with efforts to create comprehensive catalogues that analyze spatial and temporal changes in lncRNA expression during nervous system development. Additionally, we focus on recent endeavors that attempt to assign function to lncRNAs during nervous system development. We highlight discrepancies that have been observed between in vitro and in vivo studies of lncRNA function and the challenges facing researchers in conducting mechanistic analyses of lncRNAs in the developing nervous system. Altogether, this chapter highlights the emerging role of lncRNAs in the developing brain and sheds light on novel, RNA-mediated mechanisms by which nervous system development is controlled.
Collapse
Affiliation(s)
- Brian S Clark
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Liao YJ, Chen YS, Lee JX, Chen LR, Yang JR. Effects of Klf4 and c-Myc Knockdown on Pluripotency Maintenance in Porcine Induced Pluripotent Stem Cell. CELL JOURNAL 2017; 19:640-646. [PMID: 29105400 PMCID: PMC5672104 DOI: 10.22074/cellj.2018.4428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/19/2016] [Indexed: 11/24/2022]
Abstract
Objective The importance of Oct4 and Sox2 in maintaining pluripotency and self-renewal is well-understood, but the
functions of Klf4 and c-Myc has not been fully investigated. In the present study, we attempted to determine the roles
of Klf4 and c-Myc on pluripotency maintenance of porcine induced pluripotent stem (piPS) cells.
Materials and Methods In this experimental study, we performed short hairpin RNA (shRNA) to knock down the
Klf4 and c-Myc functions of piPS cells and examined pluripotency markers and teratoma formation to evaluate piPS
cell pluripotency. The shRNA-Klf4 and shRNA-c-Myc vectors containing a reporter gene, TagFP635, were transfected
into piPS cells by lentivirus infection. The piPS cells fully expressing infrared fluorescence were selected to confirm
gene knockdown of Klf4 and c-Myc reverse transcription-polymerase chain reaction (RT-PCR). Next, for pluripotency
evaluation, expression of pluripotency markers was detected by immunocytochemical staining, and capability of teratoma
formation was investigated by piPS cell transplantation into nonobese diabetic-severe combined immunodeficiency
(NOD-SCID) mice.
Results Our findings indicated that Klf4 and c-Myc functions of piPS cells were knocked down by shRNA transfection,
and knockdown of Klf4 and c-Myc functions impaired expression of pluripotency markers such as Oct4, AP, SSEA-3,
SSEA-4, TRA-1-6, and TRA-1-81. Furthermore, piPS cells without Klf4 and c-Myc expression failed to form teratomas.
Conclusion The pluripotency of piPS cells are crucially dependent upon Klf4 and c-Myc expression. These findings,
suggesting potential mechanisms of Klf4 and c-Myc contribution to piPS cell formation, have important implications for
application, regulation, and tumorigenesis of piPS cells.
Collapse
Affiliation(s)
- Yu-Jing Liao
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan.,Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Shiou Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan
| | - Ja-Xin Lee
- Hsinchu Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Hsinchu, Taiwan
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan.,Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Institute of Biotechnology, Southern Taiwan University, Tainan, Taiwan
| | - Jenn-Rong Yang
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan.
| |
Collapse
|
8
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
9
|
Planutis A, Xue L, Trainor CD, Dangeti M, Gillinder K, Siatecka M, Nebor D, Peters LL, Perkins AC, Bieker JJ. Neomorphic effects of the neonatal anemia (Nan-Eklf) mutation contribute to deficits throughout development. Development 2017; 144:430-440. [PMID: 28143845 DOI: 10.1242/dev.145656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/18/2016] [Indexed: 12/20/2022]
Abstract
Transcription factor control of cell-specific downstream targets can be significantly altered when the controlling factor is mutated. We show that the semi-dominant neonatal anemia (Nan) mutation in the EKLF/KLF1 transcription factor leads to ectopic expression of proteins that are not normally expressed in the red blood cell, leading to systemic effects that exacerbate the intrinsic anemia in the adult and alter correct development in the early embryo. Even when expressed as a heterozygote, the Nan-EKLF protein accomplishes this by direct binding and aberrant activation of genes encoding secreted factors that exert a negative effect on erythropoiesis and iron use. Our data form the basis for a novel mechanism of physiological deficiency that is relevant to human dyserythropoietic anemia and likely other disease states.
Collapse
Affiliation(s)
- Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Li Xue
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Cecelia D Trainor
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Kevin Gillinder
- Mater Research Institute, University of Queensland, Woolloongabba QLD 4102, Queensland, Australia
| | - Miroslawa Siatecka
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.,Department of Genetics, University of Adam Mickiewicz, Poznan 61-614, Poland
| | | | | | - Andrew C Perkins
- Mater Research Institute, University of Queensland, Woolloongabba QLD 4102, Queensland, Australia.,Princess Alexandra Hospital, Brisbane QLD 4102, Queensland, Australia
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA .,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.,Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.,Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
10
|
High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci. Sci Rep 2017; 7:6731. [PMID: 28751729 PMCID: PMC5532269 DOI: 10.1038/s41598-017-06110-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Cellular responses to stimuli are rapid and continuous and yet the vast majority of investigations of transcriptional responses during developmental transitions typically use long interval time courses; limiting the available interpretive power. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We therefore evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report new insight into molecular processes and genome organization. We present a highly resolved differentiation cascade that exhibits coding and noncoding transcriptional alterations, transcription factor network interactions and alternative splicing events, little of which can be resolved by long-interval developmental time-courses. We describe novel short lived and cycling patterns of gene expression and dissect temporally ordered gene expression changes in response to transcription factors. We elucidate patterns in gene co-expression across the genome, describe asynchronous transcription at bidirectional promoters and functionally annotate known and novel regulatory lncRNAs. These findings highlight the complex and dynamic molecular events underlying mammalian differentiation that can only be observed though a temporally resolved time course.
Collapse
|
11
|
Ilsley MD, Gillinder KR, Magor GW, Huang S, Bailey TL, Crossley M, Perkins AC. Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res 2017; 45:6572-6588. [PMID: 28541545 PMCID: PMC5499887 DOI: 10.1093/nar/gkx441] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Krüppel-like factors (KLFs) are a family of 17 transcription factors characterized by a conserved DNA-binding domain of three zinc fingers and a variable N-terminal domain responsible for recruiting cofactors. KLFs have diverse functions in stem cell biology, embryo patterning, and tissue homoeostasis. KLF1 and related family members function as transcriptional activators via recruitment of co-activators such as EP300, whereas KLF3 and related members act as transcriptional repressors via recruitment of C-terminal Binding Proteins. KLF1 directly activates the Klf3 gene via an erythroid-specific promoter. Herein, we show KLF1 and KLF3 bind common as well as unique sites within the erythroid cell genome by ChIP-seq. We show KLF3 can displace KLF1 from key erythroid gene promoters and enhancers in vivo. Using 4sU RNA labelling and RNA-seq, we show this competition results in reciprocal transcriptional outputs for >50 important genes. Furthermore, Klf3-/- mice displayed exaggerated recovery from anemic stress and persistent cell cycling consistent with a role for KLF3 in dampening KLF1-driven proliferation. We suggest this study provides a paradigm for how KLFs work in incoherent feed-forward loops or networks to fine-tune transcription and thereby control diverse biological processes such as cell proliferation.
Collapse
Affiliation(s)
- Melissa D. Ilsley
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Kevin R. Gillinder
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Graham W. Magor
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Stephen Huang
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | | - Andrew C. Perkins
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
- The Princess Alexandra Hospital, Brisbane 4102, Australia
| |
Collapse
|
12
|
Radaszkiewicz KA, Sýkorová D, Binó L, Kudová J, Bébarová M, Procházková J, Kotasová H, Kubala L, Pacherník J. The acceleration of cardiomyogenesis in embryonic stem cells in vitro by serum depletion does not increase the number of developed cardiomyocytes. PLoS One 2017; 12:e0173140. [PMID: 28288171 PMCID: PMC5347996 DOI: 10.1371/journal.pone.0173140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
The differentiation of pluripotent embryonic stem (ES) cells into various lineages in vitro represents an important tool for studying the mechanisms underlying mammalian embryogenesis. It is a key technique in studies evaluating the molecular mechanisms of cardiomyogenesis and heart development and also in embryotoxicology. Herein, modest modifications of the basic protocol for ES cell differentiation into cardiomyocytes were evaluated in order to increase the yield and differentiation status of developed cardiomyocytes. Primarily, the data show that ES cell cultivation in the form of non-adherent embryoid bodies (EBs) for 5 days compared to 8 days significantly improved cardiomyogenic differentiation. This is illustrated by the appearance of beating foci in the adherent EBs layer at earlier phases of differentiation from day 10 up to day 16 and by the significantly higher expression of genes characteristic of cardiomyogenic differentiation (sarcomeric alpha actinin, myosin heavy chain alpha and beta, myosin light chain 2 and 7, and transcriptional factor Nkx2.5) in EBs cultivated under non-adherent conditions for 5 days. The ratio of cardiomyocytes per other cells was also potentiated in EBs cultivated in non-adherent conditions for only 5 days followed by cultivation in adherent serum-free culture conditions. Nevertheless, the alteration in the percentage of beating foci among these two tested cultivation conditions vanished at later phases and also did not affect the total number of cardiomyocytes determined as myosin heavy chain positive cells at the end of the differentiation process on day 20. Thus, although these modifications of the conditions of ES cells differentiation may intensify cardiomyocyte differentiation, the final count of cardiomyocytes might not change. Thus, serum depletion was identified as a key factor that intensified cardiomyogenesis. Further, the treatment of EBs with N-acetylcysteine, a reactive oxygen species scavenger, did not affect the observed increase in cardiomyogenesis under serum depleted conditions. Interestingly, a mild induction of the ventricular-like phenotype of cardiomyocytes was observed in 5-day-old EBs compared to 8-day-old EBs. Overall, these findings bring crucial information on the mechanisms of ES cells differentiation into cardiomyocytes and on the establishment of efficient protocols for the cardiomyogenic differentiation of ES cells. Further, the importance of determining the absolute number of formed cardiomyocyte-like cells per seeded pluripotent cells in contrast to the simple quantification of the ratios of cells is highlighted.
Collapse
Affiliation(s)
| | - Dominika Sýkorová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Lucia Binó
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- International Clinical Research Center–Centre of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Jana Kudová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiřina Procházková
- International Clinical Research Center–Centre of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Kotasová
- International Clinical Research Center–Centre of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukáš Kubala
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- International Clinical Research Center–Centre of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
13
|
Bell CC, Amaral PP, Kalsbeek A, Magor GW, Gillinder KR, Tangermann P, di Lisio L, Cheetham SW, Gruhl F, Frith J, Tallack MR, Ru KL, Crawford J, Mattick JS, Dinger ME, Perkins AC. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation. Sci Rep 2016; 6:26657. [PMID: 27226347 PMCID: PMC4880930 DOI: 10.1038/srep26657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
Thousands of sense-antisense mRNA-lncRNA gene pairs occur in the mammalian genome. While there is usually little doubt about the function of the coding transcript, the function of the lncRNA partner is mostly untested. Here we examine the function of the homeotic Evx1-Evx1as gene locus. Expression is tightly co-regulated in posterior mesoderm of mouse embryos and in embryoid bodies. Expression of both genes is enhanced by BMP4 and WNT3A, and reduced by Activin. We generated a suite of deletions in the locus by CRISPR-Cas9 editing. We show EVX1 is a critical downstream effector of BMP4 and WNT3A with respect to patterning of posterior mesoderm. The lncRNA, Evx1as arises from alternative promoters and is difficult to fully abrogate by gene editing or siRNA approaches. Nevertheless, we were able to generate a large 2.6 kb deletion encompassing the shared promoter with Evx1 and multiple additional exons of Evx1as. This led to an identical dorsal-ventral patterning defect to that generated by micro-deletion in the DNA-binding domain of EVX1. Thus, Evx1as has no function independent of EVX1, and is therefore unlikely to act in trans. We predict many antisense lncRNAs have no specific trans function, possibly only regulating the linked coding genes in cis.
Collapse
Affiliation(s)
- Charles C Bell
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Paulo P Amaral
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anton Kalsbeek
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,Garvan Institute of Medical Research, Sydney, Australia
| | - Graham W Magor
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Kevin R Gillinder
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Pierre Tangermann
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Lorena di Lisio
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Seth W Cheetham
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Franziska Gruhl
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Jessica Frith
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Michael R Tallack
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Ke-Lin Ru
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Joanna Crawford
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Sydney, Australia.,St Vincents Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia.,St Vincents Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Andrew C Perkins
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
14
|
Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng 2016; 7:2041731415618342. [PMID: 26977284 PMCID: PMC4765821 DOI: 10.1177/2041731415618342] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 12/27/2022] Open
Abstract
Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.
Collapse
Affiliation(s)
- Hye-Sun Yu
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Jung-Ju Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Mark P Lewis
- Musculo-Skeletal Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea
| |
Collapse
|
15
|
Expression of pluripotent stem cell markers in mouse uterine tissue during estrous cycle. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2016; 7:181-188. [PMID: 27872713 PMCID: PMC5094165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Abstract
It was assumed that uterine stem cells are responsible for the unique regenerative capacity of uterine. Therefore, the aim of the present study was to investigate the expression of the pluripotent stem cell markers in the mice uterine tissue during different stages of estrous cycles. Twelve virgin female NMRI mice (6 to 8 weeks old) were considered at proestrus, estrus, metestrus and diestrus according to the cell types observed in the vaginal smear and underwent hysterectomy operation. Quantitative real-time polymerase chain reaction (PCR) and immunohistochemical staining for pluripotent stem cell markers (SOX2, OCT4, KLF4, and NANOG) were performed. Immunofluorescence staining revealed that expression and localization of the pluripotency markers SOX2, OCT4, KLF4, and NANOG at the protein level were not different throughout estrous cycle. Also, mRNA of pluripotency markers was detected in all tested samples. However, there were no significant differences in their genes expression at each stage and during the estrous cycle. Different hormonal profile during the estrous cycle could not affect expression of pluripotent stem cell markers in uterine tissue.
Collapse
|
16
|
Park MS, Kausar R, Kim MW, Cho SY, Lee YS, Lee MA. Tcf7l1-mediated transcriptional regulation of Krüppel-like factor 4 gene. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2014.991351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Klf2 contributes to the stemness and self-renewal of human bone marrow stromal cells. Cytotechnology 2014; 68:839-48. [PMID: 25550041 DOI: 10.1007/s10616-014-9837-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/13/2014] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great therapeutic potential in clinical trials; however, loss of pluripotency due to culture senescence is a major factor limiting their application. Understanding the physiology of stem cell self-renewal and stemness, and identifying the molecules that regulate these processes, are critical to future advances in tissue and organ regeneration. The Krüppel-like factor (Klf) family are key transcription factors implicated in self-renewal of embryonic stem cells. Here we identify Klf2 as a crucial transcription factor in undifferentiated human bone marrow stromal cells (hBMSCs), as indicated by gene expression in three culture media. To investigate the role of Klf2 in detail, an overexpression study using a lentiviral system in hBMSCs was performed. After Klf2 overexpression, cell proliferation was increased. The expression of pluripotency-associated genes, including Oct4, Nanog, and Rex1, was also upregulated by Klf2 overexpression. In addition, quantitative RT-PCR indicated a lower level of expression of differentiation related genes in Klf2 overexpressing cells as compared to control cells. Our results identify a functionally conserved role for Klf2 in hBMSCs, in which its expression is biologically important for stemness and self-renewal. These results are the first to show a role for Klf2 in the proliferation and pluripotency of hBMSCs.
Collapse
|
18
|
Dong MJ, Wang LB, Jiang ZN, Jin M, Hu WX, Shen JG. The transcription factor KLF4 as an independent predictive marker for pathologic complete remission in breast cancer neoadjuvant chemotherapy: a case-control study. Onco Targets Ther 2014; 7:1963-9. [PMID: 25368523 PMCID: PMC4216037 DOI: 10.2147/ott.s68340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background To identify whether a stem cell biomarker, KLF4, may predict the pathologic tumor response to neoadjuvant chemotherapy for patients with locally advanced breast cancer. Methods Twelve locally advanced breast cancer patients who achieved pathologic complete remission (pCR) after neoadjuvant chemotherapy were identified and for each, three non-pCR breast cancer patients – matched for age, clinical tumor–node–metastasis stage, and neoadjuvant chemotherapy cycles – were selected. The relationship between KLF4 expression in the core needle biopsied cancer tissue and patient pCR rate was assessed using univariate and multivariate analysis. Results Receiver operating characteristic curve analysis showed that the patients with a histoscore of KLF4 expression >0.18 had a lower pCR rate. Multivariable analysis showed that higher KLF4 expression (odds ratio 0.013; 95% confidence interval 0.013–0.444; P=0.004) was independently correlated with a lower pCR rate after neoadjuvant chemotherapy. Conclusion KLF4 overexpression was associated with lower pCR in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy. This study suggests that KLF4 may serve as a predictor for pCR in patients with breast cancer after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Min Jun Dong
- Department of Surgical Oncology, Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Lin Bo Wang
- Department of Surgical Oncology, Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Zhi Nong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Mei Jin
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Wen Xian Hu
- Department of Surgical Oncology, Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Jian Guo Shen
- Department of Surgical Oncology, Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Optimization of culture condition of human bone marrow stromal cells in terms of purification, proliferation, and pluripotency. In Vitro Cell Dev Biol Anim 2014; 50:822-30. [PMID: 24934232 DOI: 10.1007/s11626-014-9778-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Human bone marrow stromal cells (hBMSCs) possess multilineage differentiation potential and play an important role in modern tissue engineering. However, the development of culture media to maintain hBMSCs in an undifferentiated, self-renewing state during their robust proliferation remains a challenge. We developed and tested modified growth medium [medium 1: epidermal growth factor (EGF), platelet-derived growth factor (PDGF), low glucose, 2% fetal calf serum (FCS)] on hBMSCs by comparing primary cell isolation, multipassage expansion, culture morphology, proliferation, and cellular phenotype, and performing an expression analysis of intrinsic-regulated genes to other two media. Cell morphology, proliferation, and phenotype varied among the media, while cells cultured in medium 1 displayed small, spindle-shaped morphology with the highest rate of growth capacities and the expected phenotype. RT-PCR analysis showed that medium 1 displayed the lowest expression levels of osteogenic genes, chondrogenic genes (osteonectin, runt-related transcription factor 2, cartilage oligo matrix protein, and SOX9), and adipogenic genes (lipoprotein lipase). The expression of another adipogenic gene, peroxisome proliferator-activator receptor-γ2, was higher in medium 1 but did not reach significance. In addition, hBMSCs expanded in medium 1 showed the highest expression ratio of self-renewing-related genes Krüppel-like factor 2 (KLF2) and KLF5. In conclusion, medium 1 allows for better expansion and pluripotency maintenance of hBMSCs and serves as a preferred alternative to traditional serum-containing media for research applications and future clinical use.
Collapse
|
20
|
Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 2014; 5:164. [PMID: 24936207 PMCID: PMC4047558 DOI: 10.3389/fgene.2014.00164] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 01/17/2023] Open
Abstract
Comprehensive analysis of the mammalian transcriptome has revealed that long non-coding RNAs (lncRNAs) may make up a large fraction of cellular transcripts. Recent years have seen a surge of studies aimed at functionally characterizing the role of lncRNAs in development and disease. In this review, we discuss new findings implicating lncRNAs in controlling development of the central nervous system (CNS). The evolution of the higher vertebrate brain has been accompanied by an increase in the levels and complexities of lncRNAs expressed within the developing nervous system. Although a limited number of CNS-expressed lncRNAs are now known to modulate the activity of proteins important for neuronal differentiation, the function of the vast majority of neuronal-expressed lncRNAs is still unknown. Topics of intense current interest include the mechanism by which CNS-expressed lncRNAs might function in epigenetic and transcriptional regulation during neuronal development, and how gain and loss of function of individual lncRNAs contribute to neurological diseases.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
21
|
A Pou5f1/Oct4 dependent Klf2a, Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development during zebrafish embryogenesis. Dev Biol 2014; 385:433-47. [DOI: 10.1016/j.ydbio.2013.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/08/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
|
22
|
Turner EC, Huang CL, Govindarajan K, Caplice NM. Identification of a Klf4-dependent upstream repressor region mediating transcriptional regulation of the myocardin gene in human smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1191-201. [PMID: 24060351 DOI: 10.1016/j.bbagrm.2013.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 01/25/2023]
Abstract
Phenotypic switching of smooth muscle cells (SMCs) plays a central role in the development of vascular diseases such as atherosclerosis and restenosis. However, the factors regulating expression of the human myocardin (Myocd) gene, the master gene regulator of SMC differentiation, have yet to be identified. In this study, we sought to identify the critical factors regulating Myocd expression in human SMCs. Using deletion/genetic reporter analyses, an upstream repressor region (URR) was localised within the Myocd promoter, herein termed PrmM. Bioinformatic analysis revealed three evolutionary conserved Klf4 sites within the URR and disruption of those elements led to substantial increases in PrmM-directed gene expression. Furthermore, ectopic expression established that Klf4 significantly decreased Myocd mRNA levels and PrmM-directed gene expression while electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays confirmed specific binding of endogenous Klf4, and not Klf5 or Klf2, to the URR of PrmM. Platelet-derived growth factor BB (PDGF-BB), a potent inhibitor of SMC differentiation, reduced Myocd mRNA levels and PrmM-directed gene expression in SMCs. A PDGF-BB-responsive region (PRR) was also identified within PrmM, overlapping with the previously identified URR, where either siRNA knockdown of Klf4 or the combined disruption of the Klf4 elements completely abolished PDGF-BB-mediated repression of PrmM-directed gene expression in SMCs. Moreover, ChIP analysis established that PDGF-BB-induced repression of Myocd gene expression is most likely regulated by enhanced binding of Klf4 and Klf5 to a lesser extent, to the PRR of PrmM. Taken together, these data provide critical insights into the transcriptional regulation of the Myocd gene in vascular SMCs, including during SMC differentiation.
Collapse
Affiliation(s)
- Elizebeth C Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
23
|
Chen K, Hsu LT, Wu CY, Chang SY, Huang HT, Chen W. CBARA1 plays a role in stemness and proliferation of human embryonic stem cells. PLoS One 2013; 8:e63653. [PMID: 23667653 PMCID: PMC3648555 DOI: 10.1371/journal.pone.0063653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/04/2013] [Indexed: 12/04/2022] Open
Abstract
Human embryonic stem cells (hESCs) are capable of unlimited self-renewal and can generate almost all of the cells in the body. Although some pluripotency factors have been identified, much remains unclear regarding the molecules and mechanisms that regulate hESC self-renewal and pluripotency. In this study, we identified a mitochondrial gene, CBARA1, that is expressed in undifferentiated hESCs and that is down-regulated rapidly after cellular differentiation. To study its role in hESCs, endogenous CBARA1 expression was knocked down using shRNA. CBARA1 knockdown in hESCs resulted in down-regulation of Oct4 and Nanog expression, attenuated cell growth, and G0/G1 phase cell cycle arrest; however, knockdown did not noticeably affect apoptosis. Taken together, these results suggest that CBARA1 is a marker for undifferentiated hESCs that plays a role in maintaining stemness, cell cycle progression, and proliferation.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Tissue Regeneration Product Technology, Faculty of Biomedical Technology and Device Research, Industrial Technology Research Institute, Hsinchu, Taiwan.
| | | | | | | | | | | |
Collapse
|
24
|
Wang Q, Wagner RT, Cooney AJ. Regulatable in vivo biotinylation expression system in mouse embryonic stem cells. PLoS One 2013; 8:e63532. [PMID: 23667633 PMCID: PMC3646753 DOI: 10.1371/journal.pone.0063532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic stem (ES) cells have several unique attributes, the two most important of which are they can differentiate into all cell types in the body and they can proliferate indefinitely. To study the regulation of these phenomena, we developed a regulatable in vivo biotinylation expression system in mouse ES cells. The E. coli biotin ligase gene BirA, whose protein product can biotinylate a 15-aa peptide sequence, called the AviTag, was cloned downstream of an IRES. The primary vector containing the doxycycline controlled transactivator gene tTA and IRES-BirA was knocked into the ROSA26 locus by homologous recombination. The secondary vector containing the AviTag tagged hKlf4 gene was exchanged into the ROSA26 locus using Cre recombinase. Western blot analysis showed that the doxycycline induced BirA protein can biotinylate the doxycycline induced AviTag tagged hKlf4 protein. The induction of hKlf4 repressed cell growth in the presence or absence of LIF. Chromatin immunoprecipitation assays using streptavidin beads showed that the AviTag tagged hKlf4 protein could enrich the Nanog enhancer. Our results suggested that the regulatable biotinylation system is promising for the gene function studies in mouse ES cells.
Collapse
Affiliation(s)
- Qin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ryan T. Wagner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Austin J. Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ca2+ activated K channels-new tools to induce cardiac commitment from pluripotent stem cells in mice and men. Stem Cell Rev Rep 2012; 8:720-40. [PMID: 22038332 DOI: 10.1007/s12015-011-9324-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Abstract
Spatial organization of different epigenomic marks was used to infer functions of the epigenome. It remains unclear what can be learned from the temporal changes of the epigenome. Here, we developed a probabilistic model to cluster genomic sequences based on the similarity of temporal changes of multiple epigenomic marks during a cellular differentiation process. We differentiated mouse embryonic stem (ES) cells into mesendoderm cells. At three time points during this differentiation process, we used high-throughput sequencing to measure seven histone modifications and variants—H3K4me1/2/3, H3K27ac, H3K27me3, H3K36me3, and H2A.Z; two DNA modifications—5-mC and 5-hmC; and transcribed mRNAs and noncoding RNAs (ncRNAs). Genomic sequences were clustered based on the spatiotemporal epigenomic information. These clusters not only clearly distinguished gene bodies, promoters, and enhancers, but also were predictive of bidirectional promoters, miRNA promoters, and piRNAs. This suggests specific epigenomic patterns exist on piRNA genes much earlier than germ cell development. Temporal changes of H3K4me2, unmethylated CpG, and H2A.Z were predictive of 5-hmC changes, suggesting unmethylated CpG and H3K4me2 as potential upstream signals guiding TETs to specific sequences. Several rules on combinatorial epigenomic changes and their effects on mRNA expression and ncRNA expression were derived, including a simple rule governing the relationship between 5-hmC and gene expression levels. A Sox17 enhancer containing a FOXA2 binding site and a Foxa2 enhancer containing a SOX17 binding site were identified, suggesting a positive feedback loop between the two mesendoderm transcription factors. These data illustrate the power of using epigenome dynamics to investigate regulatory functions.
Collapse
|
27
|
LIF maintains progenitor phenotype of endothelial progenitor cells via Krüppel-like factor 4. Microvasc Res 2012; 84:270-7. [PMID: 22835519 DOI: 10.1016/j.mvr.2012.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 06/22/2012] [Accepted: 07/16/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) participate in post-natal vasculogenesis. Maintaining the preliminary progenitor phenotype and good proliferation capacity of EPCs is key to their use in treating cardiovascular ischemic diseases. However, transcriptional regulation in EPCs remains largely unknown. We investigated the effect of leukemia inhibitory factor (LIF) combined with vascular endothelial growth factor (VEGF) on EPCs and the potential roles of Krüppel-like transcription factors (KLFs). METHODS AND RESULTS Co-treatment with LIF and VEGF (100 ng/ml each) (V+L) could increase EPC colony-forming units and CD34 expression, which reflects the EPC progenitor phenotype and alleviated differentiation of EPCs. The effect was associated with Akt activation and increased expression of KLF4. Upregulation of KLF4 induced by V+L could be inhibited by transfection with dominant-negative Akt adenovirus. Furthermore, overexpression of KLF4 in EPCs enhanced the expression of CD34 and alleviated cell differentiation but did not increase the phosphorylation of Akt. CONCLUSIONS LIF combined with VEGF can maintain the preliminary, progenitor phenotype of EPCs and alleviate cell differentiation by upregulating KLF4, which may provide new insights into transcriptional regulation in EPCs.
Collapse
|
28
|
Li J, Zheng H, Wang J, Yu F, Morris RJ, Wang TC, Huang S, Ai W. Expression of Kruppel-like factor KLF4 in mouse hair follicle stem cells contributes to cutaneous wound healing. PLoS One 2012; 7:e39663. [PMID: 22745808 PMCID: PMC3379995 DOI: 10.1371/journal.pone.0039663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 05/29/2012] [Indexed: 12/17/2022] Open
Abstract
Background Kruppel-like factor KLF4 is a transcription factor critical for the establishment of the barrier function of the skin. Its function in stem cell biology has been recently recognized. Previous studies have revealed that hair follicle stem cells contribute to cutaneous wound healing. However, expression of KLF4 in hair follicle stem cells and the importance of such expression in cutaneous wound healing have not been investigated. Methodology/Principal Findings Quantitative real time polymerase chain reaction (RT-PCR) analysis showed higher KLF4 expression in hair follicle stem cell-enriched mouse skin keratinocytes than that in control keratinocytes. We generated KLF4 promoter-driven enhanced green fluorescence protein (KLF4/EGFP) transgenic mice and tamoxifen-inducible KLF4 knockout mice by crossing KLF4 promoter-driven Cre recombinase fused with tamoxifen-inducible estrogen receptor (KLF4/CreER™) transgenic mice with KLF4(flox) mice. KLF4/EGFP cells purified from dorsal skin keratinocytes of KLF4/EGFP transgenic mice were co-localized with 5-bromo-2'-deoxyuridine (BrdU)-label retaining cells by flow cytometric analysis and immunohistochemistry. Lineage tracing was performed in the context of cutaneous wound healing, using KLF4/CreER™ and Rosa26RLacZ double transgenic mice, to examine the involvement of KLF4 in wound healing. We found that KLF4 expressing cells were likely derived from bulge stem cells. In addition, KLF4 expressing multipotent cells migrated to the wound and contributed to the wound healing. After knocking out KLF4 by tamoxifen induction of KLF4/CreER™ and KLF4(flox) double transgenic mice, we found that the population of bulge stem cell-enriched population was decreased, which was accompanied by significantly delayed cutaneous wound healing. Consistently, KLF4 knockdown by KLF4-specific small hairpin RNA in human A431 epidermoid carcinoma cells decreased the stem cell population and was accompanied by compromised cell migration. Conclusions/Significance KLF4 expression in mouse hair bulge stem cells plays an important role in cutaneous wound healing. These findings may enable future development of KLF4-based therapeutic strategies aimed at accelerating cutaneous wound closure.
Collapse
Affiliation(s)
- Juan Li
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- Centre for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Zheng
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Wang
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- Centre for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Yu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Rebecca J. Morris
- Laboratory of Stem Cells and Cancer, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Center, Columbia University, New York, New York, United States of America
| | - Shiang Huang
- Centre for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (WA); (SH)
| | - Walden Ai
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail: (WA); (SH)
| |
Collapse
|
29
|
Li J, Zheng H, Yu F, Yu T, Liu C, Huang S, Wang TC, Ai W. Deficiency of the Kruppel-like factor KLF4 correlates with increased cell proliferation and enhanced skin tumorigenesis. Carcinogenesis 2012; 33:1239-46. [PMID: 22491752 DOI: 10.1093/carcin/bgs143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kruppel-like factor 4 (KLF4) is a transcription factor that is highly expressed in differentiated epithelial cells including that of the skin. It is critical for specification or function of differentiated epithelial cells. Moreover, KLF4 functions either as a tumor suppressor or an oncogene depending on different cellular contexts. However, the role of KLF4 in skin tumorigenesis remains controversial. To address this issue, we first examined KLF4 expression using a cohort of samples from patients with skin squamous cell carcinoma and basal cell carcinoma and found that in 21 of 24 tumor tissues (87.5%), KLF4 expression as assayed by immunohistochemistry was absent when compared with that in normal tissues. In addition, knockdown of KLF4 in human epidermal squamous cell carcinoma SCC13 cells was accompanied by increased cell growth. Further analysis revealed that KLF4 deficiency promoted cell migration and adhesion, which are the important properties of tumor cells. These observations were supported by the effect upon overexpression of KLF4 in SCC13 cells. Furthermore, we generated a novel tamoxifen-inducible KLF4/CreER and KLF4(flox) double transgenic mouse model to examine the role of KLF4 in skin cancer development. Consistent with in vitro studies, KLF4 deficiency increased the ability of migration and adhesion of mouse primary skin keratinocytes. Moreover, KLF4 knockout led to increased cell proliferation and skin carcinogenesis in a classical DMBA/TPA mouse skin cancer model. Taken together, our data suggest that KLF4 inhibits cell proliferation, migration and adhesion and that loss of KLF4 promotes skin tumorigenesis.
Collapse
Affiliation(s)
- Juan Li
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
ERK1 and ERK2 regulate embryonic stem cell self-renewal through phosphorylation of Klf4. Nat Struct Mol Biol 2012; 19:283-90. [PMID: 22307056 DOI: 10.1038/nsmb.2217] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/02/2011] [Indexed: 02/06/2023]
Abstract
Understanding and controlling the mechanism by which stem cells balance self-renewal versus differentiation is of great importance for stem cell therapeutics. Klf4 promotes the self-renewal of embryonic stem cells, but the precise mechanism regulating this role of Klf4 is unclear. We found that ERK1 or ERK2 binds the activation domain of Klf4 and directly phosphorylates Klf4 at Ser123. This phosphorylation suppresses Klf4 activity, inducing embryonic stem cell differentiation. Conversely, inhibition of Klf4 phosphorylation enhances Klf4 activity and suppresses embryonic stem cell differentiation. Notably, phosphorylation of Klf4 by ERKs causes recruitment and binding of the F-box proteins βTrCP1 or βTrCP2 (components of an ubiquitin E3 ligase) to the Klf4 N-terminal domain, which results in Klf4 ubiquitination and degradation. Overall, our data provide a molecular basis for the role of ERK1 and ERK2 in regulating Klf4-mediated mouse embryonic stem cell self-renewal.
Collapse
|
31
|
Chu PY, Hsu NCH, Liao AT, Yeh KT, Hou MF, Liu CH. Elevated Krüppel-like factor 4 transcription factor in canine mammary carcinoma. BMC Vet Res 2011; 7:58. [PMID: 21978458 PMCID: PMC3198687 DOI: 10.1186/1746-6148-7-58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/07/2011] [Indexed: 01/17/2023] Open
Abstract
Background Krüppel-like factors (KLFs) are critical regulators of biological and physiological systems and have been extensively studied for their roles in cell proliferation, differentiation and survival in the context of cancer. Among the KLFs, KLF4 is highly expressed in human breast cancers and plays an oncogenic role. The present study examined the expression of KLF4 and assessed its significance in canine mammary carcinoma. Results Immunohistochemistry was employed to investigate the expression of KLF4 in 142 cases of canine mammary tumor. 75 of the 142 (52.8%) cases were histologically confirmed as mammary carcinoma. Quantification of immunohistochemistry was carried out using Quick score which multiply the staining intensity by the percentage of positive cells. High KLF4 expression was identified in 44 of the 75 (59%) dogs with mammary carcinoma and none in the benign cases. High KLF4 expression occurred only in the tumor cells and not the adjacent normal cells in mammary carcinoma (P < 0.001). Moreover, the high expression level of KLF4 expression was statistically associated with poor grade, late stage, histological subtypes of simple and complex carcinoma, and shorter 24-month survival. The Kaplan-Meier survival analysis also indicated that dogs with high nuclear KLF4 expression had a significantly shorter survival than those with low/moderate KLF4 expression (P = 0.011). Conclusions KLF4 is highly and frequently expressed in canine mammary carcinoma and correlates with a more aggressive phenotype.
Collapse
Affiliation(s)
- Pei-Yi Chu
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No, 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Bone marrow mesenchymal stem cells differentiate into urothelial cells and the implications for reconstructing urinary bladder mucosa. Cytotechnology 2011; 63:531-9. [PMID: 21915725 DOI: 10.1007/s10616-011-9376-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/13/2011] [Indexed: 12/11/2022] Open
Abstract
To determine the ability of cultured bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into functional urothelium. BMSCs were isolated from the long bones of aborted fetal limbs by Percoll density gradient centrifugation and characterized by flow cytometry. Human fetal urinary bladders were cut into small pieces and cultured for 3-5 days until the growth of urothelial cells was established. BMSCs were then cocultured with neonatal urothelial cells and subsequently evaluated for antigen expression and ultramicrostructure, by immunocytochemistry and electron microscopy, respectively. A subset of BMSCs expressed the differentiation marker CD71. The BMSC markers CD34, CD45, and HLA-DR were barely detectable, confirming that these cells were not derived from hematopoietic stem cells or differentiated cells. In contrast, the stem cell markers CD29, CD44, CD105, and CD90 were highly expressed. BMSCs possessed the ability to differentiate into a variety of cellular subtypes, including osteocytes, adipocytes, and chondrocytes. The shapes of BMSCs changed, and the size of the cells increased, following in vitro coculture with urothelial cells. After 2 weeks of coculture, immunostaining of the newly differentiated BMSCs positively displayed the urothelial-specific keratin marker. Electron microscopy revealed that the cocultured BMSCs had microstructural features characteristic of epithelial cells. Pluripotent BMSCs can transdifferentiate into urothelial cells in response to an environment conditioned by neonatal urothelial cells, providing a means for the time-, labor- and cost-effective reconstruction of urinary bladder mucosa.
Collapse
|
33
|
Peng LH, Tsang SY, Tabata Y, Gao JQ. Genetically-manipulated adult stem cells as therapeutic agents and gene delivery vehicle for wound repair and regeneration. J Control Release 2011; 157:321-30. [PMID: 21893122 DOI: 10.1016/j.jconrel.2011.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/10/2011] [Indexed: 02/06/2023]
Abstract
Wound therapy remains a clinical challenge and much effort has been focused on the development of novel therapeutic approaches for wound management. New knowledge about the way in which signals control wound cellular and molecular behavior has promoted the topical application of multipotent stem cells and bioactive molecules to injured tissue, for skin regeneration with less scar formation. However, limited clinical success indicates that the effective delivery of polypeptides and therapeutic cells, with controlled releasing profile, is a major challenge which is yet to be overcome. Recently, a technique in which the genetically-manipulated stem cells were used both as the therapeutic agents and the vehicle for gene delivery for wound treatment - a method which serves to provide regenerative cells and bioactive genes within an optimal environment of regulatory molecular expression for wound sites - has emerged as a promising strategy for wound regenerative therapy. In this article, the roles of adult stem cells - as the therapeutics and the vehicles in these advanced biomimetic drug delivery systems for wound regeneration medicine - are scrutinized to indicate their mechanisms, characteristics, broad applicability and future lines of investigation.
Collapse
Affiliation(s)
- Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, PR China
| | | | | | | |
Collapse
|
34
|
Scheubert L, Schmidt R, Repsilber D, Luštrek M, Fuellen G. Learning biomarkers of pluripotent stem cells in mouse. DNA Res 2011; 18:233-51. [PMID: 21791477 PMCID: PMC3158465 DOI: 10.1093/dnares/dsr016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 05/10/2011] [Indexed: 01/04/2023] Open
Abstract
Pluripotent stem cells are able to self-renew, and to differentiate into all adult cell types. Many studies report data describing these cells, and characterize them in molecular terms. Machine learning yields classifiers that can accurately identify pluripotent stem cells, but there is a lack of studies yielding minimal sets of best biomarkers (genes/features). We assembled gene expression data of pluripotent stem cells and non-pluripotent cells from the mouse. After normalization and filtering, we applied machine learning, classifying samples into pluripotent and non-pluripotent with high cross-validated accuracy. Furthermore, to identify minimal sets of best biomarkers, we used three methods: information gain, random forests and a wrapper of genetic algorithm and support vector machine (GA/SVM). We demonstrate that the GA/SVM biomarkers work best in combination with each other; pathway and enrichment analyses show that they cover the widest variety of processes implicated in pluripotency. The GA/SVM wrapper yields best biomarkers, no matter which classification method is used. The consensus best biomarker based on the three methods is Tet1, implicated in pluripotency just recently. The best biomarker based on the GA/SVM wrapper approach alone is Fam134b, possibly a missing link between pluripotency and some standard surface markers of unknown function processed by the Golgi apparatus.
Collapse
Affiliation(s)
- Lena Scheubert
- Institute of Computer Science, University of Osnabrück, Albrechtstr. 28, 49076 Osnabrück, Germany
| | - Rainer Schmidt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany
| | - Dirk Repsilber
- Leibniz Institute for Farm Animal Biology (FBN Dummerstorf), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Mitja Luštrek
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany
- Department of Intelligent Systems, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany
| |
Collapse
|
35
|
Messenger RNA and microRNA profiling during early mouse EB formation. Gene Expr Patterns 2011; 11:334-44. [PMID: 21440681 DOI: 10.1016/j.gep.2011.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022]
Abstract
Embryonic stem (ES) cells can be induced to differentiate into embryoid bodies (EBs) in a synchronised manner when plated at a fixed density in hanging drops. This differentiation procedure mimics post-implantation development in mouse embryos and also serves as the starting point of protocols used in differentiation of stem cells into various lineages. Currently, little is known about the potential influence of microRNAs (miRNAs) on mRNA expression patterns during EB formation. We have measured mRNA and miRNA expression in developing EBs plated in hanging drops until day 3, when discrete structural changes occur involving their differentiation into three germ layers. We observe significant alterations in mRNA and miRNA expression profiles during this early developmental time frame, in particular of genes involved in germ layer formation, stem cell pluripotency and nervous system development. Computational target prediction using Pictar, TargetScan and miRBase Targets reveals an enrichment of binding sites corresponding to differentially and highly expressed miRNAs in stem cell pluripotency genes and a neuroectodermal marker, Nes. We also find that members of let-7 family are significantly down-regulated at day 3 and the corresponding up-regulated genes are enriched in let-7 seed sequences. These results depict how miRNA expression changes may affect the expression of mRNAs involved in EB formation on a genome-wide scale. Understanding the regulatory effects of miRNAs during EB formation may enable more efficient derivation of different cell types in culture.
Collapse
|
36
|
Yu F, Li J, Chen H, Fu J, Ray S, Huang S, Zheng H, Ai W. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011; 30:2161-72. [PMID: 21242971 PMCID: PMC3088782 DOI: 10.1038/onc.2010.591] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kruppel-like factor 4 (KLF4) is highly expressed in more than 70% of breast cancers and functions as an oncogene. However, an exact mechanism by which KLF4 enhances tumorigenesis of breast cancer remains unknown. In this study, we show that KLF4 was highly expressed in cancer stem cell (CSC)-enriched populations in mouse primary mammary tumor and breast cancer cell lines. Knockdown of KLF4 in breast cancer cells (MCF-7 and MDA-MB-231) decreased the proportion of stem/progenitor cells as demonstrated by expression of stem cell surface markers such as aldehyde dehydrogenase 1 (ALDH1), side-population (SP), and by in vitro mammosphere assay. Consistently KLF4 overexpression led to an increase of the cancer stem cell population. KLF4 knockdown also suppressed cell migration and invasion in MCF-7 and MDA-MB-231 cells. Furthermore, knockdown of KLF4 reduced colony formation in vitro and inhibited tumorigenesis in immunocompromised NOD/SCID mice, supporting an oncogenic role for KLF4 in breast cancer development. Further mechanistic studies revealed that the Notch signaling pathway was required for KLF4-mediated cell migration and invasion, but not for CSC maintenance. Taken together, our study provides evidence that KLF4 plays a potent oncogenic role in mammary tumorigenesis likely by maintaining stem cell-like features and by promoting cell migration and invasion. Thus, targeting KLF4 may provide an effective therapeutic approach to suppress tumorigenicity in breast cancer.
Collapse
Affiliation(s)
- F Yu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pennings JL, van Dartel DA, Pronk TE, Hendriksen PJ, Piersma AH. Identification by Gene Coregulation Mapping of Novel Genes Involved in Embryonic Stem Cell Differentiation. Stem Cells Dev 2011; 20:115-26. [DOI: 10.1089/scd.2010.0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jeroen L.A. Pennings
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dorien A.M. van Dartel
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Health Risk Analysis and Toxicology (GRAT), Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tessa E. Pronk
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Health Risk Analysis and Toxicology (GRAT), Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Peter J.M. Hendriksen
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Aldert H. Piersma
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Veterinary Faculty, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
38
|
Parisi S, Cozzuto L, Tarantino C, Passaro F, Ciriello S, Aloia L, Antonini D, De Simone V, Pastore L, Russo T. Direct targets of Klf5 transcription factor contribute to the maintenance of mouse embryonic stem cell undifferentiated state. BMC Biol 2010; 8:128. [PMID: 20875108 PMCID: PMC2955566 DOI: 10.1186/1741-7007-8-128] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/27/2010] [Indexed: 01/14/2023] Open
Abstract
Background A growing body of evidence has shown that Krüppel-like transcription factors play a crucial role in maintaining embryonic stem cell (ESC) pluripotency and in governing ESC fate decisions. Krüppel-like factor 5 (Klf5) appears to play a critical role in these processes, but detailed knowledge of the molecular mechanisms of this function is still not completely addressed. Results By combining genome-wide chromatin immunoprecipitation and microarray analysis, we have identified 161 putative primary targets of Klf5 in ESCs. We address three main points: (1) the relevance of the pathways governed by Klf5, demonstrating that suppression or constitutive expression of single Klf5 targets robustly affect the ESC undifferentiated phenotype; (2) the specificity of Klf5 compared to factors belonging to the same family, demonstrating that many Klf5 targets are not regulated by Klf2 and Klf4; and (3) the specificity of Klf5 function in ESCs, demonstrated by the significant differences between Klf5 targets in ESCs compared to adult cells, such as keratinocytes. Conclusions Taken together, these results, through the definition of a detailed list of Klf5 transcriptional targets in mouse ESCs, support the important and specific functional role of Klf5 in the maintenance of the undifferentiated ESC phenotype. See: http://www.biomedcental.com/1741-7007/8/125
Collapse
Affiliation(s)
- Silvia Parisi
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 482, 80145 Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Testa G, Tarantino C, Parisi S, Galizia G, Passaro F, Della-Morte D, Abete P, Rengo F, Salvatore F, Pastore L. Serum withdrawal after embryoid body formation does not impair cardiomyocyte development from mouse embryonic stem cells. Cytotherapy 2010; 13:350-6. [PMID: 20873992 DOI: 10.3109/14653249.2010.520311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Procedures for cardiomyocyte differentiation of mouse embryonic stem cells (mESCs) utilize different amounts of serum. Because the serum composition is unknown, unambiguous characterization of the differentiation process is biased. All reported serum-free protocols used for compound testing provide serum throughout the differentiation process. We report on an embryoid body (EB)-based procedure for cardiomyocyte differentiation of mESCs in which serum is provided only in the earliest step (hanging drop, 0-2 days). METHODS To assess cardiomyocyte differentiation, we generated an mESCs clone that expressed green fluorescence protein (GFP) under the control of the myosin light chain 2v (MLC2v) promoter. To define the lowest serum concentration required for efficient induction of cardiomyocyte differentiation, EBs were formed in presence of 5% (S5), 10% (S10) and 15% (S15) serum until day 2, then switched to a serum-free medium. RESULTS Analysis of cardiac-specific transcripts on day 6 of differentiation showed that 10% (S10) was the minimum amount of serum for efficient continuation of cultures under serum-free conditions. Spontaneously beating foci were detected in 90.0 ± 5.5% of S10 EBs on day 7 of differentiation, and cardiomyocyte markers were expressed from day 8 of differentiation (MLC2v-driven GFP; α-myosin heavy chain). Dose-response curves to isoproterenol showed that the beating rate increased by 113.0 ± 39.4%, with a concentration for half-maximal effect (EC(50)) of 25.7 nm. CONCLUSIONS The development of functional cardiomyocytes from mESCs is not affected by serum withdrawal after EBs formation. This culture system represents a new model for cardiomyocyte differentiation of mESCs to assess the effects of compounds on the process of cardiomyogenesis.
Collapse
|
40
|
Saulnier N, Puglisi MA, Lattanzi W, Castellini L, Pani G, Leone G, Alfieri S, Michetti F, Piscaglia AC, Gasbarrini A. Gene profiling of bone marrow- and adipose tissue-derived stromal cells: a key role of Kruppel-like factor 4 in cell fate regulation. Cytotherapy 2010; 13:329-40. [PMID: 20849362 DOI: 10.3109/14653249.2010.515576] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS Bone marrow- and adipose tissue-derived mesenchymal stromal cells (MSC) represent promising sources for regenerative medicine. However, the precise molecular mechanisms underlying MSC stemness maintenance versus differentiation are not fully understood. The aim of this study was to compare the genome-wide expression profiles of bone marrow-and adipose tissue-derived MSC, in order to identify a common molecular stemness core. METHODS Molecular profiling was carried out using Affymetrix microarray and relevant genes were further validated by Q-PCR. RESULTS We identified an overlapping dataset of 190 transcripts commonly regulated in both cell populations, which included several genes involved in stemness regulation (i.e. self-renewal potential and the ability to generate differentiated cells), various signaling pathways and transcription factors. In particular, we identified a central role of the Kruppel-like factor 4 (KLF4) DNA-binding protein in regulating MSC transcriptional activity. CONCLUSIONS Our results provide new insights toward understanding the molecular basis of MSC stemness maintenance and underline the ability of KLF4 to maintain cells in an undifferentiated state.
Collapse
Affiliation(s)
- Nathalie Saulnier
- Department of Internal Medicine and Gastroenterology, Gemelli University Hospital, Catholic University of Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bruchova-Votavova H, Yoon D, Prchal JT. miR-451 enhances erythroid differentiation in K562 cells. Leuk Lymphoma 2010; 51:686-93. [PMID: 20218812 DOI: 10.3109/10428191003629362] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Erythropoiesis is a multistep process regulated at the molecular level by intrinsic and extrinsic factors including microRNAs (miRNAs). We previously identified aberrant expression of miR-451 and miR-150 in polycythemia vera (PV) erythroid differentiating cells. To address the functional relevance of these miRNAs in erythroid differentiation, we employed synthetic mimics and inhibitors of miR-451 and miR-150 in erythroid differentiating K562 cells. We observed that miR-451 up-regulation and miR-150 down-regulation are associated with progression of erythroid maturation in K562 cells. Further, enforced expression of miR-451 promoted erythroid differentiation. Inhibition of miR-150 reduced hemoglobinization of K562 cells. Microarray data suggested potential targets regulated by miR-451: UBE2H, ARPP-19; and by miR-150: MS4A3, AGA, PTPRR. Our results demonstrate that miR-451 is involved in the regulation of erythroid differentiation and functions as an enhancer of differentiation. These data support the concept that aberrant expression of miRNAs may contribute to abnormal erythropoiesis such as that of PV.
Collapse
|
42
|
Hall J, Guo G, Wray J, Eyres I, Nichols J, Grotewold L, Morfopoulou S, Humphreys P, Mansfield W, Walker R, Tomlinson S, Smith A. Oct4 and LIF/Stat3 additively induce Krüppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell 2010; 5:597-609. [PMID: 19951688 DOI: 10.1016/j.stem.2009.11.003] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/16/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Embryonic stem cell (ESC) pluripotency is dependent on an intrinsic gene regulatory network centered on Oct4. Propagation of the pluripotent state is stimulated by the cytokine leukemia inhibitory factor (LIF) acting through the transcriptional regulator Stat3. Here, we show that this extrinsic stimulus converges with the intrinsic circuitry in Krüppel-factor activation. Oct4 primarily induces Klf2 while LIF/Stat3 selectively enhances Klf4 expression. Overexpression of either factor reduces LIF dependence, but with quantitative and qualitative differences. Unlike Klf4, Klf2 increases ESC clonogenicity, maintains undifferentiated ESCs in the genetic absence of Stat3, and confers resistance to BMP-induced differentiation. ESCs expanded with Klf2 remain capable of contributing to adult chimeras. Postimplantation-embryo-derived EpiSCs lack both Klf2 and Klf4 and expression of either can reinstate naive pluripotency. These findings indicate that Oct4 and Stat3 intersect in directing expression of Klf transcriptional regulators with overlapping properties that additively reinforce ground-state ESC pluripotency, identity, and self-renewal.
Collapse
Affiliation(s)
- John Hall
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang P, Andrianakos R, Yang Y, Liu C, Lu W. Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem 2010; 285:9180-9. [PMID: 20071344 PMCID: PMC2838337 DOI: 10.1074/jbc.m109.077958] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/12/2010] [Indexed: 01/06/2023] Open
Abstract
Transcription factor Kruppel-like factor 4 (Klf4) is essential for somatic cell reprogramming. In addition, Klf4 seems to play a redundant role along with other Klf family proteins in embryonic stem (ES) cell self-renewal. However, how Klf4 regulates ES cell self-renewal and somatic cell reprogramming is still poorly understood. Here we report that Klf4 is required for both ES cell self-renewal and maintenance of pluripotency and that the expression of Klf4 prevents ES cell differentiation in response to withdrawal of leukemia inhibitory factor (LIF) or bone morphogenetic protein 4 (BMP4). In addition, Klf4 directly binds to the promoter region of Nanog and regulates its expression. Expression of Nanog prevents ES cell differentiation even when Klf4 gene expression is knocked down. On the other hand, knockdown of Nanog expression induces differentiation of ES cells that overexpress Klf4. Taken together, these results demonstrate that Klf4 functions upstream of Nanog in ES cell self-renewal and in preventing ES cell differentiation.
Collapse
Affiliation(s)
- Peilin Zhang
- From the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Rose Andrianakos
- From the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Yang Yang
- From the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Chunming Liu
- the Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Wange Lu
- From the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| |
Collapse
|
44
|
van Dartel DA, Pennings JL, van Schooten FJ, Piersma AH. Transcriptomics-based identification of developmental toxicants through their interference with cardiomyocyte differentiation of embryonic stem cells. Toxicol Appl Pharmacol 2010; 243:420-8. [DOI: 10.1016/j.taap.2009.12.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/15/2009] [Indexed: 11/16/2022]
|
45
|
Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, Mattick JS. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA (NEW YORK, N.Y.) 2009; 15:2013-2027. [PMID: 19767420 PMCID: PMC2764477 DOI: 10.1261/rna.1705309] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 08/18/2009] [Indexed: 05/28/2023]
Abstract
The Sox2 gene is a key regulator of pluripotency embedded within an intron of a long noncoding RNA (ncRNA), termed Sox2 overlapping transcript (Sox2ot), which is transcribed in the same orientation. However, this ncRNA remains uncharacterized. Here we show that Sox2ot has multiple transcription start sites associated with genomic features that indicate regulated expression, including highly conserved elements (HCEs) and chromatin marks characteristic of gene promoters. To identify biological processes in which Sox2ot may be involved, we analyzed its expression in several developmental systems, compared to expression of Sox2. We show that Sox2ot is a stable transcript expressed in mouse embryonic stem cells, which, like Sox2, is down-regulated upon induction of embryoid body (EB) differentiation. However, in contrast to Sox2, Sox2ot is up-regulated during EB mesoderm-lineage differentiation. In adult mouse, Sox2ot isoforms were detected in tissues where Sox2 is expressed, as well as in different tissues, supporting independent regulation of expression of the ncRNA. Sox2dot, an isoform of Sox2ot transcribed from a distal HCE located >500 kb upstream of Sox2, was detected exclusively in the mouse brain, with enrichment in regions of adult neurogenesis. In addition, Sox2ot isoforms are transcribed from HCEs upstream of Sox2 in other vertebrates, including in several regions of the human brain. We also show that Sox2ot is dynamically regulated during chicken and zebrafish embryogenesis, consistently associated with central nervous system structures. These observations provide insight into the structure and regulation of the Sox2ot gene, and suggest conserved roles for Sox2ot orthologs during vertebrate development.
Collapse
Affiliation(s)
- Paulo P Amaral
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia,QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Butterfield NC, Metzis V, McGlinn E, Bruce SJ, Wainwright BJ, Wicking C. Patched 1 is a crucial determinant of asymmetry and digit number in the vertebrate limb. Development 2009; 136:3515-24. [DOI: 10.1242/dev.037507] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vertebrate hedgehog receptor patched 1 (Ptc1) is crucial for negative regulation of the sonic hedgehog (Shh) pathway during anterior-posterior patterning of the limb. We have conditionally inactivated Ptc1 in the mesenchyme of the mouse limb using Prx1-Cre. This results in constitutive activation of hedgehog (Hh) signalling during the early stages of limb budding. Our data suggest that variations in the timing and efficiency of Cre-mediated excision result in differential forelimb and hindlimb phenotypes. Hindlimbs display polydactyly (gain of digits) and a molecular profile similar to the Gli3 mutant extra-toes. Strikingly, forelimbs are predominantly oligodactylous (displaying a loss of digits), with a symmetrical, mirror-image molecular profile that is consistent with re-specification of the anterior forelimb to a posterior identity. Our data suggest that this is related to very early inactivation of Ptc1 in the forelimb perturbing the gene regulatory networks responsible for both the pre-patterning and the subsequent patterning stages of limb development. These results establish the importance of the downstream consequences of Hh pathway repression, and identify Ptc1 as a key player in limb patterning even prior to the onset of Shh expression.
Collapse
Affiliation(s)
- Natalie C. Butterfield
- The University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Vicki Metzis
- The University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Edwina McGlinn
- Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephen J. Bruce
- The University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Brandon J. Wainwright
- The University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | - Carol Wicking
- The University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| |
Collapse
|
47
|
Abstract
We present CisFinder software, which generates a comprehensive list of motifs enriched in a set of DNA sequences and describes them with position frequency matrices (PFMs). A new algorithm was designed to estimate PFMs directly from counts of n-mer words with and without gaps; then PFMs are extended over gaps and flanking regions and clustered to generate non-redundant sets of motifs. The algorithm successfully identified binding motifs for 12 transcription factors (TFs) in embryonic stem cells based on published chromatin immunoprecipitation sequencing data. Furthermore, CisFinder successfully identified alternative binding motifs of TFs (e.g. POU5F1, ESRRB, and CTCF) and motifs for known and unknown co-factors of genes associated with the pluripotent state of ES cells. CisFinder also showed robust performance in the identification of motifs that were only slightly enriched in a set of DNA sequences.
Collapse
Affiliation(s)
- Alexei A Sharov
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
48
|
The effect of bone morphogenetic protein 4 on the differentiation of mouse embryonic stem cell to erythroid lineage in serum free and serum supplemented media. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2009; 5:275-82. [PMID: 23675148 PMCID: PMC3614786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/23/2009] [Indexed: 11/03/2022]
Abstract
This study was done to compare the effects of bone morphogenetic protein-4 (BMP-4) on mouse embryonic stem cells (ESC) differentiation to erythroid lineage in serum free and serum supplemented media. The embryoid bodies (EBs) cells were seeded in semisolid serum free and serum supplemented media in the presence of different concentrations of BMP-4. The erythroid colonies were assessed morphologically, ultrastructurally and by benzidine staining. The expression of the epsilon (ε), βH1 and βmajor globins, Runx1 and β2m genes was evaluated by Real time PCR. The colony size and the percent of benzidine-positive colonies increased in both BMP-4 supplementd groups but the number of colonies were lower in these groups than control. Erythropoiesis related genes were expressed in both serum free and serum supplemented groups. There were not significant differences between the ratios of genes expression to β2m in these groups except the ratio of Runx1 was significantly higher in serum free group (P<0.05). The ratio of ε and βH1 to β2m in EBs was higher than both BMP-4 containing groups (P<0.05) and βmajor was not expressed in EB cells. These findings showed in serum free condition the effects of BMP-4 on the erythroid differentiation was prominent than serum supplemented group.
Collapse
|
49
|
Dong JT, Chen C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 2009; 66:2691-706. [PMID: 19448973 PMCID: PMC11115749 DOI: 10.1007/s00018-009-0045-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 02/08/2023]
Abstract
KLF5 (Kruppel-like factor 5) is a basic transcription factor binding to GC boxes at a number of gene promoters and regulating their transcription. KLF5 is expressed during development and, in adults, with higher levels in proliferating epithelial cells. The expression and activity of KLF5 are regulated by multiple signaling pathways, including Ras/MAPK, PKC, and TGFbeta, and various posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and sumoylation. Consistently, KLF5 mediates the signaling functions in cell proliferation, cell cycle, apoptosis, migration, differentiation, and stemness by regulating gene expression in response to environment stimuli. The expression of KLF5 is frequently abnormal in human cancers and in cardiovascular disease-associated vascular smooth muscle cells (VSMCs). Due to its significant functions in cell proliferation, survival, and differentiation, KLF5 could be a potential diagnostic biomarker and therapeutic target for cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Jin-Tang Dong
- Department of Hematology and Medical Oncology, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|
50
|
Zovoilis A, Smorag L, Pantazi A, Engel W. Members of the miR-290 cluster modulate in vitro differentiation of mouse embryonic stem cells. Differentiation 2009; 78:69-78. [PMID: 19628328 DOI: 10.1016/j.diff.2009.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/27/2009] [Accepted: 06/18/2009] [Indexed: 11/15/2022]
Abstract
We report the biological effects of miR-290 cluster via gain-of-function or loss-of-function experiments in mouse embryonic stem cells (ESCs) cultured under differentiation conditions. Under these conditions we found that overexpression of miR-290 cluster in ESCs cannot prevent downregulation of Oct-4, but inhibition results in earlier downregulation of Oct-4 compared with the negative control. In consistence with previous findings that report ectopic expression of Brachyury during gastrulation in Argonaute-2 KO mice due to impaired miRNA function, we show that miR-290 cluster regulates negatively differentiation of ESCs towards mesodermal and germ cell lineage. These results suggest that although incapable to maintain pluripotent state alone, miR-290 cluster inhibits ESC differentiation and it is involved in the pathways controlling mesoderm and primordial germ cell differentiation. Finally, we provide proofs that members of this cluster target Dkk-1 gene, a Wnt pathway inhibitor, and affect this pathway, which can partially explain why miR-290 cluster favours pluripotency against differentiation.
Collapse
Affiliation(s)
- Athanasios Zovoilis
- Institute of Human Genetics, University of Goettingen, Heinrich-Dueker-Weg 12, D-37073 Goettingen, Germany.
| | | | | | | |
Collapse
|