1
|
Mouawad C, Awad MK, Rodrigues-Machado C, Henry C, Sanchis-Borja V, El Chamy L. High-Throughput Analysis of the Flagella FliK-Dependent Surfaceome and Secretome in Bacillus thuringiensis. BIOLOGY 2025; 14:525. [PMID: 40427714 PMCID: PMC12109265 DOI: 10.3390/biology14050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
Bacterial pathogens employ multiple strategies to invade and damage host tissues while evading immune defenses. Recent studies highlight flagella as crucial contributors to bacterial virulence, not only by facilitating motility, but also by regulating the secretion of virulence factors. However, the role of the flagella-dependent secretome remains largely unexplored. We have recently shown that FliK, a key regulator that defines substrate specificity in the flagellar export apparatus, is essential for the resistance of Bacillus thuringiensis (B. thuringiensis) against antimicrobial peptides (AMPs) and its virulence in a Drosophila infection model. In this study, we used liquid chromatography-tandem mass spectrometry to conduct a large-scale comparative analysis of the proteins secreted in culture supernatant or associated with the cell wall of the ΔfliK mutant and its reference strain. Our results reveal significant differences in the secretome and surfaceome of the ΔfliK mutant compared to the reference strain. These findings emphasize the role of FliK in regulating the production and secretion of several proteins, underscoring the importance of flagella in controlling various biological processes. This work provides valuable insights into the functional characterization of potential candidate proteins involved in B. thuringiensis virulence and AMP resistance mechanisms. Overall, these results open new perspectives for understanding the molecular processes that govern bacterial resistance to AMPs.
Collapse
Affiliation(s)
- Carine Mouawad
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut 1107 2050, Lebanon; (C.M.); (M.K.A.)
| | - Mireille Kallassy Awad
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut 1107 2050, Lebanon; (C.M.); (M.K.A.)
| | - Carine Rodrigues-Machado
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, PAPPSO, 78350 Jouy-en-Josas, France; (C.R.-M.); (C.H.)
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, PAPPSO, 78350 Jouy-en-Josas, France; (C.R.-M.); (C.H.)
| | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Laure El Chamy
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut 1107 2050, Lebanon; (C.M.); (M.K.A.)
| |
Collapse
|
2
|
Choi E, Ryu E, Kim D, Byun JW, Kim K, Lee M, Hwang J. The dual functions of the GTPase BipA in ribosome assembly and surface structure biogenesis in Salmonella enterica serovar Typhimurium. PLoS Pathog 2025; 21:e1013047. [PMID: 40203049 PMCID: PMC12013901 DOI: 10.1371/journal.ppat.1013047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/22/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025] Open
Abstract
The bactericidal/permeability-increasing protein (BPI)-inducible protein A (BipA) is a highly conserved protein in Gram-negative bacteria that is structurally similar to translational GTPases such as IF2, EF-Tu, and EF-G. Our previous research showed that deleting bipA in Escherichia coli at 20°C leads to a defect in 50S ribosomal assembly and impaired lipopolysaccharide (LPS) synthesis. This LPS defect activates the Regulator of Capsule Synthesis (Rcs) pathway, resulting in an overproduction of capsular polysaccharides, a reduction in biofilm formation, and decreased flagella-mediated motility. In this study, we aimed to elucidate the role of BipA in the pathogenicity of Salmonella enterica serovar Typhimurium. We constructed bipA deletion mutants in two pathogenic S. Typhimurium strains, SL1344 and 14028, as well as in the attenuated strain LT2. Our ribosome profiling experiments using the mutant S. Typhimurium strains revealed a defect in ribosome assembly at 20°C, with the accumulation of abnormal 50S ribosomal subunits. We further demonstrated that the absence of BipA in S. Typhimurium impaired LPS biosynthesis at 20°C, compromising membrane integrity and presumably activating the Rcs pathway. This activation altered virulence factors, including reduced biofilm formation, particularly in the 14028ΔbipA strain. Furthermore, the SL1344ΔbipA and 14028ΔbipA strains exhibited significantly decreased swimming motility at 20°C compared to 37°C, confirmed by microscopic observation showing fewer flagella at 20°C. Subsequently, both strains exhibited a significant reduction in invasion capability and cytotoxicity toward human intestinal epithelial cells (HCT116). This functional attenuation was corroborated by the decrease in virulence observed in the 14028ΔbipA strain in a mouse model. Our findings suggest that, in S. Typhimurium, BipA functions as a bacterial fitness factor, contributing to ribosome assembly, LPS synthesis, and virulence-related processes, particularly under stress conditions relevant to host environments.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| | - Eunwoo Ryu
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Donghwee Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ji-Won Byun
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kahyun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Minho Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
da Cruz Nizer WS, Adams ME, Montgomery MC, Allison KN, Beaulieu C, Overhage J. Genetic determinants of increased sodium hypochlorite and ciprofloxacin susceptibility in Pseudomonas aeruginosa PA14 biofilms. BIOFOULING 2024; 40:563-579. [PMID: 39189148 DOI: 10.1080/08927014.2024.2395378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive Pseudomonas aeruginosa PA14 transposon mutant library in a genetic screen, we identified a total of 28 P. aeruginosa PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted apaH, PA0793, acsA, PA1506, PA1547, PA3728, yajC, queA, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H2O2), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the apaH and PA1547 mutant, providing insights into the oxidative stress response in P. aeruginosa biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.
Collapse
Affiliation(s)
| | | | | | | | - Carole Beaulieu
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Canada
| |
Collapse
|
4
|
Davignon G, Pietrosemoli N, Benaroudj N, Soupé-Gilbert ME, Cagliero J, Turc É, Picardeau M, Guentas L, Goarant C, Thibeaux R. Leptospira interrogans biofilm transcriptome highlights adaption to starvation and general stress while maintaining virulence. NPJ Biofilms Microbiomes 2024; 10:95. [PMID: 39349472 PMCID: PMC11442865 DOI: 10.1038/s41522-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology. Our study focused on elucidating Leptospira's adaptations and regulations involved in such complex microenvironments. To determine the transcriptional profile of Leptospira in biofilm, we compared the transcriptomes in late biofilms and in exponential planktonic cultures. While genes for motility, energy production, and metabolism were downregulated, those governing general stress response, defense against metal stress, and redox homeostasis showed a significant upsurge, hinting at a tailored defensive strategy against stress. Further, despite a reduced metabolic state, biofilm disruption swiftly restored metabolic activity. Crucially, bacteria in late biofilms or resulting from biofilm disruption retained virulence in an animal model. In summary, our study highlights Leptospira's adaptive equilibrium in biofilms: minimizing energy expenditure, potentially aiding in withstanding stresses while maintaining pathogenicity. These insights are important for explaining the survival strategies of Leptospira, revealing that a biofilm lifestyle may confer an advantage in maintaining virulence, an understanding essential for managing leptospirosis across both environmental and mammalian reservoirs.
Collapse
Affiliation(s)
- Grégoire Davignon
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Nadia Benaroudj
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Marie-Estelle Soupé-Gilbert
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Julie Cagliero
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Élodie Turc
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, F-75015, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Linda Guentas
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Cyrille Goarant
- Pacific Community SPC - Public Health Division - B.P. D5, Nouméa, New Caledonia
| | - Roman Thibeaux
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia.
| |
Collapse
|
5
|
Wang K, Wang Y, Gu L, Yu J, Liu Q, Zhang R, Liang G, Chen H, Gu F, Liu H, Jiao X, Zhang Y. Characterization of Probiotic Properties and Whole-Genome Analysis of Lactobacillus johnsonii N5 and N7 Isolated from Swine. Microorganisms 2024; 12:672. [PMID: 38674616 PMCID: PMC11052194 DOI: 10.3390/microorganisms12040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In our previous microbiome profiling analysis, Lactobacillus (L.) johnsonii was suggested to contribute to resistance against chronic heat stress-induced diarrhea in weaned piglets. Forty-nine L. johnsonii strains were isolated from these heat stress-resistant piglets, and their probiotic properties were assessed. Strains N5 and N7 exhibited a high survival rate in acidic and bile environments, along with an antagonistic effect against Salmonella. To identify genes potentially involved in these observed probiotic properties, the complete genome sequences of N5 and N7 were determined using a combination of Illumina and nanopore sequencing. The genomes of strains N5 and N7 were found to be highly conserved, with two N5-specific and four N7-specific genes identified. Multiple genes involved in gastrointestinal environment adaptation and probiotic properties, including acidic and bile stress tolerance, anti-inflammation, CAZymes, and utilization and biosynthesis of carbohydrate compounds, were identified in both genomes. Comparative genome analysis of the two genomes and 17 available complete L. johnsonii genomes revealed 101 genes specifically harbored by strains N5 and N7, several of which were implicated in potential probiotic properties. Overall, this study provides novel insights into the genetic basis of niche adaptation and probiotic properties, as well as the genome diversity of L. johnsonii.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Lifang Gu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Jinyan Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Qianwen Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Ruiqi Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Guixin Liang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Fang Gu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haoyu Liu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xin’an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (K.W.); (Y.W.); (L.G.); (J.Y.); (Q.L.); (R.Z.); (G.L.); (H.C.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (F.G.); (H.L.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Guo Q, Zhan Y, Zhang W, Wang J, Yan Y, Wang W, Lin M. Development and Regulation of the Extreme Biofilm Formation of Deinococcus radiodurans R1 under Extreme Environmental Conditions. Int J Mol Sci 2023; 25:421. [PMID: 38203592 PMCID: PMC10778927 DOI: 10.3390/ijms25010421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
To grow in various harsh environments, extremophiles have developed extraordinary strategies such as biofilm formation, which is an extremely complex and progressive process. However, the genetic elements and exact mechanisms underlying extreme biofilm formation remain enigmatic. Here, we characterized the biofilm-forming ability of Deinococcus radiodurans in vitro under extreme environmental conditions and found that extremely high concentrations of NaCl or sorbitol could induce biofilm formation. Meantime, the survival ability of biofilm cells was superior to that of planktonic cells in different extreme conditions, such as hydrogen peroxide stress, sorbitol stress, and high UV radiation. Transcriptome profiles of D. radiodurans in four different biofilm development stages further revealed that only 13 matched genes, which are involved in environmental information processing, carbohydrate metabolism, or stress responses, share sequence homology with genes related to the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Overall, 64% of the differentially expressed genes are functionally unknown, indicating the specificity of the regulatory network of D. radiodurans. The mutation of the drRRA gene encoding a response regulator strongly impaired biofilm formation ability, implying that DrRRA is an essential component of the biofilm formation of D. radiodurans. Furthermore, transcripts from both the wild type and the drRRA mutant were compared, showing that the expression of drBON1 (Deinococcus radioduransBON domain-containing protein 1) significantly decreased in the drRRA mutant during biofilm development. Further analysis revealed that the drBON1 mutant lacked the ability to form biofilm and DrRRA, and as a facilitator of biofilm formation, could directly stimulate the transcription of the biofilm-related gene drBON1. Overall, our work highlights a molecular mechanism mediated by the response regulator DrRRA for controlling extreme biofilm formation and thus provides guidance for future studies to investigate novel mechanisms that are used by D. radiodurans to adapt to extreme environments.
Collapse
Affiliation(s)
- Qiannan Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhua Zhan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Vannier N, Mesny F, Getzke F, Chesneau G, Dethier L, Ordon J, Thiergart T, Hacquard S. Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota. Nat Commun 2023; 14:8274. [PMID: 38092730 PMCID: PMC10719396 DOI: 10.1038/s41467-023-43688-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
The identification of processes activated by specific microbes during microbiota colonization of plant roots has been hampered by technical constraints in metatranscriptomics. These include lack of reference genomes, high representation of host or microbial rRNA sequences in datasets, or difficulty to experimentally validate gene functions. Here, we recolonized germ-free Arabidopsis thaliana with a synthetic, yet representative root microbiota comprising 106 genome-sequenced bacterial and fungal isolates. We used multi-kingdom rRNA depletion, deep RNA-sequencing and read mapping against reference microbial genomes to analyse the in planta metatranscriptome of abundant colonizers. We identified over 3,000 microbial genes that were differentially regulated at the soil-root interface. Translation and energy production processes were consistently activated in planta, and their induction correlated with bacterial strains' abundance in roots. Finally, we used targeted mutagenesis to show that several genes consistently induced by multiple bacteria are required for root colonization in one of the abundant bacterial strains (a genetically tractable Rhodanobacter). Our results indicate that microbiota members activate strain-specific processes but also common gene sets to colonize plant roots.
Collapse
Affiliation(s)
- Nathan Vannier
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50923, Cologne, Germany
| | - Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Laura Dethier
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Jana Ordon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thorsten Thiergart
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
8
|
Rao Tatta E, Paul S, Kumavath R. Transcriptome Analysis revealed the Synergism of Novel Rhodethrin inhibition on Biofilm architecture, Antibiotic Resistance and Quorum sensing inEnterococcus faecalis. Gene 2023; 871:147436. [PMID: 37075926 DOI: 10.1016/j.gene.2023.147436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Enterococcus sp. emerged as an opportunistic nosocomial pathogen with the highest antibiotic resistance and mortality rate. Biofilm is problematic primarily since it is regulated by the global bacterial cell to cell communication mediated by the quorum sensing system. sing system. Thus, potential natural antagonists in a novel drug formulation against biofilm-forming Enterococcus faecalis is critical. We used RNA-Seq to evaluate the effects of the novel molecule rhodethrin with chloramphenicol induced on Enterococcus faecalis and DEGs were identified. In transcriptome sequence analysis, a total of 448 with control Vs rhodethrin, 1591 were in control Vs chloramphenicol, 379 genes were DEGs from control Vs synergies, in rhodethrin with chloramphenicol, 379 genes were differentially expressed, whereas 264 genes were significantly downregulated, indicating that 69.69% ofE. faecaliswas altered. The transcriptional sequence data further expression analysis qRT-PCR, and the results shed that the expression profiles of five significant biofilm formation responsible genes such as, Ace, AtpB, lepA, bopD, and typA, 3 genes involved in quorum sensing are sylA, fsrC and camE, and 4 genes involved in resistance were among including liaX, typA, EfrA, and lepA, were significantly suppressed expressions of the biofilm, quorum sensing, and resistance that are supported by transcriptome analysis.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
9
|
Choi E, Huh A, Hwang J. Novel rRNA transcriptional activity of NhaR revealed by its growth recovery for the bipA-deleted Escherichia coli at low temperature. Front Mol Biosci 2023; 10:1175889. [PMID: 37152896 PMCID: PMC10157491 DOI: 10.3389/fmolb.2023.1175889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The BipA protein is a universally conserved GTPase in bacterial species and is structurally similar to translational GTPases. Despite its wide distribution, BipA is dispensable for growth under optimal growth conditions but is required under stress conditions. In particular, bipA-deleted cells (ESC19) have been shown to display a variety of phenotypic changes in ribosome assembly, capsule production, lipopolysaccharide (LPS) synthesis, biofilm formation, and motility at low temperature, suggesting its global regulatory roles in cold adaptation. Here, through genomic library screening, we found a suppressor clone containing nhaR, which encodes a Na+-responsive LysR-type transcriptional regulator and whose gene product partially restored the growth of strain ESC19 at 20°C. The suppressed cells showed slightly reduced capsule production and improved biofilm-forming ability at 20°C, whereas the defects in the LPS core and swimming motility were not restored but aggravated by overexpression of nhaR. Notably, the overexpression partially alleviated the defects in 50S ribosomal subunit assembly and rRNA processing of ESC19 cells by enhancing the overall transcription of rRNA. Electrophoretic mobility shift assay revealed the association of NhaR with the promoter of seven rrn operons, suggesting that NhaR directly regulates rRNA transcription in ESC19 at 20°C. The suppressive effects of NhaR on ribosomes, capsules, and LPS were dependent on its DNA-binding activity, implying that NhaR might be a transcriptional factor involved in regulating these genes at 20°C. Furthermore, we found that BipA may be involved in adaptation to salt stress, designating BipA as a global stress-responsive regulator, as the deletion of bipA led to growth defects at 37°C and high Na+ concentrations without ribosomal defects.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
- *Correspondence: Jihwan Hwang,
| |
Collapse
|
10
|
Golmoradi Zadeh R, Mirshekar M, Sadeghi Kalani B, Pourghader J, Barati M, Masjedian Jazi F. The expression of type II TA system genes following persister cell formation in Pseudomonas aeruginosa isolates in the exponential and stationary phases. Arch Microbiol 2022; 204:451. [PMID: 35781545 DOI: 10.1007/s00203-022-03038-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Failure of infection therapy in the presence of antibiotics has become a major problem which has been mostly attributed to the ability of bacterial persister cell formation. Bacteria use various mechanisms to form persister cells in different phases, among which is the toxin-antitoxin (TA) systems. This study aimed at investigating the expression of type II TA system genes under the stress of ciprofloxacin and colistin antibiotics in the exponential and stationary phases. To determine the effects of ciprofloxacin and colistin on persister cell formation in the exponential and stationary phases of Pseudomonas aeruginosa strains, colony counting was performed at different time intervals in the presence of fivefold MIC of ciprofloxacin and colistin. In addition, the expression of relBE, Xre-COG5654, vapBC, and Xre-GNAT genes in P. aeruginosa isolates was assessed 3.5 h after antibiotic treatment in the exponential and stationary phases using qRT-PCR. Our results indicated the presence of persister phenotype of P. aeruginosa strains in the presence of fivefold MIC of ciprofloxacin and colistin compared to the control after 3.5 h of incubation in the exponential and stationary phases. Also, the number of persister cells in the stationary phase was higher than that of the exponential phase. According to the results of qRT-PCR, ciprofloxacin and colistin may induce persister cells by increasing the expression of type II TA systems in stationary and exponential phases. Ciprofloxacin and colistin may increase the formation of persister cells by affecting the expression of type II TA systems.
Collapse
Affiliation(s)
- Rezvan Golmoradi Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran.,Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Johar Pourghader
- Mechanical Engineering Department, Binghamton University, Binghamton, NY, 13902, USA
| | - Mahmood Barati
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
12
|
Kaszab E, Radó J, Kriszt B, Pászti J, Lesinszki V, Szabó A, Tóth G, Khaledi A, Szoboszlay S. Groundwater, soil and compost, as possible sources of virulent and antibiotic-resistant Pseudomonas aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:848-860. [PMID: 31736330 DOI: 10.1080/09603123.2019.1691719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Pseudomonas aeruginosa is a major public health concern all around the world. In the frame of this work, a set of diverse environmental P. aeruginosa isolates with various antibiotic resistance profiles were examined in a Galleria mellonella virulence model. Motility, serotypes, virulence factors and biofilm-forming ability were also examined. Molecular types were determined by pulsed-field gel electrophoresis (PFGE). Based on our results, the majority of environmental isolates were virulent in the G. mellonella test and twitching showed a positive correlation with mortality. Resistance against several antibiotic agents such as Imipenem correlated with a lower virulence in the applied G. mellonella model. PFGE revealed that five examined environmental isolates were closely related to clinically detected pulsed-field types. Our study demonstrated that industrial wastewater effluents, composts, and hydrocarbon-contaminated sites should be considered as hot spots of high-risk clones of P. aeruginosa.
Collapse
Affiliation(s)
- Edit Kaszab
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Júlia Radó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Judit Pászti
- Department of Phage Typing and Molecular Epidemiology, National Center for Epidemiology, Budapest, Hungary
| | - Virág Lesinszki
- Department of Phage Typing and Molecular Epidemiology, National Center for Epidemiology, Budapest, Hungary
| | - Adám Szabó
- Centre for Experimental and Clinical Infection Research, Institute for Molecular Bacteriology TWINCORE, Hannover, Germany
| | - Gergő Tóth
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Ariane Khaledi
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| |
Collapse
|
13
|
Goh KJ, Ero R, Yan XF, Park JE, Kundukad B, Zheng J, Sze SK, Gao YG. Translational GTPase BipA Is Involved in the Maturation of a Large Subunit of Bacterial Ribosome at Suboptimal Temperature. Front Microbiol 2021; 12:686049. [PMID: 34326822 PMCID: PMC8313970 DOI: 10.3389/fmicb.2021.686049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
BPI-inducible protein A (BipA), a highly conserved paralog of the well-known translational GTPases LepA and EF-G, has been implicated in bacterial motility, cold shock, stress response, biofilm formation, and virulence. BipA binds to the aminoacyl-(A) site of the bacterial ribosome and establishes contacts with the functionally important regions of both subunits, implying a specific role relevant to the ribosome, such as functioning in ribosome biogenesis and/or conditional protein translation. When cultured at suboptimal temperatures, the Escherichia coli bipA genomic deletion strain (ΔbipA) exhibits defects in growth, swimming motility, and ribosome assembly, which can be complemented by a plasmid-borne bipA supplementation or suppressed by the genomic rluC deletion. Based on the growth curve, soft agar swimming assay, and sucrose gradient sedimentation analysis, mutation of the catalytic residue His78 rendered plasmid-borne bipA unable to complement its deletion phenotypes. Interestingly, truncation of the C-terminal loop of BipA exacerbates the aforementioned phenotypes, demonstrating the involvement of BipA in ribosome assembly or its function. Furthermore, tandem mass tag-mass spectrometry analysis of the ΔbipA strain proteome revealed upregulations of a number of proteins (e.g., DeaD, RNase R, CspA, RpoS, and ObgE) implicated in ribosome biogenesis and RNA metabolism, and these proteins were restored to wild-type levels by plasmid-borne bipA supplementation or the genomic rluC deletion, implying BipA involvement in RNA metabolism and ribosome biogenesis. We have also determined that BipA interacts with ribosome 50S precursor (pre-50S), suggesting its role in 50S maturation and ribosome biogenesis. Taken together, BipA demonstrates the characteristics of a bona fide 50S assembly factor in ribosome biogenesis.
Collapse
Affiliation(s)
- Kwok Jian Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jung-Eun Park
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Antisense mqsR-PNA as a putative target to the eradication of Pseudomonas aeruginosa persisters. New Microbes New Infect 2021; 41:100868. [PMID: 33996104 PMCID: PMC8102155 DOI: 10.1016/j.nmni.2021.100868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Chemotherapy is frequently unsuccessful in fully eradicating bacterial biofilm infections. Persisters are a main cause for the failure of antibiotic therapies and are assumed to significantly impact the increased multidrug tolerance and unsuccessful elimination of chronic biofilm infections. Pseudomonas aeruginosa infections are frequently linked to high rates of drug-tolerant persisters, triggering a major challenge to human health. It is crucial to classify persisters to develop novel useful therapeutic strategies to fight infectious diseases. In this study, the mqsR gene was selected as a novel antimicrobial target, and silencing was with antisense peptide nucleic acid (PNA) assay to eradicate the P. aeruginosa persisters. First, they were analysed by experimental procedures. Functionality was assessed by stress conditions. We found that the expression of mqsR (as the toxin) compared with mqsA (as antitoxin) was increased under stress conditions. We demonstrated that when mqsR was targeted and treated with different concentrations of mqsR-PNA after 24 hours; the formation of P. aeruginosa persisters was eradicated. Antisense mqsR-PNA in concentrations of 35 μM or more could eradicate persister cell formation in P. aeruginosa. It was suggested that other toxin–antitoxin loci in P. aeruginosa are examined by antisense PNA to detect their functionality. However, considering the importance of persisters in human infections, ex vivo, in vivo, preclinical and clinical settings should be highlighted.
Collapse
|
15
|
del Peso Santos T, Alvarez L, Sit B, Irazoki O, Blake J, Warner BR, Warr AR, Bala A, Benes V, Waldor MK, Fredrick K, Cava F. BipA exerts temperature-dependent translational control of biofilm-associated colony morphology in Vibrio cholerae. eLife 2021; 10:e60607. [PMID: 33588990 PMCID: PMC7886329 DOI: 10.7554/elife.60607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Adaptation to shifting temperatures is crucial for the survival of the bacterial pathogen Vibrio cholerae. Here, we show that colony rugosity, a biofilm-associated phenotype, is regulated by temperature in V. cholerae strains that naturally lack the master biofilm transcriptional regulator HapR. Using transposon-insertion mutagenesis, we found the V. cholerae ortholog of BipA, a conserved ribosome-associated GTPase, is critical for this temperature-dependent phenomenon. Proteomic analyses revealed that loss of BipA alters the synthesis of >300 proteins in V. cholerae at 22°C, increasing the production of biofilm-related proteins including the key transcriptional activators VpsR and VpsT, as well as proteins important for diverse cellular processes. At low temperatures, BipA protein levels increase and are required for optimal ribosome assembly in V. cholerae, suggesting that control of BipA abundance is a mechanism by which bacteria can remodel their proteomes. Our study reveals a remarkable new facet of V. cholerae's complex biofilm regulatory network.
Collapse
Affiliation(s)
- Teresa del Peso Santos
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Laura Alvarez
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Brandon Sit
- Howard Hughes Medical Institute, Brigham and Women's Hospital Division of Infectious Diseases and Harvard Medical School Department of Microbiology and ImmunobiologyBoston, MAUnited States
| | - Oihane Irazoki
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Jonathon Blake
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Benjamin R Warner
- Department of Microbiology, The Ohio State UniversityColumbus, OHUnited States
- Center for RNA Biology, The Ohio State UniversityColumbus, OHUnited States
| | - Alyson R Warr
- Howard Hughes Medical Institute, Brigham and Women's Hospital Division of Infectious Diseases and Harvard Medical School Department of Microbiology and ImmunobiologyBoston, MAUnited States
| | - Anju Bala
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Matthew K Waldor
- Howard Hughes Medical Institute, Brigham and Women's Hospital Division of Infectious Diseases and Harvard Medical School Department of Microbiology and ImmunobiologyBoston, MAUnited States
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State UniversityColumbus, OHUnited States
- Center for RNA Biology, The Ohio State UniversityColumbus, OHUnited States
| | - Felipe Cava
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| |
Collapse
|
16
|
The Yersinia pestis GTPase BipA Promotes Pathogenesis of Primary Pneumonic Plague. Infect Immun 2021; 89:IAI.00673-20. [PMID: 33257531 PMCID: PMC7822129 DOI: 10.1128/iai.00673-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Yersinia pestis is a highly virulent pathogen and the causative agent of bubonic, septicemic, and pneumonic plague. Primary pneumonic plague caused by inhalation of respiratory droplets contaminated with Y. pestis is nearly 100% lethal within 4 to 7 days without antibiotic intervention. Pneumonic plague progresses in two phases, beginning with extensive bacterial replication in the lung with minimal host responsiveness, followed by the abrupt onset of a lethal proinflammatory response. The precise mechanisms by which Y. pestis is able to colonize the lung and survive two very distinct disease phases remain largely unknown. To date, a few bacterial virulence factors, including the Ysc type 3 secretion system, are known to contribute to the pathogenesis of primary pneumonic plague. The bacterial GTPase BipA has been shown to regulate expression of virulence factors in a number of Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica serovar Typhi. However, the role of BipA in Y. pestis has yet to be investigated. Here, we show that BipA is a Y. pestis virulence factor that promotes defense against early neutrophil-mediated bacterial killing in the lung. This work identifies a novel Y. pestis virulence factor and highlights the importance of early bacterial/neutrophil interactions in the lung during primary pneumonic plague.
Collapse
|
17
|
Samba N, Aitfella-Lahlou R, Nelo M, Silva L, Coca. R, Rocha P, López Rodilla JM. Chemical Composition and Antibacterial Activity of Lippia multiflora Moldenke Essential Oil from Different Regions of Angola. Molecules 2020; 26:molecules26010155. [PMID: 33396345 PMCID: PMC7795161 DOI: 10.3390/molecules26010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to determine the chemical composition and antibacterial activity of Lippia multiflora Moldenke essential oils (EOs) collected in different regions of Angola. Antibacterial activity was evaluated using the agar wells technique and vapour phase test. Analysis of the oils by GC/MS identified thirty-five components representing 67.5 to 100% of the total oils. Monoterpene hydrocarbons were the most prevalent compounds, followed by oxygenated monoterpenes. The content of the compounds varied according to the samples. The main components were Limonene, Piperitenone, Neral, Citral, Elemol, p-cymene, Transtagetone, and Artemisia ketone. Only one of the eleven samples contained Verbenone as the majority compound. In the vapour phase test, a single oil was the most effective against all the pathogens studied. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of components of the selected EOs and inhibition zone diameter values of agar wells technique allowed us to identify a variability between the plants from the two provinces, but also intraspecific variability between sub-groups within a population. Each group of essential oils constituted a chemotype responsible for their bacterial inhibition capacity. The results presented here suggest that Angolan Lippia multiflora Moldenke has antibacterial properties and could be a potential source of antimicrobial agents for the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Department of Clinical Analysis and Public Health, University Kimpa Vita, Uige 77, Angola
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| | - Radhia Aitfella-Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Laboratory of Valorisation and Conservation of Biological Resources, Biology Department, Faculty of Sciences, University M’Hamed Bougara, 35000 Boumerdes, Algeria
| | - Mpazu Nelo
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Lucia Silva
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Rui Coca.
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Pedro Rocha
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
| | - Jesus Miguel López Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.A.-L.); (M.N.); (L.S.); (R.C.); (P.R.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Correspondence: (N.S.); (J.M.L.R.); Tel.: +351-926-687-782 (N.S.); +351-275-319-765 (J.M.L.R.)
| |
Collapse
|
18
|
Choi E, Jeon H, Oh C, Hwang J. Elucidation of a Novel Role of YebC in Surface Polysaccharides Regulation of Escherichia coli bipA-Deletion. Front Microbiol 2020; 11:597515. [PMID: 33240252 PMCID: PMC7682190 DOI: 10.3389/fmicb.2020.597515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
The BipA (BPI-inducible protein A) protein is ubiquitously conserved in various bacterial species and belongs to the translational GTPase family. Interestingly, the function of Escherichia coli BipA is not essential for cell growth under normal growth conditions. However, cultivation of bipA-deleted cells at 20°C leads to cold-sensitive growth defect and several phenotypic changes in ribosome assembly, capsule production, and motility, suggesting its global regulatory roles. Previously, our genomic library screening revealed that the overexpressed ribosomal protein (r-protein) L20 partially suppressed cold-sensitive growth defect by resolving the ribosomal abnormality in bipA-deleted cells at low temperature. Here, we explored another genomic library clone containing yebC, which encodes a predicted transcriptional factor that is not directly associated with ribosome biogenesis. Interestingly, overexpression of yebC in bipA-deleted cells diminished capsule synthesis and partially restored lipopolysaccharide (LPS) core maturation at a low temperature without resolving defects in ribosome assembly or motility, indicating that YebC may be specifically involved in the regulation of exopolysaccharide and LPS core synthesis. In this study, we collectively investigated the impacts of bipA-deletion on E. coli capsule, LPS, biofilm formation, and motility and revealed novel roles of YebC in extracellular polysaccharide production and LPS core synthesis at low temperature using this mutant strain. Furthermore, our findings suggest that ribosomal defects as well as increased capsule synthesis, and changes in LPS composition may contribute independently to the cold-sensitivity of bipA-deleted cells, implying multiple regulatory roles of BipA.
Collapse
Affiliation(s)
- Eunsil Choi
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| | - Hyerin Jeon
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Changmin Oh
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| |
Collapse
|
19
|
Hemati S, Kouhsari E, Sadeghifard N, Maleki A, Omidi N, Mahdavi Z, Pakzad I. Sub-minimum inhibitory concentrations of biocides induced biofilm formation in Pseudomonas aeruginosa. New Microbes New Infect 2020; 38:100794. [PMID: 33240514 PMCID: PMC7674602 DOI: 10.1016/j.nmni.2020.100794] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
It is clear that biofilm formation causes many serious health-care problems. Interestingly, sub minimum inhibitory concentrations (sub-MICs) of some biocides can induce biofilm formation in bacteria. We investigated whether sub-MICs of Savlon, chlorhexidine and deconex®, as biocidal products, can induce biofilm formation in clinical isolates of Pseudomonas aeruginosa. To determine MICs and biofilm formation, we performed microtitre plate assays. All three biocides induced biofilm formation at sub-MICs; Savlon was the most successful antiseptic agent to induce biofilm formation among P. aeruginosa isolates. Deconex had the best inhibition effect on planktonic cultures of P. aeruginosa isolates. We concluded that sub-MICs of Savlon and deconex could significantly induce biofilm formation.
Collapse
Affiliation(s)
- S Hemati
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - E Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - N Sadeghifard
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - A Maleki
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - N Omidi
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Z Mahdavi
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - I Pakzad
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
20
|
Lee CS, Hong B, Kasi SK, Aderman C, Talcott KE, Adam MK, Yue B, Akileswaran L, Nakamichi K, Wu Y, Rezaei KA, Olmos de Koo LC, Chee YE, Lee AY, Garg SJ, Van Gelder RN. Prognostic Utility of Whole-Genome Sequencing and Polymerase Chain Reaction Tests of Ocular Fluids in Postprocedural Endophthalmitis. Am J Ophthalmol 2020; 217:325-334. [PMID: 32217118 DOI: 10.1016/j.ajo.2020.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To associate detection of potential pathogen DNA in endophthalmitis with clinical outcomes. DESIGN Prospective cohort study. METHODS Patients in whom endophthalmitis was diagnosed following an intraocular procedure were recruited. Clinical outcome data from baseline, week-1, month-1, and month-3 visits were collected. Intraocular biopsy samples were cultured by standard methods. Quantitative polymerase chain reaction (qPCR) was performed for specific pathogens and whole-genome sequencing (WGS). RESULTS A total of 50 patients (mean age 72 years old; 52% male) were enrolled. Twenty-four cases were culture-positive and 26 were culture-negative. WGS identified the cultured organism in 76% of culture-positive cases and identified potential pathogens in 33% of culture-negative cases. Month-1 and -3 visual acuities did not vary by pathogen-positive versus pathogen-negative cases as detected by either culture or WGS. Visual outcomes of Staphylococcus epidermidis endophthalmitis were no different than those of pathogen-negative cases, whereas the patients infected with other pathogens showed worse outcome. Higher baseline bacterial DNA loads of bacteria other than those of S epidermidis detected by WGS were associated with worse month-1 and -3 visual acuity, whereas the S epidermidis loads did not appear to influence outcomes. Torque teno virus (TTV) and Merkel cell polyomavirus (MCV) were detected by qPCR in 49% and 19% of cases, respectively. Presence of TTV at presentation was associated with a higher rate of secondary pars plana vitrectomy (P = .009) and retinal detachment (P = .022). CONCLUSIONS The presence and higher load of bacteria other than S epidermidis detected by WGS or DNA from TTV by qPCR in ocular fluids is associated with worse outcomes in post-procedure endophthalmitis.
Collapse
Affiliation(s)
- Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| | - Bryan Hong
- MidAtlantic Retina, The Retina Service of Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sundeep K Kasi
- MidAtlantic Retina, The Retina Service of Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Aderman
- MidAtlantic Retina, The Retina Service of Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katherine E Talcott
- MidAtlantic Retina, The Retina Service of Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Murtaza K Adam
- MidAtlantic Retina, The Retina Service of Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bryan Yue
- University of Washington, Seattle, Washington, USA
| | - Lakshmi Akileswaran
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Kenji Nakamichi
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Yue Wu
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Kasra A Rezaei
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Lisa C Olmos de Koo
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Yewlin E Chee
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Aaron Y Lee
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Sunir J Garg
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA; Departments of Biological Structure and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Pan X, Fan Z, Chen L, Liu C, Bai F, Wei Y, Tian Z, Dong Y, Shi J, Chen H, Jin Y, Cheng Z, Jin S, Lin J, Wu W. PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res 2020; 48:5967-5985. [PMID: 32406921 PMCID: PMC7293031 DOI: 10.1093/nar/gkaa377] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhenyang Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Redfern J, Enright MC. Further understanding of Pseudomonas aeruginosa’s ability to horizontally acquire virulence: possible intervention strategies. Expert Rev Anti Infect Ther 2020; 18:539-549. [DOI: 10.1080/14787210.2020.1751610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- James Redfern
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
23
|
de Barros PP, Rossoni RD, de Souza CM, Scorzoni L, Fenley JDC, Junqueira JC. Candida Biofilms: An Update on Developmental Mechanisms and Therapeutic Challenges. Mycopathologia 2020; 185:415-424. [PMID: 32277380 DOI: 10.1007/s11046-020-00445-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
Fungi of the genus Candida are important etiological agents of superficial and life-threatening infections in individuals with a compromised immune system. One of the main characteristics of Candida is its ability to form highly drug tolerance biofilms in the human host. Biofilms are a dynamic community of multiple cell types whose formation over time is orchestrated by a network of transcription regulators. In this brief review, we provide an update of the processes involved in biofilm formation by Candida spp. (formation, treatment, and control), as well as the transcriptional circuitry that regulates its development and interactions with other microorganisms. Candida albicans is known to build mixed species biofilms with other Candida species and with various other bacterial species in different host niches. Taken together, these properties play a key role in Candida pathogenesis. In addition, this review gathers recent studies with new insights and perspectives for the treatment and control of Candida biofilms.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Juliana De Camargo Fenley
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
24
|
Choi E, Jeon H, Oh JI, Hwang J. Overexpressed L20 Rescues 50S Ribosomal Subunit Assembly Defects of bipA-Deletion in Escherichia coli. Front Microbiol 2020; 10:2982. [PMID: 31998269 PMCID: PMC6962249 DOI: 10.3389/fmicb.2019.02982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
The BipA (BPI-inducible protein A) protein is highly conserved in a large variety of bacteria and belongs to the translational GTPases, based on sequential and structural similarities. Despite its conservation in bacteria, bipA is not essential for cell growth under normal growth conditions. However, at 20°C, deletion of bipA causes not only severe growth defects but also several phenotypic changes such as capsule production, motility, and ribosome assembly, indicating that it has global regulatory properties. Our recent studies revealed that BipA is a novel ribosome-associating GTPase, whose expression is cold-shock-inducible and involved in the incorporation of the ribosomal protein (r-protein) L6. However, the precise mechanism of BipA in 50S ribosomal subunit assembly is not completely understood. In this study, to demonstrate the role of BipA in the 50S ribosomal subunit and possibly to find an interplaying partner(s), a genomic library was constructed and suppressor screening was conducted. Through screening, we found a suppressor gene, rplT, encoding r-protein L20, which is assembled at the early stage of ribosome assembly and negatively regulates its own expression at the translational level. We demonstrated that the exogenous expression of rplT restored the growth of bipA-deleted strain at low temperature by partially recovering the defects in ribosomal RNA processing and ribosome assembly. Our findings suggest that the function of BipA is pivotal for 50S ribosomal subunit biogenesis at a low temperature and imply that BipA and L20 may exert coordinated actions for proper ribosome assembly under cold-shock conditions.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, South Korea
| |
Collapse
|
25
|
Alhusseini LB, Maleki A, Kouhsari E, Ghafourian S, Mahmoudi M, Al Marjani MF. Evaluation of type II toxin-antitoxin systems, antibiotic resistance, and biofilm production in clinical MDR Pseudomonas aeruginosa isolates in Iraq. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Spangler JR, Caruana JC, Phillips DA, Walper SA. Broad range shuttle vector construction and promoter evaluation for the use of Lactobacillus plantarum WCFS1 as a microbial engineering platform. Synth Biol (Oxf) 2019; 4:ysz012. [PMID: 32995537 DOI: 10.1093/synbio/ysz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
As the field of synthetic biology grows, efforts to deploy complex genetic circuits in nonlaboratory strains of bacteria will continue to be a focus of research laboratories. Members of the Lactobacillus genus are good targets for synthetic biology research as several species are already used in many foods and as probiotics. Additionally, Lactobacilli offer a relatively safe vehicle for microbiological treatment of various health issues considering these commensals are often minor constituents of the gut microbial community and maintain allochthonous behavior. In order to generate a foundation for engineering, we developed a shuttle vector for subcloning in Escherichia coli and used it to characterize the transcriptional and translational activities of a number of promoters native to Lactobacillus plantarum WCFS1. Additionally, we demonstrated the use of this vector system in multiple Lactobacillus species, and provided examples of non-native promoter recognition by both L. plantarum and E. coli strains that might allow a shortcut assessment of circuit outputs. A variety of promoter activities were observed covering a range of protein expression levels peaking at various times throughout growth, and subsequent directed mutations were demonstrated and suggested to further increase the degree of output tuning. We believe these data show the potential for L. plantarum WCFS1 to be used as a nontraditional synthetic biology chassis and provide evidence that our system can be transitioned to other probiotic Lactobacillus species as well.
Collapse
Affiliation(s)
| | - Julie C Caruana
- American Society for Engineering Education, Washington, DC, United States
| | - Daniel A Phillips
- American Society for Engineering Education, Washington, DC, United States
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Overlook Avenue, Washington, DC, USA
| |
Collapse
|
27
|
Choi E, Hwang J. The GTPase BipA expressed at low temperature in Escherichia coli assists ribosome assembly and has chaperone-like activity. J Biol Chem 2018; 293:18404-18419. [PMID: 30305394 DOI: 10.1074/jbc.ra118.002295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
BPI-inducible protein A (BipA) is a conserved ribosome-associated GTPase in bacteria that is structurally similar to other GTPases associated with protein translation, including IF2, EF-Tu, and EF-G. Its binding site on the ribosome appears to overlap those of these translational GTPases. Mutations in the bipA gene cause a variety of phenotypes, including cold and antibiotics sensitivities and decreased pathogenicity, implying that BipA may participate in diverse cellular processes by regulating translation. According to recent studies, a bipA-deletion strain of Escherichia coli displays a ribosome assembly defect at low temperature, suggesting that BipA might be involved in ribosome assembly. To further investigate BipA's role in ribosome biogenesis, here, we compared and analyzed the ribosomal protein compositions of MG1655 WT and bipA-deletion strains at 20 °C. Aberrant 50S ribosomal subunits (i.e. 44S particles) accumulated in the bipA-deletion strain at 20 °C, and the ribosomal protein L6 was absent in these 44S particles. Furthermore, bipA expression was significantly stimulated at 20 °C, suggesting that it encodes a cold shock-inducible GTPase. Moreover, the transcriptional regulator cAMP receptor protein (CRP) positively promoted bipA expression only at 20 °C. Importantly, GFP and α-glucosidase refolding assays revealed that BipA has chaperone activity. Our findings indicate that BipA is a cold shock-inducible GTPase that participates in 50S ribosomal subunit assembly by incorporating the L6 ribosomal protein into the 44S particle during the assembly.
Collapse
Affiliation(s)
- Eunsil Choi
- From the Department of Microbiology, Pusan National University, Busan 46241, Korea
| | - Jihwan Hwang
- From the Department of Microbiology, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
28
|
Goswami M, Espinasse A, Carlson EE. Disarming the virulence arsenal of Pseudomonas aeruginosa by blocking two-component system signaling. Chem Sci 2018; 9:7332-7337. [PMID: 30542536 PMCID: PMC6237130 DOI: 10.1039/c8sc02496k] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa infections have reached a “critical” threat status making novel therapeutic approaches required.
Pseudomonas aeruginosa infections have reached a “critical” threat status making novel therapeutic approaches required. Inhibiting key signaling enzymes known as the histidine kinases (HKs), which are heavily involved with its pathogenicity, has been postulated to be an effective new strategy for treatment. Herein, we demonstrate the potential of this approach with benzothiazole-based HK inhibitors that perturb multiple virulence pathways in the burn wound P. aeruginosa isolate, PA14. Specifically, our compounds significantly reduce the level of toxic metabolites generated by this organism that are involved in quorum-sensing and redox-balancing mechanisms. They also decrease the ability of this organism to swarm and attach to surfaces, likely by influencing their motility appendages. Quantitative transcription analysis of inhibitor-treated cultures showed substantial perturbations to multiple pathways including expression of response regulator GacA, the cognate partner of the “super regulator” of virulence, HK GacS, as well as flagella and pili formation. These promising results establish that blocking of bacterial signaling in P. aeruginosa has dramatic consequences on virulence behaviours, especially in the context of surface-associated infections.
Collapse
Affiliation(s)
- Manibarsha Goswami
- Department of Chemistry , University of Minnesota , 225 Pleasant St. SE , Minneapolis , MN 55454 , USA .
| | - Adeline Espinasse
- Department of Chemistry , University of Minnesota , 225 Pleasant St. SE , Minneapolis , MN 55454 , USA .
| | - Erin E Carlson
- Department of Chemistry , University of Minnesota , 225 Pleasant St. SE , Minneapolis , MN 55454 , USA . .,Department of Medicinal Chemistry , University of Minnesota , USA.,Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , USA
| |
Collapse
|
29
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
30
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
31
|
Anupama R, Mukherjee A, Babu S. Gene-centric metegenome analysis reveals diversity of Pseudomonas aeruginosa biofilm gene orthologs in fresh water ecosystem. Genomics 2018; 110:89-97. [DOI: 10.1016/j.ygeno.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
|
32
|
Gibbs MR, Fredrick K. Roles of elusive translational GTPases come to light and inform on the process of ribosome biogenesis in bacteria. Mol Microbiol 2017; 107:445-454. [PMID: 29235176 DOI: 10.1111/mmi.13895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Protein synthesis relies on several translational GTPases (trGTPases), related proteins that couple the hydrolysis of GTP to specific molecular events on the ribosome. Most bacterial trGTPases, including IF2, EF-Tu, EF-G and RF3, play well-known roles in translation. The cellular functions of LepA (also termed EF4) and BipA (also termed TypA), conversely, have remained enigmatic. Recent studies provide compelling in vivo evidence that LepA and BipA function in biogenesis of the 30S and 50S subunit respectively. These findings have important implications for ribosome biogenesis in bacteria. Because the GTPase activity of each of these proteins depends on interactions with both ribosomal subunits, some portion of 30S and 50S assembly must occur in the context of the 70S ribosome. In this review, we introduce the trGTPases of bacteria, describe the new functional data on LepA and BipA, and discuss the how these findings shape our current view of ribosome biogenesis in bacteria.
Collapse
Affiliation(s)
- Michelle R Gibbs
- Department of Microbiology and Center for RNA Biology, The Ohio State University, 484 W. 12th Ave, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, 484 W. 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Strempel N, Nusser M, Neidig A, Brenner-Weiss G, Overhage J. The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa. Front Microbiol 2017; 8:2311. [PMID: 29213262 PMCID: PMC5702645 DOI: 10.3389/fmicb.2017.02311] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/08/2017] [Indexed: 01/25/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is able to survive under a variety of often harmful environmental conditions due to a multitude of intrinsic and adaptive resistance mechanisms, including biofilm formation as one important survival strategy. Here, we investigated the adaptation of P. aeruginosa PAO1 to hypochlorite (HClO), a phagocyte-derived host defense compound and frequently used disinfectant. In static biofilm assays, we observed a significant enhancement in initial cell attachment in the presence of sublethal HClO concentrations. Subsequent LC-MS analyses revealed a strong increase in cyclic-di-GMP (c-di-GMP) levels suggesting a key role of this second messenger in HClO-induced biofilm development. Using DNA microarrays, we identified a 26-fold upregulation of ORF PA3177 coding for a putative diguanylate cyclase (DGC), which catalyzes the synthesis of the second messenger c-di-GMP – an important regulator of bacterial motility, sessility and persistence. This DGC PA3177 was further characterized in more detail demonstrating its impact on P. aeruginosa motility and biofilm formation. In addition, cell culture assays attested a role for PA3177 in the response of P. aeruginosa to human phagocytes. Using a subset of different mutants, we were able to show that both Pel and Psl exopolysaccharides are effectors in the PA3177-dependent c-di-GMP network.
Collapse
Affiliation(s)
- Nikola Strempel
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anke Neidig
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
34
|
Sun Y, Sun F, Feng W, Qiu X, Liu Y, Yang B, Chen Y, Xia P. Hyperoside inhibits biofilm formation of Pseudomonas aeruginosa. Exp Ther Med 2017; 14:1647-1652. [PMID: 28810631 DOI: 10.3892/etm.2017.4641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common pathogen in hospital-acquired infection and is readily able to form biofilms. Due to its high antibiotic resistance, traditional antibacterial treatments exert a limited effect on P. aeruginosa biofilm infections. It has been indicated that hyperoside inhibits P. aeruginosa PAO1 (PAO1) biofilm formation without affecting growth. Therefore, the current study examined the biofilm formation and quorum sensing (QS) system of PAO1 in the presence of hyperoside. Confocal laser scanning microscopy analysis demonstrated that hyperoside significantly inhibited biofilm formation. It was also observed that hyperoside inhibited twitching motility in addition to adhesion. Data from reverse transcription-quantitative polymerase chain reaction indicated that hyperoside inhibited the expression of lasR, lasI, rhlR and rhlI genes. These results suggest that the QS-inhibiting effect of hyperoside may lead to a reduction in biofilm formation. However, the precise mechanism of hyperoside on P. aeruginosa pathogenicity remains unclear and requires elucidation in additional studies.
Collapse
Affiliation(s)
- Yixuan Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuewen Qiu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yao Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bo Yang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yongchuan Chen
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
35
|
Schroeder M, Brooks BD, Brooks AE. The Complex Relationship between Virulence and Antibiotic Resistance. Genes (Basel) 2017; 8:E39. [PMID: 28106797 PMCID: PMC5295033 DOI: 10.3390/genes8010039] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/21/2016] [Accepted: 01/07/2017] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance, prompted by the overuse of antimicrobial agents, may arise from a variety of mechanisms, particularly horizontal gene transfer of virulence and antibiotic resistance genes, which is often facilitated by biofilm formation. The importance of phenotypic changes seen in a biofilm, which lead to genotypic alterations, cannot be overstated. Irrespective of if the biofilm is single microbe or polymicrobial, bacteria, protected within a biofilm from the external environment, communicate through signal transduction pathways (e.g., quorum sensing or two-component systems), leading to global changes in gene expression, enhancing virulence, and expediting the acquisition of antibiotic resistance. Thus, one must examine a genetic change in virulence and resistance not only in the context of the biofilm but also as inextricably linked pathologies. Observationally, it is clear that increased virulence and the advent of antibiotic resistance often arise almost simultaneously; however, their genetic connection has been relatively ignored. Although the complexities of genetic regulation in a multispecies community may obscure a causative relationship, uncovering key genetic interactions between virulence and resistance in biofilm bacteria is essential to identifying new druggable targets, ultimately providing a drug discovery and development pathway to improve treatment options for chronic and recurring infection.
Collapse
Affiliation(s)
- Meredith Schroeder
- Department of Microbiological Sciences; North Dakota State University, Fargo, ND 58105, USA.
| | - Benjamin D Brooks
- Department of Electrical and Computer Engineering; North Dakota State University, Fargo, ND 58105, USA.
| | - Amanda E Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
36
|
Lim MP, Firdaus-Raih M, Nathan S. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection. Front Microbiol 2016; 7:1436. [PMID: 27672387 PMCID: PMC5019075 DOI: 10.3389/fmicb.2016.01436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/30/2016] [Indexed: 01/10/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators.
Collapse
Affiliation(s)
- Mei-Perng Lim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan MalaysiaBangi, Malaysia; Malaysia Genome InstituteKajang, Malaysia
| |
Collapse
|
37
|
Tan L, Moriel DG, Totsika M, Beatson SA, Schembri MA. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli. PLoS One 2016; 11:e0162391. [PMID: 27598999 PMCID: PMC5012682 DOI: 10.1371/journal.pone.0162391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen.
Collapse
Affiliation(s)
- Lendl Tan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Danilo G. Moriel
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, QLD 4059, Brisbane, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
- * E-mail:
| |
Collapse
|
38
|
Ero R, Kumar V, Chen Y, Gao YG. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function. RNA Biol 2016; 13:1258-1273. [PMID: 27325008 PMCID: PMC5207388 DOI: 10.1080/15476286.2016.1201627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action.
Collapse
Affiliation(s)
- Rya Ero
- a School of Biological Sciences , Nanyang Technological University , Singapore
| | - Veerendra Kumar
- a School of Biological Sciences , Nanyang Technological University , Singapore.,b Institute of Molecular and Cell Biology, A*STAR , Singapore
| | - Yun Chen
- a School of Biological Sciences , Nanyang Technological University , Singapore
| | - Yong-Gui Gao
- a School of Biological Sciences , Nanyang Technological University , Singapore.,b Institute of Molecular and Cell Biology, A*STAR , Singapore
| |
Collapse
|
39
|
Steinchen W, Bange G. The magic dance of the alarmones (p)ppGpp. Mol Microbiol 2016; 101:531-44. [PMID: 27149325 DOI: 10.1111/mmi.13412] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
The alarmones (p)ppGpp are important second messengers that orchestrate pleiotropic adaptations of bacteria and plant chloroplasts in response to starvation and stress. Here, we review our structural and mechanistic knowledge on (p)ppGpp metabolism including their synthesis, degradation and interconversion by a highly diverse set of enzymes. Increasing structural information shows how (p)ppGpp interacts with an incredibly diverse set of different targets that are essential for replication, transcription, translation, ribosome assembly and metabolism. This raises the question how the chemically rather simple (p)ppGpp is able to interact with these different targets? Structural analysis shows that the diversity of (p)ppGpp interaction with cellular targets critically relies on the conformational flexibility of the 3' and 5' phosphate moieties allowing alarmones to efficiently modulate the activity of target structures in a broad concentration range. Current approaches in the design of (p)ppGpp-analogs as future antibiotics might be aided by the comprehension of conformational flexibility exhibited by the magic dancers (p)ppGpp.
Collapse
Affiliation(s)
- Wieland Steinchen
- Department of Chemistry, LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Hans-Meerwein-Strasse, Marburg, 35043, Germany
| | - Gert Bange
- Department of Chemistry, LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Hans-Meerwein-Strasse, Marburg, 35043, Germany
| |
Collapse
|
40
|
Krämer A, Herzer J, Overhage J, Meyer-Almes FJ. Substrate specificity and function of acetylpolyamine amidohydrolases from Pseudomonas aeruginosa. BMC BIOCHEMISTRY 2016; 17:4. [PMID: 26956223 PMCID: PMC4784309 DOI: 10.1186/s12858-016-0063-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/02/2016] [Indexed: 11/13/2022]
Abstract
Background Pseudomonas aeruginosa, a Gram-negative, aerobic coccobacillus bacterium is an opportunistic human pathogen and worldwide the fourth most common cause of hospital-acquired infections which are often high mortality such as ventilator-associated pneumoniae. The polyamine metabolism of P. aeruginosa and particularly the deacetylation of acetylpolyamines has been little studied up to now. Results with other bacterial pathogens e.g., Y. pestis suggest that polyamines may be involved in the formation of biofilms or confer resistance against certain antibiotics. Results To elucidate the role of acetylpolyamines and their enzymatic deacetylation in more detail, all three putative acetylpolyamine amidohydrolases (APAHs) from P. aeruginosa have been expressed in enzymatic active form. The APAHs PA0321 and PA1409 are shown to be true polyamine deacetylases, whereas PA3774 is not able to deacetylate acetylated polyamines. Every APAH can hydrolyze trifluoroacetylated lysine-derivatives, but only PA1409 and much more efficiently PA3774 can also process the plain acetylated lysine substrate. P. aeruginosa is able to utilize acetylcadaverine and acetylputrescine as a carbon source under glucose starvation. If either the PA0321 or the PA1409 but not the PA3774 gene is disrupted, the growth of P. aeruginosa is reduced and delayed. In addition, we were able to show that the APAH inhibitors SAHA and SATFMK induce biofilm formation in both PA14 and PAO1 wildtype strains. Conclusions P. aeruginosa has two functional APAHs, PA0321 and PA1409 which enable the utilization of acetylpolyamines for the metabolism of P. aeruginosa. In contrast, the physiological role of the predicted APAH, PA3774, remains to be elucidated. Its ability to deacetylate synthetic acetylated lysine substrates points to a protein deacetylation functionality with yet unknown substrates. Electronic supplementary material The online version of this article (doi:10.1186/s12858-016-0063-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Krämer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295, Darmstadt, Germany
| | - Jan Herzer
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76021, Karlsruhe, Germany
| | - Joerg Overhage
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76021, Karlsruhe, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295, Darmstadt, Germany.
| |
Collapse
|
41
|
Guo Q, Wei Y, Xia B, Jin Y, Liu C, Pan X, Shi J, Zhu F, Li J, Qian L, Liu X, Cheng Z, Jin S, Lin J, Wu W. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa. Sci Rep 2016; 6:19141. [PMID: 26751736 PMCID: PMC4707474 DOI: 10.1038/srep19141] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the bacterial pathogen Pseudomonas aeruginosa. To identify target proteins that control both virulence and antibiotic resistance, we screened for mutants with defective cytotoxicity and biofilm formation from 93 transposon insertion mutants previously reported with increased antibiotic susceptibility. A pyrD mutant displayed defects in cytotoxicity, biofilm formation, quorum sensing and virulence in an acute mouse pneumonia model. Next, we employed a computer-aided screening to identify potential inhibitors of the PyrD protein, a dihydroorotate dehydrogenase (DHODase) involved in pyrimidine biosynthesis. One of the predicted inhibitors was able to suppress the enzymatic activity of PyrD as well as bacterial cytotoxicity, biofilm formation and antibiotic resistance. A single administration of the compound reduced the bacterial colonization in the acute mouse pneumonia model. Therefore, we have developed a strategy to identify novel treatment targets and antimicrobial molecules.
Collapse
Affiliation(s)
- Qiaoyun Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Bin Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinlong Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Lei Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
42
|
Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14. Appl Environ Microbiol 2016; 81:1274-85. [PMID: 25501476 DOI: 10.1128/aem.02832-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is able to sense and adapt to numerous environmental stimuli by the use of transcriptional regulators, including two-component regulatory systems. In this study, we demonstrate that the sensor kinase PA4398 is involved in the regulation of swarming motility and biofilm formation in P. aeruginosa PA14. APA4398 mutant strain was considerably impaired in swarming motility, while biofilm formation was increased by approximately 2-fold. The PA4398 mutant showed no changes in growth rate, rhamnolipid synthesis, or the production of the Pel exopolysaccharide but exhibited levels of the intracellular second messenger cyclic dimeric GMP (c-di-GMP) 50% higher than those in wild-type cells. The role of PA4398 in gene regulation was investigated by comparing the PA4398 mutant to the wildtype strain by using microarray analysis, which demonstrated that 64 genes were up- or downregulated more than 1.5-fold (P<0.05) under swarming conditions. In addition, more-sensitive real-time PCR studies were performed on genes known to be involved in c-di-GMP metabolism. Among the dysregulated genes were several involved in the synthesis and degradation of c-di-GMP or in the biosynthesis, transport, or function of the iron-scavenging siderophores pyoverdine and pyochelin, in agreement with the swarming phenotype observed. By analyzing additional mutants of selected pyoverdine- and pyochelin-related genes,we were able to show that not only pvdQ but also pvdR, fptA, pchA, pchD, and pchH are essential for the normal swarming behavior of P. aeruginosa PA14 and may also contribute to the swarming-deficient phenotype of the PA4398 mutant in addition to elevated c-di-GMP levels.
Collapse
|
43
|
Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:456463. [PMID: 26844228 PMCID: PMC4710896 DOI: 10.1155/2015/456463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/31/2015] [Accepted: 12/14/2015] [Indexed: 11/30/2022]
Abstract
Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm.
Collapse
|
44
|
Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii. mBio 2015; 6:e01660-15. [PMID: 26556274 PMCID: PMC4659468 DOI: 10.1128/mbio.01660-15] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The increasing emergence of antibiotic-resistant bacterial pathogens represents a serious risk to human health and the entire health care system. Many currently circulating strains of Acinetobacter baumannii exhibit resistance to multiple antibiotics. A key limitation in combating A. baumannii is that our understanding of the molecular mechanisms underlying the pathogenesis of A. baumannii is lacking. To identify potential virulence determinants of a contemporary multidrug-resistant isolate of A. baumannii, we used transposon insertion sequencing (TnSeq) of strain AB5075. A collection of 250,000 A. baumannii transposon mutants was analyzed for growth within Galleria mellonella larvae, an insect-based infection model. The screen identified 300 genes that were specifically required for survival and/or growth of A. baumannii inside G. mellonella larvae. These genes encompass both known, established virulence factors and several novel genes. Among these were more than 30 transcription factors required for growth in G. mellonella. A subset of the transcription factors was also found to be required for resistance to antibiotics and environmental stress. This work thus establishes a novel connection between virulence and resistance to both antibiotics and environmental stress in A. baumannii. Acinetobacter baumannii is rapidly emerging as a significant human pathogen, largely because of disinfectant and antibiotic resistance, causing lethal infection in fragile hosts. Despite the increasing prevalence of infections with multidrug-resistant A. baumannii strains, little is known regarding not only the molecular mechanisms that allow A. baumannii to resist environmental stresses (i.e., antibiotics and disinfectants) but also how these pathogens survive within an infected host to cause disease. We employed a large-scale genetic screen to identify genes required for A. baumannii to survive and grow in an insect disease model. While we identified many known virulence factors harbored by A. baumannii, we also discovered many novel genes that likely play key roles in A. baumannii survival of exposure to antibiotics and other stress-inducing chemicals. These results suggest that selection for increased resistance to antibiotics and environmental stress may inadvertently select for increased virulence in A. baumannii.
Collapse
|
45
|
Du XJ, Han R, Li P, Wang S. Comparative proteomic analysis of Cronobacter sakazakii isolates with different virulences. J Proteomics 2015; 128:344-51. [PMID: 26327241 DOI: 10.1016/j.jprot.2015.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/24/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Cronobacter is a genus of widespread, opportunistic, foodborne pathogens that can result in serious illnesses in at-risk infants because of their immature immunity and high dependence on powdered formula, which is one of the foods most often contaminated by this pathogen. However, limited information is available regarding the pathogenesis and the specific virulence factors of this species. In this study, the virulences of 42 Cronobacter sakazakii isolates were analyzed by infecting neonatal SD rats. A comparison of the typing patterns of the isolates enabled groups with close relationships but that exhibited distinct pathogenesis to be identified. Among these groups, 2 strains belonging to the same group but showing distinct virulences were selected, and 2-DE was applied to identify differentially expressed proteins, focusing on virulence-related proteins. A total of 111 protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), and 89 were successfully identified. Further analysis suggested that at least 11 of these proteins may be involved in the pathogenesis of this pathogen. Real-time PCR was carried out to further confirm the differential expression pattern of the genes, and the results indicated that the mRNA expression levels were consistent with the protein expression levels. BIOLOGICAL SIGNIFICANCE The virulence factors and pathogenesis of Cronobacter are largely unknown. In combination with animal toxicological experiments and subtyping results of C. sakazakii, comparative proteomics analysis was performed to comprehensively evaluate the differentially expressed proteins of two isolates that exhibited distinct virulence but were closely related. These procedures made it possible to identify the virulence-related of factors of Cronobacter. Among the 89 total identified proteins, at least 11 show virulence-related potential. This work provides comprehensive candidates for the further investigation of the pathogenesis of Cronobacter.
Collapse
Affiliation(s)
- Xin-jun Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ran Han
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ping Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
46
|
Structure of BipA in GTP form bound to the ratcheted ribosome. Proc Natl Acad Sci U S A 2015; 112:10944-9. [PMID: 26283392 DOI: 10.1073/pnas.1513216112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BPI-inducible protein A (BipA) is a member of the family of ribosome-dependent translational GTPase (trGTPase) factors along with elongation factors G and 4 (EF-G and EF4). Despite being highly conserved in bacteria and playing a critical role in coordinating cellular responses to environmental changes, its structures (isolated and ribosome bound) remain elusive. Here, we present the crystal structures of apo form and GTP analog, GDP, and guanosine-3',5'-bisdiphosphate (ppGpp)-bound BipA. In addition to having a distinctive domain arrangement, the C-terminal domain of BipA has a unique fold. Furthermore, we report the cryo-electron microscopy structure of BipA bound to the ribosome in its active GTP form and elucidate the unique structural attributes of BipA interactions with the ribosome and A-site tRNA in the light of its possible function in regulating translation.
Collapse
|
47
|
Courtney CM, Chatterjee A. Sequence-Specific Peptide Nucleic Acid-Based Antisense Inhibitors of TEM-1 β-Lactamase and Mechanism of Adaptive Resistance. ACS Infect Dis 2015; 1:253-63. [PMID: 27622741 DOI: 10.1021/acsinfecdis.5b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recent surge of drug-resistant superbugs and shrinking antibiotic pipeline are serious challenges to global health. In particular, the emergence of β-lactamases has caused extensive resistance against the most frequently prescribed class of β-lactam antibiotics. Here, we develop novel synthetic peptide nucleic acid-based antisense inhibitors that target the start codon and ribosomal binding site of the TEM-1 β-lactamase transcript and act via translation inhibition mechanism. We show that these antisense inhibitors are capable of resensitizing drug-resistant Escherichia coli to β-lactam antibiotics exhibiting 10-fold reduction in the minimum inhibitory concentration (MIC). To study the mechanism of resistance, we adapted E. coli at MIC levels of the β-lactam/antisense inhibitor combination and observed a nonmutational, bet-hedging based adaptive antibiotic resistance response as evidenced by phenotypic heterogeneity as well as heterogeneous expression of key stress response genes. Our data show that both the development of new antimicrobials and an understanding of cellular response during the development of tolerance could aid in mitigating the impending antibiotic crisis.
Collapse
Affiliation(s)
- Colleen M. Courtney
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, 596 UCB, University of Colorado, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, 596 UCB, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
48
|
Vieira A, Seddon AM, Karlyshev AV. Campylobacter-Acanthamoeba interactions. MICROBIOLOGY-SGM 2015; 161:933-947. [PMID: 25757600 DOI: 10.1099/mic.0.000075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
Abstract
Campylobacter jejuni is a foodborne pathogen recognized as the major cause of human bacterial enteritis. Undercooked poultry products and contaminated water are considered as the most important sources of infection. Some studies suggest transmission and survival of this bacterial pathogen may be assisted by the free-living protozoa Acanthamoeba. The latter is known to play the role of a host for various pathogenic bacteria, protecting them from harsh environmental conditions. Importantly, there is a similarity between the mechanisms of bacterial survival within amoebae and macrophages, making the former a convenient tool for the investigation of the survival of pathogenic bacteria in the environment. However, the molecular mechanisms involved in the interaction between Campylobacter and Acanthamoeba are not well understood. Whilst some studies suggest the ability of C. jejuni to survive within the protozoa, the other reports support an extracellular mode of survival only. In this review, we focus on the studies investigating the interaction between Campylobacter and Acanthamoeba, address some reasons for the contradictory results, and discuss possible implications of these results for epidemiology. Additionally, as the molecular mechanisms involved remain unknown, we also suggest possible factors that may be involved in this process. Deciphering the molecular mechanisms of pathogen-protozoa interaction will assist in a better understanding of Campylobacter lifestyle and in the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Ana Vieira
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Alan M Seddon
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Andrey V Karlyshev
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
49
|
Atkinson GC. The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics 2015; 16:78. [PMID: 25756599 PMCID: PMC4342817 DOI: 10.1186/s12864-015-1289-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ribosome translates mRNA to protein with the aid of a number of accessory protein factors. Translational GTPases (trGTPases) are an integral part of the 'core set' of essential translational factors, and are some of the most conserved proteins across life. This study takes advantage of the wealth of available genomic data, along with novel functional information that has come to light for a number of trGTPases to address the full evolutionary and functional diversity of this superfamily across all domains of life. RESULTS Through sensitive sequence searching combined with phylogenetic analysis, 57 distinct subfamilies of trGTPases are identified: 14 bacterial, 7 archaeal and 35 eukaryotic (of which 21 are known or predicted to be organellar). The results uncover the functional evolution of trGTPases from before the last common ancestor of life on earth to the current day. CONCLUSIONS While some trGTPases are universal, others are limited to certain taxa, suggesting lineage-specific translational control mechanisms that exist on a base of core factors. These lineage-specific features may give organisms the ability to tune their translation machinery to respond to their environment. Only a fraction of the diversity of the trGTPase superfamily has been subjected to experimental analyses; this comprehensive classification brings to light novel and overlooked translation factors that are worthy of further investigation.
Collapse
|
50
|
Abstract
In saturation diving, divers stay under pressure until most of their tissues are saturated with breathing gas. Divers spend a long time in isolation exposed to increased partial pressure of oxygen, potentially toxic gases, bacteria, and bubble formation during decompression combined with shift work and long periods of relative inactivity. Hyperoxia may lead to the production of reactive oxygen species (ROS) that interact with cell structures, causing damage to proteins, lipids, and nucleic acid. Vascular gas-bubble formation and hyperoxia may lead to dysfunction of the endothelium. The antioxidant status of the diver is an important mechanism in the protection against injury and is influenced both by diet and genetic factors. The factors mentioned above may lead to production of heat shock proteins (HSP) that also may have a negative effect on endothelial function. On the other hand, there is a great deal of evidence that HSPs may also have a "conditioning" effect, thus protecting against injury. As people age, their ability to produce antioxidants decreases. We do not currently know the capacity for antioxidant defense, but it is reasonable to assume that it has a limit. Many studies have linked ROS to disease states such as cancer, insulin resistance, diabetes mellitus, cardiovascular diseases, and atherosclerosis as well as to old age. However, ROS are also involved in a number of protective mechanisms, for instance immune defense, antibacterial action, vascular tone, and signal transduction. Low-grade oxidative stress can increase antioxidant production. While under pressure, divers change depth frequently. After such changes and at the end of the dive, divers must follow procedures to decompress safely. Decompression sickness (DCS) used to be one of the major causes of injury in saturation diving. Improved decompression procedures have significantly reduced the number of reported incidents; however, data indicate considerable underreporting of injuries. Furthermore, divers who are required to return to the surface quickly are under higher risk of serious injury as no adequate decompression procedures for such situations are available. Decompression also leads to the production of endothelial microparticles that may reduce endothelial function. As good endothelial function is a documented indicator of health that can be influenced by regular exercise, regular physical exercise is recommended for saturation divers. Nowadays, saturation diving is a reasonably safe and well controlled method for working under water. Until now, no long-term impact on health due to diving has been documented. However, we still have limited knowledge about the pathophysiologic mechanisms involved. In particular we know little about the effect of long exposure to hyperoxia and microparticles on the endothelium.
Collapse
Affiliation(s)
- Alf O Brubakk
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|