1
|
Vadasz C, Gyetvai BM. Genetic association of nucleus accumbens 5-hydroxyindoleacetic acid level and alcohol preference drinking in a quasi-congenic male mice: Potential modulation by Grm7 gene polymorphism. DRUG AND ALCOHOL DEPENDENCE REPORTS 2022; 2:100012. [PMID: 36845900 PMCID: PMC9948933 DOI: 10.1016/j.dadr.2021.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 06/18/2023]
Abstract
OBJECTIVE To test the hypothesis that predisposition to high alcohol drinking behavior is genetically associated with hypoactive serotonergic function in the Nucleus Accumbens (NAc). METHOD Alcohol avoiding C5A3 and alcohol preferring I5B25A mice of the Quasi-congenic Recombinant QTL Introgression (RQI) mouse strains were subjected to in vivo microdialysis in the NAc. Neurotransmitter and metabolite contents were analyzed by HPLC and samples were collected in three phases: Baseline, Control, and Alcohol. Samples were collected with 20 min intervals. RESULTS Between-strain differences restricted to small chromosome segments significantly affected both alcohol preference drinking and NAc 5-HIAA levels [F1, 13 = 5.569 p=.035 (General Linear Model Repeated Measures ANOVA and Tests of Between-Subjects Effects)]. Whole genome biallelic DNA marker genotyping allowed the identification of 16 differential microsatellite markers associated with low 5-HIAA levels and excessive alcohol drinking. Chromosome 6 markers were linked to Grm7 (51.19 centimorgan), a reported candidate gene for modulation of addiction. The results are consistent with earlier reports of association of low 5-HIAA and high alcohol consumption in rats and primates, including Homo sapiens. CONCLUSION Low NAc 5-HIAA and high alcohol consumption are genetically associated in a quasi-congenic mouse model carrying variants of the Grm7 gene. We propose that constitutional polymorphism in Grm7 may modulate CRF neuron activity via altered mGluR7 expression thus targeting CRF pathways to substance use circuits. This raises the possibility of modulation of DRN 5-HT neurons leading to hypo- or hyper-serotonergic condition in NAc and higher or lower alcohol preference drinking.
Collapse
Affiliation(s)
- Csaba Vadasz
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg Rd., 10962, Orangeburg, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Beatrix M. Gyetvai
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., 10962, Orangeburg, NY, USA
| |
Collapse
|
2
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
3
|
You X, Thiruppathi S, Liu W, Cao Y, Naito M, Furihata C, Honma M, Luan Y, Suzuki T. Detection of genome-wide low-frequency mutations with Paired-End and Complementary Consensus Sequencing (PECC-Seq) revealed end-repair-derived artifacts as residual errors. Arch Toxicol 2020; 94:3475-3485. [PMID: 32737516 DOI: 10.1007/s00204-020-02832-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
To improve the accuracy and the cost-efficiency of next-generation sequencing in ultralow-frequency mutation detection, we developed the Paired-End and Complementary Consensus Sequencing (PECC-Seq), a PCR-free duplex consensus sequencing approach. PECC-Seq employed shear points as endogenous barcodes to identify consensus sequences from the overlap in the shortened, complementary DNA strand-derived paired-end reads for sequencing error correction. With the high accuracy of PECC-Seq, we identified the characteristic base substitution errors introduced by the end-repair process of mechanical fragmentation-based library preparations, which were prominent at the terminal 7 bp of the library fragments in the 5'-NpCpA-3' and 5'-NpCpT-3' trinucleotide context. As demonstrated at the human genome scale (TK6 cells), after removing these potential end-repair artifacts from the terminal 7 bp, PECC-Seq could reduce the sequencing error frequency to mid-10-7 with a relatively low sequencing depth. For TA base pairs, the background error rate could be suppressed to mid-10-8. In mutagen-treated (6 μg/mL methyl methanesulfonate or 12 μg/mL N-nitroso-N-ethylurea) TK6, increases in mutagen treatment-related mutant frequencies could be detected, indicating the potential of PECC-Seq in detecting genome-wide ultra-rare mutations. In addition, our finding on the patterns of end-repair artifacts may provide new insights into further reducing technical errors not only for PECC-Seq, but also for other next-generation sequencing techniques.
Collapse
Affiliation(s)
- Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.,Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Suresh Thiruppathi
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.,Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Chie Furihata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, 210-9501, Japan.
| |
Collapse
|
4
|
Zhu Y, Ong CS, Huttley GA. Machine Learning Techniques for Classifying the Mutagenic Origins of Point Mutations. Genetics 2020; 215:25-40. [PMID: 32193188 PMCID: PMC7198283 DOI: 10.1534/genetics.120.303093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/05/2020] [Indexed: 11/18/2022] Open
Abstract
There is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of applications that include identifying population-specific mutagenesis and resolving distinct mutation signatures in cancer samples. Analyses for these applications assume that mutagenic mechanisms have a distinct relationship with neighboring bases that allows them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, e.g., CpG hypermutability. We have evaluated whether the mechanistic origin of a point mutation can be resolved using only sequence context for a more complicated case. We contrasted single nucleotide variants originating from the multitude of mutagenic processes that normally operate in the mouse germline with those induced by the potent mutagen N-ethyl-N-nitrosourea (ENU). The considerable overlap in the mutation spectra of these two samples make this a challenging problem. Employing a new, robust log-linear modeling method, we demonstrate that neighboring bases contain information regarding point mutation direction that differs between the ENU-induced and spontaneous mutation variant classes. A logistic regression classifier exhibited strong performance at discriminating between the different mutation classes. Concordance between the feature set of the best classifier and information content analyses suggest our results can be generalized to other mutation classification problems. We conclude that machine learning can be used to build a practical classification tool to identify the mutation mechanism for individual genetic variants. Software implementing our approach is freely available under an open-source license.
Collapse
Affiliation(s)
- Yicheng Zhu
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Cheng Soon Ong
- Data61, CSIRO, Black Mountain Campus, Canberra, Australian Capital Territory 2601, Australia
- Research School of Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Gavin A Huttley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Hoyos-Manchado R, Villa-Consuegra S, Berraquero M, Jiménez J, Tallada VA. Mutational Analysis of N-Ethyl-N-Nitrosourea (ENU) in the Fission Yeast Schizosaccharomyces pombe. G3 (BETHESDA, MD.) 2020; 10:917-923. [PMID: 31900332 PMCID: PMC7056981 DOI: 10.1534/g3.119.400936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/31/2019] [Indexed: 12/04/2022]
Abstract
Forward genetics in model organisms has boosted our knowledge of the genetic bases of development, aging, and human diseases. In this experimental pipeline, it is crucial to start by inducing a large number of random mutations in the genome of the model organism to search for phenotypes of interest. Many chemical mutagens are used to this end because most of them display particular reactivity properties and act differently over DNA. Here we report the use of N-ethyl-N-nitrosourea (ENU) as a mutagen in the fission yeast Schizosaccharomyces pombe As opposed to many other alkylating agents, ENU only induces an S N 1-type reaction with a low s constant (s = 0.26), attacking preferentially O2 and O4 in thymine and O6 deoxyguanosine, leading to base substitutions rather than indels, which are extremely rare in its resulting mutagenic repertoire. Using ENU, we gathered a collection of 13 temperature-sensitive mutants and 80 auxotrophic mutants including two deleterious alleles of the human ortholog ATIC. Defective alleles of this gene cause AICA-ribosiduria, a severe genetic disease. In this screen, we also identified 13 aminoglycoside-resistance inactivating mutations in APH genes. Mutations reported here may be of interest for metabolism related diseases and antibiotic resistance research fields.
Collapse
Affiliation(s)
- Rafael Hoyos-Manchado
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Sergio Villa-Consuegra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Modesto Berraquero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Juan Jiménez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Víctor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| |
Collapse
|
6
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
7
|
Watanabe M, Toudou M, Uchida T, Yoshikawa M, Aso H, Suemaru K. Change in mutation frequency at a TP53 hotspot during culture of ENU-mutagenised human lymphoblastoid cells. Mutagenesis 2019; 34:331-340. [PMID: 31291449 DOI: 10.1093/mutage/gez014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/14/2019] [Indexed: 11/14/2022] Open
Abstract
Mutations in oncogenes or tumour suppressor genes cause increases in cell growth capacity. In some cases, fully malignant cancer cells develop after additional mutations occur in initially mutated cells. In such instances, the risk of cancer would increase in response to growth of these initially mutated cells. To ascertain whether such a situation might occur in cultured cells, three independent cultures of human lymphoblastoid GM00130 cells were treated with N-ethyl-N-nitrosourea to induce mutations, and the cells were maintained for 12 weeks. Mutant frequencies and spectra of the cells at the MspI and HaeIII restriction sites located at codons 247-250 of the TP53 gene were examined. Mutant frequencies at both sites in the gene exhibited a declining trend during cell culture and reached background levels after 12 weeks; this was also supported by mutation spectra findings. These results indicate that the mutations detected under our assay conditions are disadvantageous to cell growth.
Collapse
Affiliation(s)
| | - Masae Toudou
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Taeko Uchida
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Misato Yoshikawa
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Hiroaki Aso
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| | - Katsuya Suemaru
- School of Pharmacy, Shujitsu University, Naka-ku, Okayama, Japan
| |
Collapse
|
8
|
Kim SY, Nair DM, Romero M, Serna VA, Koleske AJ, Woodruff TK, Kurita T. Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ 2018; 26:502-515. [PMID: 29988075 DOI: 10.1038/s41418-018-0151-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Platinum-based chemotherapies can result in ovarian insufficiency by reducing the ovarian reserve, a reduction believed to result from apoptosis of immature oocytes via activation/phosphorylation of TAp63α by multiple kinases including CHEK2, CK1, and ABL1. Here we demonstrate that cisplatin (CDDP) induces oocyte apoptosis through a novel pathway and that temporary repression of this pathway fully preserves ovarian function in vivo. Although ABL kinase inhibitors effectively block CDDP-induced apoptosis of oocytes, oocytic ABL1, and ABL2 are dispensable for damage-induced apoptosis. Instead, CDDP activates TAp63α through the ATR > CHEK1 pathway independent of TAp63α hyper-phosphorylation, whereas X-irradiation activates the ATM > CHEK2 > TAp63α-hyper-phosphorylation pathway. Furthermore, oocyte-specific deletion of Trp73 partially protects oocytes from CDDP but not from X-ray, highlighting the fundamental differences of two pathways. Nevertheless, temporary repression of DNA damage response by a kinase inhibitor that attenuates phosphorylation of ATM, ATR, CHEK1, and CHEK2 fully preserves fertility in female mice against CDDP as well as X-ray. Our current study establishes the molecular basis and feasibility of adjuvant therapies to protect ovarian function against two distinctive gonadotoxic therapeutics, CDDP, and ionizing radiation.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Devi M Nair
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Megan Romero
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vanida A Serna
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 2016; 13:1029-1035. [PMID: 27723754 DOI: 10.1038/nmeth.4027] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
A large number of genetic variants have been associated with human diseases. However, the lack of a genetic diversification approach has impeded our ability to interrogate functions of genetic variants in mammalian cells. Current screening methods can only be used to disrupt a gene or alter its expression. Here we report the fusion of activation-induced cytidine deaminase (AID) with nuclease-inactive clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (dCas9) for efficient genetic diversification, which enabled high-throughput screening of functional variants. Guided by single guide (sg)RNAs, dCas9-AID-P182X (AIDx) directly changed cytidines or guanines to the other three bases independent of AID hotspot motifs, generating a large repertoire of variants at desired loci. Coupled with a uracil-DNA glycosylase inhibitor, dCas9-AIDx converted targeted cytidines specifically to thymines, creating specific point mutations. By targeting BCR-ABL with dCas9-AIDx, we efficiently identified known and new mutations conferring imatinib resistance in chronic myeloid leukemia cells. Thus, targeted AID-mediated mutagenesis (TAM) provides a forward genetic tool to screen for gain-of-function variants at base resolution.
Collapse
Affiliation(s)
- Yunqing Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences, Shanghai, China
| | - Jiayuan Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences, Shanghai, China
| | - Weijie Yin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences, Shanghai, China
| | - Zhenchao Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences, Shanghai, China
| | - Yan Song
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, La Jolla, California, USA
| | - Xing Chang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences &Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences, Shanghai, China
- Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Gallego-Llamas J, Timms AE, Pitstick R, Peters J, Carlson GA, Beier DR. Improvement of ENU Mutagenesis Efficiency Using Serial Injection and Mismatch Repair Deficiency Mice. PLoS One 2016; 11:e0159377. [PMID: 27441645 PMCID: PMC4956170 DOI: 10.1371/journal.pone.0159377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/03/2016] [Indexed: 12/05/2022] Open
Abstract
ENU mutagenesis is a powerful method for generating novel lines of mice that are informative with respect to both fundamental biological processes and human disease. Rapid developments in genomic technology have made the task of identifying causal mutations by positional cloning remarkably efficient. One limitation of this approach remains the mutation frequency achievable using standard treatment protocols, which currently generate approximately 1–2 sequence changes per megabase when optimized. In this study we used two strategies to attempt to increase the number of mutations induced by ENU treatment. One approach employed mice carrying a mutation in the DNA repair enzyme Msh6. The second strategy involved injection of ENU to successive generations of mice. To evaluate the number of ENU-induced mutations, single mice or pooled samples were analyzed using whole exome sequencing. The results showed that there is considerable variability in the induced mutation frequency using these approaches, but an overall increase in ENU-induced variants from one generation to another was observed. The analysis of the mice deficient for Msh6 also showed an increase in the ENU-induced variants compared to the wild-type ENU-treated mice. However, in both cases the increase in ENU-induced mutation frequency was modest.
Collapse
Affiliation(s)
- Jabier Gallego-Llamas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Andrew E. Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - Janet Peters
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - George A. Carlson
- McLaughlin Research Institute, Great Falls, MT, United States of America
| | - David R. Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Keller RR, Gestl SA, Lu AQ, Hoke A, Feith DJ, Gunther EJ. Carcinogen-specific mutations in preferred Ras-Raf pathway oncogenes directed by strand bias. Carcinogenesis 2016; 37:810-816. [PMID: 27207659 PMCID: PMC4967214 DOI: 10.1093/carcin/bgw061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/07/2016] [Indexed: 12/24/2022] Open
Abstract
Carcinogen exposures inscribe mutation patterns on cancer genomes and sometimes bias the acquisition of driver mutations toward preferred oncogenes, potentially dictating sensitivity to targeted agents. Whether and how carcinogen-specific mutation patterns direct activation of preferred oncogenes remains poorly understood. Here, mouse models of breast cancer were exploited to uncover a mechanistic link between strand-biased mutagenesis and oncogene preference. When chemical carcinogens were employed during Wnt1-initiated mammary tumorigenesis, exposure to either 7,12-dimethylbenz(a)anthracene (DMBA) or N-ethyl-N-nitrosourea (ENU) dramatically accelerated tumor onset. Mammary tumors that followed DMBA exposure nearly always activated the Ras pathway via somatic Hras(CAA61CTA) mutations. Surprisingly, mammary tumors that followed ENU exposure typically lacked Hras mutations, and instead activated the Ras pathway downstream via Braf(GTG636GAG) mutations. Hras(CAA61CTA) mutations involve an A-to-T change on the sense strand, whereas Braf(GTG636GAG) mutations involve an inverse T-to-A change, suggesting that strand-biased mutagenesis may determine oncogene preference. To examine this possibility further, we turned to an alternative Wnt-driven tumor model in which carcinogen exposures augment a latent mammary tumor predisposition in Apc(min) mice. DMBA and ENU each accelerated mammary tumor onset in Apc(min) mice by introducing somatic, "second-hit" Apc mutations. Consistent with our strand bias model, DMBA and ENU generated strikingly distinct Apc mutation patterns, including stringently strand-inverse mutation signatures at A:T sites. Crucially, these contrasting signatures precisely match those proposed to confer bias toward Hras(CAA61CTA) versus Braf(GTG636GAG) mutations in the original tumor sets. Our findings highlight a novel mechanism whereby exposure history acts through strand-biased mutagenesis to specify activation of preferred oncogenes.
Collapse
Affiliation(s)
- Ross R Keller
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shelley A Gestl
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amy Q Lu
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alicia Hoke
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - David J Feith
- Division of Hematology and the Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA and
| | - Edward J Gunther
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Medicine (Hematology/Oncology), Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Li W, Calder RB, Mar JC, Vijg J. Single-cell transcriptogenomics reveals transcriptional exclusion of ENU-mutated alleles. Mutat Res 2015; 772:55-62. [PMID: 25733965 DOI: 10.1016/j.mrfmmm.2015.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, great progress has been made in single cell genomics and transcriptomics. Here, we present an integrative method, termed single-cell transcriptogenomics (SCTG), in which whole exome sequencing and RNA-seq is performed concurrently on single cells. This methodology enables one to track germline and somatic variants directly from the genome to the transcriptome in individual cells. Mouse embryonic fibroblasts were treated with the powerful mutagen ethylnitrosourea (ENU) and subjected to SCTG. Interestingly, while germline variants were found to be transcribed in an allelically balanced fashion, a significantly different pattern of allelic exclusion was observed for ENU-mutant variants. These results suggest that the adverse effects of induced mutations, in contrast to germline variants, may be mitigated by allelically biased transcription. They also illustrate how SCTG can be instrumental in the direct assessment of phenotypic consequences of genomic variants.
Collapse
|
13
|
Derdak S, Sabrautzki S, de Angelis MH, Gut M, Gut IG, Beltran S. Genomic characterization of mutant laboratory mouse strains by exome sequencing and annotation lift-over. BMC Genomics 2015; 16:351. [PMID: 25943197 PMCID: PMC4422528 DOI: 10.1186/s12864-015-1548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
Background Exome sequencing has become a popular method to evaluate undirected mutagenesis experiments in mice. However, the most suitable mouse strain for the biological model may be relatively distant from the standard mouse reference genome. For pinpointing causative variants, a matching reference with gene annotations is essential, but not always readily available. Results We present an approach that allows to use murine Ensembl annotations on alternative mouse strain assemblies. We resolved ENU-induced mutation screening for 8 phenotypic mutant lines generated on C3HeB/FeJ background aligning the sequences against the closely related, but not annotated reference of C3H/HeJ. Variants occurring in all strains were filtered out as specific for the C3HeB/FeJ strain but unrelated to mutagenesis. Variants occurring exclusively in all individuals of one mutant line and matching the inheritance model were selected as mutagenesis-related. These variants were annotated with gene and exon names lifted over from the standard murine reference mm9 to C3H/HeJ using megablast. For each mutant line, we could restrict the results to exonic variants in between 1 and 23 genes. Conclusions The presented method of exonic annotation lift-over proved to be a valuable tool in the search for mutagenesis-derived coding genomic variants and the assessment of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Sophia Derdak
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Sibylle Sabrautzki
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Ingolstädter Landstr.1, 85764, Neuherberg, Germany. .,Member of German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Ingolstädter Landstr.1, 85764, Neuherberg, Germany. .,Member of German Center for Diabetes Research (DZD), Neuherberg, Germany. .,Technische Universität München, Lehrstuhl für Experimentelle Genetik, 85350, Freising-Weihenstephan, Germany.
| | - Marta Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| |
Collapse
|
14
|
Rathkolb B, Klempt M, Sabrautzki S, Michel D, Klaften M, Laufs J, Sedlmeier R, Hans W, Fuchs H, Muckenthaler MU, Horsch M, Campagna DR, Fleming M, Hrabé de Angelis M, Wolf E, Aigner B. Screen for alterations of iron related parameters in N-ethyl-N-nitrosourea-treated mice identified mutant lines with increased plasma ferritin levels. Biometals 2015; 28:293-306. [DOI: 10.1007/s10534-015-9824-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/28/2022]
|
15
|
Arime Y, Fukumura R, Miura I, Mekada K, Yoshiki A, Wakana S, Gondo Y, Akiyama K. Effects of background mutations and single nucleotide polymorphisms (SNPs) on the Disc1 L100P behavioral phenotype associated with schizophrenia in mice. Behav Brain Funct 2014; 10:45. [PMID: 25487992 PMCID: PMC4295473 DOI: 10.1186/1744-9081-10-45] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/21/2014] [Indexed: 01/31/2023] Open
Abstract
Background Disrupted-in-schizophrenia 1 (DISC1) is a promising candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder and major depression. Several previous studies reported that mice with N-ethyl-N-nitrosourea (ENU)-induced L100P mutation in Disc1 showed some schizophrenia-related behavioral phenotypes. This line originally carried several thousands of ENU-induced point mutations in the C57BL/6 J strain and single nucleotide polymorphisms (SNPs) from the DBA/2 J inbred strain. Methods To investigate the effect of Disc1 L100P, background mutations and SNPs on phenotypic characterization, we performed behavioral analyses to better understand phenotypes of Disc1 L100P mice and comprehensive genetic analyses using whole-exome resequencing and SNP panels to map ENU-induced mutations and strain-specific SNPs, respectively. Results We found no differences in spontaneous or methamphetamine-induced locomotor activity, sociability or social novelty preference among Disc1 L100P/L100P, L100P/+ mutants and wild-type littermates. Whole-exome resequencing of the original G1 mouse identified 117 ENU-induced variants, including Disc1 L100P per se. Two females and three males from the congenic L100P strain after backcrossing to C57BL/6 J were deposited to RIKEN BioResource Center in 2008. We genotyped them with DBA/2 J × C57BL/6 J SNPs and found a number of the checked SNPs still remained. Conclusion These results suggest that causal attribution of the discrepancy in behavioral phenotypes to the Disc1 L100P mutant mouse line existing among different research groups needs to be cautiously investigated in further study by taking into account the effect(s) of other ENU-induced mutations and/or SNPs from DBA/2 J. Electronic supplementary material The online version of this article (doi:10.1186/1744-9081-10-45) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, 800 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.
| |
Collapse
|
16
|
A strategy to identify dominant point mutant modifiers of a quantitative trait. G3-GENES GENOMES GENETICS 2014; 4:1113-21. [PMID: 24747760 PMCID: PMC4065254 DOI: 10.1534/g3.114.010595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A central goal in the analysis of complex traits is to identify genes that modify a phenotype. Modifiers of a cancer phenotype may act either intrinsically or extrinsically on the salient cell lineage. Germline point mutagenesis by ethylnitrosourea can provide alleles for a gene of interest that include loss-, gain-, or alteration-of-function. Unlike strain polymorphisms, point mutations with heterozygous quantitative phenotypes are detectable in both essential and nonessential genes and are unlinked from other variants that might confound their identification and analysis. This report analyzes strategies seeking quantitative mutational modifiers of ApcMin in the mouse. To identify a quantitative modifier of a phenotype of interest, a cluster of test progeny is needed. The cluster size can be increased as necessary for statistical significance if the founder is a male whose sperm is cryopreserved. A second critical element in this identification is a mapping panel free of polymorphic modifiers of the phenotype, to enable low-resolution mapping followed by targeted resequencing to identify the causative mutation. Here, we describe the development of a panel of six “isogenic mapping partner lines” for C57BL/6J, carrying single-nucleotide markers introduced by mutagenesis. One such derivative, B6.SNVg, shown to be phenotypically neutral in combination with ApcMin, is an appropriate mapping partner to locate induced mutant modifiers of the ApcMin phenotype. The evolved strategy can complement four current major initiatives in the genetic analysis of complex systems: the Genome-wide Association Study; the Collaborative Cross; the Knockout Mouse Project; and The Cancer Genome Atlas.
Collapse
|
17
|
Moresco EMY, Li X, Beutler B. Going forward with genetics: recent technological advances and forward genetics in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 182:1462-73. [PMID: 23608223 DOI: 10.1016/j.ajpath.2013.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/05/2013] [Indexed: 12/24/2022]
Abstract
Forward genetic analysis is an unbiased approach for identifying genes essential to defined biological phenomena. When applied to mice, it is one of the most powerful methods to facilitate understanding of the genetic basis of human biology and disease. The speed at which disease-causing mutations can be identified in mutagenized mice has been markedly increased by recent advances in DNA sequencing technology. Creating and analyzing mutant phenotypes may therefore become rate-limiting in forward genetic experimentation. We review the forward genetic approach and its future in the context of recent technological advances, in particular massively parallel DNA sequencing, induced pluripotent stem cells, and haploid embryonic stem cells.
Collapse
Affiliation(s)
- Eva Marie Y Moresco
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75235-8505, USA
| | | | | |
Collapse
|
18
|
Andrews TD, Whittle B, Field MA, Balakishnan B, Zhang Y, Shao Y, Cho V, Kirk M, Singh M, Xia Y, Hager J, Winslade S, Sjollema G, Beutler B, Enders A, Goodnow CC. Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open Biol 2013; 2:120061. [PMID: 22724066 PMCID: PMC3376740 DOI: 10.1098/rsob.120061] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/16/2012] [Indexed: 01/17/2023] Open
Abstract
Accurate identification of sparse heterozygous single-nucleotide variants (SNVs) is a critical challenge for identifying the causative mutations in mouse genetic screens, human genetic diseases and cancer. When seeking to identify causal DNA variants that occur at such low rates, they are overwhelmed by false-positive calls that arise from a range of technical and biological sources. We describe a strategy using whole-exome capture, massively parallel DNA sequencing and computational analysis, which identifies with a low false-positive rate the majority of heterozygous and homozygous SNVs arising de novo with a frequency of one nucleotide substitution per megabase in progeny of N-ethyl-N-nitrosourea (ENU)-mutated C57BL/6j mice. We found that by applying a strategy of filtering raw SNV calls against known and platform-specific variants we could call true SNVs with a false-positive rate of 19.4 per cent and an estimated false-negative rate of 21.3 per cent. These error rates are small enough to enable calling a causative mutation from both homozygous and heterozygous candidate mutation lists with little or no further experimental validation. The efficacy of this approach is demonstrated by identifying the causative mutation in the Ptprc gene in a lymphocyte-deficient strain and in 11 other strains with immune disorders or obesity, without the need for meiotic mapping. Exome sequencing of first-generation mutant mice revealed hundreds of unphenotyped protein-changing mutations, 52 per cent of which are predicted to be deleterious, which now become available for breeding and experimental analysis. We show that exome sequencing data alone are sufficient to identify induced mutations. This approach transforms genetic screens in mice, establishes a general strategy for analysing rare DNA variants and opens up a large new source for experimental models of human disease.
Collapse
Affiliation(s)
- T D Andrews
- Immunogenomics Laboratory, Australian National University, GPO Box 334, Canberra City, Australian Capital Territory, 2601 , Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Genome-wide ENU mutagenesis in combination with high density SNP analysis and exome sequencing provides rapid identification of novel mouse models of developmental disease. PLoS One 2013; 8:e55429. [PMID: 23469164 PMCID: PMC3585849 DOI: 10.1371/journal.pone.0055429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU). METHODOLOGY/PRINCIPAL FINDINGS ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1. CONCLUSIONS/SIGNIFICANCE In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.
Collapse
|
20
|
Bull KR, Rimmer AJ, Siggs OM, Miosge LA, Roots CM, Enders A, Bertram EM, Crockford TL, Whittle B, Potter PK, Simon MM, Mallon AM, Brown SDM, Beutler B, Goodnow CC, Lunter G, Cornall RJ. Unlocking the bottleneck in forward genetics using whole-genome sequencing and identity by descent to isolate causative mutations. PLoS Genet 2013; 9:e1003219. [PMID: 23382690 PMCID: PMC3561070 DOI: 10.1371/journal.pgen.1003219] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/20/2012] [Indexed: 12/27/2022] Open
Abstract
Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.
Collapse
Affiliation(s)
- Katherine R. Bull
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Andrew J. Rimmer
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
| | - Owen M. Siggs
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Lisa A. Miosge
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Carla M. Roots
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anselm Enders
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Edward M. Bertram
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Tanya L. Crockford
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Belinda Whittle
- Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | | - Bruce Beutler
- UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher C. Goodnow
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Gerton Lunter
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
| | - Richard J. Cornall
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| |
Collapse
|
21
|
Arnold CN, Barnes MJ, Berger M, Blasius AL, Brandl K, Croker B, Crozat K, Du X, Eidenschenk C, Georgel P, Hoebe K, Huang H, Jiang Z, Krebs P, La Vine D, Li X, Lyon S, Moresco EMY, Murray AR, Popkin DL, Rutschmann S, Siggs OM, Smart NG, Sun L, Tabeta K, Webster V, Tomisato W, Won S, Xia Y, Xiao N, Beutler B. ENU-induced phenovariance in mice: inferences from 587 mutations. BMC Res Notes 2012; 5:577. [PMID: 23095377 PMCID: PMC3532239 DOI: 10.1186/1756-0500-5-577] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/03/2012] [Indexed: 11/22/2022] Open
Abstract
Background We present a compendium of N-ethyl-N-nitrosourea (ENU)-induced mouse mutations, identified in our laboratory over a period of 10 years either on the basis of phenotype or whole genome and/or whole exome sequencing, and archived in the Mutagenetix database. Our purpose is threefold: 1) to formally describe many point mutations, including those that were not previously disclosed in peer-reviewed publications; 2) to assess the characteristics of these mutations; and 3) to estimate the likelihood that a missense mutation induced by ENU will create a detectable phenotype. Findings In the context of an ENU mutagenesis program for C57BL/6J mice, a total of 185 phenotypes were tracked to mutations in 129 genes. In addition, 402 incidental mutations were identified and predicted to affect 390 genes. As previously reported, ENU shows strand asymmetry in its induction of mutations, particularly favoring T to A rather than A to T in the sense strand of coding regions and splice junctions. Some amino acid substitutions are far more likely to be damaging than others, and some are far more likely to be observed. Indeed, from among a total of 494 non-synonymous coding mutations, ENU was observed to create only 114 of the 182 possible amino acid substitutions that single base changes can achieve. Based on differences in overt null allele frequencies observed in phenotypic vs. non-phenotypic mutation sets, we infer that ENU-induced missense mutations create detectable phenotype only about 1 in 4.7 times. While the remaining mutations may not be functionally neutral, they are, on average, beneath the limits of detection of the phenotypic assays we applied. Conclusions Collectively, these mutations add to our understanding of the chemical specificity of ENU, the types of amino acid substitutions it creates, and its efficiency in causing phenovariance. Our data support the validity of computational algorithms for the prediction of damage caused by amino acid substitutions, and may lead to refined predictions as to whether specific amino acid changes are responsible for observed phenotypes. These data form the basis for closer in silico estimations of the number of genes mutated to a state of phenovariance by ENU within a population of G3 mice.
Collapse
Affiliation(s)
- Carrie N Arnold
- Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tarantino LM, Eisener-Dorman AF. Forward genetic approaches to understanding complex behaviors. Curr Top Behav Neurosci 2012; 12:25-58. [PMID: 22297575 PMCID: PMC6989028 DOI: 10.1007/7854_2011_189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assigning function to genes has long been a focus of biomedical research.Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions,insertions, deletions, copy number variation, epigenetic changes (DNA methylation,histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.
Collapse
|
23
|
Gundry M, Li W, Maqbool SB, Vijg J. Direct, genome-wide assessment of DNA mutations in single cells. Nucleic Acids Res 2011; 40:2032-40. [PMID: 22086961 PMCID: PMC3300019 DOI: 10.1093/nar/gkr949] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA mutations are the inevitable consequences of errors that arise during replication and repair of DNA damage. Because of their random and infrequent occurrence, quantification and characterization of DNA mutations in the genome of somatic cells has been difficult. Random, low-abundance mutations are currently inaccessible by standard high-throughput sequencing approaches because they cannot be distinguished from sequencing errors. One way to circumvent this problem and simultaneously account for the mutational heterogeneity within tissues is whole genome sequencing of a representative number of single cells. Here, we show elevated mutation levels in single cells from Drosophila melanogaster S2 and mouse embryonic fibroblast populations after treatment with the powerful mutagen N-ethyl-N-nitrosourea. This method can be applied as a direct measure of exposure to mutagenic agents and for assessing genotypic heterogeneity within tissues or cell populations.
Collapse
Affiliation(s)
- Michael Gundry
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | |
Collapse
|
24
|
Fenner D, Odili S, Hong HK, Kobayashi Y, Kohsaka A, Siepka SM, Vitaterna MH, Chen P, Zelent B, Grimsby J, Takahashi JS, Matschinsky FM, Bass J. Generation of N-ethyl-N-nitrosourea (ENU) diabetes models in mice demonstrates genotype-specific action of glucokinase activators. J Biol Chem 2011; 286:39560-72. [PMID: 21921030 PMCID: PMC3234779 DOI: 10.1074/jbc.m111.269100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/16/2011] [Indexed: 11/06/2022] Open
Abstract
We performed genome-wide mutagenesis in C57BL/6J mice using N-ethyl-N-nitrosourea to identify mutations causing high blood glucose early in life and to produce new animal models of diabetes. Of a total of 13 new lines confirmed by heritability testing, we identified two semi-dominant pedigrees with novel missense mutations (Gck(K140E) and Gck(P417R)) in the gene encoding glucokinase (Gck), the mammalian glucose sensor that is mutated in human maturity onset diabetes of the young type 2 and the target of emerging anti-hyperglycemic agents that function as glucokinase activators (GKAs). Diabetes phenotype corresponded with genotype (mild-to-severe: Gck(+/+) < Gck(P417R/+), Gck(K140E)(/+) < Gck(P417R/P417R), Gck(P417R/K140E), and Gck(K140E/K140E)) and with the level of expression of GCK in liver. Each mutant was produced as the recombinant enzyme in Escherichia coli, and analysis of k(cat) and tryptophan fluorescence (I(320/360)) during thermal shift unfolding revealed a correlation between thermostability and the severity of hyperglycemia in the whole animal. Disruption of the glucokinase regulatory protein-binding site (GCK(K140E)), but not the ATP binding cassette (GCK(P417R)), prevented inhibition of enzyme activity by glucokinase regulatory protein and corresponded with reduced responsiveness to the GKA drug. Surprisingly, extracts from liver of diabetic GCK mutants inhibited activity of the recombinant enzyme, a property that was also observed in liver extracts from mice with streptozotocin-induced diabetes. These results indicate a relationship between genotype, phenotype, and GKA efficacy. The integration of forward genetic screening and biochemical profiling opens a pathway for preclinical development of mechanism-based diabetes therapies.
Collapse
Affiliation(s)
- Deborah Fenner
- From the Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- the Department of Neurobiology and Physiology and
| | - Stella Odili
- the Department of Biochemistry and Biophysics, Children's Hospital of Pennsylvania and Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Hee-Kyung Hong
- the Department of Neurobiology and Physiology and
- the Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois 60208
| | - Yumiko Kobayashi
- From the Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- the Department of Neurobiology and Physiology and
| | - Akira Kohsaka
- the Department of Neurobiology and Physiology and
- the Departments of Medicine and Physiology II, Wakayama Medical University, Wakayama City, 640-8265, Japan
| | - Sandra M. Siepka
- the Department of Neurobiology and Physiology and
- the Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois 60208
| | - Martha H. Vitaterna
- the Department of Neurobiology and Physiology and
- the Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois 60208
| | - Pan Chen
- the Department of Biochemistry and Biophysics, Children's Hospital of Pennsylvania and Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Bogumil Zelent
- the Department of Biochemistry and Biophysics, Children's Hospital of Pennsylvania and Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Joseph Grimsby
- the Department of Metabolic Diseases, Hoffmann-La Roche, Nutley, New Jersey 07110
| | - Joseph S. Takahashi
- the Department of Neurobiology and Physiology and
- the Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, and
| | - Franz M. Matschinsky
- the Department of Biochemistry and Biophysics, Children's Hospital of Pennsylvania and Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Joseph Bass
- From the Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- the Department of Neurobiology and Physiology and
- the Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
25
|
Second-generation high-throughput forward genetic screen in mice to isolate subtle behavioral mutants. Proc Natl Acad Sci U S A 2011; 108 Suppl 3:15557-64. [PMID: 21896739 DOI: 10.1073/pnas.1107726108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forward genetic screens have been highly successful in revealing roles of genes and pathways in complex biological events. Traditionally these screens have focused on isolating mutants with the greatest phenotypic deviance, with the hopes of discovering genes that are central to the biological event being investigated. Behavioral screens in mice typically use simple activity-based assays as endophenotypes for more complex emotional states of the animal. They generally set the selection threshold for a putative mutant at 3 SDs (z score of 3) from the average behavior of normal animals to minimize false-positive results. Behavioral screens using a high threshold for detection have generally had limited success, with high false-positive rates and subtle phenotypic differences that have made mapping and cloning difficult. In addition, targeted reverse genetic approaches have shown that when genes central to behaviors such as open field behavior, psychostimulant response, and learning and memory tasks are mutated, they produce subtle phenotypes that differ from wild-type animals by 1 to 2 SDs (z scores of 1 to 2). We have conducted a second-generation (G2) dominant N-ethyl-N-nitrosourea (ENU) screen especially designed to detect subtle behavioral mutants for open field activity and psychostimulant response behaviors. We successfully detect mutant lines with only 1 to 2 SD shifts in mean response compared with wild-type control animals and present a robust statistical and methodological framework for conducting such forward genetic screens. Using this methodology we have screened 229 ENU mutant lines and have identified 15 heritable mutant lines. We conclude that for screens in mice that use activity-based endophenotypic measurements for complex behavioral states, this G2 screening approach yields better results.
Collapse
|
26
|
Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in hematological parameters. Mamm Genome 2011; 22:495-505. [PMID: 21553221 DOI: 10.1007/s00335-011-9328-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022]
Abstract
Research on hematological disorders relies on suitable animal models. We retrospectively evaluated the use of the hematological parameters hematocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell count (RBC), white blood cell count (WBC), and platelet count (PLT) in the phenotype-driven Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project as parameters for the generation of novel animal models for human diseases. The analysis was carried out on more than 16,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the levels of the chosen parameters. Identification of animals exhibiting altered values and transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for the parameters MCV, RBC, and PLT. Analysis of the causative mutation was started in selected lines, thereby revealing a novel mutation in the transferrin receptor gene (Tfrc) in one line. Thus, novel phenotype-driven mouse models were established to analyze the genetic components of hematological disorders.
Collapse
|
27
|
Gondo Y, Fukumura R, Murata T, Makino S. ENU-based gene-driven mutagenesis in the mouse: a next-generation gene-targeting system. Exp Anim 2011; 59:537-48. [PMID: 21030782 DOI: 10.1538/expanim.59.537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As a new mouse mutant resource, the RIKEN ENU-based gene-driven mutagenesis system in the mouse has been available to the research community since 2002. By using random base-substitution mutagenesis with ENU, a new reverse genetics infrastructure has been developed as a next-generation gene-targeting system. The construction of a large-scale mutant mouse library and high-throughput mutation discovery systems were the keys making it practically feasible. The RIKEN mutant mouse library consists of ~ 10,000 G1 mice, within which 100-150 mutant strains have been established based on users' requests every year. Use of the system is very simple: users 1) download an application form from our web site and send to us, and 2) design the PCR primers for the target gene. Then, we screen the RIKEN mutant mouse library and report all the detected mutations to the user. From among the allelic series of discovered mutations, users decide which mutant strain(s) to analyze and request the live mutant strain for functional studies of the target gene. Users have been reporting various functional mutations in the RIKEN mutant mouse library: e.g., missense, knockout-type and even functional non-coding mutations. In the near future, next-generation re-sequencing systems should drastically enhance the utility of the ENU-based gene-driven mutagenesis not only for the mouse but also for other species.
Collapse
Affiliation(s)
- Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Ibaraki, Japan
| | | | | | | |
Collapse
|
28
|
Nguyen N, Judd LM, Kalantzis A, Whittle B, Giraud AS, van Driel IR. Random mutagenesis of the mouse genome: a strategy for discovering gene function and the molecular basis of disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1-11. [PMID: 20947703 PMCID: PMC3774088 DOI: 10.1152/ajpgi.00343.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutagenesis of mice with N-ethyl-N-nitrosourea (ENU) is a phenotype-driven approach to unravel gene function and discover new biological pathways. Phenotype-driven approaches have the advantage of making no assumptions about the function of genes and their products and have been successfully applied to the discovery of novel gene-phenotype relationships in many physiological systems. ENU mutagenesis of mice is used in many large-scale and more focused projects to generate and identify novel mouse models for the study of gene functions and human disease. This review examines the strategies and tools used in ENU mutagenesis screens to efficiently generate and identify functional mutations.
Collapse
Affiliation(s)
- Nhung Nguyen
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne;
| | - Louise M. Judd
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Anastasia Kalantzis
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Belinda Whittle
- 3Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrew S. Giraud
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Ian R. van Driel
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne;
| |
Collapse
|
29
|
Rapid identification of a disease allele in mouse through whole genome sequencing and bulk segregation analysis. Genetics 2010; 187:633-41. [PMID: 21196518 DOI: 10.1534/genetics.110.124586] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a pedigree of C57BL/6J mice homozygous for germline mutations induced by the mutagen N-ethyl-N-nitrosourea (ENU), numerous animals died under specific pathogen-free (SPF) conditions between 6 and 7 months of age. Death was caused by nephritic syndrome, which progressed to renal failure associated with focal segmental glomerulosclerosis. To identify the mutation responsible for renal disease, we sequenced genomic DNA from an affected animal using the Applied Biosystems SOLiD sequencing platform. Approximately 74% of the nucleotides comprising coding sequences and splice junctions in the mouse genome were covered at least three times. Within this portion of the genome, 64 discrepancies were flagged as potential homozygous mutations and 82 were flagged as potential heterozygous mutations. A total of 10 of these calls, all homozygous, were validated by capillary sequencing. One of the validated mutations disrupted splicing of the Col4a4 transcript. Genetic mapping by bulk segregation analysis excluded all mutations but this one as the cause of renal disease in Aoba mice. Col4a4 has not been targeted in the mouse, and this strain, named Aoba, represents the first functionally null allele in this species. Our study demonstrates the speed and utility of whole genome sequencing coupled with low resolution meiotic mapping as a means of identifying causative mutations induced by ENU.
Collapse
|
30
|
Beckers J, Wurst W, de Angelis MH. Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 2010; 10:371-80. [PMID: 19434078 DOI: 10.1038/nrg2578] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mouse is the leading mammalian model organism for basic genetic research and for studying human diseases. Coordinated international projects are currently in progress to generate a comprehensive map of mouse gene functions - the first for any mammalian genome. There are still many challenges ahead to maximize the value of the mouse as a model, particularly for human disease. These involve generating mice that are better models of human diseases at the genotypic level, systemic (assessing all organ systems) and systematic (analysing all mouse lines) phenotyping of existing and new mouse mutant resources, and assessing the effects of the environment on phenotypes.
Collapse
Affiliation(s)
- Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, GmbH, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
31
|
Brown SDM, Wurst W, Kühn R, Hancock JM. The functional annotation of mammalian genomes: the challenge of phenotyping. Annu Rev Genet 2009; 43:305-33. [PMID: 19689210 DOI: 10.1146/annurev-genet-102108-134143] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse is central to the goal of establishing a comprehensive functional annotation of the mammalian genome that will help elucidate various human disease genes and pathways. The mouse offers a unique combination of attributes, including an extensive genetic toolkit that underpins the creation and analysis of models of human disease. An international effort to generate mutations for every gene in the mouse genome is a first and essential step in this endeavor. However, the greater challenge will be the determination of the phenotype of every mutant. Large-scale phenotyping for genome-wide functional annotation presents numerous scientific, infrastructural, logistical, and informatics challenges. These include the use of standardized approaches to phenotyping procedures for the population of unified databases with comparable data sets. The ultimate goal is a comprehensive database of molecular interventions that allows us to create a framework for biological systems analysis in the mouse on which human biology and disease networks can be revealed.
Collapse
Affiliation(s)
- Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Gondo Y, Fukumura R, Murata T, Makino S. Next-generation gene targeting in the mouse for functional genomics. BMB Rep 2009; 42:315-23. [PMID: 19558788 DOI: 10.5483/bmbrep.2009.42.6.315] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to elucidate ultimate biological function of the genome, the model animal system carrying mutations is indispensable. Recently, large-scale mutagenesis projects have been launched in various species. Especially, the mouse is considered to be an ideal model to human because it is a mammalian species accompanied with well-established genetic as well as embryonic technologies. In 1990's, large-scale mouse mutagenesis projects firstly initiated with a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU) by the phenotype-driven approach or forward genetics. The knockout mouse mutagenesis projects with trapping/conditional mutagenesis have then followed as Phase II since 2006 by the gene-driven approach or reverse genetics. Recently, the next-generation gene targeting system has also become available to the research community, which allows us to establish and analyze mutant mice carrying an allelic series of base substitutions in target genes as another reverse genetics. Overall trends in the large-scale mouse mutagenesis will be reviewed in this article particularly focusing on the new advancement of the next-generation gene targeting system. The drastic expansion of the mutant mouse resources altogether will enhance the systematic understanding of the life. The construction of the mutant mouse resources developed by the forward and reverse genetic mutagenesis is just the beginning of the annotation of mammalian genome. They provide basic infrastructure to understand the molecular mechanism of the gene and genome and will contribute to not only basic researches but also applied sciences such as human disease modelling, genomic medicine and personalized medicine.
Collapse
Affiliation(s)
- Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | |
Collapse
|
33
|
Aigner B, Rathkolb B, Klempt M, Wagner S, Michel D, de Angelis MH, Wolf E. N-ethyl-N-nitrosourea mutagenesis produced a small number of mice with altered plasma electrolyte levels. J Biomed Sci 2009; 16:53. [PMID: 19505327 PMCID: PMC2697975 DOI: 10.1186/1423-0127-16-53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/08/2009] [Indexed: 11/23/2022] Open
Abstract
Background Clinical chemical blood analysis including plasma electrolytes is routinely carried out for the diagnosis of various organ diseases. Phenotype-driven N-ethyl-N-nitrosourea (ENU) mouse mutagenesis projects used plasma electrolytes as parameters for the generation of novel animal models for human diseases. Methods Here, we retrospectively evaluated the use of the plasma electrolytes calcium, chloride, inorganic phosphorus, potassium and sodium in the Munich ENU mouse mutagenesis project where clinical chemical blood analysis was carried out on more than 20,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in various plasma parameter levels. Results We identified a small number of animals consistently exhibiting altered plasma electrolyte values. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for the parameters calcium and potassium. Published data from other phenotype-driven ENU projects also included only a small number of mutant lines which were generated according to altered plasma electrolyte levels. Conclusion Thus, use of plasma electrolytes detected few mouse mutants in ENU projects compared to other clinical chemical blood parameters.
Collapse
Affiliation(s)
- Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
ENU-induced mutant mice for a next-generation gene-targeting system. PROGRESS IN BRAIN RESEARCH 2009. [PMID: 20302815 DOI: 10.1016/s0079-6123(09)17904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
By the N-ethyl-N-nitrosourea (ENU)-based gene-driven mutagenesis, it is now possible to obtain allelic series of mutant mouse strains, each of which carries a different base substitution in any target gene. This new reverse genetic tool has become available based on the ENU mutant mouse library. The ENU mutant mouse library consists of dual archives of frozen sperm and corresponding genomic DNA derived from Generation-1 (G1) male mice, each of which carries thousands of ENU-induced base substitutions. Firstly, ENU-induced mutations in the target gene are screened from the genomic DNA archive by using one of the high-throughput mutation discovery systems. The identified mutations are then revived as live mice by the in vitro fertilization (IVF) and embryo transfer (ET) technology. Just like the knockout (KO) mouse system, the revived mutant strains are finally subjected to the three-generation scheme to reveal the gene function(s) of the target gene. This new reverse genetics or "next-generation gene-targeting system" allows us to elucidate the biological roles of the mouse genome in terms of single base-pair effects not only for the protein-coding sequences but also for any genomic sequences.
Collapse
|
35
|
Gondo Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 2008; 9:803-10. [DOI: 10.1038/nrg2431] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Feitsma H, de Bruijn E, van de Belt J, Nijman IJ, Cuppen E. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line. Mutagenesis 2008; 23:325-9. [PMID: 18469325 DOI: 10.1093/mutage/gen019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.
Collapse
Affiliation(s)
- Harma Feitsma
- Hubrecht Institute and Cancer Genomics Center, 3584 CT Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Richer E, Qureshi ST, Vidal SM, Malo D. Chemical mutagenesis: a new strategy against the global threat of infectious diseases. Mamm Genome 2008; 19:309-17. [PMID: 18560940 DOI: 10.1007/s00335-008-9114-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
The perpetual evolution of drug-resistant microbes, the overwhelming burden of acquired immune suppression due to HIV, the emergence or re-emergence of various pathogens (West Nile virus, pandemic influenza, Creutzfeld-Jacob disease), and increased fears of bioterrorism has drawn a great deal of new attention to infectious diseases. The pathogenesis of infection is characterized by complex interactions of potentially virulent microorganisms with host genetic and acquired factors. Chemical mutagenesis of the mouse genome provides a robust method to unravel this challenging problem. To deepen our understanding of the natural host response to pathogens, our team and others are interrogating the mouse genome to define genes that are crucial to the defense against infectious diseases (pathogen recognition, viral defense, bacterial defense, prion infection). In this review we highlight the current progress of these efforts and propose a toolbox for other groups that are interested in this endeavor.
Collapse
Affiliation(s)
- Etienne Richer
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
38
|
From ENU mutagenesis to population genetics. Mamm Genome 2008; 19:221-5. [PMID: 18365275 DOI: 10.1007/s00335-008-9104-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 02/17/2008] [Indexed: 01/11/2023]
|
39
|
Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SDM. ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 2008; 9:49-69. [PMID: 18949851 DOI: 10.1146/annurev.genom.9.081307.164224] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arguably, the main challenge for contemporary genetics is to understand the function of every gene in a mammalian genome. The mouse has emerged as a model for this task because its genome can be manipulated in a number of ways to study gene function or mimic disease states. Two complementary genetic approaches can be used to generate mouse models. A reverse genetics or gene-driven approach (gene to phenotype) starts from a known gene and manipulates the genome to create genetically modified mice, such as knockouts. Alternatively, a forward genetics or phenotype-driven approach (phenotype to gene) involves screening mice for mutant phenotypes without previous knowledge of the genetic basis of the mutation. N-ethyl-N-nitrosourea (ENU) mutagenesis has been widely used for both approaches to generate mouse mutants. Here we review progress in ENU mutagenesis screening, with an emphasis on creating mouse models for human disorders.
Collapse
|