1
|
Zorea A, Pellow D, Levin L, Pilosof S, Friedman J, Shamir R, Mizrahi I. Plasmids in the human gut reveal neutral dispersal and recombination that is overpowered by inflammatory diseases. Nat Commun 2024; 15:3147. [PMID: 38605009 PMCID: PMC11009399 DOI: 10.1038/s41467-024-47272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Plasmids are pivotal in driving bacterial evolution through horizontal gene transfer. Here, we investigated 3467 human gut microbiome samples across continents and disease states, analyzing 11,086 plasmids. Our analyses reveal that plasmid dispersal is predominantly stochastic, indicating neutral processes as the primary driver of their wide distribution. We find that only 20-25% of plasmid DNA is being selected in various disease states, constraining its distribution across hosts. Selective pressures shape specific plasmid segments with distinct ecological functions, influenced by plasmid mobilization lifestyle, antibiotic usage, and inflammatory gut diseases. Notably, these elements are more commonly shared within groups of individuals with similar health conditions, such as Inflammatory Bowel Disease (IBD), regardless of geographic location across continents. These segments contain essential genes such as iron transport mechanisms- a distinctive gut signature of IBD that impacts the severity of inflammation. Our findings shed light on mechanisms driving plasmid dispersal and selection in the human gut, highlighting their role as carriers of vital gene pools impacting bacterial hosts and ecosystem dynamics.
Collapse
Affiliation(s)
- Alvah Zorea
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
| | - David Pellow
- Blavatnik School of Computer Science, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
| | - Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
| | - Jonathan Friedman
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel.
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel.
| |
Collapse
|
2
|
Khorsand B, Asadzadeh Aghdaei H, Nazemalhosseini-Mojarad E, Nadalian B, Nadalian B, Houri H. Overrepresentation of Enterobacteriaceae and Escherichia coli is the major gut microbiome signature in Crohn's disease and ulcerative colitis; a comprehensive metagenomic analysis of IBDMDB datasets. Front Cell Infect Microbiol 2022; 12:1015890. [PMID: 36268225 PMCID: PMC9577114 DOI: 10.3389/fcimb.2022.1015890] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES A number of converging strands of research suggest that the intestinal Enterobacteriaceae plays a crucial role in the development and progression of inflammatory bowel disease (IBD), however, the changes in the abundance of Enterobacteriaceae species and their related metabolic pathways in Crohn's disease (CD) and ulcerative colitis (UC) compared to healthy people are not fully explained by comprehensive comparative metagenomics analysis. In the current study, we investigated the alternations of the Enterobacterales population in the gut microbiome of patients with CD and UC compared to healthy subjects. METHODS Metagenomic datasets were selected from the Integrative Human Microbiome Project (HMP2) through the Inflammatory Bowel Disease Multi'omics Database (IBDMDB). We performed metagenome-wide association studies on fecal samples from 191 CD patients, 132 UC patients, and 125 healthy controls (HCs). We used the metagenomics dataset to study bacterial community structure, relative abundance, differentially abundant bacteria, functional analysis, and Enterobacteriaceae-related biosynthetic pathways. RESULTS Compared to the gut microbiome of HCs, six Enterobacteriaceae species were significantly elevated in both CD and UC patients, including Escherichia coli, Klebsiella variicola, Klebsiella quasipneumoniae, Klebsiella pneumoniae, Proteus mirabilis, Citrobacter freundii, and Citrobacter youngae, while Klebsiella oxytoca, Morganella morganii, and Citrobacter amalonaticus were uniquely differentially abundant and enriched in the CD cohort. Four species were uniquely differentially abundant and enriched in the UC cohort, including Citrobacter portucalensis, Citrobacter pasteurii, Citrobacter werkmanii, and Proteus hauseri. Our analysis also showed a dramatically increased abundance of E. coli in their intestinal bacterial community. Biosynthetic pathways of aerobactin siderophore, LPS, enterobacterial common antigen, nitrogen metabolism, and sulfur relay systems encoded by E. coli were significantly elevated in the CD samples compared to the HCs. Menaquinol biosynthetic pathways were associated with UC that belonged to K. pneumoniae strains. CONCLUSIONS In conclusion, compared with healthy people, the taxonomic and functional composition of intestinal bacteria in CD and UC patients was significantly shifted to Enterobacteriaceae species, mainly E. coli and Klebsiella species.
Collapse
Affiliation(s)
- Babak Khorsand
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Nadalian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Banafsheh Nadalian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wu X, Shi Q, Shen S, Huang C, Wu H. Clinical and Bacterial Characteristics of Klebsiella pneumoniae Affecting 30-Day Mortality in Patients With Bloodstream Infection. Front Cell Infect Microbiol 2021; 11:688989. [PMID: 34604103 PMCID: PMC8482843 DOI: 10.3389/fcimb.2021.688989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/13/2021] [Indexed: 01/17/2023] Open
Abstract
Background There is a paucity of studies using clinical characteristics and whole-genome sequencing together to fully identify the risk factors of patients with Klebsiella pneumoniae (KP) bloodstream infection (BSI). Methods We retrospectively analyzed the clinical and microbiological characteristics of patients with KP BSI. Isolates were processed using Illumina NGS, and relevant bioinformatics analysis was conducted (multi-locus sequence typing, serotype, phylogenetic reconstruction, detection of antibiotic resistance, and virulence genes). A logistic regression model was used to evaluate the risk factors of hosts and causative KP isolates associated with 30-day mortality in patients infected with KP BSI. Results Of the 79 eligible patients, the 30-day mortality rate of patients with KP BSI was 30.4%. Multivariate analysis showed that host-associated factors (increased APACHE II score and septic shock) were strongly associated with increased 30-day mortality. For the pathogenic factors, carriage of iutA (OR, 1.46; 95% CI, 1.11-1.81, p = 0.002) or Kvar_1549 (OR, 1.31; 95% CI, 1.02-1.69, p = 0.043) was an independent risk factor, especially when accompanied by a multidrug-resistant phenotype. In addition, ST11-K64 hypervirulent carbapenem-resistant KP co-harbored acquired blaKPC-2 together with iutA (76.5%, 13/17) and Kvar_1549 (100%, 17/17) genes. Comparative genomic analysis showed that they were clustered together based on a phylogenetic tree, and more virulence genes were observed in the group of ST11-K64 strains compared with ST11-non-K64. The patients infected with ST11-K64 strains were associated with relatively high mortality (47.2%, 7/17). Conclusion The carriage of iutA and Kvar_1549 was seen to be an independent mortality risk factor in patients with KP BSI. The identification of hypervirulent and carbapenem-resistant KP strains associated with high mortality should prompt surveillance.
Collapse
Affiliation(s)
- Xingbing Wu
- Department of Infectious Diseases, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qingyi Shi
- Department of Rheumatology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shimo Shen
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Hongcheng Wu
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
4
|
Distinct Characteristics of Escherichia coli Isolated from Patients with Urinary Tract Infections in a Medical Center at a Ten-Year Interval. Pathogens 2021; 10:pathogens10091156. [PMID: 34578189 PMCID: PMC8469484 DOI: 10.3390/pathogens10091156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli causing urinary tract infections (UTIs) are one of the most common outpatient bacterial infections. This study aimed to compare the characteristics of E. coli isolated from UTI patients in a single medical center in 2009-2010 (n = 504) and 2020 (n = 340). The antimicrobial susceptibility of E. coli was determined by the disk diffusion method. PCRs were conducted to detect phylogenetic groups, ST131, K1 capsule antigen, and 15 virulence factors. Phylogenetic group B2 dominated in our 2009-2010 and 2020 isolates. Moreover, no phylogenetic group E strains were isolated in 2020. E. coli isolates in 2020 were more susceptible to amoxicillin, ampicillin/sulbactam, cefuroxime, cefmetazole, ceftazidime, cefoxitin, tetracycline, and sulfamethoxazole/trimethoprim, compared to the isolates in 2009-2010. Extensively drug-resistant (XDR)-E. coli in 2009-2010 were detected in groups B1 (5 isolates), B2 (12 isolates), F (8 isolates), and unknown (1 isolate). In 2020, XDR-E. coli were only detected in groups A (2 isolates), B2 (5 isolates), D (1 isolate), and F (4 isolates). The prevalence of virulence factor genes aer and fimH were higher in E. coli in 2009-2010 compared to those in 2020. In contrast, afa and sat showed higher frequencies in E. coli isolates in 2020 compared to E. coli in 2009-2010.
Collapse
|
5
|
Uber AP, Viana GF, Lodi FG, Dos Anjos Szczerepa MM, Carrara-Marroni FE, Gimenes F, Nishiyama SAB, Tognim MCB. Adherence ability and serum resistance of different hospital clusters of Acinetobacter baumannii. Lett Appl Microbiol 2021; 73:132-138. [PMID: 33844321 DOI: 10.1111/lam.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
The role of mechanical ventilation and catheters in favouring Acinetobacter baumannii infections needs to be better understood. This study evaluated the adherence of 19 isolates of different hospital clusters of A. baumannii to abiotic surfaces and epithelial cells (HEp-2). Of the hydrophobic isolates, 80% adhered to polystyrene, indicating a close relationship between hydrophobicity and adherence. All isolates adhered to epithelial cells to different degrees, and 73·7% showed an aggregated pattern. Analysis of the serum resistance of catheter-tip isolates showed that all were resistant. These worrisome results showed that the high capacity of A. baumannii to adhere to surfaces and survive in human serum could hinder treatment and control of this pathogen.
Collapse
Affiliation(s)
- A P Uber
- Laboratory of Medical Microbiology, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - G F Viana
- Laboratory of Medical Microbiology, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - F G Lodi
- Laboratory of Medical Microbiology, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - M M Dos Anjos Szczerepa
- Laboratory of Medical Microbiology, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - F E Carrara-Marroni
- Department of Applied Pathology, Clinical and Toxicological Analysis, State University of Londrina, Paraná, Brazil
| | - F Gimenes
- Laboratory of Medical Microbiology, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - S A B Nishiyama
- Laboratory of Medical Microbiology, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - M C B Tognim
- Laboratory of Medical Microbiology, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| |
Collapse
|
6
|
Belmont-Monroy L, Saitz-Rojas W, Soria-Bustos J, Mickey AS, Sherman NE, Orsburn BC, Ruiz-Perez F, Santiago AE. Characterization of a novel AraC/XylS-regulated family of N-acyltransferases in pathogens of the order Enterobacterales. PLoS Pathog 2020; 16:e1008776. [PMID: 32845938 PMCID: PMC7478709 DOI: 10.1371/journal.ppat.1008776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/08/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a diarrheagenic pathotype associated with traveler’s diarrhea, foodborne outbreaks and sporadic diarrhea in industrialized and developing countries. Regulation of virulence in EAEC is mediated by AggR and its negative regulator Aar. Together, they control the expression of at least 210 genes. On the other hand, we observed that about one third of Aar-regulated genes are related to metabolism and transport. In this study we show the AggR/Aar duo controls the metabolism of lipids. Accordingly, we show that AatD, encoded in the AggR-regulated aat operon (aatPABCD) is an N-acyltransferase structurally similar to the essential Apolipoprotein N-acyltransferase Lnt and is required for the acylation of Aap (anti-aggregation protein). Deletion of aatD impairs post-translational modification of Aap and causes its accumulation in the bacterial periplasm. trans-complementation of 042aatD mutant with the AatD homolog of ETEC or with the N-acyltransferase Lnt reestablished translocation of Aap. Site-directed mutagenesis of the E207 residue in the putative acyltransferase catalytic triad disrupted the activity of AatD and caused accumulation of Aap in the periplasm due to reduced translocation of Aap at the bacterial surface. Furthermore, Mass spectroscopy revealed that Aap is acylated in a putative lipobox at the N-terminal of the mature protein, implying that Aap is a lipoprotein. Lastly, deletion of aatD impairs bacterial colonization of the streptomycin-treated mouse model. Our findings unveiled a novel N-acyltransferase family associated with bacterial virulence, and that is tightly regulated by AraC/XylS regulators in the order Enterobacterales. Although the regulatory scheme of AggR is well understood, the biological relevance of half of AggR-regulated proteins remains unknown. In this study we provide experimental evidence that the AggR-regulated AatD is a novel N-acyltransferase restricted to pathogens of the order Enterobacterales, including EAEC, ETEC, Yersinia sp., and C. rodentium. AatD is structurally similar to Lnt. However, unlike Lnt which is essential for cellular functions, AatD is a dedicated N-acyltransferase required for post-translational modification of virulence factors. Aap was identified as a lipoprotein acylated by AatD. Lipid modification in Aap provides an important post-translational mechanism to regulate the trafficking, stability and subcellular localization of Aap. In the absence of AatD, Aap is retained in the periplasmic space and cannot be translocated to the bacterial surface, presumably, restricting the biological function of the protein. Our data suggest that AggR and Aar virulence regulators, not only regulate the expression of Aap virulence factor at the transcriptional level, but also regulate translocation of Aap to the bacterial surface, which is required for full virulence of EAEC, unveiling an important mechanism of virulence regulation.
Collapse
Affiliation(s)
- Laura Belmont-Monroy
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children’s Hospital, Charlottesville, Virginia, United States of America
- Department of Public Health, UNAM School of Medicine and Federico Gomez Children’s Hospital, Mexico City, Mexico
| | - Waleska Saitz-Rojas
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children’s Hospital, Charlottesville, Virginia, United States of America
| | - Jorge Soria-Bustos
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children’s Hospital, Charlottesville, Virginia, United States of America
| | - Abigail S. Mickey
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children’s Hospital, Charlottesville, Virginia, United States of America
| | - Nicholas E. Sherman
- W. M. Keck Biomedical Mass Spectrometry Lab. University of Virginia, Charlottesville, Virginia, United States of America
| | - Benjamin C. Orsburn
- W. M. Keck Biomedical Mass Spectrometry Lab. University of Virginia, Charlottesville, Virginia, United States of America
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children’s Hospital, Charlottesville, Virginia, United States of America
| | - Araceli E. Santiago
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children’s Hospital, Charlottesville, Virginia, United States of America
- * E-mail: .
| |
Collapse
|
7
|
Shimamura Y, Shinke M, Hiraishi M, Tsuchiya Y, Egawa M, Ohashi N, Masuda S. Influence of Muscle Fiber Direction on Migration of Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli into Raw Chicken Breast. J Food Prot 2020; 83:928-934. [PMID: 32428935 DOI: 10.4315/0362-028x.jfp-19-278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/02/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The influence of muscle fiber direction (parallel or perpendicular) in relation to the inoculation surface on migration of Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli into raw chicken breasts was examined. Chicken breast samples with two types of surface fibers (running parallel or perpendicular to the surface) were inoculated with cultures of each bacterium. Inoculated samples were stored for 5 min, 1 h, or 24 h at 4°C. After storage, the samples were divided into segments, and bacterial counts were determined in different regions (inoculation surface, inoculation surface to 1 cm, 1 to 2 cm, 2 to 4 cm, and 4 to 6 cm). The migration of bacteria did not change at 5 min or 1 h regardless of fiber direction. However, after 24 h each bacterium was detected at 4 to 6 cm in the pieces of sample with a perpendicular muscle fiber surface cut. Although these bacteria were detected at 4 to 6 cm in samples with muscle fibers perpendicular to the inoculated surface, these results do not clearly indicate that bacteria migrated into the chicken breast. To monitor actual migration of bacteria into the chicken breast, the tops of the perpendicular muscle fibers of the breast sample were inoculated with bioluminescent E. coli Xen-14. Various regions of the breast sample (inoculation surface and cut surfaces at 1, 2, 4, and 6 cm) were stamped directly on growth medium. Culture revealed that the bacteria migrated directly under the contaminated site and dispersed along the surface of the chicken breast segments. More bacteria distributed laterally than migrated directly below the contamination site. These results suggest that the direction of the muscle fibers is a major factor influencing migration of pathogenic bacteria into chicken breast. HIGHLIGHTS
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.,(ORCID: https://orcid.org/0000-0003-0801-483X [Y.S.])
| | - Momoka Shinke
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Miki Hiraishi
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yusuke Tsuchiya
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mizuki Egawa
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Norio Ohashi
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
8
|
Rodea GE, Montiel-Infante FX, Cruz-Córdova A, Saldaña-Ahuactzi Z, Ochoa SA, Espinosa-Mazariego K, Hernández-Castro R, Xicohtencatl-Cortes J. Tracking Bioluminescent ETEC during In vivo BALB/c Mouse Colonization. Front Cell Infect Microbiol 2017; 7:187. [PMID: 28560186 PMCID: PMC5432549 DOI: 10.3389/fcimb.2017.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging.
Collapse
Affiliation(s)
- Gerardo E Rodea
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico.,Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Francisco X Montiel-Infante
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Zeus Saldaña-Ahuactzi
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| |
Collapse
|
9
|
Ellermann M, Arthur JC. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 2017; 105:68-78. [PMID: 27780750 PMCID: PMC5401654 DOI: 10.1016/j.freeradbiomed.2016.10.489] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Iron is an essential micronutrient for most life forms including the majority of resident bacteria of the microbiota and their mammalian hosts. Bacteria have evolved numerous mechanisms to competitively acquire iron within host environments, such as the secretion of small molecules known as siderophores that can solubilize iron for bacterial use. However, siderophore biosynthesis and acquisition is not a capability equally harbored by all resident bacteria. Moreover, the structural diversity of siderophores creates variability in the susceptibility to host mechanisms that serve to counteract siderophore-mediated iron acquisition and limit bacterial growth. As a result, the differential capabilities to acquire iron among members of a complex microbial community carry important implications for the growth and function of resident bacteria. Siderophores can also directly influence host function by modulating cellular iron homeostasis, further providing a mechanism by which resident bacteria may influence their local environment at the host-microbial interface. This review will explore the putative mechanisms by which siderophore production by resident bacteria in the intestines may influence microbial community dynamics and host-bacterial interactions with important implications for pathogen- and microbiota-driven diseases including infection, inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Sloup RE, Cieza RJ, Needle DB, Abramovitch RB, Torres AG, Waters CM. Polysorbates prevent biofilm formation and pathogenesis of Escherichia coli O104:H4. BIOFOULING 2016; 32:1131-1140. [PMID: 27667095 PMCID: PMC5176131 DOI: 10.1080/08927014.2016.1230849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Escherichia coli biotype O104:H4 recently caused the deadliest E. coli outbreak ever reported. Based on prior results, it was hypothesized that compounds inhibiting biofilm formation by O104:H4 would reduce its pathogenesis. The nonionic surfactants polysorbate 80 (PS80) and polysorbate 20 (PS20) were found to reduce biofilms by ≥ 90% at submicromolar concentrations and elicited nearly complete dispersal of preformed biofilms. PS80 did not significantly impact in vivo colonization in a mouse infection model; however, mice treated with PS80 exhibited almost no intestinal inflammation or tissue damage while untreated mice exhibited robust pathology. As PS20 and PS80 are classified as 'Generally Recognized as Safe' (GRAS) compounds by the Food and Drug Administration (FDA), these compounds have clinical potential to treat future O104:H4 outbreaks.
Collapse
Affiliation(s)
- Rudolph E. Sloup
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824
| | - Roberto J. Cieza
- Department of Microbiology and Immunology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, 77555
| | - David B. Needle
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
11
|
Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4. Int J Food Microbiol 2016; 229:44-51. [DOI: 10.1016/j.ijfoodmicro.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/22/2016] [Accepted: 04/03/2016] [Indexed: 12/14/2022]
|
12
|
Autotransporters but not pAA are critical for rabbit colonization by Shiga toxin-producing Escherichia coli O104:H4. Nat Commun 2015; 5:3080. [PMID: 24445323 PMCID: PMC3905246 DOI: 10.1038/ncomms4080] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/09/2013] [Indexed: 12/20/2022] Open
Abstract
The outbreak of diarrhea and hemolytic uremic syndrome that occurred in Germany in 2011 was caused by a Shiga toxin-producing enteroaggregative Escherichia coli (EAEC) strain. The strain was classified as EAEC due to the presence of a plasmid (pAA) that mediates a characteristic pattern of aggregative adherence on cultured cells, the defining feature of EAEC that has classically been associated with virulence. Here, we describe an infant rabbit-based model of intestinal colonization and diarrhea caused by the outbreak strain, which we use to decipher the factors that mediate the pathogen’s virulence. Shiga toxin is the key factor required for diarrhea. Unexpectedly, we observe that pAA is dispensable for intestinal colonization and development of intestinal pathology. Instead, chromosome-encoded autotransporters are critical for robust colonization and diarrheal disease in this model. Our findings suggest that conventional wisdom linking aggregative adherence to EAEC intestinal colonization is false for at least a subset of strains.
Collapse
|
13
|
Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 2014; 38:1202-34. [PMID: 25205464 DOI: 10.1111/1574-6976.12086] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine, The Radboud Institute for Molecular Life Sciences (RIMLS) of the Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
14
|
Nesta B, Valeri M, Spagnuolo A, Rosini R, Mora M, Donato P, Alteri CJ, Del Vecchio M, Buccato S, Pezzicoli A, Bertoldi I, Buzzigoli L, Tuscano G, Falduto M, Rippa V, Ashhab Y, Bensi G, Fontana MR, Seib KL, Mobley HLT, Pizza M, Soriani M, Serino L. SslE elicits functional antibodies that impair in vitro mucinase activity and in vivo colonization by both intestinal and extraintestinal Escherichia coli strains. PLoS Pathog 2014; 10:e1004124. [PMID: 24809621 PMCID: PMC4014459 DOI: 10.1371/journal.ppat.1004124] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
SslE, the Secreted and surface-associated lipoprotein from Escherichia coli, has recently been associated to the M60-like extracellular zinc-metalloprotease sub-family which is implicated in glycan recognition and processing. SslE can be divided into two main variants and we recently proposed it as a potential vaccine candidate. By applying a number of in vitro bioassays and comparing wild type, knockout mutant and complemented strains, we have now demonstrated that SslE specifically contributes to degradation of mucin substrates, typically present in the intestine and bladder. Mutation of the zinc metallopeptidase motif of SslE dramatically impaired E. coli mucinase activity, confirming the specificity of the phenotype observed. Moreover, antibodies raised against variant I SslE, cloned from strain IHE3034 (SslEIHE3034), are able to inhibit translocation of E. coli strains expressing different variants through a mucin-based matrix, suggesting that SslE induces cross-reactive functional antibodies that affect the metallopeptidase activity. To test this hypothesis, we used well-established animal models and demonstrated that immunization with SslEIHE3034 significantly reduced gut, kidney and spleen colonization by strains producing variant II SslE and belonging to different pathotypes. Taken together, these data strongly support the importance of SslE in E. coli colonization of mucosal surfaces and reinforce the use of this antigen as a component of a broadly protective vaccine against pathogenic E. coli species. Escherichia coli are the predominant facultative anaerobe of the human colonic flora. Although intestinal and extraintestinal pathogenic E. coli are phylogenetically and epidemiologically distinct, we recently proposed a number of protective antigens conserved in most E. coli pathotypes. In this study, we have elucidated the function of the most promising of these antigens, SslE, which is characterized by the presence of a M60-like domain representative of a new extracellular zinc-metalloprotease sub-family. In particular, in vitro analysis of the ability of an sslE knockout mutant strain to transverse an agar-based mucin matrix revealed that SslE is essential to E. coli mucinase activity. Evidence showing that SslE induces functional antibodies, preventing both in vitro mucin degradation but also in vivo gut, kidney and spleen colonization, further support the hypothesis that SslE may facilitate E. coli colonization by favoring the penetration of the sterile inner mucus layer leading to interaction with host cells. Finally, the ability of SslE to also induce protective immunity against sepsis, linked to its presence among different pathotypes, supports the use of such an antigen as a broadly protective E. coli vaccine candidate.
Collapse
Affiliation(s)
| | - Maria Valeri
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
| | | | | | | | - Paolo Donato
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
| | - Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | | | | | | | | | | | | | | | - Yaqoub Ashhab
- Biotechnology Research Center, Palestine Polytechnic University, Hebron, Palestine
| | | | | | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | - Marco Soriani
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
- * E-mail:
| | - Laura Serino
- Novartis Vaccines and Diagnostics Srl, Siena, Italy
| |
Collapse
|
15
|
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90. [PMID: 24367764 PMCID: PMC3852070 DOI: 10.3389/fcimb.2013.00090] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/18/2013] [Indexed: 02/05/2023] Open
Abstract
For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Amélie Garénaux
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Julie Proulx
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Mourad Sabri
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Charles M Dozois
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| |
Collapse
|
16
|
In vitro and in vivo bioluminescent imaging to evaluate anti-Escherichia coli activity of Galla Chinensis. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2013.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
17
|
Gule NP, de Kwaadsteniet M, Cloete TE, Klumperman B. Furanone-containing poly(vinyl alcohol) nanofibers for cell-adhesion inhibition. WATER RESEARCH 2013; 47:1049-1059. [PMID: 23261340 DOI: 10.1016/j.watres.2012.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/03/2012] [Accepted: 11/07/2012] [Indexed: 06/01/2023]
Abstract
The 3(2H) furanone derivative 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) was investigated for its antimicrobial and cell-adhesion inhibition properties against Klebsiella pneumoniae Xen 39, Staphylococcus aureus Xen 36, Escherichia coli Xen 14, Pseudomonas aeruginosa Xen 5 and Salmonella typhimurium Xen 26. Nanofibers electrospun from solution blends of DMHF and poly(vinyl alcohol) (PVA) were tested for their ability to inhibit surface-attachment of bacteria. Antimicrobial and adhesion inhibition activity was determined via the plate counting technique. To quantify viable but non-culturable cells and to validate the plate counting results, bioluminescence and fluorescence studies were carried out. Nanofiber production was upscaled using the bubble electrospinning technique. To ascertain that no DMHF leached into filtered water, samples of water filtered through the nanofibrous mats were analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to characterize the electrospun nanofibers.
Collapse
Affiliation(s)
- Nonjabulo P Gule
- Division of Polymer Science, University of Stellenbosch, Stellenbosch, South Africa
| | | | | | | |
Collapse
|
18
|
Virulence of the Shiga toxin type 2-expressing Escherichia coli O104:H4 German outbreak isolate in two animal models. Infect Immun 2013; 81:1562-74. [PMID: 23439303 DOI: 10.1128/iai.01310-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In May 2011, a large food-borne outbreak was traced to an unusual O104:H4 enteroaggregative Escherichia coli (EAEC) strain that produced Shiga toxin (Stx) type 2 (Stx2). We developed a mouse model to study the pathogenesis and treatment for this strain and examined the virulence of the isolate for Dutch belted rabbits. O104:H4 strain C227-11 was gavaged into C57BL/6 mice at 10(9) to 10(11) CFU/animal. The infected animals were then given water with ampicillin (Amp; 5 g/liter) ad libitum. The C227-11-infected, Amp-treated C57BL/6 mice exhibited both morbidity and mortality. Kidneys from mice infected with C227-11 showed acute tubular necrosis, a finding seen in mice infected with typical Stx-producing E. coli. We provided anti-Stx2 antibody after infection and found that all of the antibody-treated mice gained more weight than untreated mice and, in another study, that all of the antibody-treated animals lived, whereas 3/8 phosphate-buffered saline-treated mice died. We further compared the pathogenesis of C227-11 with that of an Stx-negative (Stx(-)) O104:H4 isolate, C734-09, and an Stx2(-) phage-cured derivative of C227-11. Whereas C227-11-infected animals lost weight or gained less weight over the course of infection and died, mice infected with either of the Stx(-) isolates did not lose weight and only one mouse died. When the Stx-positive (Stx(+)) and Stx2(-) O104:H4 strains were compared in rabbits, greater morbidity and mortality were observed in rabbits infected with the Stx2(+) isolates than the Stx2(-) isolates. In conclusion, we describe two animal models for EAEC pathogenesis, and these studies show that Stx2 is responsible for most of the virulence observed in C227-11-infected mice and rabbits.
Collapse
|
19
|
Epithelial cells augment barrier function via activation of the Toll-like receptor 2/phosphatidylinositol 3-kinase pathway upon recognition of Salmonella enterica serovar Typhimurium curli fibrils in the gut. Infect Immun 2012. [PMID: 23208603 DOI: 10.1128/iai.00453-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Curli fibrils, the best-characterized functional bacterial amyloids, are an important component of enterobacterial biofilms. We have previously shown that curli fibrils are recognized by the Toll-like receptor 2 (TLR2)/TLR1 heterodimer complex. Utilizing polarized T-84 cells, an intestinal epithelial cell line derived from colon carcinoma grown on semipermeable tissue culture inserts, we determined that infection with a Salmonella enterica serovar Typhimurium csgBA mutant, which does not express curli, resulted in an increase in intestinal barrier permeability and an increase in bacterial translocation compared to infection with curliated wild-type S. Typhimurium. When the TLR2 downstream signaling molecule phosphatidylinositol 3-kinase (PI3K) was blocked using wortmannin or LY294002, the difference in disruption of the intestinal epithelium and bacterial translocation was no longer observed. Additionally, disruption of polarized T-84 cells treated basolaterally with the TLR5 ligand flagellin was prevented when the polarized cells were simultaneously treated with the synthetic TLR2/TLR1 ligand Pam(3)CSK(4) or with purified curli fibrils in the apical compartment. Similar to in vitro observations, C57BL/6 mice infected with the csgBA mutant suffered increased disruption of the intestinal epithelium and therefore greater dissemination of the bacteria to the mesenteric lymph nodes than mice infected with wild-type S. Typhimurium. The differences in disruption of the intestinal epithelium and bacterial dissemination in the mice infected with csgBA mutant or wild-type S. Typhimurium were not apparent in TLR2-deficient mice. Overall, these studies report for the first time that activation of the TLR2/PI3K pathway by microbial amyloids plays a critical role in regulating the intestinal epithelial barrier as well as monitoring bacterial translocation during infection.
Collapse
|