1
|
Wang X, Shi B, Xia C, Hou M, Wang J, Tian A, Shi C, Ma C. Poly-L-lysine functionalized silica membrane-enhanced colorimetric loop-mediated isothermal amplification for sensitive and rapid detection of Vibrio parahaemolyticus. Talanta 2025; 288:127744. [PMID: 39961248 DOI: 10.1016/j.talanta.2025.127744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Traditional detection of foodborne pathogen relies on advanced analyzers, which is inadequate for the rapid control of infections, particularly in resource-limited regions, highlighting the necessity of developing detection systems for point-of-care testing (POCT). Herein, taking Vibrio parahaemolyticus as a detecting target, we reported poly-L-lysine functionalized silica membrane (PL-SM) based loop-mediated isothermal amplification (pLAMP) platform for sensitive on-site detection. This platform utilized PL-SM for DNA capture driven by the electrostatic attraction between protonated amine groups of poly-L-lysine and negatively charged phosphate groups of DNA, followed by introducing a colorimetric indicator calcein for LAMP amplification. After optimization, the colorimetric mode of pLAMP allowed the screening of V. parahaemolyticus with the visual limit of detection (vLOD) of 1 CFU/mL in 50 min, 1000-fold lower than methods based on commercial kits. Validation was performed using 174 seafoods, which was 97 % concordant to those of real-time PCR. Furthermore, an image processing approach was developed based on the analysis of the RGB under UV light. Paired with a smartphone, the objective analytical method could be readily conducted in the field. Thus, we propose a sensitive and visual detection platform, which may play a crucial role in improving testing efficiency and accuracy in food safety, medical diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
- Xiujuan Wang
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Binghui Shi
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Cengceng Xia
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Mengnan Hou
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jingying Wang
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Anning Tian
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Sewid AH, Dylewski HC, Ramos JH, Morgan BM, Gelalcha BD, D'Souza DH, Wu JJ, Dego OK, Eda S. Colorimetric and electrochemical analysis of DNAzyme-LAMP amplicons for the detection of Escherichia coli in food matrices. Sci Rep 2024; 14:28942. [PMID: 39578633 PMCID: PMC11584896 DOI: 10.1038/s41598-024-80392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Foodborne bacteria like Escherichia coli threaten global food security, necessitating affordable, on-site detection methods, especially in resource-limited settings. This study optimized loop-mediated isothermal amplification (LAMP) integrated with peroxidase-mimicking G-quadruplex DNA structures (DNAzyme), termed DNAzyme-LAMP which was designed to incorporate two different catalytic DNAzymes per amplification unit, enabling colorimetric detection of E. coli in leafy vegetables and milk samples. Additionally, we introduce a novel electrochemical method that enhances analytical sensitivity. The optimized DNAzyme-LAMP achieved a detection limit below 6.3 CFU per reaction or 0.1 aM gene copies. This system lays the groundwork for the development of on-site biosensors and can be adapted for detecting other foodborne pathogens.
Collapse
Affiliation(s)
- Alaa H Sewid
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haley C Dylewski
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Joseph H Ramos
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Bailey M Morgan
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Benti D Gelalcha
- Departments of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Doris H D'Souza
- Departments of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, USA
| | - Oudessa Kerro Dego
- Departments of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Shigetoshi Eda
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
3
|
Li D, Zhao J, Lan W, Zhao Y, Sun X. Effect of food matrix on rapid detection of Vibrio parahaemolyticus in aquatic products based on toxR gene. World J Microbiol Biotechnol 2023; 39:188. [PMID: 37156898 DOI: 10.1007/s11274-023-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Vibrio parahaemolyticus has become an important public threat to human health. Rapid and robust pathogen diagnostics are necessary for monitoring its outbreak and spreading. Herein, we report an assay for the detection of V. parahaemolyticus based on recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD), namely RAA-LFD. The RAA-LFD took 20 min at 36~38 ℃, and showed excellent specificity. It detected as low as 6.4 fg/µL of V. parahaemolyticus in genomic DNA, or 7.4 CFU/g spiked food samples with 4 h of enrichment. The limit of detection in shrimp (Litopenaeus Vannamei), fish (Carassius auratus), clam (Ruditapes philippinarum) evidenced that sensitivity was considerably affected by the food matrix. The presence of food matrix reduced the sensitivity of spiked food samples by 10 ~ 100 times. In the filed samples detection, RAA-LFD method showed good coincidence with GB4789.7-2013 method and PCR method at rates of 90.6% and 94.1%, respectively. RAA-LFD has high accuracy and sensitivity for the detection of V. parahaemolyticus, which can serve as a model tool to meet the growing need for point-of-care diagnosis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Darong Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiayi Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
4
|
Gavilan RG, Caro-Castro J, Blondel CJ, Martinez-Urtaza J. Vibrio parahaemolyticus Epidemiology and Pathogenesis: Novel Insights on an Emerging Foodborne Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:233-251. [PMID: 36792879 DOI: 10.1007/978-3-031-22997-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The epidemiological dynamics of V. parahaemolyticus´ infections have been characterized by the abrupt appearance of outbreaks in remote areas where these diseases had not been previously detected, without knowing the routes of entry of the pathogens in the new area. However, there are recent studies that show the link between the appearance of epidemic outbreaks of Vibrio and environmental factors such as oceanic transport of warm waters, which has provided a possible mechanism for the dispersion of Vibrio diseases globally. Despite this evidence, there is little information on the possible routes of entry and transport of infectious agents from endemic countries to the entire world. In this sense, the recent advances in genomic sequencing tools are making it possible to infer possible biogeographical patterns of diverse pathogens with relevance in public health like V. parahaemolyticus. In this chapter, we will address several general aspects about V. parahaemolyticus, including their microbiological and genetic detection, main virulence factors, and the epidemiology of genotypes involved in foodborne outbreaks globally.
Collapse
Affiliation(s)
- Ronnie G Gavilan
- Instituto Nacional de Salud, Lima, Peru. .,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| | | | - Carlos J Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Tian Z, Yang L, Qi X, Zheng Q, Shang D, Cao J. Visual LAMP method for the detection of Vibrio vulnificus in aquatic products and environmental water. BMC Microbiol 2022; 22:256. [PMID: 36271365 PMCID: PMC9585733 DOI: 10.1186/s12866-022-02656-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background A visual, rapid, simple method was developed based on a loop-mediated isothermal amplification (LAMP) assay to detect Vibrio vulnificus in aquatic products and aquaculture waters. Results Genomic DNA was extracted from Vibrio vulnificus using the boiling method, and optimized primers were used to detect the gyrB gene using a visual LAMP method. The sensitivity of the assay was 10 fg/μL, and the obtained results were stable and reliable. Out of 655 aquatic product samples and 558 aquaculture water samples, the positive rates of Vibrio vulnificus detection were 9.01% and 8.60%, respectively, which are markedly higher than those of the traditional culture identification methods. Conclusion The relatively simple technical requirements, low equipment cost, and rapid detection make the visual LAMP method for the detection of Vibrio vulnificus a convenient choice for field detection in the aquaculture industry.
Collapse
Affiliation(s)
- Zhuo Tian
- Liaoning Normal University, Dalian, 116023, China.,Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China.,Dalian Customs Technology Center, Dalian, 116001, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Xin Qi
- Dalian Customs Technology Center, Dalian, 116001, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Dejing Shang
- Liaoning Normal University, Dalian, 116023, China.
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|
6
|
Van Ngoc H, Quyen TL, Vinayaka AC, Bang DD, Wolff A. Point-of-care system for rapid real-time detection of SARS-CoV-2 virus based on commercially available Arduino platforms. Front Bioeng Biotechnol 2022; 10:917573. [PMID: 35992344 PMCID: PMC9385952 DOI: 10.3389/fbioe.2022.917573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic emphasized the importance of rapid, portable, and on-site testing technologies necessary for resource-limited settings for effective testing and screening to reduce spreading of the infection. Realizing this, we developed a fluorescence-based point-of-care (fPOC) detection system with real-time reverse transcriptase loop-mediated isothermal amplification for rapid and quantitative detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The system is built based on the Arduino platform compatible with commercially available open-source hardware-software and off-the-shelf electronic components. The fPOC system comprises of three main components: 1) an instrument with integrated heaters, 2) optical detection components, and 3) an injection-molded polymeric cartridge. The system was tested and experimentally proved to be able to use for fast detection of the SARS-CoV-2 virus in real-time in less than 30 min. Preliminary results of testing the performance of the fPOC revealed that the fPOC could detect the SARS-CoV-2 virus at a limit of detection (LOD50%) at two to three copies/microliter (15.36 copies/reaction), which was comparable to reactions run on a standard commercial thermocycler. The performance of the fPOC was evaluated with 12 SARS-CoV-2 clinical throat swab samples that included seven positive and five negative samples, as confirmed by reverse transcription-polymerase chain reaction. The fPOC showed 100% agreement with the commercial thermocycler. This simple design of the fPOC system demonstrates the potential to greatly enhance the practical applicability to develop a totally integrated point-of-care system for rapid on-site screening of the SARS-CoV-2 virus in the management of the pandemic.
Collapse
Affiliation(s)
- Huynh Van Ngoc
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Than Linh Quyen
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Aaydha Chidambara Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Anders Wolff
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| |
Collapse
|
7
|
Papadakis G, Pantazis AK, Fikas N, Chatziioannidou S, Tsiakalou V, Michaelidou K, Pogka V, Megariti M, Vardaki M, Giarentis K, Heaney J, Nastouli E, Karamitros T, Mentis A, Zafiropoulos A, Sourvinos G, Agelaki S, Gizeli E. Portable real-time colorimetric LAMP-device for rapid quantitative detection of nucleic acids in crude samples. Sci Rep 2022; 12:3775. [PMID: 35260588 PMCID: PMC8904468 DOI: 10.1038/s41598-022-06632-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/27/2022] [Indexed: 02/08/2023] Open
Abstract
Loop-mediated isothermal amplification is known for its high sensitivity, specificity and tolerance to inhibiting-substances. In this work, we developed a device for performing real-time colorimetric LAMP combining the accuracy of lab-based quantitative analysis with the simplicity of point-of-care testing. The device innovation lies on the use of a plastic tube anchored vertically on a hot surface while the side walls are exposed to a mini camera able to take snapshots of the colour change in real time during LAMP amplification. Competitive features are the rapid analysis (< 30 min), quantification over 9 log-units, crude sample-compatibility (saliva, tissue, swabs), low detection limit (< 5 copies/reaction), smartphone-operation, fast prototyping (3D-printing) and ability to select the dye of interest (Phenol red, HNB). The device’s clinical utility is demonstrated in cancer mutations-analysis during the detection of 0.01% of BRAF-V600E-to-wild-type molecules from tissue samples and COVID-19 testing with 97% (Ct < 36.8) and 98% (Ct < 30) sensitivity when using extracted RNA and nasopharyngeal-swabs, respectively. The device high technology-readiness-level makes it a suitable platform for performing any colorimetric LAMP assay; moreover, its simple and inexpensive fabrication holds promise for fast deployment and application in global diagnostics.
Collapse
Affiliation(s)
- G Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece. .,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece.
| | - A K Pantazis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - N Fikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - S Chatziioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece.,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - V Tsiakalou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - K Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - V Pogka
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - M Megariti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - M Vardaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - K Giarentis
- Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - J Heaney
- Advanced Pathogens Diagnostics Unit, University College London Hospitals NHS Trust, London, WC1H 9AX, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - E Nastouli
- Advanced Pathogens Diagnostics Unit, University College London Hospitals NHS Trust, London, WC1H 9AX, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - T Karamitros
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - A Mentis
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - A Zafiropoulos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - G Sourvinos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - S Agelaki
- Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece.,Department of Medical Oncology, University General Hospital, 71110, Heraklion, Greece
| | - E Gizeli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece. .,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece.
| |
Collapse
|
8
|
Yuan N, Yang H, Zhang Y, Xu H, Lu X, Xu H, Zhang W. Development of real‐time fluorescence saltatory rolling circle amplification for rapid detection of
Vibrio parahaemolyticus
in seafood. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ning Yuan
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
- College of Science and Technology Hebei Agricultural University Cangzhou 061100 China
| | - Haoyu Yang
- Department of Sports Work Hebei Agricultural University Baoding 071001 China
| | - Yunzhe Zhang
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
| | - Hancong Xu
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
| | - Xin Lu
- College of Science and Technology Hebei Agricultural University Cangzhou 061100 China
| | - Hui Xu
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
- College of Science and Technology Hebei Agricultural University Cangzhou 061100 China
| | - Wei Zhang
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
- College of Science and Technology Hebei Agricultural University Cangzhou 061100 China
- College of Life Sciences Hebei Agricultural University Baoding 071001 China
| |
Collapse
|
9
|
Padzil F, Mariatulqabtiah AR, Tan WS, Ho KL, Isa NM, Lau HY, Abu J, Chuang KP. Loop-Mediated Isothermal Amplification (LAMP) as a Promising Point-of-Care Diagnostic Strategy in Avian Virus Research. Animals (Basel) 2021; 12:ani12010076. [PMID: 35011181 PMCID: PMC8744981 DOI: 10.3390/ani12010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Many of the existing screening methods of avian viruses depend on clinical symptoms and pathological gross examinations that still necessitate confirmatory microscopic testing. Confirmation of a virus is often conducted at centralized laboratories that are well-equipped with instruments for virus isolation, hemagglutinin inhibition, virus neutralization, ELISA, PCR and qPCR. These assays are known for their great accuracy and sensitivity, and hence are set as standard practices. Nevertheless, limitations arise due to the time, cost and on-site applicability. As the technology progresses, molecular diagnostics should be more accessible to isolated areas and even practicable for use by non-skilled personnel such as farmers and private breeders. One of the point-of-care diagnostic strategies to consider for such matters is loop-mediated isothermal amplification (LAMP). Abstract Over the years, development of molecular diagnostics has evolved significantly in the detection of pathogens within humans and their surroundings. Researchers have discovered new species and strains of viruses, while mitigating the viral infections that occur, owing to the accessibility of nucleic acid screening methods such as polymerase chain reaction (PCR), quantitative (real-time) polymerase chain reaction (qPCR) and reverse-transcription qPCR (RT-qPCR). While such molecular detection methods are widely utilized as the benchmark, the invention of isothermal amplifications has also emerged as a reliable tool to improvise on-field diagnosis without dependence on thermocyclers. Among the established isothermal amplification technologies are loop-mediated isothermal amplification (LAMP), recombinant polymerase amplification (RPA), strand displacement activity (SDA), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA) and rolling circle amplification (RCA). This review highlights the past research on and future prospects of LAMP, its principles and applications as a promising point-of-care diagnostic method against avian viruses.
Collapse
Affiliation(s)
- Faiz Padzil
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.P.); (W.S.T.); (N.M.I.)
- Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam 40170, Selangor, Malaysia
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.P.); (W.S.T.); (N.M.I.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-297-691-938
| | - Wen Siang Tan
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.P.); (W.S.T.); (N.M.I.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nurulfiza Mat Isa
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.P.); (W.S.T.); (N.M.I.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia;
| | - Jalila Abu
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Shen Z, Liu Y, Chen L. Qualitative and Quantitative Detection of Potentially Virulent Vibrio parahaemolyticus in Drinking Water and Commonly Consumed Aquatic Products by Loop-Mediated Isothermal Amplification. Pathogens 2021; 11:10. [PMID: 35055958 PMCID: PMC8781264 DOI: 10.3390/pathogens11010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. In this study, a simple, specific, and user-friendly diagnostic tool was developed for the first time for the qualitative and quantitative detection of toxins and infection process-associated genes opaR, vpadF, tlh, and ureC in V. parahaemolyticus using the loop-mediated isothermal amplification (LAMP) technique. Three pairs of specific inner, outer, and loop primers were designed for targeting each of these genes, and the results showed no cross-reaction with the other common Vibrios and non-Vibrios pathogenic bacteria. Positive results in the one-step LAMP reaction (at 65 °C for 45 min) were identified by a change to light green and the emission of bright green fluorescence under visible light and UV light (302 nm), respectively. The lowest limit of detection (LOD) for the target genes ranged from 1.46 × 10-5 to 1.85 × 10-3 ng/reaction (25 µL) for the genomic DNA, and from 1.03 × 10-2 to 1.73 × 100 CFU/reaction (25 µL) for the cell culture of V. parahaemolyticus. The usefulness of the developed method was demonstrated by the fact that the bacterium could be detected in water from various sources and commonly consumed aquatic product samples. The presence of opaR and tlh genes in the Parabramis pekinensis intestine indicated a risk of potentially virulent V. parahaemolyticus in the fish.
Collapse
Affiliation(s)
| | | | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.S.); (Y.L.)
| |
Collapse
|
11
|
Jeamsripong S, Khant W, Chuanchuen R. Distribution of phenotypic and genotypic antimicrobial resistance and virulence genes in Vibrio parahaemolyticus isolated from cultivated oysters and estuarine water. FEMS Microbiol Ecol 2021; 96:5828078. [PMID: 32358958 DOI: 10.1093/femsec/fiaa081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023] Open
Abstract
A total of 594 Vibrio parahaemolyticus isolates from cultivated oysters (n = 361) and estuarine water (n = 233) were examined for antimicrobial resistance (AMR) phenotype and genotype and virulence genes. Four hundred forty isolates (74.1%) exhibited resistance to at least one antimicrobial agent and 13.5% of the isolates were multidrug-resistant strains. Most of the V. parahaemolyticus isolates were resistant to erythromycin (54.2%), followed by sulfamethoxazole (34.7%) and trimethoprim (27.9%). The most common resistance genes were qnr (77.8%), strB (27.4%) and tet(A) (22.1%), whereas blaTEM (0.8%) was rarely found. Four isolates (0.7%) from oysters (n = 2) and estuarine water (n = 2) were positive to tdh, whereas no trh-positive isolates were observed. Significantly positive associations among AMR genes were observed. The SXT elements and class 1, 2 and 3 integrons were absent in all isolates. The results indicated that V. parahaemolyticus isolates from oysters and estuarine water were potential reservoirs of resistance determinants in the environment. This increasing threat of resistant bacteria in the environment potentially affects human health. A 'One Health' approach involved in multidisciplinary collaborations must be implemented to effectively manage antimicrobial resistance.
Collapse
Affiliation(s)
- Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, 39 Henry Dunant Road, Pathumwan, Bangkok 10330, Thailand
| | - Winn Khant
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, 39 Henry Dunant Road, Pathumwan, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, 39 Henry Dunant Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Hu Y, Li F, Zheng Y, Jiao X, Guo L. Isolation, Molecular Characterization and Antibiotic Susceptibility Pattern of Vibrio parahaemolyticus from Aquatic Products in the Southern Fujian Coast, China. J Microbiol Biotechnol 2020; 30:856-867. [PMID: 32160689 PMCID: PMC9728269 DOI: 10.4014/jmb.2001.01005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a major gastroenteritis-causing pathogen in many Asian countries. Antimicrobial resistance in V. parahaemolyticus has been recognized as a critical threat to food safety. In this study, we determined the prevalence and incidence of antimicrobial resistance in V. parahaemolyticus in the southern Fujian coast, China. A total of 62 isolates were confirmed in retail aquatic products from June to October of 2018. The serotype O3:K6 strains, the virulence genes tdh and trh, antibiotic susceptibility and molecular typing were investigated. Then plasmid profiling analysis and curing experiment were performed for multidrug-resistant strains. The results showed that the total occurrence of V. parahaemolyticus was 31% out of 200 samples. Five strains (8.1%) out of 62 isolates were identified as the V. parahaemolyticus O3:K6 pandemic clone. A large majority of isolates exhibited higher resistance to penicillin (77.4%), oxacillin (71%), ampicillin (66.1%) and vancomycin (59.7%). Seventy-one percent (44/62) of the isolates exhibited multiple antimicrobial resistance. All 62 isolates were grouped into 7 clusters by randomly amplified polymorphic DNA, and most of the isolates (80.6%) were distributed within cluster A. Plasmids were detected in approximately 75% of the isolates, and seven different profiles were observed. Seventy-six percent (25/33) of the isolates carrying the plasmids were eliminated by 0.006% SDS incubated at 42°C, a sublethal condition. The occurrence of multidrug-resistant strains could be an indication of the excessive use of antibiotics in aquaculture farming. The rational use of antimicrobial agents and the surveillance of antibiotic administration may reduce the acquisition of resistance by microorganisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 5000, P.R. China,Corresponding author Phone: +86-596-2528735 Fax: +86-596-2528735 E-mail:
| | - Fengxia Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Yixian Zheng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 5000, P.R. China
| | - Liqing Guo
- Zhangzhou Center for Disease Control and Prevention, Zhangzhou 6000, P.R. China
| |
Collapse
|
13
|
Rapid identification and detection of Vibrio parahaemolyticus via different types of modus operandi with LAMP method in vivo. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Vibrio parahaemolyticus, an easy-ignored food-borne pathogen, can cause bacterial outbreaks and human disease during early-stage infection. In this study, we aimed to evaluate the detection efficiency of loop-mediated isothermal amplification (LAMP) as an emerging technique to directly detect V. parahaemolyticus infection in mammalian hosts and assess its potential in clinical applications.
Methods
A LAMP assay was used for rapid identification of V. parahaemolyticus in a variety of mouse models in which animals were infected via the digestive tract, wounds, or through general infection, and the results were compared with routine analytical methods.
Results
Our results confirmed that the LAMP assay was capable of detecting V. parahaemolyticus in different mouse organs independent of the source of bacteria, although its sensitivity depended on the route of infection and the organ affected. Foodborne-derived V. parahaemolyticus was the most sensitive route, with the small intestine being the most sensitive organ. The LAMP assay indicated that V. parahaemolyticus that spread through the blood stream had the most serious consequences during early-stage infection. Positive LAMP results were identified in all blood samples from i.v. injected mice. Furthermore, the LAMP method could directly detect trace quantities of V. parahaemolyticus in fresh peripheral blood while conventional methods failed to do so, thereby shortening the time-to-result from days to minutes.
Conclusions
In this study, we demonstrated that the LAMP assay was effective in speeding up the detection of V. parahaemolyticus. Instead of being a secondary method to assist in the clinic, the LAMP assay has potential for use as the primary technique for rapid detection of V. parahaemolyticus in the future.
Collapse
|
14
|
Rapid visual detection of Vibrio parahaemolyticus in seafood samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye. World J Microbiol Biotechnol 2020; 36:76. [PMID: 32390085 DOI: 10.1007/s11274-020-02851-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
The detection and monitoring of Vibrio parahaemolyticus pathogen in aquatic foods have become essential for preventing outbreaks. In this study, loop-mediated isothermal amplification (LAMP) assay with the azo dye, hydroxynaphthol blue (HNB) was developed targeting species-specific tlh gene. The assay was carried out on 62 seafood samples that included clam and shrimp and compared with conventional LAMP assay performed with the commonly used fluorescent dye, conventional PCR, and real-time PCR (RT-PCR). Of 62 samples studied for tlh gene, 32 (51.61%) gave positive by HNB-LAMP, which comprised 22 (70.96%) clam samples and 10 (32.25%) shrimp samples. The HNB-LAMP assay was found to be highly sensitive, specific, and superior to conventional PCR (p > 0.05). RT-PCR presented higher sensitivity than HNB-LAMP; however, it has the limitation of being cost-intensive and requiring technical expertise to perform. HNB-LAMP is affordable, rapid, simple, and easy to perform, allowing naked eye visualization.
Collapse
|
15
|
Ndraha N, Wong HC, Hsiao HI. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr Rev Food Sci Food Saf 2020; 19:1187-1217. [PMID: 33331689 DOI: 10.1111/1541-4337.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative bacterium that is naturally present in the marine environment. Oysters, which are water filter feeders, may accumulate this pathogen in their soft tissues, thus increasing the risk of V. parahaemolyticus infection among people who consume oysters. In this review, factors affecting V. parahaemolyticus accumulation in oysters, the route of the pathogen from primary production to consumption, and the potential effects of climate change were discussed. In addition, intervention strategies for reducing accumulation of V. parahaemolyticus in oysters were presented. A literature review revealed the following information relevant to the present study: (a) managing the safety of oysters (for human consumption) from primary production to consumption remains a challenge, (b) there are multiple factors that influence the concentration of V. parahaemolyticus in oysters from primary production to consumption, (c) climate change could possibly affect the safety of oysters, both directly and indirectly, placing public health at risk, (d) many intervention strategies have been developed to control and/or reduce the concentration of V. parahaemolyticus in oysters to acceptable levels, but most of them are mainly focused on the downstream steps of the oyster supply chain, and (c) although available regulation and/or guidelines governing the safety of oyster consumption are mostly available in developed countries, limited food safety information is available in developing countries. The information provided in this review may serve as an early warning for managing the future effects of climate change on the safety of oyster consumption.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan (R.O.C.)
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.).,Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| |
Collapse
|
16
|
Lee JE, Mun H, Kim SR, Kim MG, Chang JY, Shim WB. A colorimetric Loop-mediated isothermal amplification (LAMP) assay based on HRP-mimicking molecular beacon for the rapid detection of Vibrio parahaemolyticus. Biosens Bioelectron 2020; 151:111968. [DOI: 10.1016/j.bios.2019.111968] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/21/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022]
|
17
|
Li X, Su Y, Chu H, Lyu S, Tian J, Xu W. Rapid strand replacement primer thermostat visual sensor based on Bst DNA polymerase and pyrophosphatase for detecting Vibrio parahaemolyticus. Food Chem 2019; 310:125955. [PMID: 31841941 DOI: 10.1016/j.foodchem.2019.125955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 11/17/2022]
Abstract
Vibrio parahaemolyticus is a major hidden danger of food safety. To develop a rapid, sensitive and on-site detecting method of Vibrio parahaemolyticus (V. parahaemolyticus), a strand replacement primer thermostat phosphate (SRPP) visual sensor was proposed, based on Bst DNA polymerase and pyrophosphatase. The novel strand replacement primer (SRP) facilitates chain substitution and to open a self-folding hairpin by adding region at its 3' end. Under the action of the SRP, a pair of external primers and two inner primers, target DNA is specifically amplified at 63 °C relies mainly on the hairpin. Many pyrophosphates (PPi) are simultaneously generated as by-products, which can be converted into phosphates (Pi) by pyrophosphatase for phosphomolybdate blue visual detection within 5 min. The proposed biosensor can detect 1.29 × 103 copies of V. parahaemolyticus within 35 min.
Collapse
Affiliation(s)
- Xuetong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Biological Science and Technology, Agricultural University of Shenyang, Shenyang 110866, China.
| | - Yuan Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huashuo Chu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuxia Lyu
- College of Biological Science and Technology, Agricultural University of Shenyang, Shenyang 110866, China
| | - Jingjing Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
18
|
Fallahi S, Babaei M, Rostami A, Mirahmadi H, Arab-Mazar Z, Sepahvand A. Diagnosis of Candida albicans: conventional diagnostic methods compared to the loop-mediated isothermal amplification (LAMP) assay. Arch Microbiol 2019; 202:275-282. [PMID: 31641798 DOI: 10.1007/s00203-019-01736-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023]
Abstract
Candida species cause a wide range of opportunistic infections in humans and animals. The detection of Candida species by conventional diagnosis methods is costly and time consuming. This study was conducted for the first time to evaluate and compare a relatively new molecular assay and the loop-mediated isothermal amplification (LAMP) technique with conventional methods for detection of Candida albicans. In this study, 70 different species of Candida identified by conventional methods were cultured on Sabouraud chloramphenicol agar medium and then the genomic DNA was extracted. The LAMP technique was performed using specific primers targeting the ITS2 gene of C. albicans. The analytical sensitivity and specificity of LAMP were measured using a tenfold serial dilution prepared from extracted DNA from standard C. albicans strain from 1 ng to 1 fg and the DNA samples of other clinical Candida species and three non-Candida yeast. Out of 70 yeast samples analyzed by LAMP technique, 24 samples (34.3%) were positive for C. albicans. Comparison of the results showed that the CHROMagar Candida and germ tube production methods are quite consistent with the LAMP technique, while the agreement amount between the results of carbohydrate assimilation and chlamydoconidia generation assays and LAMP technique was 98.5% and 72.8%, respectively. The detection limits of the LAMP assay were 10 fg of the DNA from the standard C. albicans strain. No amplification was observed in the DNA samples of other yeast species and only the DNA sample of standard C. albicans strain was amplified. Based on the results, it can be concluded that the LAMP method is as specific and precise as common diagnostic methods, but is faster, easier deployable or more sensitive. Therefore, this method can be used as a suitable complementary assay for Candida diagnosis in medical diagnostic laboratories and field conditions.
Collapse
Affiliation(s)
- Shirzad Fallahi
- Hepatitis Research Center, Lorestan University of Medical Science, Khorramabad, Iran.,Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Babaei
- Department of Biotechnology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Hadi Mirahmadi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Arab-Mazar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Sepahvand
- Hepatitis Research Center, Lorestan University of Medical Science, Khorramabad, Iran. .,Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
19
|
Quyen TL, Ngo TA, Bang DD, Madsen M, Wolff A. Classification of Multiple DNA Dyes Based on Inhibition Effects on Real-Time Loop-Mediated Isothermal Amplification (LAMP): Prospect for Point of Care Setting. Front Microbiol 2019; 10:2234. [PMID: 31681184 PMCID: PMC6803449 DOI: 10.3389/fmicb.2019.02234] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
LAMP has received great interest and is widely utilized in life sciences for nucleic acid analysis. To monitor a real-time LAMP assay, a fluorescence DNA dye is an indispensable component and therefore the selection of a suitable dye for real-time LAMP is a need. To aid this selection, we investigated the inhibition effects of twenty-three DNA dyes on real-time LAMP. Threshold time (Tt) values of each real-time LAMP were determined and used as an indicator of the inhibition effect. Based on the inhibition effects, the dyes were classified into four groups: (1) non-inhibition effect, (2) medium inhibition effect, (3) high inhibition effect, and (4) very high inhibition effect. The signal to noise ratio (SNR) and the limit of detection (LOD) of the dyes in groups 1, 2, and 3 were further investigated, and possible inhibition mechanisms of the DNA dyes on the real-time LAMP are suggested and discussed. Furthermore, a comparison of SYTO 9 in different LAMP reactions and different systems is presented. Of the 23 dyes tested, SYTO 9, SYTO 82, SYTO 16, SYTO 13, and Miami Yellow were the best dyes with no inhibitory effect, low LOD and high SNR in the real-time LAMP reactions. The present classification of the dyes will simplify the selection of fluorescence dye for real-time LAMP assays in point of care setting.
Collapse
Affiliation(s)
- Than Linh Quyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Tien Anh Ngo
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), Lyngby, Denmark
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), Lyngby, Denmark
| | - Mogens Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Anders Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| |
Collapse
|
20
|
Geng Y, Tan K, Liu L, Sun XX, Zhao B, Wang J. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood. BMC Microbiol 2019; 19:186. [PMID: 31409301 PMCID: PMC6693139 DOI: 10.1186/s12866-019-1562-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Vibrio parahaemolyticus (V. parahaemolyticus) is a leading cause of food poisoning and is of great importance to public health due to the frequency and seriousness of the diseases. The simple, timely and efficient detection of this pathogen is a major concern worldwide. In this study, we established a simple and rapid method based on recombinase polymerase amplification (RPA) for the determination of V. parahaemolyticus. According to the gyrB gene sequences of V. parahaemolyticus available in GenBank, specific primers and an exo probe were designed for establishing real-time recombinase polymerase amplification (real-time RPA). Results The real-time RPA reaction was performed successfully at 38 °C, and results were obtained within 20 min. The method only detected V. parahaemolyticus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. The study showed that the detection limit (LOD) of real-time RPA was 1.02 × 102 copies/reaction. For artificially contaminated samples with different bacteria concentrations, V. parahaemolyticus could be detected within 5–12 min by real-time RPA in oyster sauce, codfish and sleeve-fish at concentrations as low as 4 CFU/25 g, 1 CFU/25 g and 7 CFU/25 g, respectively, after enrichment for 6 h, but were detected in a minimum of 35 min by real-time PCR (Ct values between 27 and 32). Conclusion This study describes a simple, rapid, and reliable method for the detection of V. parahaemolyticus, which could potentially be applied in the research laboratory and disease diagnosis.
Collapse
Affiliation(s)
- Yunyun Geng
- Department of Pharmacology, Hebei University of Chinese Medicine, No.326 South Xinshi Road, Shijiazhuang, 050091, Hebei, China.,College of Life Sciences, Hebei Normal University, No.20, Road E. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei Province, 050024, People's Republic of China
| | - Ke Tan
- College of Life Sciences, Hebei Normal University, No.20, Road E. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei Province, 050024, People's Republic of China
| | - Libing Liu
- Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, No.318 Hepingxilu Road, Shijiazhuang, 050024, Hebei, China.,Hebei Academy of Inspection and Quarantine Science and Technology, No.318 Hepingxilu Road, Shijiazhuang, Hebei Province, 050051, People's Republic of China
| | - Xiao Xia Sun
- Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, No.318 Hepingxilu Road, Shijiazhuang, 050024, Hebei, China.,Hebei Academy of Inspection and Quarantine Science and Technology, No.318 Hepingxilu Road, Shijiazhuang, Hebei Province, 050051, People's Republic of China
| | - Baohua Zhao
- College of Life Sciences, Hebei Normal University, No.20, Road E. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei Province, 050024, People's Republic of China.
| | - Jianchang Wang
- Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, No.318 Hepingxilu Road, Shijiazhuang, 050024, Hebei, China. .,Hebei Academy of Inspection and Quarantine Science and Technology, No.318 Hepingxilu Road, Shijiazhuang, Hebei Province, 050051, People's Republic of China.
| |
Collapse
|
21
|
Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosens Bioelectron 2019; 132:271-278. [DOI: 10.1016/j.bios.2019.02.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022]
|
22
|
Telli AE, Doğruer Y. Discrimination of viable and dead Vibrio parahaemolyticus subjected to low temperatures using Propidium Monoazide - Quantitative loop mediated isothermal amplification (PMA-qLAMP) and PMA-qPCR. Microb Pathog 2019; 132:109-116. [PMID: 31034964 DOI: 10.1016/j.micpath.2019.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine the effect of cold (4 °C) and subzero (-18 °C, -45 °C) temperatures on the occurrence time of membrane damage to provide Propidium Monoazide (PMA) penetration of Vibrio parahaemolyticus inoculated to the sea bass. Direct plate counting (DPC) and PMA-based quantitative loop-mediated isothermal amplification (qLAMP) and qPCR was utilized for discrimination of dead and live bacteria on the designated storage days (1, 3, 7, and 14). The optimum amount of PMA was 50 μM for inhibition of amplification derived from dead cells in spiked samples. The number of live V. parahaemolyticus was detectable at the end of the 14. day using PMA-qLAMP and PMA-qPCR at all the temperatures. On the 7th day, culturability has lost at any of the storage temperatures and DPCs at -18 °C and -45 °C revealed a difference of about 1 log10 CFU/ml between 1st and 3rd days. The same difference was also observed in PMA-qLAMP and PMA-qPCR on the same days (0.59-0.95 log10 CFU/ml). Subzero temperatures have the highest rate of viability while causing the fastest decrease in culturability in sample groups as a result of the higher level of transition to VBNC state. qLAMP and qPCR methods in the PMA-treated and nontreated groups on the storage days at all temperatures gave similar results (p > 0.05).
Collapse
Affiliation(s)
- A Ezgi Telli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
| | - Yusuf Doğruer
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
23
|
Anupama KP, Chakraborty A, Karunasagar I, Karunasagar I, Maiti B. Loop-mediated isothermal amplification assay as a point-of-care diagnostic tool for Vibrio parahaemolyticus: recent developments and improvements. Expert Rev Mol Diagn 2019; 19:229-239. [PMID: 30657706 DOI: 10.1080/14737159.2019.1571913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION A number of DNA-based diagnostic tools have been developed for the detection of Vibrio parahaemolyticus in seafood. However, the loop-mediated isothermal amplification (LAMP) has distinct advantages with regards to its simplicity, speed and the ease of performing without any need for sophisticated equipment. Over the last decade, LAMP has emerged as a potential tool for the detection of V. parahaemolyticus. Area covered: The literature search was restricted to LAMP assay and its variants for the detection of V. parahaemolyticus. The focus in this review is to enlist the various techniques that have been developed using the principle of the LAMP towards improved simplicity, sensitivity and specificity of the assay. Expert commentary: LAMP assay and its variants are significantly faster and require minimum accessories compared to other DNA based molecular techniques such as PCR and their types. Despite the availability of several versions, LAMP-based diagnostics is not the first choice for the detection of V. parahaemolyticus in the seafood sector. Our recommendation would be to explore the possibilities of developing cost-effective LAMP kits and implementing these kits as point-of-care diagnostic tools for rapid and sensitive detection of pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Karanth Padyana Anupama
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Anirban Chakraborty
- b Division of Molecular Genetics and Cancer , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Iddya Karunasagar
- c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Indrani Karunasagar
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India.,c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Biswajit Maiti
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| |
Collapse
|
24
|
Xu D, Ji L, Wu X, Yan W, Chen L. Detection and differentiation of Vibrio parahaemolyticus by multiplexed real-time PCR. Can J Microbiol 2018; 64:809-815. [PMID: 29864373 DOI: 10.1139/cjm-2018-0083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio parahaemolyticus is a common and important pathogen that causes human gastroenteritis worldwide. A rapid, sensitive, and specific assay is urgently required for detection and differentiation of V. parahaemolyticus strains. We designed three sets of primers and probes using groEL and two virulence genes (tdh and trh) from V. parahaemolyticus, and developed a multiplex real-time PCR protocol. The sensitivity and specificity of the multiplex assay was evaluated by environmental and clinical specimens of V. parahaemolyticus. The multiplex PCR response system and annealing temperature were optimized. The detection limits of the multiplex real-time PCR were 104 and 105 CFU/mL (or CFU/g) in pure cultures and spiked oysters, respectively. The multiplex real-time PCR specifically detected and differentiated V. parahaemolyticus from 35 Vibrio strains and 11 other bacterial strains. Moreover, this method can detect and distinguish virulent from nonvirulent strains, with no cross-reactivity observed in the bacteria tested. This newly established multiplex real-time PCR assay offers rapid, specific, and reliable detection of the total and pathogenic V. parahaemolyticus strains, which is very useful during outbreaks and sporadic cases caused by V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Deshun Xu
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.,Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.,Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.,Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.,Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China.,Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| |
Collapse
|
25
|
Wu Q, Pan YB, Zhou D, Grisham MP, Gao S, Su Y, Guo J, Xu L, Que Y. A Comparative Study of Three Detection Techniques for Leifsonia xyli Subsp. xyli, the Causal Pathogen of Sugarcane Ratoon Stunting Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2786458. [PMID: 29951532 PMCID: PMC5989284 DOI: 10.1155/2018/2786458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022]
Abstract
The ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is one of the most economically devastating diseases impacting sugarcane. RSD causes significant yield losses and variety degradation. Diagnosis of RSD is challenging because it does not exhibit any discernible internal and external symptoms. Moreover, the Lxx bacteria are very small and difficult to isolate, cultivate, and detect. In this study, conventional polymerase chain reaction (PCR), real-time quantitative PCR (RT-qPCR), and Lxx-loop-mediated isothermal amplification (Lxx-LAMP) were utilized to specifically detect the presence of Lxx pathogens in the juice from Lxx-infected sugarcane stalks and an Lxx-pMD18-T recombinant plasmid. The results showed that Lxx was a highly specific causal pathogen for RSD. All three techniques provided great reproducibility, while Lxx-LAMP had the highest sensitivity. When the DNA extract from Lxx-infected sugarcane juice was used as a template, Lxx-LAMP was 10 and 100 times more sensitive than RT-qPCR and conventional PCR, respectively. When the Lxx-pMD18-T recombinant plasmid was used as a template, Lxx-LAMP was as sensitive as RT-qPCR but was 10 times more sensitive than conventional PCR. Based on the Lxx-LAMP detection system established, adding 0.4 μM loop primers (LF/LP) can accelerate the reaction and reduce the total time required. In addition, the optimal amount of Bst DNA polymerase for Lxx-LAMP reactions was determined to be 6.0 U. The results provide technical support for the detection of RSD Lxx pathogen that will help manage sugarcane RSD.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou 350002, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA 70360, USA
| | - Dinggang Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou 350002, China
- Hunan University of Science and Technology, Xiangtan 411201, China
| | | | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou 350002, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou 350002, China
| |
Collapse
|
26
|
Virulence and resistance on various pathogens mediated by mobile genetic integrons via high flux assays. Microb Pathog 2018; 114:75-79. [DOI: 10.1016/j.micpath.2017.11.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 02/08/2023]
|
27
|
Karunasagar I, Maiti B, Kumar BK. Molecular Methods to Study Vibrio parahaemolyticus and Vibrio vulnificus From Atypical Environments. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Pang B, Ding X, Wang G, Zhao C, Xu Y, Fu K, Sun J, Song X, Wu W, Liu Y, Song Q, Hu J, Li J, Mu Y. Rapid and Quantitative Detection of Vibrio parahemolyticus by the Mixed-Dye-Based Loop-Mediated Isothermal Amplification Assay on a Self-Priming Compartmentalization Microfluidic Chip. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11312-11319. [PMID: 29198118 DOI: 10.1021/acs.jafc.7b03655] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vibrio parahemolyticus (VP) mostly isolated from aquatic products is one of the major causes of bacterial food-poisoning events worldwide, which could be reduced using a promising on-site detection method. Herein, a rapid and quantitative method for VP detection was developed by applying a mixed-dye-loaded loop-mediated isothermal amplification (LAMP) assay on a self-priming compartmentalization (SPC) microfluidic chip, termed on-chip mixed-dye-based LAMP (CMD-LAMP). In comparison to conventional approaches, CMD-LAMP was advantageous on the limit of detection, which reached down to 1 × 103 CFU/mL in food-contaminated samples without the pre-enrichment of bacteria. Additionally, as a result of the use of a mixed dye and SPC chip, the quantitative result could be easily acquired, avoiding the requirement of sophisticated instruments and tedious operation. Also, CMD-LAMP was rapid and cost-effective. Conclusively, CMD-LAMP has great potential in realizing the on-site quantitative analysis of VP for food safety.
Collapse
Affiliation(s)
- Bo Pang
- Department of Hygienic Inspection, School of Public Health, Jilin University , Changchun, Jilin 130021, People's Republic of China
| | - Xiong Ding
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Guoping Wang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Chao Zhao
- Department of Hygienic Inspection, School of Public Health, Jilin University , Changchun, Jilin 130021, People's Republic of China
| | - Yanan Xu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kaiyue Fu
- Department of Hygienic Inspection, School of Public Health, Jilin University , Changchun, Jilin 130021, People's Republic of China
| | - Jingjing Sun
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiuling Song
- Department of Hygienic Inspection, School of Public Health, Jilin University , Changchun, Jilin 130021, People's Republic of China
| | - Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yushen Liu
- Department of Hygienic Inspection, School of Public Health, Jilin University , Changchun, Jilin 130021, People's Republic of China
| | - Qi Song
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiumei Hu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Juan Li
- Department of Hygienic Inspection, School of Public Health, Jilin University , Changchun, Jilin 130021, People's Republic of China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
29
|
Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grard T, Midelet-Bourdin G. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit Rev Food Sci Nutr 2017; 59:597-610. [DOI: 10.1080/10408398.2017.1384715] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maryse Bonnin-Jusserand
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
- INRA, France
- Univ. Lille, Lille, France
- ISA, Lille, France
- Univ. Artois, Arras, France
| | - Stéphanie Copin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Thomas Brauge
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Mélanie Gay
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Anne Brisabois
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, convention ANSES, EA 7394 – ICV – Institut Charles Viollette, Boulogne-sur-Mer, France
| | - Graziella Midelet-Bourdin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory for Food Safety, Boulevard du Bassin Napoléon, Boulogne-sur-Mer, France
| |
Collapse
|
30
|
Jiang YS, Stacy A, Whiteley M, Ellington AD, Bhadra S. Amplicon Competition Enables End-Point Quantitation of Nucleic Acids Following Isothermal Amplification. Chembiochem 2017; 18:1692-1695. [PMID: 28628741 PMCID: PMC5890436 DOI: 10.1002/cbic.201700317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 12/22/2022]
Abstract
It is inherently difficult to quantitate nucleic acid analytes with most isothermal amplification assays. We developed loop-mediated isothermal amplification (LAMP) reactions in which competition between defined numbers of "false" and "true" amplicons leads to order of magnitude quantitation by a single endpoint determination. These thresholded LAMP reactions were successfully used to directly and quantitatively estimate the numbers of nucleic acids in complex biospecimens, including directly from cells and in sewage, with the values obtained closely correlating with qPCR quantitations. Thresholded LAMP reactions are amenable to endpoint readout by cell phone, unlike other methods that require continuous monitoring, and should therefore prove extremely useful in developing one-pot reactions for point-of-care diagnostics without needing sophisticated material or informatics infrastructure.
Collapse
Affiliation(s)
- Yu Sherry Jiang
- Department of Molecular BiosciencesCollege of Natural SciencesThe University of TexasAustinTX78712USA
- Present address: Department of ChemistryTufts University62 Talbot AvenueMedfordMA02155USA
| | - Apollo Stacy
- Department of Molecular BiosciencesCollege of Natural SciencesThe University of TexasAustinTX78712USA
| | - Marvin Whiteley
- Department of Molecular BiosciencesCollege of Natural SciencesThe University of TexasAustinTX78712USA
| | - Andrew D. Ellington
- Department of Molecular BiosciencesCollege of Natural SciencesThe University of TexasAustinTX78712USA
| | - Sanchita Bhadra
- Department of Molecular BiosciencesCollege of Natural SciencesThe University of TexasAustinTX78712USA
| |
Collapse
|
31
|
Siddique MP, Jang WJ, Lee JM, Ahn SH, Suraiya S, Kim CH, Kong IS. groEL is a suitable genetic marker for detecting Vibrio parahaemolyticus by loop-mediated isothermal amplification assay. Lett Appl Microbiol 2017; 65:106-113. [PMID: 28585379 DOI: 10.1111/lam.12760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/18/2017] [Accepted: 05/18/2017] [Indexed: 01/13/2023]
Abstract
A groEL gene-based loop-mediated isothermal amplification (LAMP) assay was developed to detect Vibrio parahaemolyticus in contaminated seafood and water. The assay was optimized and conducted at 63°C for 40 min using Bacillus stearothermophilus (Bst) DNA polymerase, large fragment. Amplification was analysed via multiple detection methods, including opacity, formation of white precipitate, DNA intercalating dyes (ethidium bromide and SYBR Green I), metal ion-binding indicator dye, calcein, and 2% agarose gel electrophoresis. A characteristic ladder-like band pattern on agarose gel and the desired colour changes when using different dyes were observed in positive cases, and these were species-specific for V. parahaemolyticus when compared with other closely related Vibrio spp. The limit of detection (LoD) of this assay was 100 fg per reaction, 100-fold higher than that for conventional polymerase chain reaction (PCR). When tested on artificially contaminated seafood and seawater, the LoDs of the LAMP assay were 120 and 150 fg per reaction respectively, and those of conventional PCR were 120 and 150 pg per reaction respectively. Based on our results, the groEL gene-based LAMP assay is rapid, specific, sensitive, and reliable for detecting V. parahaemolyticus, and it could be used in field diagnosis. SIGNIFICANCE AND IMPACT OF THE STUDY The loop-mediated isothermal amplification (LAMP) assay using groEL gene (an abundant, highly conserved gene and member of the groESL chaperone gene family) provided rapid, species-specific and highly sensitive method for detecting Vibrio parahaemolyticus, the leading causal agent of seafood-borne diseases worldwide. Moreover, groEL LAMP revealed high efficiency than conventional PCR assay for V. parahaemolyticus using template both from pure culture and artificially contaminated seafood and water, which indicated the applicability in the field and environmental screening purpose for the organism.
Collapse
Affiliation(s)
- M P Siddique
- Department of Biotechnology, Pukyong National University, Busan, Korea
| | - W J Jang
- Department of Biotechnology, Pukyong National University, Busan, Korea
| | - J M Lee
- Department of Biotechnology, Pukyong National University, Busan, Korea
| | - S H Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S Suraiya
- Department of Biotechnology, Pukyong National University, Busan, Korea
| | - C H Kim
- Department of Marine Bio-materials & Aquaculture, Pukyong National University, Busan, Korea
| | - I S Kong
- Department of Biotechnology, Pukyong National University, Busan, Korea
| |
Collapse
|
32
|
Wang R, Zhang F, Wang L, Qian W, Qian C, Wu J, Ying Y. Instant, Visual, and Instrument-Free Method for On-Site Screening of GTS 40-3-2 Soybean Based on Body-Heat Triggered Recombinase Polymerase Amplification. Anal Chem 2017; 89:4413-4418. [PMID: 28345860 DOI: 10.1021/acs.analchem.7b00964] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On-site monitoring the plantation of genetically modified (GM) crops is of critical importance in agriculture industry throughout the world. In this paper, a simple, visual and instrument-free method for instant on-site detection of GTS 40-3-2 soybean has been developed. It is based on body-heat recombinase polymerase amplification (RPA) and followed with naked-eye detection via fluorescent DNA dye. Combining with extremely simplified sample preparation, the whole detection process can be accomplished within 10 min and the fluorescent results can be photographed by an accompanied smart phone. Results demonstrated a 100% detection rate for screening of practical GTS 40-3-2 soybean samples by 20 volunteers under different ambient temperatures. This method is not only suitable for on-site detection of GM crops but also demonstrates great potential to be applied in other fields.
Collapse
Affiliation(s)
- Rui Wang
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University , Fuzhou, 350108, China
| | - Liu Wang
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Wenjuan Qian
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Cheng Qian
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| |
Collapse
|
33
|
Hong J. Development and application of the loop-mediated isothermal amplification assay for rapid detection of enterotoxigenicClostridium perfringensin food. J Food Saf 2017. [DOI: 10.1111/jfs.12362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joonbae Hong
- Food & Microbiology Team, Test & Research Department; Consumer Safety Center, Korea Consumer Agency; Chungcheongbukdo 27738 South Korea
| |
Collapse
|
34
|
Development of a multiplex loop-mediated isothermal amplification method for the simultaneous detection of Salmonella spp. and Vibrio parahaemolyticus. Sci Rep 2017; 7:45601. [PMID: 28349967 PMCID: PMC5368564 DOI: 10.1038/srep45601] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/28/2017] [Indexed: 11/21/2022] Open
Abstract
Rapid detection of food-borne pathogens is important in the food industry, to monitor and prevent the spread of these pathogens through contaminated food products. We therefore established a multiplex real-time loop-mediated isothermal amplification (LAMP) assay to simultaneously detect and distinguish Salmonella spp. and Vibrio parahaemolyticus DNA in a single reaction. Two target sequences, one specific for Salmonella and the other specific for Vibrio parahaemolyticus, were amplified by specific LAMP primers in the same reaction tube. After amplification at 65 °C for 60 min, the amplified products were subjected to melting curve analysis and thus could be distinguished based on the different melting temperatures (Tm values) of the two specifically amplified products. The specificity of the multiplex LAMP assay was evaluated using 19 known bacterial strains, including one V. parahaemolyticus and seven Salmonella spp. strains. The multiplex LAMP showed 100% inclusivity and exclusivity, and a detection limit similar to that of multiplex PCR. In addition, we observed and corrected preferential amplification induced by what we call LAMP selection in the multiplex LAMP reaction. In conclusion, our assay was rapid, specific, and quantitative, making it a useful tool for the food industry.
Collapse
|
35
|
Youn S, Jeong O, Choi B, Jung S, Kang M. Application of loop-mediated isothermal amplification with propidium monoazide treatment to detect live Salmonella in chicken carcasses. Poult Sci 2017; 96:458-464. [DOI: 10.3382/ps/pew341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/22/2016] [Accepted: 08/16/2016] [Indexed: 11/20/2022] Open
|
36
|
Ahmad F, Stedtfeld RD, Waseem H, Williams MR, Cupples AM, Tiedje JM, Hashsham SA. Most probable number - loop mediated isothermal amplification (MPN-LAMP) for quantifying waterborne pathogens in <25min. J Microbiol Methods 2016; 132:27-33. [PMID: 27856278 DOI: 10.1016/j.mimet.2016.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/12/2016] [Accepted: 11/12/2016] [Indexed: 01/20/2023]
Abstract
We are reporting a most probable number approach integrated to loop mediated isothermal technique (MPN-LAMP) focusing on Gram-negative Escherichia coli and Gram-positive Enterococcus faecalis bacterial cells without nucleic acids extraction. LAMP assays for uidA from E. coli and gelE from E. faecalis were successfully performed directly on cells up to single digit concentration using a commercial real time PCR instrument. Threshold time values of LAMP assays of bacterial cells, heat treated bacterial cells (95°C for 5min), and their purified genomic DNA templates were similar, implying that amplification could be achieved directly from bacterial cells at 63°C. Viability of bacterial cells was confirmed by using propidium monoazide in a LAMP assay with E. faecalis. To check its functionality on a microfluidic platform, MPN-LAMP assays targeting <10CFU of bacteria were also translated onto polymeric microchips and monitored by a low-cost fluorescence imaging system. The overall system provided signal-to-noise (SNR) ratios up to 800, analytical sensitivity of <10CFU, and time to positivity of about 20min. MPN-LAMP assays were performed for cell concentrations in the range of 105CFU to <10CFU. MPN values from LAMP assays confirmed that the amplifications were from <10CFU. The method described here, applicable directly on cells at 63°C, eliminates the requirement of complex nucleic acids extraction steps, facilitating the development of sensitive, rapid, low-cost, and field-deployable systems. This rapid MPN-LAMP approach has the potential to replace conventional MPN method for waterborne pathogens.
Collapse
Affiliation(s)
- Farhan Ahmad
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Hassan Waseem
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maggie R Williams
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James M Tiedje
- The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA; The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
37
|
Fu K, Li J, Wang Y, Liu J, Yan H, Shi L, Zhou L. An Innovative Method for Rapid Identification and Detection of Vibrio alginolyticus in Different Infection Models. Front Microbiol 2016; 7:651. [PMID: 27199971 PMCID: PMC4858747 DOI: 10.3389/fmicb.2016.00651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Vibrio alginolyticus is one of the most common pathogenic marine Vibrio species, and has been found to cause serious seafood-poisoning or fatal extra-intestinal infections in humans, such as necrotizing soft-tissue infections, bacteremia, septic shock, and multiple organ failures. Delayed accurate diagnosis and treatment of most Vibrio infections usually result to high mortality rates. The objective of this study was to establish a rapid diagnostic method to detect and identify the presence of V. alginolyticus in different samples, so as to facilitate timely treatment. The widely employed conventional methods for detection of V. alginolyticus include biochemical identification and a variety of PCR methods. The former is of low specificity and time-consuming (2–3 days), while the latter has improved accuracy and processing time. Despite such advancements, these methods are still complicated, time-consuming, expensive, require expertise and advanced laboratory systems, and are not optimal for field use. With the goal of providing a simple and efficient way to detect V. alginolyticus, we established a rapid diagnostic method based on loop-mediated Isothermal amplification (LAMP) technology that is feasible to use in both experimental and field environments. Three primer pairs targeting the toxR gene of V. alginolyticus were designed, and amplification was carried out in an ESE tube scanner and Real-Time PCR device. We successfully identified 93 V. alginolyticus strains from a total of 105 different bacterial isolates and confirmed their identity by 16s rDNA sequencing. We also applied this method on infected mouse blood and contaminated scallop samples, and accurate results were both easily and rapidly (20–60 min) obtained. Therefore, the RT-LAMP assay we developed can be conveniently used to detect the presence of V. alginolyticus in different samples. Furthermore, this method will also fulfill the gap for real-time screening of V. alginolyticus infections especially while on field.
Collapse
Affiliation(s)
- Kaifei Fu
- Central Laboratory, Navy General Hospital Beijing, China
| | - Jun Li
- Medical Administrative Department, Navy General Hospital Beijing, China
| | - Yuxiao Wang
- Central Laboratory, Navy General Hospital Beijing, China
| | - Jianfei Liu
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University Qingdao, China
| | - He Yan
- College of Light Industry and Food Sciences, South China University of Technology Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University Guangzhou, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital Beijing, China
| |
Collapse
|
38
|
Koiwai K, Tinwongger S, Nozaki R, Kondo H, Hirono I. Detection of acute hepatopancreatic necrosis disease strain of Vibrio parahaemolyticus using loop-mediated isothermal amplification. JOURNAL OF FISH DISEASES 2016; 39:603-6. [PMID: 25988949 DOI: 10.1111/jfd.12387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 05/21/2023]
Affiliation(s)
- K Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - S Tinwongger
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Fisheries Kasetklang Chatuchak, Coastal Fisheries Research and Development Bureau, Bangkok, Thailand
| | - R Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - H Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - I Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
39
|
Jung C, Ellington AD. A primerless molecular diagnostic: phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP). Anal Bioanal Chem 2016; 408:8583-8591. [PMID: 27032410 DOI: 10.1007/s00216-016-9479-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/01/2022]
Abstract
There are various ways that priming can occur in nucleic acid amplification reactions. While most reactions rely on a primer to initiate amplification, a mechanism for DNA amplification has been developed in which hairpin sequences at the 3' terminus of a single-stranded oligonucleotide fold on themselves to initiate priming. Unfortunately, this method is less useful for diagnostic applications because the self-folding efficiency is low and only works over a narrow range of reaction temperatures. In order to adapt this strategy for analytical applications we have developed a variant that we term phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP). In PS-THSP a phosphorothioate (PS) modification is incorporated into the DNA backbone, leading to a reduction in the thermal stability of dsDNA and increased self-folding of terminal hairpins. By optimizing the number of PS linkages that are included in the initial template, we greatly increased self-folding efficiency and the range of reaction temperatures, ultimately achieving a detection limit of 1 pM. This improved method was readily adapted to the detection of single nucleotide polymorphisms and to the detection of non-nucleic acid analytes, such as alkaline phosphatase, which was quantitatively detected at a limit of 0.05 mU/mL, approximately 10-fold better than commercial assays. Graphical abstract Efficient self-folding by phosphorothioate (PS) modification.
Collapse
Affiliation(s)
- Cheulhee Jung
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway MBB 3.424, Austin, TX, 78712, USA
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway MBB 3.424, Austin, TX, 78712, USA.
| |
Collapse
|
40
|
Rapid and Sensitive Detection of Vibrio parahaemolyticus and Vibrio vulnificus by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique. Molecules 2016; 21:E111. [PMID: 26797596 PMCID: PMC6273463 DOI: 10.3390/molecules21010111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/02/2023] Open
Abstract
Vibrio parahaemolyticus and Vibrio vulnificus are two marine seafood-borne pathogens causing severe illnesses in humans and aquatic animals. In this study, a recently developed novel multiple endonuclease restriction real-time loop-mediated isothermal amplification technology (MERT-LAMP) were successfully developed and evaluated for simultaneous detection of V. parahaemolyticus and V. vulnificus strains in only a single reaction. Two MERT-LAMP primer sets were designed to specifically target toxR gene of V. parahaemolyticus and rpoS gene of V. vulnificus. The MERT-LAMP reactions were conducted at 62 °C, and the positive results were produced in as short as 19 min with the genomic DNA templates extracted from the V. parahaemolyticus and V. vulnificus strains. The two target pathogens present in the same sample could be simultaneously detected and correctly differentiated based on distinct fluorescence curves in a real-time format. The sensitivity of MERT-LAMP assay was 250 fg and 125 fg DNA per reaction with genomic templates of V. parahaemolyticus and V. vulnificus strains, which was in conformity with conventional LAMP detection. Compared with PCR-based techniques, the MERT-LAMP technology was 100- and 10-fold more sensitive than that of PCR and qPCR methods. Moreover, the limit of detection of MERT-LAMP approach for V. parahaemolyticus isolates and V. vulnificus isolates detection in artificially-contaminated oyster samples was 92 CFU and 83 CFU per reaction. In conclusion, the MERT-LAMP assay presented here was a rapid, specific, and sensitive tool for the detection of V. parahaemolyticus and V. vulnificus, and could be adopted for simultaneous screening of V. parahaemolyticus and V. vulnificus in a wide variety of samples.
Collapse
|
41
|
Selection of fluorescent DNA dyes for real-time LAMP with portable and simple optics. J Microbiol Methods 2015; 119:223-7. [PMID: 26554941 DOI: 10.1016/j.mimet.2015.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 12/16/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is increasingly used for point-of-care nucleic acid based diagnostics. LAMP can be monitored in real-time by measuring the increase in fluorescence of DNA binding dyes. However, there is little information comparing the effect of various fluorescent dyes on signal to noise ratio (SNR) or threshold time (Tt). This information is critical for implementation with field deployable diagnostic tools that require small, low power consumption, robust, and inexpensive optical components with reagent saving low volume reactions. In this study, SNR and Tt during real-time LAMP was evaluated with eleven fluorescent dyes. Of all dyes tested, SYTO-82, SYTO-84, and SYTOX Orange resulted in the shortest Tt, and SYTO-81 had the widest range of working concentrations. The optimized protocol detected 10 genome copies of Mycobacterium tuberculosis in less than 10 min, 10 copies of Giardia intestinalis in ~20 min, and 10 copies of Staphylococcus aureus or Salmonella enterica in less than 15 min. Results demonstrate that reaction efficiency depends on both dye type and concentration and the selected polymerase. The optimized protocol was evaluated in the Gene-Z™ device, a hand-held battery operated platform characterized via simple and low cost optics, and a multiple assay microfluidic chip with micron volume reaction wells. Compared to the more conventional intercalating dye (SYBR Green), reliable amplification was only observed in the Gene-Z™ when using higher concentrations of SYTO-81.
Collapse
|
42
|
Liu Y, Zhang Z, Wang Y, Zhao Y, Lu Y, Xu X, Yan J, Pan Y. A highly sensitive and flexible magnetic nanoprobe labeled immunochromatographic assay platform for pathogen Vibrio parahaemolyticus. Int J Food Microbiol 2015; 211:109-16. [DOI: 10.1016/j.ijfoodmicro.2015.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 12/30/2022]
|
43
|
Kalia VC, Kumar P, Kumar R, Mishra A, Koul S. Genome Wide Analysis for Rapid Identification of Vibrio Species. Indian J Microbiol 2015; 55:375-83. [PMID: 26543262 DOI: 10.1007/s12088-015-0553-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022] Open
Abstract
The highly conserved 16S rRNA (rrs) gene is generally used for bacterial identification. In organisms possessing multiple copies of rrs, high intra-genomic heterogeneity does not allow easy distinction among different species. In order to identify Vibrio species, a wide range of genes have been employed. There is an urgent requirement of a consensus gene, which can be used as biomarker for rapid identification. Eight sequenced genomes of Vibrio species were screened for selecting genes which were common among all the genomes. Out of 108 common genes, 24 genes of sizes varying from 0.11 to 3.94 kb were subjected to in silico digestion with 10 type II restriction endonucleases (RE). A few unique genes-dapF, fadA, hisD, ilvH, lpxC, recF, recR, rph and ruvB in combination with certain REs provided unique digestion patterns, which can be used as biomarkers. This protocol can be exploited for rapid diagnosis of Vibrio species.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Ravi Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Anjali Mishra
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| |
Collapse
|
44
|
Ye L, Li Y, Zhao J, Zhang Z, Meng H, Yan H, Miyoshi SI, Shi L. Development of a real-time loop-mediated isothermal amplification assay for the sensitive and rapid detection of Listeria monocytogenes. Lett Appl Microbiol 2015; 61:85-90. [PMID: 25868481 DOI: 10.1111/lam.12429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED A real-time loop-mediated isothermal amplification (RealAmp) assay for the detection of Listeria was developed. The RealAmp assay, using primers specific for the hemolysin-encoding hlyA gene, was verified using Listeria monocytogenes strains (n = 58) from different regions of the world. Both the sensitivity and specificity of the RealAmp assay were high. The RealAmp assay could detect 10(3) CFU ml(-1) within 30 min. A comparative evaluation of the RealAmp assay, the API Listeria assay, and the real-time PCR assay revealed that the RealAmp assay is simpler, faster, and has a higher specificity than the other two assays. SIGNIFICANCE AND IMPACT OF THE STUDY Conventional culture and molecular detection methods are always time consuming and require a specific laboratory infrastructure, thereby restricting their use for the rapid detection and diagnosis of pathogens. A real-time loop-mediated isothermal amplification (RealAmp) assay performed by ESEtube scanner to rapidly detect Listeria monocytogenes isolated from food was developed. The results showed that the RealAmp assay using the tube scanner was more efficient and precise than the conventional API Listeria assay and the real-time PCR assay.
Collapse
Affiliation(s)
- L Ye
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - Y Li
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - J Zhao
- College of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Z Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen Yinxiang Group Co., Ltd., Xiamen, China
| | - H Meng
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - H Yan
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - S-I Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Okayama, Japan
| | - L Shi
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| |
Collapse
|
45
|
Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6:144. [PMID: 25798132 PMCID: PMC4350439 DOI: 10.3389/fmicb.2015.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/07/2015] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yanfang Zhong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiaosong Gu
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Abdullah F Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
46
|
Di H, Ye L, Neogi SB, Meng H, Yan H, Yamasaki S, Shi L. Development and Evaluation of a Loop-Mediated Isothermal Amplification Assay Combined with Enrichment Culture for Rapid Detection of Very Low Numbers of Vibrio parahaemolyticus in Seafood Samples. Biol Pharm Bull 2015; 38:82-7. [DOI: 10.1248/bpb.b14-00582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huiling Di
- College of Light Industry and Food Sciences, South China University of Technology
| | - Lei Ye
- College of Light Industry and Food Sciences, South China University of Technology
| | - Sucharit Basu Neogi
- College of Light Industry and Food Sciences, South China University of Technology
| | - Hecheng Meng
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - He Yan
- College of Light Industry and Food Sciences, South China University of Technology
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
- College of Light Industry and Food Sciences, South China University of Technology
| | - Lei Shi
- College of Light Industry and Food Sciences, South China University of Technology
| |
Collapse
|
47
|
Nixon GJ, Svenstrup HF, Donald CE, Carder C, Stephenson JM, Morris-Jones S, Huggett JF, Foy CA. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods. BIOMOLECULAR DETECTION AND QUANTIFICATION 2014; 2:4-10. [PMID: 27896139 PMCID: PMC5121211 DOI: 10.1016/j.bdq.2014.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These ‘isothermal’ methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.
Collapse
Affiliation(s)
- Gavin J. Nixon
- LGC, Queens Road, Teddington, UK
- Corresponding author at: Molecular and Cell Biology, LGC, Queens Road, Teddington, UK.
| | | | | | - Caroline Carder
- Medicine Clinical Board, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Stephen Morris-Jones
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | |
Collapse
|
48
|
Loop-mediated isothermal amplification assays for screening of bacterial integrons. Biol Res 2014; 47:53. [PMID: 25418445 PMCID: PMC4222780 DOI: 10.1186/0717-6287-47-53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/26/2014] [Indexed: 11/11/2022] Open
Abstract
Background The occurrence and prevalence of integrons in clinical microorganisms and their role played in antimicrobial resistance have been well studied recently. As screening and detection of integrons are concerned, current diagnostic methodologies are restricted by significant drawbacks and novel methods are required for integrons detection. Results In this study, three loop-mediated isothermal amplification (LAMP) assays targeting on class 1, 2 and 3 integrons were implemented and evaluated. Optimization of these detection assays were performed, including studing on the reaction temperature, volume, time, sensitivity and specificity (both primers and targets). Application of the established LAMP assays were further verified on a total of 1082 isolates (previously identified to be 397 integron-positive and 685 integron-negative strains). According to the results, the indispensability of each primer had been confirmed and the optimal reaction temperature, volume and time were found to be 65°C, 45 min and 25 μL, respectively. As application was concerned, 361, 28 and 8 isolates carrying intI1, intI2 and intI3 yielded positive amplicons, respectively. Other 685 integron-negative bacteria were negative for the integron-screening LAMP assays, totaling the detection rate and specificity to be 100%. Conclusions The intI1-, intI2- and intI3-LAMP assays established in this study were demonstrated to be the valid and rapid detection methodologies for the screening of bacterial integrons.
Collapse
|
49
|
Dong HJ, Cho AR, Hahn TW, Cho S. Development of a loop-mediated isothermal amplification assay for rapid, sensitive detection of Campylobacter jejuni in cattle farm samples. J Food Prot 2014; 77:1593-8. [PMID: 25198853 DOI: 10.4315/0362-028x.jfp-14-056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Campylobacter jejuni is a leading cause of bacterial foodborne disease worldwide. The detection of this organism in cattle and their environment is important for the control of C. jejuni transmission and the prevention of campylobacteriosis. Here, we describe the development of a rapid and sensitive method for the detection of C. jejuni in naturally contaminated cattle farm samples, based on real-time loop-mediated isothermal amplification (LAMP) of the hipO gene. The LAMP assay was specific (100% inclusivity and exclusivity for 84 C. jejuni and 41 non-C. jejuni strains, respectively), sensitive (detection limit of 100 fg/μl), and quantifiable (R(2) = 0.9133). The sensitivity of the LAMP assay was then evaluated for its application to the naturally contaminated cattle farm samples. C. jejuni strains were isolated from 51 (20.7%) of 246 cattle farm samples, and the presence of the hipO gene was tested using the LAMP assay. Amplification of the hipO gene by LAMP within 30 min (mean ~10.8 min) in all C. jejuni isolates (n = 51) demonstrated its rapidity and accuracy. Next, template DNA was prepared from a total of 186 enrichment broth cultures of cattle farm samples either by boiling or using a commercial kit, and the sensitivity of detection of C. jejuni was compared between the LAMP and PCR assays. In DNA samples prepared by boiling, the higher sensitivity of the LAMP assay (84.4%) compared with the PCR assay (35.5%) indicates that it is less susceptible to the existence of inhibitors in sample material. In DNA samples prepared using a commercial kit, both the LAMP and PCR assays showed 100% sensitivity. We anticipate that the use of this rapid, sensitive, and simple LAMP assay, which is the first of its kind for the identification and screening of C. jejuni in cattle farm samples, may play an important role in the prevention of C. jejuni contamination in the food chain, thereby reducing the risk of human campylobacteriosis.
Collapse
Affiliation(s)
- Hee-Jin Dong
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - Ae-Ri Cho
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - Tae-Wook Hahn
- Department of Veterinary Medicine, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, South Korea
| | - Seongbeom Cho
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
50
|
Yi M, Ling L, Neogi SB, Fan Y, Tang D, Yamasaki S, Shi L, Ye L. Real time loop-mediated isothermal amplification using a portable fluorescence scanner for rapid and simple detection of Vibrio parahaemolyticus. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|