1
|
Paul A, Wellslager B, Williamson M, Yilmaz Ö. Bacterial Protein Signatures Identified in Porphyromonas gingivalis Containing-Autophagic Vacuoles Reveal Co-Evolution Between Oral Red/Orange Complex Bacteria and Gut Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602567. [PMID: 39026754 PMCID: PMC11257597 DOI: 10.1101/2024.07.11.602567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Modern oral bacterial species present as a concoction of commensal and opportunistic pathogens originating from their evolution in humans. Due to the intricate colonization mechanisms shared amongst oral and gut bacteria, these bacteria have likely evolved together to establish and adapt in the human oro-digestive tract, resulting in the transfer of genetic information. Our liquid chromatography-with-tandem-mass-spectrometry (LC-MS-MS) analyses have revealed protein signatures, Elongation Factor Tu, RagB/SusD nutrient uptake outer membrane protein and DnaK, specifically from Porphyromonas gingivalis -containing autophagic vacuoles isolated from the infected human primary gingival epithelial cells. Interestingly, our Mass-Spectrometry analysis reported similar proteins from closely related oral bacteria, Tannerella forsythia and Prevotella intermedia . In our phylogenetic study of these key protein signatures, we have established that pathogenic oral bacteria share extensive relatedness to each other and gut resident bacteria. We show that in the virulence factors identified from gut bacteria, Elongation Factor Tu and DnaK, there are several structural similarities and conservations with proteins from oral pathogenic bacteria. There are also major similarities in the RagB/SusD proteins of oral bacteria to prominent gut bacteria. These findings not only highlight the shared virulence mechanisms amongst oral bacterial pathogens/pathobionts but also gut bacteria and elucidate their co-evolutions in the human host.
Collapse
|
2
|
Lamont RJ, Kuboniwa M. The polymicrobial pathogenicity of Porphyromonas gingivalis. FRONTIERS IN ORAL HEALTH 2024; 5:1404917. [PMID: 38736461 PMCID: PMC11082793 DOI: 10.3389/froh.2024.1404917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Accumulating microbiome data and mechanistic studies in vitro and in vivo have refined our understanding of the oral microbiota as a functionally integrated polymicrobial community. Emergent properties of these communities are driven to a large extent by interspecies communication which can be based on physical association, secreted small molecules or nutritional exchange. Porphyromonas gingivalis is a consensus periodontal pathogen; however, virulence is only expressed in the context of a polymicrobial community. Multivalent fimbriae mediate attachment to other oral species which can initiate a distinct transcriptional program in both constituents of the binding pair. P. gingivalis also responds to small molecules and nutritional cues produced by partner organisms. Physiological interdependence forms the basis of complex networks of cooperating organisms which begin to resemble an organismal entity exhibiting a spectrum of pathogenic potential.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
3
|
Yáñez L, Soto C, Tapia H, Pacheco M, Tapia J, Osses G, Salinas D, Rojas-Celis V, Hoare A, Quest AFG, Díaz-Elizondo J, Pérez-Donoso JM, Bravo D. Co-Culture of P. gingivalis and F. nucleatum Synergistically Elevates IL-6 Expression via TLR4 Signaling in Oral Keratinocytes. Int J Mol Sci 2024; 25:3611. [PMID: 38612423 PMCID: PMC11011619 DOI: 10.3390/ijms25073611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
Periodontitis, characterized by persistent inflammation in the periodontium, is intricately connected to systemic diseases, including oral cancer. Bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, play a pivotal role in periodontitis development because they contribute to dysbiosis and tissue destruction. Thus, comprehending the interplay between these bacteria and their impacts on inflammation holds significant relevance in clinical understanding and treatment advancement. In the present work, we explored, for the first time, their impacts on the expressions of pro-inflammatory mediators after infecting oral keratinocytes (OKs) with a co-culture of pre-incubated P. gingivalis and F. nucleatum. Our results show that the co-culture increases IL-1β, IL-8, and TNF-α expressions, synergistically augments IL-6, and translocates NF-kB to the cell nucleus. These changes in pro-inflammatory mediators-associated with chronic inflammation and cancer-correlate with an increase in cell migration following infection with the co-cultured bacteria or P. gingivalis alone. This effect depends on TLR4 because TLR4 knockdown notably impacts IL-6 expression and cell migration. Our study unveils, for the first time, crucial insights into the outcomes of their co-culture on virulence, unraveling the role of bacterial interactions in polymicrobial diseases and potential links to oral cancer.
Collapse
Affiliation(s)
- Lucas Yáñez
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Cristopher Soto
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Héctor Tapia
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Martín Pacheco
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Javiera Tapia
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Gabriela Osses
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Daniela Salinas
- Oral Microbiology and Immunology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (D.S.); (A.H.)
| | - Victoria Rojas-Celis
- Virology Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| | - Anilei Hoare
- Oral Microbiology and Immunology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (D.S.); (A.H.)
| | - Andrew F. G. Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jessica Díaz-Elizondo
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - José Manuel Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Denisse Bravo
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| |
Collapse
|
4
|
Pham C, Guo S, Han X, Coleman L, Sze CW, Wang H, Liu J, Li C. A pleiotropic role of sialidase in the pathogenicity of Porphyromonas gingivalis. Infect Immun 2024; 92:e0034423. [PMID: 38376159 PMCID: PMC10929438 DOI: 10.1128/iai.00344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
As one of the keystone pathogens of periodontitis, the oral bacterium Porphyromonas gingivalis produces an array of virulence factors, including a recently identified sialidase (PG0352). Our previous report involving loss-of-function studies indicated that PG0352 plays an important role in the pathophysiology of P. gingivalis. However, this report had not been corroborated by gain-of-function studies or substantiated in different P. gingivalis strains. To fill these gaps, herein we first confirm the role of PG0352 in cell surface structures (e.g., capsule) and serum resistance using P. gingivalis W83 strain through genetic complementation and then recapitulate these studies using P. gingivalis ATCC33277 strain. We further investigate the role of PG0352 and its counterpart (PGN1608) in ATCC33277 in cell growth, biofilm formation, neutrophil killing, cell invasion, and P. gingivalis-induced inflammation. Our results indicate that PG0352 and PGN1608 are implicated in P. gingivalis cell surface structures, hydrophobicity, biofilm formation, resistance to complement and neutrophil killing, and host immune responses. Possible molecular mechanisms involved are also discussed. In summary, this report underscores the importance of sialidases in the pathophysiology of P. gingivalis and opens an avenue to elucidate their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Christopher Pham
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Xiao Han
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Laurynn Coleman
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huizhi Wang
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
5
|
Bhatsange A, Kamble SP. Assessment of nutritional status in chronic periodontitis patients: A cross-sectional study. J Indian Soc Periodontol 2024; 28:231-243. [PMID: 39411731 PMCID: PMC11472975 DOI: 10.4103/jisp.jisp_263_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 10/19/2024] Open
Abstract
Background This cross-sectional study compared the nutritional status of chronic periodontitis (CP) patients who presented with various degrees of severity with systemically healthy individuals using the Mini Nutritional Assessment (MNA®) tool along with laboratory analysis of macro- and micronutrients. Materials and Methods This research enrolled a total of 84 participants, of which 63 belonged to the CP group while 21 served as healthy controls. The CP patients were divided into three groups of 21 each, based on severity as mild, moderate, and severe. Clinical periodontal parameters (plaque index, bleeding on probing, probing depth, clinical attachment level/loss, total number of teeth present [NOT-P], furcation involvement, pathological migration, and tooth mobility), biochemical parameters (lipid, protein, iron profiles, and Vitamin D3 and B12), and the MNA® tool were used to assess the nutritional status of all the participants. The results were analyzed statistically. Results NOT-P, MNA score, lipid profile (except very-low-density lipoprotein), iron profile (except total iron-binding capacity), and Vitamin D3 showed high significant differences (P < 0.001) among the groups. However, Vitamin B12 and protein profile except for total protein revealed significant differences (P < 0.05). Conclusion CP can be a contributing risk factor for the development of malnutrition. MNA® tool can be used for assessing the nutritional status of CP patients.
Collapse
Affiliation(s)
- Anuradha Bhatsange
- Department of Periodontology and Oral Implantology, JMF’s ACPM Dental College, Dhule, Maharashtra, India
| | - Sanika Prakash Kamble
- Department of Periodontology and Oral Implantology, JMF’s ACPM Dental College, Dhule, Maharashtra, India
| |
Collapse
|
6
|
Contribution of -Omics Technologies in the Study of Porphyromonas gingivalis during Periodontitis Pathogenesis: A Minireview. Int J Mol Sci 2022; 24:ijms24010620. [PMID: 36614064 PMCID: PMC9820714 DOI: 10.3390/ijms24010620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/31/2022] Open
Abstract
Periodontitis is a non-communicable chronic inflammatory disease characterized by the progressive and irreversible breakdown of the soft periodontal tissues and resorption of teeth-supporting alveolar bone. The etiology of periodontitis involves dysbiotic shifts in the diversity of microbial communities inhabiting the subgingival crevice, which is dominated by anaerobic Gram-negative bacteria, including Porphyromonas gingivalis. Indeed, P. gingivalis is a keystone pathogen with a repertoire of attributes that allow it to colonize periodontal tissues and influence the metabolism, growth rate, and virulence of other periodontal bacteria. The pathogenic potential of P. gingivalis has been traditionally analyzed using classical biochemical and molecular approaches. However, the arrival of new techniques, such as whole-genome sequencing, metagenomics, metatranscriptomics, proteomics, and metabolomics, allowed the generation of high-throughput data, offering a suitable option for bacterial analysis, allowing a deeper understanding of the pathogenic properties of P. gingivalis and its interaction with the host. In the present review, we revise the use of the different -omics technologies and techniques used to analyze bacteria and discuss their potential in studying the pathogenic potential of P. gingivalis.
Collapse
|
7
|
Wan Z, Zheng J, Zhu Z, Sang L, Zhu J, Luo S, Zhao Y, Wang R, Zhang Y, Hao K, Chen L, Du J, Kan J, He H. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9:1031502. [PMID: 36583209 PMCID: PMC9792504 DOI: 10.3389/fnut.2022.1031502] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B consists of a group of water-soluble micronutrients that are mainly derived from the daily diet. They serve as cofactors, mediating multiple metabolic pathways in humans. As an integrated part of human health, gut microbiota could produce, consume, and even compete for vitamin B with the host. The interplay between gut microbiota and the host might be a crucial factor affecting the absorbing processes of vitamin B. On the other hand, vitamin B supplementation or deficiency might impact the growth of specific bacteria, resulting in changes in the composition and function of gut microbiota. Together, the interplay between vitamin B and gut microbiota might systemically contribute to human health. In this review, we summarized the interactions between vitamin B and gut microbiota and tried to reveal the underlying mechanism so that we can have a better understanding of its role in human health.
Collapse
Affiliation(s)
- Zhijie Wan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | - Lan Sang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinwei Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ruirui Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yicui Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kun Hao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Soybean peptide inhibits the biofilm of periodontopathic bacteria via bactericidal activity. Arch Oral Biol 2022; 142:105497. [PMID: 35849907 DOI: 10.1016/j.archoralbio.2022.105497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aimed to clarify the antibacterial mechanism and antibiofilm effect of soybean-derived peptide BCBS-11 against periodontopathic bacteria. DESIGN The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of BCBS-11 against Porphyromonas gingivalis (P. gingivalis), Fusobacterium nucleatum (F. nucleatum), and Streptococcus mitis (S. mitis) were determined for the antibacterial mechanism. The effect of BCBS-11 on membrane permeability and depolarization activity were investigated using propidium iodide (PI) staining and 3, 3'-dipropylthiadicarbocyanine iodide (DiSC3-(5)) analysis. Monospecies and multispecies biofilms were cultured on 96-well plates. The amount of biofilm was determined using crystal violet staining to determine the inhibition of biofilm formation and the eradication of established biofilm using BCBS-11. The cytotoxicity of BCBS-11 was evaluated using 3-(4, 5-Dimethylthiazol-2-yl)- 2, 5-diphenyltetrazolium bromide (MTT) assay. RESULTS The MIC and MBC indicated the bactericidal activity of BCBS-11 against P. gingivalis and F. nucleatum. The PI staining revealed that BCBS-11 disrupted the bacterial membrane integrity. The DiSC3-(5) analysis indicated that BCBS-11 depolarized the bacterial cytoplasmic membrane. These results indicate the antimicrobial action of BCBS-11 through membrane disruption and the collapse of membrane electrochemical gradient. BCBS-11 significantly inhibited the monospecies biofilm formation of P. gingivalis and F. nucleatum and also inhibited dual-species biofilm. BCBS-11 was not cytotoxic toward human oral epithelial cells. CONCLUSIONS BCBS-11 inhibits the monospecies and multispecies biofilm formation of P. gingivalis and F. nucleatum, and their bactericidal activity results from membrane disruption.
Collapse
|
9
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
10
|
Porphyromonas gingivalis Tyrosine Kinase Is a Fitness Determinant in Polymicrobial Infections. Infect Immun 2022; 90:e0017022. [PMID: 35575504 PMCID: PMC9202411 DOI: 10.1128/iai.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pathogenic microbial ecosystems are polymicrobial, and community function can be shaped by interbacterial interactions. Little is known, however, regarding the genetic determinants required for fitness in heterotypic community environments. In periodontal diseases, Porphyromonas gingivalis is a primary pathogen, but only within polymicrobial communities. Here, we used a transposon sequencing (Tn-Seq) library of P. gingivalis to screen for genes that influence fitness of the organism in a coinfection murine abscess model with the oral partner species Streptococcus gordonii and Fusobacterium nucleatum. Genes impacting fitness with either organism were involved in diverse processes, including metabolism and energy production, along with cell wall and membrane biogenesis. Despite the overall similarity of function, the majority of identified genes were specific to the partner species, indicating that synergistic mechanisms of P. gingivalis vary to a large extent according to community composition. Only two genes were identified as essential for P. gingivalis fitness in abscess development with both S. gordonii and F. nucleatum: ptk1, encoding a tyrosine kinase, and inlJ, encoding an internalin family surface protein. Ptk1, but not InlJ, is required for community development with S. gordonii, and we found that the action of this kinase is similarly required for P. gingivalis to accumulate in a community with F. nucleatum. A limited number of P. gingivalis genes are therefore required for species-independent synergy, and the Ptk1 tyrosine kinase network may integrate and coordinate input from multiple organisms.
Collapse
|
11
|
Mayumi S, Kuboniwa M, Sakanaka A, Hashino E, Ishikawa A, Ijima Y, Amano A. Potential of Prebiotic D-Tagatose for Prevention of Oral Disease. Front Cell Infect Microbiol 2021; 11:767944. [PMID: 34804997 PMCID: PMC8604381 DOI: 10.3389/fcimb.2021.767944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies have shown phenotypic and metabolic heterogeneity in related species including Streptococcus oralis, a typical oral commensal bacterium, Streptococcus mutans, a cariogenic bacterium, and Streptococcus gordonii, which functions as an accessory pathogen in periodontopathic biofilm. In this study, metabolites characteristically contained in the saliva of individuals with good oral hygiene were determined, after which the effects of an identified prebiotic candidate, D-tagatose, on phenotype, gene expression, and metabolic profiles of those three key bacterial species were investigated. Examinations of the saliva metabolome of 18 systemically healthy volunteers identified salivary D-tagatose as associated with lower dental biofilm abundance in the oral cavity (Spearman’s correlation coefficient; r = -0.603, p = 0.008), then the effects of D-tagatose on oral streptococci were analyzed in vitro. In chemically defined medium (CDM) containing D-tagatose as the sole carbohydrate source, S. mutans and S. gordonii each showed negligible biofilm formation, whereas significant biofilms were formed in cultures of S. oralis. Furthermore, even in the presence of glucose, S. mutans and S. gordonii showed growth suppression and decreases in the final viable cell count in a D-tagatose concentration-dependent manner. In contrast, no inhibitory effects of D-tagatose on the growth of S. oralis were observed. To investigate species-specific inhibition by D-tagatose, the metabolomic profiles of D-tagatose-treated S. mutans, S. gordonii, and S. oralis cells were examined. The intracellular amounts of pyruvate-derived amino acids in S. mutans and S. gordonii, but not in S. oralis, such as branched-chain amino acids and alanine, tended to decrease in the presence of D-tagatose. This phenomenon indicates that D-tagatose inhibits growth of those bacteria by affecting glycolysis and its downstream metabolism. In conclusion, the present study provides evidence that D-tagatose is abundant in saliva of individuals with good oral health. Additionally, experimental results demonstrated that D-tagatose selectively inhibits growth of the oral pathogens S. mutans and S. gordonii. In contrast, the oral commensal S. oralis seemed to be negligibly affected, thus highlighting the potential of administration of D-tagatose as an oral prebiotic for its ability to manipulate the metabolism of those targeted oral streptococci.
Collapse
Affiliation(s)
- Shota Mayumi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ei Hashino
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Asuka Ishikawa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yura Ijima
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
12
|
Ali Mohammed MM, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Label-free quantitative proteomic analysis of the oral bacteria Fusobacterium nucleatum and Porphyromonas gingivalis to identify protein features relevant in biofilm formation. Anaerobe 2021; 72:102449. [PMID: 34543761 DOI: 10.1016/j.anaerobe.2021.102449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.
Collapse
Affiliation(s)
| | | | - Audun H Nerland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Vidar Bakken
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Swimberghe RCD, Crabbé A, De Moor RJG, Coenye T, Meire MA. Model system parameters influence the sodium hypochlorite susceptibility of endodontic biofilms. Int Endod J 2021; 54:1557-1570. [PMID: 33932297 DOI: 10.1111/iej.13544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
AIM To evaluate in a laboratory setting the influence of several model system parameters on the sodium hypochlorite (NaOCl) susceptibility of endodontic biofilms. Based on these findings, a relevant in vitro endodontic biofilm model is proposed. METHODOLOGY In vitro biofilms were cultured, varying the following experimental model parameters: biofilm composition (monospecies Enterococcus faecalis and a multispecies biofilm including E. faecalis, Fusobacterium nucleatum, Prevotella intermedia and Porphyromonas gingivalis), incubation time (24 h or 11 days), incubation atmosphere (aerobically or anaerobically) and biofilm substrate (polystyrene microtiter plate wells, hydroxyapatite or dentine). Biofilms were subjected to treatment with NaOCl (0.025%, 0.1%, 0.5%, 2.5%) for 1 min, control groups included treatment with purified water. Biofilms were harvested and the number of surviving cells was determined by plate counting using general (monospecies biofilms) or selective (multispecies biofilms) media. A two-way ANOVA was used to explore the effect of the model parameters on biofilm eradication. Finally, the most physiologically relevant biofilm model (11-day-old multispecies biofilm grown anaerobically on dentine discs) was characterized by selective media plate counting, NaOCl susceptibility testing, scanning and transmission electron microscopy. RESULTS There was no difference in NaOCl eradication between the anaerobically and aerobically grown E. faecalis biofilms. One-day-old biofilms of E. faecalis were more susceptible to most tested NaOCl concentrations than 11-day-old biofilms (p < .05). When grown in a multispecies biofilm, E. faecalis was significantly less susceptible to NaOCl treatment than in a monospecies biofilm (p < .05). E. faecalis in a multispecies biofilm grown in a MTP was more susceptible to NaOCl (0.025% and 0.1%) than when grown on hydroxyapatite or dentine. No difference in biofilm NaOCl susceptibility was seen between hydroxyapatite and dentine. The multispecies biofilm proved to be a reproducible model with high NaOCl resistance, complex structure and organization. CONCLUSION The parameters biofilm age, biofilm composition and substrate had a significant influence on the NaOCl susceptibility of E. faecalis biofilms. Older biofilms, multispecies biofilms and biofilms grown on dentine and hydroxyapatite had reduced NaOCl susceptibility. These findings emphasize the importance of selecting relevant parameters when designing a laboratory biofilm model system for the evaluation of antimicrobial treatments.
Collapse
Affiliation(s)
- Rosalie C D Swimberghe
- Department of Oral Health Sciences, Section of Endodontology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Roeland J G De Moor
- Department of Oral Health Sciences, Section of Endodontology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Maarten A Meire
- Department of Oral Health Sciences, Section of Endodontology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Shokeen B, Dinis MDB, Haghighi F, Tran NC, Lux R. Omics and interspecies interaction. Periodontol 2000 2020; 85:101-111. [PMID: 33226675 DOI: 10.1111/prd.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interspecies interactions are key determinants in biofilm behavior, ecology, and architecture. The cellular responses of microorganisms to each other at transcriptional, proteomic, and metabolomic levels ultimately determine the characteristics of biofilm and the corresponding implications for health and disease. Advances in omics technologies have revolutionized our understanding of microbial community composition and their activities as a whole. Large-scale analyses of the complex interaction between the many microbial species residing within a biofilm, however, are currently still hampered by technical and bioinformatics challenges. Thus, studies of interspecies interactions have largely focused on the transcriptional and proteomic changes that occur during the contact of a few prominent species, such as Porphyromonas gingivalis, Streptococcus mutans, Candida albicans, and a few others, with selected partner species. Expansion of available tools is necessary to grow the revealing, albeit limited, insight these studies have provided into a profound understanding of the nature of individual microbial responses to the presence of others. This will allow us to answer important questions including: Which intermicrobial interactions orchestrate the myriad of cooperative, synergistic, antagonistic, manipulative, and other types of relationships and activities in the complex biofilm environment, and what are the implications for oral health and disease?
Collapse
Affiliation(s)
- Bhumika Shokeen
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Marcia Dalila Botelho Dinis
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Farnoosh Haghighi
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nini Chaichanasakul Tran
- Section of Pediatric Dentistry, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Renate Lux
- Section of Periodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Arjunan P. Eye on the Enigmatic Link: Dysbiotic Oral Pathogens in Ocular Diseases; The Flip Side. Int Rev Immunol 2020; 40:409-432. [PMID: 33179994 DOI: 10.1080/08830185.2020.1845330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouth and associated structures were regarded as separate entities from the rest of the body. However, there is a paradigm shift in this conception and oral health is now considered as a fundamental part of overall well-being. In recent years, the subject of oral-foci of infection has attained a resurgence in terms of systemic morbidities while limited observations denote the implication of chronic oral inflammation in the pathogenesis of eye diseases. Hitherto, there is a paucity for mechanistic insights underlying the reported link between periodontal disease (PD) and ocular comorbidities. In light of prevailing scientific evidence, this review article will focus on the understudied theme, that is, the impact of oral dysbiosis in the induction and/or progression of inflammatory eye diseases like diabetic retinopathy, scleritis, uveitis, glaucoma, age-related macular degeneration (AMD). Furthermore, the plausible mechanisms by which periodontal microbiota may trigger immune dysfunction in the Oro-optic-network and promote the development of PD-associated AMD have been discussed.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta, GA, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
17
|
Seneviratne CJ, Suriyanarayanan T, Widyarman AS, Lee LS, Lau M, Ching J, Delaney C, Ramage G. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit Rev Microbiol 2020; 46:759-778. [PMID: 33030973 DOI: 10.1080/1040841x.2020.1828817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of omics technologies has greatly improved our understanding of microbial biology, particularly in the last two decades. The field of microbial biofilms is, however, relatively new, consolidated in the 1980s. The morphogenic switching by microbes from planktonic to biofilm phenotype confers numerous survival advantages such as resistance to desiccation, antibiotics, biocides, ultraviolet radiation, and host immune responses, thereby complicating treatment strategies for pathogenic microorganisms. Hence, understanding the mechanisms governing the biofilm phenotype can result in efficient treatment strategies directed specifically against molecular markers mediating this process. The application of omics technologies for studying microbial biofilms is relatively less explored and holds great promise in furthering our understanding of biofilm biology. In this review, we provide an overview of the application of omics tools such as transcriptomics, proteomics, and metabolomics as well as multi-omics approaches for studying microbial biofilms in the current literature. We also highlight how the use of omics tools directed at various stages of the biological information flow, from genes to metabolites, can be integrated via multi-omics platforms to provide a holistic view of biofilm biology. Following this, we propose a future artificial intelligence-based multi-omics platform that can predict the pathways associated with different biofilm phenotypes.
Collapse
Affiliation(s)
- Chaminda J Seneviratne
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Tanujaa Suriyanarayanan
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Grogol, West Jakarta, Indonesia
| | - Lye Siang Lee
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Matthew Lau
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Christopher Delaney
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol 2020; 12:1801090. [PMID: 32944155 PMCID: PMC7482874 DOI: 10.1080/20002297.2020.1801090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
is an obligate, asaccharolytic, gram-negative bacteria commonly associated with increased periodontal and systemic inflammation. P. gingivalis is known to survive and persist within the host tissues as it modulates the entire ecosystem by either engineering its environment or modifying the host's immune response. It interacts with various host receptors and alters signaling pathways of inflammation, complement system, cell cycle, and apoptosis. P. gingivalis is even known to induce suicidal cell death of the host and other microbes in its vicinity with the emergence of pathobiont species. Recently, new molecular and immunological mechanisms and virulence factors of P. gingivalis that increase its chance of survival and immune evasion within the host have been discovered. Thus, the present paper aims to provide a consolidated update on the new intricate and unique molecular mechanisms and virulence factors of P. gingivalis associated with its survival, persistence, and immune evasion within the host.
Collapse
Affiliation(s)
- Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya G. Bhat
- College of Dentistry, Imam Abdul Rahman Faisal University, Dammam, KSA
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
19
|
Porphyromonas gingivalis HmuY and Streptococcus gordonii GAPDH-Novel Heme Acquisition Strategy in the Oral Microbiome. Int J Mol Sci 2020; 21:ijms21114150. [PMID: 32532033 PMCID: PMC7312356 DOI: 10.3390/ijms21114150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
The oral cavity of healthy individuals is inhabited by commensals, with species of Streptococcus being the most abundant and prevalent in sites not affected by periodontal diseases. The development of chronic periodontitis is linked with the environmental shift in the oral microbiome, leading to the domination of periodontopathogens. Structure-function studies showed that Streptococcus gordonii employs a "moonlighting" protein glyceraldehyde-3-phosphate dehydrogenase (SgGAPDH) to bind heme, thus forming a heme reservoir for exchange with other proteins. Secreted or surface-associated SgGAPDH coordinates Fe(III)heme using His43. Hemophore-like heme-binding proteins of Porphyromonas gingivalis (HmuY), Prevotella intermedia (PinO) and Tannerella forsythia (Tfo) sequester heme complexed to SgGAPDH. Co-culturing of P. gingivalis with S. gordonii results in increased hmuY gene expression, indicating that HmuY might be required for efficient inter-bacterial interactions. In contrast to the DhmuY mutant strain, the wild type strain acquires heme and forms deeper biofilm structures on blood agar plates pre-grown with S. gordonii. Therefore, our novel paradigm of heme acquisition used by P. gingivalis appears to extend to co-infections with other oral bacteria and offers a mechanism for the ability of periodontopathogens to obtain sufficient heme in the host environment. Importantly, P. gingivalis is advantaged in terms of acquiring heme, which is vital for its growth survival and virulence.
Collapse
|
20
|
Araujo DS, Klein MI, Scudine KGDO, de Sales Leite L, Parisotto TM, Ferreira CM, Fonseca FLA, Perez MM, Castelo PM. Salivary Microbiological and Gingival Health Status Evaluation of Adolescents With Overweight and Obesity: A Cluster Analysis. Front Pediatr 2020; 8:429. [PMID: 32850543 PMCID: PMC7411150 DOI: 10.3389/fped.2020.00429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Given the high prevalence of obesity in children and adolescents, the investigation of early markers is of clinical importance to better manage this condition. Thus, the aim was to evaluate the cross-sectional relationship between salivary microbiota, gingival health status, and excess weight in adolescents. A total of 248 students (14-17 y; 119 girls) were included, free of caries lesions and periodontal pockets. Physical examination included measures of height, weight, and body fat percentage (%BF). Oral examination was performed to gather information on dental (DMFT index) and gingival health status. Unstimulated saliva was submitted to qPCR reactions to quantify Streptococcus mutans, Porphyromonas gingivalis, Bifidobacteria, and Streptococcus pneumoniae percentages and the NFKappaB expression. Two-way ANOVA was applied considering group (normal-weight/overweight/obesity) and sex factors, in addition to cluster analysis. Group effect was significant for %S. mutans (partial eta2 = 0.20; p < 0.001) and %Bifidobacteria (partial eta2 = 0.19; p < 0.001), with overweight and obesity groups showing the highest levels compared to normal-weight ones, with no significant sex effect. There was no difference in the frequency of gingivitis, P. gingivalis, and S. pneumoniae percentages or NFKappaB expression between groups. Cluster analysis generated three clusters according to body fat accumulation: "Higher %BF," "Moderate %BF," and "Lower %BF." "Higher %BF" cluster was characterized by higher body fat percentage and higher salivary %Bifidobacteria, while cluster "Lower %BF" was characterized by lower body fat percentage and lower frequency of gingivitis ("Moderate %BF" cluster was the contrast). According to nutritional status, a difference in salivary S. mutans and Bifidobacteria percentages was found, with overweight or obesity adolescents showing the highest percentages than normal-weight ones. Besides, a positive relationship between body fat accumulation and Bifidobacteria count was observed, indicating a possible interaction between oral bacteria communities and weight gain.
Collapse
Affiliation(s)
- Darlle Santos Araujo
- Department of Pediatric Dentistry, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - Marlise Inêz Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | | | - Luana de Sales Leite
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Thais M Parisotto
- Laboratory of Molecular Biology of Microorganisms, São Francisco University, Bragança Paulista, Brazil
| | | | | | | | - Paula Midori Castelo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| |
Collapse
|
21
|
Śmiga M, Olczak T. PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for Porphyromonas gingivalis Virulence. Microorganisms 2019; 7:microorganisms7120623. [PMID: 31795139 PMCID: PMC6955866 DOI: 10.3390/microorganisms7120623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis is one of the etiological agents of chronic periodontitis. Both heme and oxidative stress impact expression of genes responsible for its survival and virulence. Previously we showed that P. gingivalis ferric uptake regulator homolog affects expression of a gene encoding a putative Crp/Fnr superfamily member, termed P. gingivalis redox-sensing protein (PgRsp). Although PgRsp binds heme and shows the highest similarity to proteins assigned to the CooA family, it could be a member of a novel, separate family of proteins with unknown function. Expression of the pgrsp gene is autoregulated and iron/heme dependent. Genes encoding proteins engaged in the oxidative stress response were upregulated in the pgrsp mutant (TO11) strain compared with the wild-type strain. The TO11 strain showed higher biomass production, biofilm formation, and coaggregation ability with Tannerella forsythia and Prevotella intermedia. We suggest that PgRsp may regulate production of virulence factors, proteases, Hmu heme acquisition system, and FimA protein. Moreover, we observed growth retardation of the TO11 strain under oxidative conditions and decreased survival ability of the mutant cells inside macrophages. We conclude that PgRsp protein may play a role in the oxidative stress response using heme as a ligand for sensing changes in redox status, thus regulating the alternative pathway of the oxidative stress response alongside OxyR.
Collapse
|
22
|
Binti Badlishah Sham NI, Lewin SD, Grant MM. Proteomic Investigations of In Vitro and In Vivo Models of Periodontal Disease. Proteomics Clin Appl 2019; 14:e1900043. [PMID: 31419032 DOI: 10.1002/prca.201900043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Indexed: 12/14/2022]
Abstract
Proteomics has currently been a developing field in periodontal diseases to obtain protein information of certain samples. Periodontal disease is an inflammatory disorder that attacks the teeth, connective tissues, and alveolar bone within the oral cavity. Proteomics information can provide proteins that are differentially expressed in diseased or healthy samples. This review provides insight into approaches researching single species, multi species, bacteria, non-human, and human models of periodontal disease for proteomics information. The approaches that have been taken include gel electrophoresis and qualitative and quantitative mass spectrometry. This review is carried out by extracting information about in vitro and in vivo studies of proteomics in models of periodontal diseases that have been carried out in the past two decades. The research has concentrated on a relatively small but well-known group of microorganisms. A wide range of models has been reviewed and conclusions across the breadth of these studies are presented in this review.
Collapse
Affiliation(s)
- Nurul Iman Binti Badlishah Sham
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.,Faculty of Dentistry , Universiti Sains Islam Malaysia, 55100, Kuala Lumpur, Malaysia
| | - Sean D Lewin
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Melissa M Grant
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| |
Collapse
|
23
|
Bostanci N, Bao K, Greenwood D, Silbereisen A, Belibasakis GN. Periodontal disease: From the lenses of light microscopy to the specs of proteomics and next-generation sequencing. Adv Clin Chem 2019; 93:263-290. [PMID: 31655732 DOI: 10.1016/bs.acc.2019.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Periodontal disease entails the inflammatory destruction of the tooth supporting (periodontal) tissues as a result of polymicrobial colonization of the tooth surface in the form of biofilms. Extensive data collected over the past decades on this chronic disease demonstrate that its progression is infrequent and episodic, and the susceptibility to it can vary among individuals. Physical assessments of previously occurring damage to periodontal tissues remain the cornerstone of detection and diagnosis, whereas traditionally used diagnostic procedures do neither identify susceptible individuals nor distinguish between disease-active and disease-inactive periodontal sites. Thus, more sensitive and accurate "measurable biological indicators" of periodontal diseases are needed in order to place diagnosis (e.g., the presence or stage) and management of the disease on a more rational less empirical basis. Contemporary "omics" technologies may help unlock the path to this quest. High throughput nucleic acid sequencing technologies have enabled us to examine the taxonomic distribution of microbial communities in oral health and disease, whereas proteomic technologies allowed us to decipher the molecular state of the host in disease, as well as the interactive cross-talk of the host with the microbiome. The newly established field of metaproteomics has enabled the identification of the repertoire of proteins that oral microorganisms use to compete or co-operate with each other. Vast such data is derived from oral biological fluids, including gingival crevicular fluid and saliva, which is progressively completed and catalogued as the analytical technologies and bioinformatics tools progressively advance. This chapter covers the current "omics"-derived knowledge on the microbiome, the host and their "interactome" with regard to periodontal diseases, and addresses challenges and opportunities ahead.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Kai Bao
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Greenwood
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Chronic Inflammation as a Link between Periodontitis and Carcinogenesis. Mediators Inflamm 2019; 2019:1029857. [PMID: 31049022 PMCID: PMC6458883 DOI: 10.1155/2019/1029857] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/03/2019] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is characterized by a chronic inflammation produced in response to a disease-associated multispecies bacterial community in the subgingival region. Although the inflammatory processes occur locally in the oral cavity, several studies have determined that inflammatory mediators produced during periodontitis, as well as subgingival species and bacterial components, can disseminate from the oral cavity, contributing therefore, to various extraoral diseases like cancer. Interestingly, carcinogenesis associated with periodontal species has been observed in both the oral cavity and in extra oral sites. In this review, several studies were summarized showing a strong association between orodigestive cancers and poor oral health, presence of periodontitis-associated bacteria, tooth loss, and clinical signs of periodontitis. Proinflammatory pathways were also summarized. Such pathways are activated either by mono- or polymicrobial infections, resulting in an increase in the expression of proinflammatory molecules such as IL-6, IL-8, IL-1β, and TNF-α. In addition, it has been shown that several periodontitis-associated species induce the expression of genes related to cell proliferation, cell cycle, apoptosis, transport, and immune and inflammatory responses. Intriguingly, many of these pathways are linked to carcinogenesis. Among them, the activation of Toll-like receptors (TLRs) and antiapoptotic pathways (such as the PI3K/Akt, JAK/STAT, and MAPK pathways), the reduction of proapoptotic protein expression, the increase in cell migration and invasion, and the enhancement in metastasis are addressed. Considering that periodontitis is a polymicrobial disease, it is likely that mixed species promote carcinogenesis both in the oral cavity and in extra oral tissues and probably—as observed in periodontitis—synergistic and/or antagonistic interactions occur between microbes in the community. To date, a good amount of studies has allowed us to understand how monospecies infections activate pathways involved in tumorigenesis; however, more studies are needed to determine the combined effect of oral species in carcinogenesis.
Collapse
|
25
|
Sánchez MC, Romero-Lastra P, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Comparative gene expression analysis of planktonic Porphyromonas gingivalis ATCC 33277 in the presence of a growing biofilm versus planktonic cells. BMC Microbiol 2019; 19:58. [PMID: 30866810 PMCID: PMC6417203 DOI: 10.1186/s12866-019-1423-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/19/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis, a microorganism residing in the oral cavity within complex multispecies biofilms, is one of the keystone pathogens in the onset and progression of periodontitis. In this in vitro study, using DNA microarray, we investigate the differential gene expression of Porphyromonas gingivalis ATCC 33277 when growing in the presence or in absence of its own monospecies biofilm. RESULTS Approximately 1.5% of genes (28 out of 1909 genes, at 1.5 fold change or more, p-value < 0.05) were differentially expressed by P. gingivalis cells when in the presence of a biofilm. These genes were predominantly related to the metabolism of iron, bacterial adhesion, invasion, virulence and quorum-sensing system. The results from microarrays were consistent with those obtained by RT-qPCR. CONCLUSION This study provides insight on the transcriptional changes of planktonic P. gingivalis cells when growing in the presence of a biofilm. The resulting phenotypes provide information on changes occurring in the gene expression of this pathogen.
Collapse
Affiliation(s)
- María C. Sánchez
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | | | - Honorato Ribeiro-Vidal
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Arancha Llama-Palacios
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Elena Figuero
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - David Herrera
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
- Department of Dental Clinical Specialities (DDCS), Faculty of Odontology, Plaza Ramón y Cajal s/n Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
26
|
He J, Bao Y, Li J, Qiu Z, Liu Y, Zhang X. Nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate reduce oral bacteria adherence and biofilm formation on human enamel surface. J Dent 2019; 80:15-22. [DOI: 10.1016/j.jdent.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022] Open
|
27
|
Wen ZT, Liao S, Bitoun JP, De A, Jorgensen A, Feng S, Xu X, Chain PSG, Caufield PW, Koo H, Li Y. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium. Front Cell Infect Microbiol 2017; 7:524. [PMID: 29326887 PMCID: PMC5742344 DOI: 10.3389/fcimb.2017.00524] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001), while biofilms by L. fermentum reduced by >1-log (P < 0.001). L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001), but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001), as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community.
Collapse
Affiliation(s)
- Zezhang T Wen
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Sumei Liao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob P Bitoun
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Arpan De
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ashton Jorgensen
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Shihai Feng
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Xiaoming Xu
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patrick S G Chain
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Page W Caufield
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yihong Li
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| |
Collapse
|
28
|
Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol 2017; 9:1400858. [PMID: 29209465 PMCID: PMC5706477 DOI: 10.1080/20002297.2017.1400858] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
We present an overview of how members of the oral microbiota respond to their environment by regulating gene expression through two-component signal transduction systems (TCSs) to support conditions compatible with homeostasis in oral biofilms or drive the equilibrium toward dysbiosis in response to environmental changes. Using studies on the sub-gingival Gram-negative anaerobe Porphyromonas gingivalis and Gram-positive streptococci as examples, we focus on the molecular mechanisms involved in activation of TCS and species specificities of TCS regulons.
Collapse
Affiliation(s)
- Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas – UNICAMP, São Paulo, Brazil
| | - Margaret J. Duncan
- Department of Oral Medicine, Infection and Immunity, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
29
|
Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, Miller DP, Hutcherson JA, Wang T, Beck DAC, Whiteley M, Amano A, Wang H, Marcotte EM, Hackett M, Lamont RJ. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol 2017; 2:1493-1499. [PMID: 28924191 PMCID: PMC5678995 DOI: 10.1038/s41564-017-0021-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential 1 . Periodontitis, which is the sixth most prevalent infectious disease worldwide 2 , ensues from the action of dysbiotic polymicrobial communities 3 . The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo 3,4 . The mechanistic basis of this polymicrobial synergy, however, has not been fully elucidated. Here we show that streptococcal 4-aminobenzoate/para-amino benzoic acid (pABA) is required for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed that exogenous pABA is used for folate biosynthesis, and leads to decreased stress and elevated expression of fimbrial adhesins. Moreover, pABA increased the colonization and survival of P. gingivalis in a murine oral infection model. However, pABA also caused a reduction in virulence in vivo and suppressed extracellular polysaccharide production by P. gingivalis. Collectively, these data reveal a multidimensional aspect to P. gingivalis-S. gordonii interactions and establish pABA as a critical cue produced by a partner species that enhances the fitness of P. gingivalis while diminishing its virulence.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - John R Houser
- Institute for Cellular and Molecular Biology, and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik L Hendrickson
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Samar A Alghamdi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Justin A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Tiansong Wang
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - David A C Beck
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of eScience, University of Washington, Seattle, WA, 98195, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Murray Hackett
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA.
| |
Collapse
|
30
|
A Human Biofilm-Disrupting Monoclonal Antibody Potentiates Antibiotic Efficacy in Rodent Models of both Staphylococcus aureus and Acinetobacter baumannii Infections. Antimicrob Agents Chemother 2017; 61:AAC.00904-17. [PMID: 28717038 DOI: 10.1128/aac.00904-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Many serious bacterial infections are antibiotic refractory due to biofilm formation. A key structural component of biofilm is extracellular DNA, which is stabilized by bacterial proteins, including those from the DNABII family. TRL1068 is a high-affinity human monoclonal antibody against a DNABII epitope conserved across both Gram-positive and Gram-negative bacterial species. In the present study, the efficacy of TRL1068 for the disruption of biofilm was demonstrated in vitro in the absence of antibiotics by scanning electron microscopy. The in vivo efficacy of this antibody was investigated in a well-characterized catheter-induced aortic valve infective endocarditis model in rats infected with a methicillin-resistant Staphylococcus aureus (MRSA) strain with the ability to form thick biofilms, obtained from the blood of a patient with persistent clinical infection. Animals were treated with vancomycin alone or in combination with TRL1068. MRSA burdens in cardiac vegetations and within intracardiac catheters, kidneys, spleen, and liver showed significant reductions in the combination arm versus vancomycin alone (P < 0.001). A trend toward mortality reduction was also observed (P = 0.09). In parallel, the in vivo efficacy of TRL1068 against a multidrug-resistant clinical Acinetobacter baumannii isolate was explored by using an established mouse model of skin and soft tissue catheter-related biofilm infection. Catheter segments infected with A. baumannii were implanted subcutaneously into mice; animals were treated with imipenem alone or in combination with TRL1068. The combination showed a significant reduction of catheter-adherent bacteria versus the antibiotic alone (P < 0.001). TRL1068 shows excellent promise as an adjunct to standard-of-care antibiotics for a broad range of difficult-to-treat bacterial infections.
Collapse
|
31
|
Miller DP, Hutcherson JA, Wang Y, Nowakowska ZM, Potempa J, Yoder-Himes DR, Scott DA, Whiteley M, Lamont RJ. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments. Front Cell Infect Microbiol 2017; 7:378. [PMID: 28900609 PMCID: PMC5581868 DOI: 10.3389/fcimb.2017.00378] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Justin A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Yan Wang
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Zuzanna M Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland
| | | | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at AustinAustin, TX, United States
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| |
Collapse
|
32
|
Olsen I, Lambris JD, Hajishengallis G. Porphyromonas gingivalis disturbs host-commensal homeostasis by changing complement function. J Oral Microbiol 2017; 9:1340085. [PMID: 28748042 PMCID: PMC5508361 DOI: 10.1080/20002297.2017.1340085] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic rod that has been proposed as an orchestrator of complement-dependent dysbiotic inflammation. This notion was suggested from its capacities to manipulate the complement–Toll-like receptor crosstalk in ways that promote dysbiosis and periodontal disease in animal models. Specifically, while at low colonization levels, P. gingivalis interferes with innate immunity and leads to changes in the counts and composition of the oral commensal microbiota. The resulting dysbiotic microbial community causes disruption of host–microbial homeostasis, leading to inflammatory bone loss. These findings suggested that P. gingivalis can be considered as a keystone pathogen. The concept of keystone pathogens is one where their effects have community-wide significance and are disproportionate of their abundance. The present review summarizes the relevant literature and discusses whether the results from the animal models can be extrapolated to man.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine; University of Pennsylvania, PA, USA
| |
Collapse
|
33
|
Romero-Lastra P, Sánchez MC, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states. PLoS One 2017; 12:e0174669. [PMID: 28369099 PMCID: PMC5378342 DOI: 10.1371/journal.pone.0174669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
Background and objective Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. Material and methods P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of <0.05 were selected. Results A total of 92 out of 1,909 genes (4.8%) were differentially expressed by P. gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. Conclusion The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression.
Collapse
Affiliation(s)
- P. Romero-Lastra
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - MC. Sánchez
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - H. Ribeiro-Vidal
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - A. Llama-Palacios
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - E. Figuero
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - D. Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - M. Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
34
|
Martin B, Tamanai-Shacoori Z, Bronsard J, Ginguené F, Meuric V, Mahé F, Bonnaure-Mallet M. A new mathematical model of bacterial interactions in two-species oral biofilms. PLoS One 2017; 12:e0173153. [PMID: 28253369 PMCID: PMC5333920 DOI: 10.1371/journal.pone.0173153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022] Open
Abstract
Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions.
Collapse
Affiliation(s)
- Bénédicte Martin
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Zohreh Tamanai-Shacoori
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Julie Bronsard
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Franck Ginguené
- Institut de Recherche Mathématique de Rennes, Université de Rennes I, CNRS, Université Européenne de Bretagne, Rennes, France
| | - Vincent Meuric
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
- Centre hospitalo-universitaire, Rennes, France
| | - Fabrice Mahé
- Institut de Recherche Mathématique de Rennes, Université de Rennes I, CNRS, Université Européenne de Bretagne, Rennes, France
| | - Martine Bonnaure-Mallet
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
- Centre hospitalo-universitaire, Rennes, France
| |
Collapse
|
35
|
Hendrickson EL, Beck DAC, Miller DP, Wang Q, Whiteley M, Lamont RJ, Hackett M. Insights into Dynamic Polymicrobial Synergy Revealed by Time-Coursed RNA-Seq. Front Microbiol 2017; 8:261. [PMID: 28293219 PMCID: PMC5329018 DOI: 10.3389/fmicb.2017.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/07/2017] [Indexed: 01/31/2023] Open
Abstract
Many bacterial infections involve polymicrobial communities in which constituent organisms are synergistically pathogenic. Periodontitis, a commonly occurring chronic inflammatory disorder, is induced by multispecies bacterial communities. The periodontal keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii exhibit polymicrobial synergy in animal models of disease. Mechanisms of co-adhesion and community formation by P. gingivalis and S. gordonii are well-established; however, little is known regarding the basis for increased pathogenicity. In this study we used time-coursed RNA-Seq to comprehensively and quantitatively examine the dynamic transcriptional landscape of P. gingivalis in a model consortium with S. gordonii. Genes encoding a number of potential virulence determinants had higher relative mRNA levels in the context of dual species model communities than P. gingivalis alone, including adhesins, the Type IX secretion apparatus, and tetratricopeptide repeat (TPR) motif proteins. In contrast, genes encoding conjugation systems and many of the stress responses showed lower levels of expression in P. gingivalis. A notable exception to reduced abundance of stress response transcripts was the genes encoding components of the oxidative stress-related OxyR regulon, indicating an adaptation of P. gingivalis to detoxify peroxide produced by the streptococcus. Collectively, the results are consistent with evolutionary adaptation of P. gingivalis to a polymicrobial oral environment, one outcome of which is increased pathogenic potential.
Collapse
Affiliation(s)
- Erik L Hendrickson
- Center for Microbial Proteomics and Chemical Engineering, University of Washington Seattle, WA, USA
| | - David A C Beck
- Center for Microbial Proteomics and Chemical Engineering, University of WashingtonSeattle, WA, USA; eScience Institute, University of WashingtonSeattle, WA, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin Austin, TX, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Murray Hackett
- Center for Microbial Proteomics and Chemical Engineering, University of Washington Seattle, WA, USA
| |
Collapse
|
36
|
Bostanci N, Bao K. Contribution of proteomics to our understanding of periodontal inflammation. Proteomics 2017; 17. [DOI: 10.1002/pmic.201500518] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/15/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Nagihan Bostanci
- Department of Dental Medicine; Karolinska Institute; Huddinge Sweden
| | - Kai Bao
- Division of Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| |
Collapse
|
37
|
Ng HM, Kin LX, Dashper SG, Slakeski N, Butler CA, Reynolds EC. Bacterial interactions in pathogenic subgingival plaque. Microb Pathog 2016; 94:60-9. [DOI: 10.1016/j.micpath.2015.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
38
|
Arjunan P, El-Awady A, Dannebaum RO, Kunde-Ramamoorthy G, Cutler CW. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants. Mol Oral Microbiol 2015; 31:78-93. [PMID: 26466817 DOI: 10.1111/omi.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.
Collapse
Affiliation(s)
- P Arjunan
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - A El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - R O Dannebaum
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - G Kunde-Ramamoorthy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Biochemistry, National University of Singapore, Singapore
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
39
|
Sakanaka A, Takeuchi H, Kuboniwa M, Amano A. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells. Microb Pathog 2015; 94:42-7. [PMID: 26456558 DOI: 10.1016/j.micpath.2015.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 01/01/2023]
Abstract
Porphyromonas gingivalis is deeply involved in the pathogenesis of marginal periodontitis, and recent findings have consolidated its role as an important and unique pathogen. This bacterium has a unique dual lifestyle in periodontal sites including subgingival dental plaque (biofilm) and gingival cells, as it has been clearly shown that P. gingivalis is able to exert virulence using completely different tactics in each environment. Inter-bacterial cross-feeding enhances the virulence of periodontal microflora, and such metabolic and adhesive interplay creates a supportive environment for P. gingivalis and other species. Human oral epithelial cells harbor a large intracellular bacterial load, resembling the polymicrobial nature of periodontal biofilm. P. gingivalis can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. Subsequently, from its intracellular position, the pathogen exploits cellular recycling pathways to exit invaded cells, by which it is able to control its population in infected tissues, allowing for persistent infection in gingival tissues. Here, we outline the dual lifestyle of P. gingivalis in subgingival areas and its effects on the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
40
|
Klein BA, Chen T, Scott JC, Koenigsberg AL, Duncan MJ, Hu LT. Identification and characterization of a minisatellite contained within a novel miniature inverted-repeat transposable element (MITE) of Porphyromonas gingivalis. Mob DNA 2015; 6:18. [PMID: 26448788 PMCID: PMC4596501 DOI: 10.1186/s13100-015-0049-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Background Repetitive regions of DNA and transposable elements have been found to constitute large percentages of eukaryotic and prokaryotic genomes. Such elements are known to be involved in transcriptional regulation, host-pathogen interactions and genome evolution. Results We identified a minisatellite contained within a miniature inverted-repeat transposable element (MITE) in Porphyromonas gingivalis. The P. gingivalis minisatellite and associated MITE, named ‘BrickBuilt’, comprises a tandemly repeating twenty-three nucleotide DNA sequence lacking spacer regions between repeats, and with flanking ‘leader’ and ‘tail’ subunits that include small inverted-repeat ends. Forms of the BrickBuilt MITE are found 19 times in the genome of P. gingivalis strain ATCC 33277, and also multiple times within the strains W83, TDC60, HG66 and JCVI SC001. BrickBuilt is always located intergenically ranging between 49 and 591 nucleotides from the nearest upstream and downstream coding sequences. Segments of BrickBuilt contain promoter elements with bidirectional transcription capabilities. Conclusions We performed a bioinformatic analysis of BrickBuilt utilizing existing whole genome sequencing, microarray and RNAseq data, as well as performing in vitro promoter probe assays to determine potential roles, mechanisms and regulation of the expression of these elements and their affect on surrounding loci. The multiplicity, localization and limited host range nature of MITEs and MITE-like elements in P. gingivalis suggest that these elements may play an important role in facilitating genome evolution as well as modulating the transcriptional regulatory system. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0049-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian A Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA ; Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Jodie C Scott
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Andrea L Koenigsberg
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA
| | - Margaret J Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111 USA
| |
Collapse
|
41
|
Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect 2015; 17:505-516. [PMID: 25862077 DOI: 10.1016/j.micinf.2015.03.014doi|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 05/25/2023]
Abstract
The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Jorge Frias-Lopez
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect 2015; 17:505-16. [PMID: 25862077 PMCID: PMC4495649 DOI: 10.1016/j.micinf.2015.03.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/05/2023]
Abstract
The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Jorge Frias-Lopez
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Sakanaka A, Kuboniwa M, Takeuchi H, Hashino E, Amano A. Arginine-Ornithine Antiporter ArcD Controls Arginine Metabolism and Interspecies Biofilm Development of Streptococcus gordonii. J Biol Chem 2015; 290:21185-98. [PMID: 26085091 PMCID: PMC4571851 DOI: 10.1074/jbc.m115.644401] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
Arginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source. Here, we generated an S. gordonii ΔarcD mutant to explore the role of ArcD in physiological homeostasis and bacterial cross-feeding. First, we confirmed that S. gordonii ArcD plays crucial roles for mediating arginine uptake and promoting bacterial growth, particularly under arginine-limited conditions. Next, metabolomic profiling and transcriptional analysis of the ΔarcD mutant revealed that deletion of this gene caused intracellular accumulation of ornithine leading to malfunction of the ADS and suppression of de novo arginine biosynthesis. The mutant strain also showed increased susceptibility to low pH stress due to reduced production of ammonia. Finally, accumulation of Fusobacterium nucleatum was found to be significantly decreased in biofilm formed by the ΔarcD mutant as compared with the wild-type strain, although ornithine supplementation restored fusobacterium biovolume in dual-species biofilms with the ΔarcD mutant and also enhanced single species biofilm development by F. nucleatum. Our results are the first direct evidence showing that S. gordonii ArcD modulates not only alkali and energy production but also interspecies interaction with F. nucleatum, thus initiating a middle stage of periodontopathic biofilm formation, by metabolic cross-feeding.
Collapse
Affiliation(s)
- Akito Sakanaka
- From the Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 and
| | - Masae Kuboniwa
- From the Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroki Takeuchi
- From the Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 and
| | - Ei Hashino
- From the Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 and
| | - Atsuo Amano
- From the Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 and
| |
Collapse
|
44
|
Butler CA, Dashper SG, Khan HS, Zhang L, Reynolds EC. The interplay between iron, haem and manganese in Porphyromonas gingivalis. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Gupta A, Govila V, Saini A. Proteomics - The research frontier in periodontics. J Oral Biol Craniofac Res 2015; 5:46-52. [PMID: 25853048 PMCID: PMC4382510 DOI: 10.1016/j.jobcr.2015.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/22/2015] [Indexed: 10/24/2022] Open
Abstract
Periodontitis is an inflammatory condition resulting from the interplay between the infectious agents and host factors. Various protein molecules play a vital role in the initiation, progression and severity of periodontal diseases. The study of proteins as biomarkers in periodontal diseases has been highlighted during the last few years. In periodontitis multiple bacteria derived (e.g. collagen degrading enzymes, elastase like enzymes etc) and host derived mediators (eg. PGE2, TNF, IL1, IL6, MMP's etc) expressed in the saliva and gingival crevicular fluid, can be utilized as diagnostic markers for the disease. Another significant development regarding human genes and proteins has been the discovery of potential new drugs for the treatment of periodontal diseases. Therefore the information of the proteins involved in the pathogenesis of periodontal diseases can be utilized for its diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- Abhaya Gupta
- MDS (IIIrd Year) Department of Periodontics, Babu Banarasi Das College of Dental Sciences, Lucknow, India
| | - Vivek Govila
- MDS (Professor & Head of Department), Department of Periodontics, Babu Banarasi Das College of Dental Sciences, Lucknow, India
| | - Ashish Saini
- MDS (Reader), Department of Periodontics, Babu Banarasi Das College of Dental Sciences, Lucknow, India
| |
Collapse
|
46
|
Hendrickson EL, Wang T, Beck DAC, Dickinson BC, Wright CJ, J Lamont R, Hackett M. Proteomics of Fusobacterium nucleatum within a model developing oral microbial community. Microbiologyopen 2014; 3:729-51. [PMID: 25155235 PMCID: PMC4234264 DOI: 10.1002/mbo3.204] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022] Open
Abstract
Fusobacterium nucleatum is a common oral organism that can provide adhesive and metabolic support to developing periodontal bacterial communities. It is within the context of these communities that disease occurs. We have previously reported whole cell proteomics analyses of Porphyromonas gingivalis and Streptococcus gordonii in early-stage communities with each other and with F. nucleatum, modeled using 18 h pellets. Here, we report the adaptation of F. nucleatum to the same experimental conditions as measured by differential protein expression. About 1210 F. nucleatum proteins were detected in single species F. nucleatum control samples, 1192 in communities with P. gingivalis, 1224 with S. gordonii, and 1135 with all three species. Quantitative comparisons among the proteomes revealed important changes in all mixed samples with distinct responses to P. gingivalis or S. gordonii alone and in combination. The results were inspected manually and an ontology analysis conducted using DAVID (Database for annotation, visualization, and integrated discovery). Extensive changes were detected in energy metabolism. All multispecies comparisons showed reductions in amino acid fermentation and a shift toward butanoate as a metabolic byproduct, although the two organism model community with S. gordonii showed increases in alanine, threonine, methionine, and cysteine pathways, and in the three species samples there were increases in lysine and methionine. The communities with P. gingivalis or all three organisms showed reduced glycolysis proteins, but F. nucleatum paired with S. gordonii displayed increased glycolysis/gluconeogenesis proteins. The S. gordonii containing two organism model also showed increases in the ethanolamine pathway while the three species sample showed decreases relative to the F. nucleatum single organism control. All of the nascent model communities displayed reduced translation, lipopolysaccharide, and cell wall biosynthesis, DNA replication and DNA repair.
Collapse
Affiliation(s)
- Erik L Hendrickson
- Department of Chemical Engineering and Center for Microbial Proteomics, University of Washington, Box 355014, Seattle, Washington, 98195
| | | | | | | | | | | | | |
Collapse
|
47
|
Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol 2014; 4:101. [PMID: 25120959 PMCID: PMC4114182 DOI: 10.3389/fcimb.2014.00101] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
High throughput sequencing has accelerated knowledge on the oral microbiome. While the bacterial component of oral communities has been extensively characterized, the role of the fungal microbiota in the oral cavity is largely unknown. Interactions among fungi and bacteria are likely to influence oral health as exemplified by the synergistic relationship between Candida albicans and oral streptococci. In this perspective, we discuss the current state of the field of fungal-bacterial interactions in the context of the oral cavity. We highlight the need to conduct longitudinal clinical studies to simultaneously characterize the bacterial and fungal components of the human oral microbiome in health and during disease progression. Such studies need to be coupled with investigations using disease-relevant models to mechanistically test the associations observed in humans and eventually identify fungal-bacterial interactions that could serve as preventive or therapeutic targets for oral diseases.
Collapse
Affiliation(s)
- Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center Farmington, CT, USA
| | - Linda D Strausbaugh
- Department of Molecular and Cell Biology, The Center for Applied Genetics and Technologies, The University of Connecticut Storrs, CT, USA
| | - Anna Dongari-Bagtzoglou
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
48
|
Africa CWJ, Nel J, Stemmet M. Anaerobes and bacterial vaginosis in pregnancy: virulence factors contributing to vaginal colonisation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:6979-7000. [PMID: 25014248 PMCID: PMC4113856 DOI: 10.3390/ijerph110706979] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022]
Abstract
The aetiology and pathogenesis of bacterial vaginosis (BV) is unclear but it appears to be associated with factors that disrupt the normal acidity of the vagina thus altering the equilibrium between the normal vaginal microbiota. BV has serious implications for female morbidity, including reports of pelvic inflammatory disease, adverse pregnancy outcomes, increased susceptibility to sexually transmitted infections and infertility. This paper reviewed new available information regarding possible factors contributing to the establishment of the BV vaginal biofilm, examined the proposed role of anaerobic microbial species recently detected by new culture-independent methods and discusses developments related to the effects of BV on human pregnancy. The literature search included Pubmed (NLM), LISTA (EBSCO), and Web of Science. Because of the complexity and diversity of population groups, diagnosis and methodology used, no meta-analysis was performed. Several anaerobic microbial species previously missed in the laboratory diagnosis of BV have been revealed while taking cognisance of newly proposed theories of infection, thereby improving our understanding and knowledge of the complex aetiology and pathogenesis of BV and its perceived role in adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Charlene W J Africa
- Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa.
| | - Janske Nel
- Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa.
| | - Megan Stemmet
- Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa.
| |
Collapse
|
49
|
Guo L, He X, Shi W. Intercellular communications in multispecies oral microbial communities. Front Microbiol 2014; 5:328. [PMID: 25071741 PMCID: PMC4076886 DOI: 10.3389/fmicb.2014.00328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/14/2014] [Indexed: 01/22/2023] Open
Abstract
The oral cavity contains more than 700 microbial species that are engaged in extensive cell–cell interactions. These interactions contribute to the formation of highly structured multispecies communities, allow them to perform physiological functions, and induce synergistic pathogenesis. Co-adhesion between oral microbial species influences their colonization of oral cavity and effectuates, to a large extent, the temporal and spatial formation of highly organized polymicrobial community architecture. Individual species also compete and collaborate with other neighboring species through metabolic interactions, which not only modify the local microenvironment such as pH and the amount of oxygen, making it more suitable for the growth of other species, but also provide a metabolic framework for the participating microorganisms by maximizing their potential to extract energy from limited substrates. Direct physical contact of bacterial species with its neighboring co-habitants within microbial community could initiate signaling cascade and achieve modulation of gene expression in accordance with different species it is in contact with. In addition to communication through cell–cell contact, quorum sensing (QS) mediated by small signaling molecules such as competence-stimulating peptides (CSPs) and autoinducer-2 (AI-2), plays essential roles in bacterial physiology and ecology. This review will summarize the evidence that oral microbes participate in intercellular communications with co-inhabitants through cell contact-dependent physical interactions, metabolic interdependencies, as well as coordinative signaling systems to establish and maintain balanced microbial communities.
Collapse
Affiliation(s)
- Lihong Guo
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Xuesong He
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| | - Wenyuan Shi
- School of Dentistry, University of California-Los Angeles, Los Angeles CA, USA
| |
Collapse
|
50
|
Wright CJ, Xue P, Hirano T, Liu C, Whitmore SE, Hackett M, Lamont RJ. Characterization of a bacterial tyrosine kinase in Porphyromonas gingivalis involved in polymicrobial synergy. Microbiologyopen 2014; 3:383-94. [PMID: 24811194 PMCID: PMC4082711 DOI: 10.1002/mbo3.177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 12/30/2022] Open
Abstract
Interspecies communication between Porphyromonas gingivalis and Streptococcus gordonii underlies the development of synergistic dual species communities. Contact with S. gordonii initiates signal transduction within P. gingivalis that is based on protein tyrosine (de)phosphorylation. In this study, we characterize a bacterial tyrosine (BY) kinase (designated Ptk1) of P. gingivalis and demonstrate its involvement in interspecies signaling. Ptk1 can utilize ATP for autophosphorylation and is dephosphorylated by the P. gingivalis tyrosine phosphatase, Ltp1. Community development with S. gordonii is severely abrogated in a ptk1 mutant of P. gingivalis, indicating that tyrosine kinase activity is required for maximal polymicrobial synergy. Ptk1 controls the levels of the transcriptional regulator CdhR and the fimbrial adhesin Mfa1 which mediates binding to S. gordonii. The ptk1 gene is in an operon with two genes involved in exopolysaccharide synthesis, and similar to other BY kinases, Ptk1 is necessary for exopolysaccharide production in P. gingivalis. Ptk1 can phosphorylate the capsule related proteins PGN_0224, a UDP-acetyl-mannosamine dehydrogenase, and PGN_0613, a UDP-glucose dehydrogenase, in P. gingivalis. Knockout of ptk1 in an encapsulated strain of P. gingivalis resulted in loss of capsule production. Collectively these results demonstrate that the P. gingivalis Ptk1 BY kinase regulates interspecies communication and controls heterotypic community development with S. gordonii through adjusting the levels of the Mfa1 adhesin and exopolysaccharide.
Collapse
Affiliation(s)
- Christopher J Wright
- Oral Health and Systemic Disease, University of Louisville, Louisville, Kentucky, 40202
| | | | | | | | | | | | | |
Collapse
|