1
|
Chen YF, Tsao CY, Chen YT, Chang HC, Li WY, Chiang JL, Chen CFF, Chen CH, Gau SSF, Lee KY, Lee LJ, Wang YC. Altered odor perception in Dlgap2 mutant mice, a mouse model of autism spectrum disorder. Behav Brain Res 2025; 480:115365. [PMID: 39631506 DOI: 10.1016/j.bbr.2024.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Olfactory dysfunction has been observed in patients with Autism Spectrum Disorder (ASD). A microdeletion at the 8p23 terminal regions of chromosome 8p23 was identified in a Taiwanese patient with ASD, suggesting a potential association with mutations in the DLGAP2 gene. DLGAP2 is expressed in the olfactory bulb in rodents. The current study investigated olfactory phenotypes of Dlgap2 mutant mice. The results indicated that odor detection capabilities were comparable between wild-type (WT) and Dlgap2 mutant mice. However, homozygous mutant (Homo) mice showed less interest in sniffing odors of banana and almond but greater sniffing activity in response to bedding from unfamiliar cages. Notably, exposure to banana odor elicited significant c-fos expression in most olfaction-related brain regions of WT mice, while Homo mice did not show much increase in c-fos levels in major olfactory areas, which may correlate with their diminished sniffing behavior. Bedding stimuli induced pronounced c-fos expression in WT brains and some olfaction-related regions, including the olfactory bulb, amygdala, hypothalamus, and medial prefrontal cortex, in Homo mice. These mutants may still process olfactory signals from the bedding through a relatively narrow channel, which might elicit their interest, leading to increased sniffing behaviors that may compensate for their olfactory deficits. The DLGAP2 protein was absent in the olfactory bulb of Homo mice, and the levels of PSD95 and CaMKIIβ were also affected, indicating alterations in synaptic transmission and signaling within the olfactory system. This study evaluated olfactory perception in a mouse model of ASD, which may advance diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Fu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yuh-Tarng Chen
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wai-Yu Li
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jui-Lin Chiang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Fu Fred Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Otolaryngology, Head and Neck Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
2
|
Ahasan MM, Alam MT, Murata Y, Taniguchi M, Yamaguchi M. Function of orexin-1 receptor signaling in the olfactory tubercle in odor-guided attraction and aversion. Commun Biol 2024; 7:1702. [PMID: 39725686 DOI: 10.1038/s42003-024-07438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
While olfactory behaviors are influenced by neuromodulatory signals, the underlying mechanism remains unknown. The olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, consists of anteromedial (am) and lateral (l) domains regulating odor-guided attractive and aversive behaviors, respectively, in which the amOT highly expresses various receptors for feeding-regulated neuromodulators. Here we show functions of appetite-stimulating orexin-1 receptor (OxR1) signaling in the amOT. When odor-food reward associated mice underwent OxR1 antagonist injection in the amOT, their odor-attractive behavior was suppressed and odor-aversive behavior was conversely induced. Although odor-attractive mice showed activation of attraction-promoting dopamine receptor type 1-expressing D1 cells in the amOT, the antagonist injection increased activation of aversion-promoting D2 cells in the amOT and D1 cells in the lOT. The results highlight the amOT as the crucial structure integrating OxR1 signaling and odor information, thereby controlling metabolic status-dependent olfactory behavior through the cell type- and domain-specific activation.
Collapse
Affiliation(s)
- Md Monjurul Ahasan
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Md Tasnim Alam
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yoshihiro Murata
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mutsuo Taniguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan.
| |
Collapse
|
3
|
Broillet-Olivier E, Wenger Y, Gilliand N, Cadas H, Sabatasso S, Broillet MC, Brechbühl J. Development of an rpS6-Based Ex Vivo Assay for the Analysis of Neuronal Activity in Mouse and Human Olfactory Systems. Int J Mol Sci 2024; 25:13173. [PMID: 39684883 DOI: 10.3390/ijms252313173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.
Collapse
Affiliation(s)
- Emma Broillet-Olivier
- Faculty of Medicine Hradec Králové, Charles University, 500 00 Hradec Králové, Czech Republic
| | - Yaëlle Wenger
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Noah Gilliand
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Hugues Cadas
- Faculty of Biology and Medicine, University of Lausanne, Bugnon 9, CH-1005 Lausanne, Switzerland
- Faculty Unit of Anatomy and Morphology, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Vulliette 4, CH-1000 Lausanne, Switzerland
| | - Sara Sabatasso
- Faculty of Biology and Medicine, University of Lausanne, Bugnon 9, CH-1005 Lausanne, Switzerland
- Faculty Unit of Anatomy and Morphology, University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Vulliette 4, CH-1000 Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | - Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| |
Collapse
|
4
|
Cerbantez-Bueno V, Viñuela-Berni V, Muñoz-Mayorga DE, Morales T, Corona R. Prolactin promotes the recruitment of main olfactory bulb cells and enhances the behavioral exploration toward a socio-sexual stimulus in female mice. Horm Behav 2024; 162:105527. [PMID: 38492348 DOI: 10.1016/j.yhbeh.2024.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.
Collapse
Affiliation(s)
- Viridiana Cerbantez-Bueno
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Verónica Viñuela-Berni
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Daniel Eduardo Muñoz-Mayorga
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Teresa Morales
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Rebeca Corona
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico.
| |
Collapse
|
5
|
Kwon OH, Choe J, Kim D, Kim S, Moon C. Sensory Stimulation-dependent Npas4 Expression in the Olfactory Bulb during Early Postnatal Development. Exp Neurobiol 2024; 33:77-98. [PMID: 38724478 PMCID: PMC11089401 DOI: 10.5607/en23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/15/2024] Open
Abstract
The development of the olfactory system is influenced by sensory inputs, and it maintains neuronal generation and plasticity throughout the lifespan. The olfactory bulb contains a higher proportion of interneurons than other brain regions, particularly during the early postnatal period of neurogenesis. Although the relationship between sensory stimulation and olfactory bulb development during the postnatal period has been well studied, the molecular mechanisms have yet to be identified. In this study, we used western blotting and immunohistochemistry to analyze the expression of the transcription factor Npas4, a neuron-specific immediate-early gene that acts as a developmental regulator in many brain regions. We found that Npas4 is highly expressed in olfactory bulb interneurons during the early postnatal stages and gradually decreases toward the late postnatal stages. Npas4 expression was observed in all olfactory bulb layers, including the rostral migratory stream, where newborn neurons are generated and migrate to the olfactory bulb. Under sensory deprivation, the olfactory bulb size and the number of olfactory bulb interneurons were reduced. Furthermore, Npas4 expression and the expression of putative Npas4 downstream molecules were decreased. Collectively, these findings indicate that Npas4 expression induced by sensory input plays a role in the formation of neural circuits with excitatory mitral/tufted cells by regulating the survival of olfactory bulb interneurons during the early stages of postnatal development.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dokyeong Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sunghwan Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Cheil Moon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
6
|
Throesch BT, Bin Imtiaz MK, Muñoz-Castañeda R, Sakurai M, Hartzell AL, James KN, Rodriguez AR, Martin G, Lippi G, Kupriyanov S, Wu Z, Osten P, Izpisua Belmonte JC, Wu J, Baldwin KK. Functional sensory circuits built from neurons of two species. Cell 2024; 187:2143-2157.e15. [PMID: 38670072 PMCID: PMC11293795 DOI: 10.1016/j.cell.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.
Collapse
Affiliation(s)
- Benjamin T Throesch
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Muhammad Khadeesh Bin Imtiaz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Masahiro Sakurai
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrea L Hartzell
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Kiely N James
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Alberto R Rodriguez
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Greg Martin
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Giordano Lippi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Sergey Kupriyanov
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Zhuhao Wu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Juan Carlos Izpisua Belmonte
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Altos Labs, San Diego, CA, USA
| | - Jun Wu
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kristin K Baldwin
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Schmill LP, Bohle K, Röhrdanz N, Schiffelholz T, Balueva K, Wulff P. Regional and interhemispheric differences of neuronal representations in dentate gyrus and CA3 inferred from expression of zif268. Sci Rep 2023; 13:18443. [PMID: 37891194 PMCID: PMC10611715 DOI: 10.1038/s41598-023-45304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The hippocampal formation is one of the best studied brain regions for spatial and mnemonic representations. These representations have been reported to differ in their properties for individual hippocampal subregions. One approach that allows the detection of neuronal representations is immediate early gene imaging, which relies on the visualization of genomic responses of activated neuronal populations, so called engrams. This method permits the within-animal comparison of neuronal representations across different subregions. In this work, we have used compartmental analysis of temporal activity by fluorescence in-situ hybridisation (catFISH) of the immediate early gene zif268/erg1 to compare neuronal representations between subdivisions of the dentate gyrus and CA3 upon exploration of different contexts. Our findings give an account of subregion-specific ensemble sizes. We confirm previous results regarding disambiguation abilities in dentate gyrus and CA3 but in addition report novel findings: Although ensemble sizes in the lower blade of the dentate gyrus are significantly smaller than in the upper blade both blades are responsive to environmental change. Beyond this, we show significant differences in the representation of familiar and novel environments along the longitudinal axis of dorsal CA3 and most interestingly between CA3 regions of both hemispheres.
Collapse
Affiliation(s)
- Lars-Patrick Schmill
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
- Clinic for Radiology and Neuroradiology, UKSH, Kiel, Germany
| | - Katharina Bohle
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
- Clinic for Orthopaedic and Trauma and Reconstructive Surgery, Klinikum Frankfurt Höchst GmbH, Frankfurt am Main, Germany
| | - Niels Röhrdanz
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Schiffelholz
- Center of Integrative Psychiatry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kira Balueva
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Peer Wulff
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
9
|
Mier Quesada Z, Portillo W, Paredes RG. Behavioral evidence of the functional interaction between the main and accessory olfactory system suggests a large olfactory system with a high plastic capability. Front Neuroanat 2023; 17:1211644. [PMID: 37908970 PMCID: PMC10613685 DOI: 10.3389/fnana.2023.1211644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Olfaction is fundamental in many species of mammals. In rodents, the integrity of this system is required for the expression of parental and sexual behavior, mate recognition, identification of predators, and finding food. Different anatomical and physiological evidence initially indicated the existence of two anatomically distinct chemosensory systems: The main olfactory system (MOS) and the accessory olfactory system (AOS). It was originally conceived that the MOS detected volatile odorants related to food, giving the animal information about the environment. The AOS, on the other hand, detected non-volatile sexually relevant olfactory cues that influence reproductive behaviors and neuroendocrine functions such as intermale aggression, sexual preference, maternal aggression, pregnancy block (Bruce effect), puberty acceleration (Vandenbergh effect), induction of estrous (Whitten effect) and sexual behavior. Over the last decade, several lines of evidence have demonstrated that although these systems could be anatomically separated, there are neuronal areas in which they are interconnected. Moreover, it is now clear that both the MOS and the AOS process both volatile and no-volatile odorants, indicating that they are also functionally interconnected. In the first part of the review, we will describe the behavioral evidence. In the second part, we will summarize data from our laboratory and other research groups demonstrating that sexual behavior in male and female rodents induces the formation of new neurons that reach the main and accessory olfactory bulbs from the subventricular zone. Three factors are essential for the neurons to reach the AOS and the MOS: The stimulation frequency, the stimulus's temporal presentation, and the release of opioids induced by sexual behavior. We propose that the AOS and the MOS are part of a large olfactory system with a high plastic capability, which favors the adaptation of species to different environmental signals.
Collapse
Affiliation(s)
- Zacnite Mier Quesada
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Raúl G. Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
10
|
Sardar D, Cheng YT, Woo J, Choi DJ, Lee ZF, Kwon W, Chen HC, Lozzi B, Cervantes A, Rajendran K, Huang TW, Jain A, Arenkiel B, Maze I, Deneen B. Induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation. Science 2023; 380:eade0027. [PMID: 37319217 PMCID: PMC10874521 DOI: 10.1126/science.ade0027] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Neuronal activity drives alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. We found that neuronal activity induces widespread transcriptional up-regulation and down-regulation in astrocytes, highlighted by the identification of Slc22a3 as an activity-inducible astrocyte gene that encodes neuromodulator transporter Slc22a3 and regulates sensory processing in the mouse olfactory bulb. Loss of astrocytic Slc22a3 reduced serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduced the expression of γ-aminobutyric acid (GABA) biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.
Collapse
Affiliation(s)
- Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Yi-Ting Cheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Zhung-Fu Lee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston TX
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston TX
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston TX
| | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Kavitha Rajendran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston TX
| | - Benjamin Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX
- Neurological Research Institute, Texas Children’s Hospital, Houston TX
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York NY
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston TX
- Program in Developmental Biology, Baylor College of Medicine, Houston TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston TX
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030
| |
Collapse
|
11
|
Ogawa B, Nakanishi Y, Wakamatsu M, Takahashi Y, Shibutani M. Repeated administration of acrylamide for 28 days suppresses adult neurogenesis of the olfactory bulb in young-adult rats. Toxicol Lett 2023; 378:1-9. [PMID: 36801352 DOI: 10.1016/j.toxlet.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/22/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acrylamide (AA) is a neurotoxicant that inhibits synaptic function in distal axons. We previously found that AA decreased neural cell lineages during late-stage differentiation of adult hippocampal neurogenesis and downregulated genes related to neurotrophic factor, neuronal migration, neurite outgrowth, and synapse formation in the hippocampal dentate gyrus in rats. To investigate whether olfactory bulb (OB)-subventricular zone (SVZ) neurogenesis is similarly affected by AA exposure, AA was administered to 7-week-old male rats via oral gavage at doses of 0, 5, 10, and 20 mg/kg for 28 days. Immunohistochemical analysis revealed that AA decreased the numbers of doublecortin-positive (+) cells and polysialic acid-neural cell adhesion molecule+ cells in the OB. On the other hand, the numbers of doublecortin+ cells and polysialic acid-neural cell adhesion molecule+ cells in the SVZ did not change with AA exposure, suggesting that AA impaired neuroblasts migrating in the rostral migratory stream and OB. Gene expression analysis in the OB revealed that AA downregulated Bdnf and Ncam2, which are related to neuronal differentiation and migration. These results suggest that AA decreased neuroblasts in the OB by suppressing neuronal migration. Thus, AA decreased neuronal cell lineages during late-stage differentiation of adult neurogenesis in the OB-SVZ, similar to the effect on adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bunichiro Ogawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan; Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Yutaka Nakanishi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | - Masaki Wakamatsu
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
12
|
Takahashi H, Yamamoto T, Tsuboi A. Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neurosci Res 2023; 186:3-9. [PMID: 36244569 DOI: 10.1016/j.neures.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The inhibition of cerebral blood flow triggers intertwined pathological events, resulting in cell death and loss of brain function. Interestingly, animals pre-exposed to short-term ischemia can tolerate subsequent severe ischemia. This phenomenon is called ischemic tolerance and is also triggered by other noxious stimuli. However, whether short-term exposure to non-noxious stimuli can induce ischemic tolerance remains unknown. Recently, we found that pre-exposing mice to an enriched environment for 40 min is sufficient to facilitate cell survival after a subsequent stroke. The neuroprotective process depends on the neuronal activity soon before stroke, of which the activity-dependent transcription factor Npas4 is essential. Excessive Ca2+ influx triggers Npas4 expression in ischemic neurons, leading to the activation of neuroprotective programs. Pre-induction of Npas4 in the normal brain effectively supports cell survival after stroke. Furthermore, our study revealed that Npas4 regulates L-type voltage-gated Ca2+ channels through expression of the small Ras-like GTPase Gem in ischemic neurons. Ischemic tolerance is a good model for understanding how to promote neuroprotective mechanisms in the normal and injured brain. Here, we highlight activity-dependent ischemic tolerance and discuss its role in promoting neuroprotection against stroke.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Akio Tsuboi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
13
|
Jiménez A, Herrera-González A, Organista-Juárez D, Estudillo E, Velasco I, Guerrero-Vargas NN, Guzmán-Ruíz MA, Guevara-Guzmán R. Diabetes Induces Permanent Deleterious Effects in the Olfactory Bulb Associated with Increased Tyrosine Hydroxylase Expression and ERK1/2 Phosphorylation. ACS Chem Neurosci 2022; 13:2821-2828. [PMID: 36122168 DOI: 10.1021/acschemneuro.2c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Diabetes mellitus type 2 (T2D) complications include brain damage which increases the risk of neurodegenerative diseases and dementia. An early manifestation of neurodegeneration is olfactory dysfunction (OD), which is also presented in diabetic patients. Previously, we demonstrated that OD correlates with IL-1β and miR-146a overexpression in the olfactory bulb (OB) on a T2D rodent model, suggesting the participation of inflammation on OD. Here, we found that OD persists on a long-term T2D condition after the downregulation of IL-1β. Remarkably, OD was associated with the increased expression of the dopaminergic neuronal marker tyrosine hydroxylase, ERK1/2 phosphorylation, and reduced neuronal activation on the OB of diabetic rats, suggesting the participation of the dopaminergic tone on the OD derived from T2D. Dopaminergic neurons are susceptible in neurodegenerative diseases such as Parkinson's disease; therefore further studies must be performed to completely elucidate the participation of these neurons and ERK1/2 signaling on olfactory impairment.
Collapse
Affiliation(s)
- Adriana Jiménez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.,División de Investigación, Hospital Juárez de México, Ciudad de México 07760, México
| | - Amor Herrera-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Diana Organista-Juárez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, México
| | - Iván Velasco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, México.,Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Mara A Guzmán-Ruíz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
14
|
Strauch C, Hoang TH, Angenstein F, Manahan-Vaughan D. Olfactory Information Storage Engages Subcortical and Cortical Brain Regions That Support Valence Determination. Cereb Cortex 2021; 32:689-708. [PMID: 34379749 PMCID: PMC8841565 DOI: 10.1093/cercor/bhab226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The olfactory bulb (OB) delivers sensory information to the piriform cortex (PC) and other components of the olfactory system. OB-PC synapses have been reported to express short-lasting forms of synaptic plasticity, whereas long-term potentiation (LTP) of the anterior PC (aPC) occurs predominantly by activating inputs from the prefrontal cortex. This suggests that brain regions outside the olfactory system may contribute to olfactory information processing and storage. Here, we compared functional magnetic resonance imaging BOLD responses triggered during 20 or 100 Hz stimulation of the OB. We detected BOLD signal increases in the anterior olfactory nucleus (AON), PC and entorhinal cortex, nucleus accumbens, dorsal striatum, ventral diagonal band of Broca, prelimbic–infralimbic cortex (PrL-IL), dorsal medial prefrontal cortex, and basolateral amygdala. Significantly stronger BOLD responses occurred in the PrL-IL, PC, and AON during 100 Hz compared with 20 Hz OB stimulation. LTP in the aPC was concomitantly induced by 100 Hz stimulation. Furthermore, 100 Hz stimulation triggered significant nuclear immediate early gene expression in aPC, AON, and PrL-IL. The involvement of the PrL-IL in this process is consistent with its putative involvement in modulating behavioral responses to odor experience. Furthermore, these results indicate that OB-mediated information storage by the aPC is embedded in a connectome that supports valence evaluation.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Thu-Huong Hoang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 39118 Magdeburg, Germany.,Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.,Medical Faculty, Otto-von Guericke University, 39118 Magdeburg, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
15
|
Hashikawa-Hobara N, Mishima S, Okujima C, Shitanishi Y, Hashikawa N. Npas4 impairs fear memory via phosphorylated HDAC5 induced by CGRP administration in mice. Sci Rep 2021; 11:7006. [PMID: 33772088 PMCID: PMC7997869 DOI: 10.1038/s41598-021-86556-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
The relationships among neuropeptide, calcitonin gene-related peptide (CGRP), and memory formation remain unclear. Here, we showed that the intracerebroventricular administration of CGRP impaired the traumatic fear memories, in a widely studied animal model of post-traumatic stress disorder. We found that CGRP administration suppressed fear memory by increasing neuronal PAS domain protein 4 (Npas4), phosphorylated histone deacetylase 5 (HDAC5), and protein kinase D (PKD). We also discovered that Npas4 knockdown inhibited CGRP-mediated fear memory. CGRP decreased the binding between HDAC5 and the Npas4 enhancer site and increased the binding between acetylated histone H3 and the Npas4 enhancer site. The pharmacological inhibition or knockdown of PKD attenuated the CGRP-mediated impairment of fear memory and the increased phosphorylation of HDAC5 and Npas4 expression. Our findings demonstrated that the CGRP-PKD pathway was associated with the histone H3 acetylation-Npas4 pathway. These results suggested a novel function for CGRP on fear memory, through epigenetic regulation.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Shuta Mishima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Chihiro Okujima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Youdai Shitanishi
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
16
|
Navarro-Moreno C, Sanchez-Catalan MJ, Barneo-Muñoz M, Goterris-Cerisuelo R, Belles M, Lanuza E, Agustin-Pavon C, Martinez-Garcia F. Pregnancy Changes the Response of the Vomeronasal and Olfactory Systems to Pups in Mice. Front Cell Neurosci 2021; 14:593309. [PMID: 33390905 PMCID: PMC7775479 DOI: 10.3389/fncel.2020.593309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Motherhood entails changes in behavior with increased motivation for pups, induced in part by pregnancy hormones acting upon the brain. This work explores whether this alters sensory processing of pup-derived chemosignals. To do so, we analyse the expression of immediate early genes (IEGs) in the vomeronasal organ (VNO; Egr1) and centers of the olfactory and vomeronasal brain pathways (cFos) in virgin and late-pregnant females exposed to pups, as compared to buttons (socially neutral control). In pup-exposed females, we quantified diverse behaviors including pup retrieval, sniffing, pup-directed attack, nest building and time in nest or on nest, as well as time off nest. Pups induce Egr1 expression in the VNO of females, irrespective of their physiological condition, thus suggesting the existence of VNO-detected pup chemosignals. A similar situation is found in the accessory olfactory bulb (AOB) and posteromedial part of the medial bed nucleus of the stria terminalis (BSTMPM). By contrast, in the medial amygdala and posteromedial cortical amygdala (PMCo), responses to pups-vs-buttons are different in virgin and late-pregnant females, thus suggesting altered sensory processing during late pregnancy. The olfactory system also shows changes in sensory processing with pregnancy. In the main olfactory bulbs, as well as the anterior and posterior piriform cortex, buttons activate cFos expression in virgins more than in pregnant females. By contrast, in the anterior and especially posterior piriform cortex, pregnant females show more activation by pups than buttons. Correlation between IEGs expression and behavior suggests the existence of two vomeronasal subsystems: one associated to pup care (with PMCo as its main center) and another related to pup-directed aggression observed in some pregnant females (with the BSTMPM as the main nucleus). Our data also suggest a coactivation of the olfactory and vomeronasal systems during interaction with pups in pregnant females.
Collapse
Affiliation(s)
- Cinta Navarro-Moreno
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Maria Jose Sanchez-Catalan
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Manuela Barneo-Muñoz
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rafael Goterris-Cerisuelo
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Maria Belles
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Enrique Lanuza
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Departament de Biologia Cellular, Funcional i Antropologia, Faculty of Biological Sciences, Universitat de València, Valencia, Spain
| | - Carmen Agustin-Pavon
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Departament de Biologia Cellular, Funcional i Antropologia, Faculty of Biological Sciences, Universitat de València, Valencia, Spain
| | - Fernando Martinez-Garcia
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
17
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic recombination in disgust-associated bitter taste-responsive neurons of the central nucleus of amygdala in male mice. Neurosci Lett 2020; 742:135456. [PMID: 33290837 DOI: 10.1016/j.neulet.2020.135456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 11/18/2022]
Abstract
A bitter substance induces specific orofacial and somatic behavioral reactions such as gapes in mice as well as monkeys and humans. These reactions have been proposed to represent affective disgust, and therefore, understanding the neuronal basis of the reactions would pave the way to understand affective disgust. It is crucial to identify and access the specific neuronal ensembles that are activated by bitter substances, such as quinine, the intake of which induces disgust reactions. However, the method to access the quinine-activated neurons has not been fully established yet. Here, we show evidence that a targeted recombination in active populations (TRAP) method, induces genetic recombination in the quinine-activated neurons in the central nucleus of the amygdala (CeA). CeA is one of the well-known emotional centers of the brain. We found that the intraoral quinine infusion, that resulted in disgust reactions, increased both cFos-positive cells and Arc-positive cells in the CeA. By using Arc-CreER;Ai3 TRAP mice, we induced genetic recombination in the quinine-activated neurons and labelled them with fluorescent protein. We confirmed that the quinine-TRAPed fluorescently-labelled cells preferentially coexpressed Arc after quinine infusion. Our results suggest that the TRAP method can be used to access specific functional neurons in the CeA.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 Japan.
| |
Collapse
|
18
|
Murata K, Kinoshita T, Ishikawa T, Kuroda K, Hoshi M, Fukazawa Y. Region- and neuronal-subtype-specific expression of Na,K-ATPase alpha and beta subunit isoforms in the mouse brain. J Comp Neurol 2020; 528:2654-2678. [PMID: 32301109 PMCID: PMC7540690 DOI: 10.1002/cne.24924] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/01/2023]
Abstract
Na,K‐ATPase is a ubiquitous molecule contributing to the asymmetrical distribution of Na+ and K+ ions across the plasma membrane and maintenance of the membrane potential, a prerequisite of neuronal activity. Na,K‐ATPase comprises three subunits (α, β, and FXYD). The α subunit has four isoforms in mice, with three of them (α1, α2, and α3) expressed in the brain. However, the functional and biological significances of the different brain isoforms remain to be fully elucidated. Recent studies have revealed the association of Atp1a3, a gene encoding α3 subunit, with neurological disorders. To map the cellular distributions of the α subunit isoforms and their coexpression patterns, we evaluated the mRNA expression of Atp1a1, Atp1a2, and Atp1a3 by in situ hybridization in the mouse brain. Atp1a1 and Atp1a3 were expressed in neurons, whereas Atp1a2 was almost exclusively expressed in glial cells. Most neurons coexpressed Atp1a1 and Atp1a3, with highly heterogeneous expression levels across the brain regions and neuronal subtypes. We identified parvalbumin (PV)‐expressing GABAergic neurons in the hippocampus, somatosensory cortex, and retrosplenial cortex as an example of a neuronal subtype expressing low Atp1a1 and high Atp1a3. The expression of Atp1b isoforms was also heterogeneous across brain regions and cellular subtypes. The PV‐expressing neurons expressed a high level of Atp1b1 and a low level of Atp1b2 and Atp1b3. These findings provide basic information on the region‐ and neuronal‐subtype‐dependent expression of Na,K‐ATPase α and β subunit isoforms, as well as a rationale for the selective involvement of neurons expressing high levels of Atp1a3 in neurological disorders.
Collapse
Affiliation(s)
- Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Tomoki Kinoshita
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsuya Ishikawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Kazuki Kuroda
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Minako Hoshi
- Department for Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| |
Collapse
|
19
|
Mitf Links Neuronal Activity and Long-Term Homeostatic Intrinsic Plasticity. eNeuro 2020; 7:ENEURO.0412-19.2020. [PMID: 32193365 PMCID: PMC7174873 DOI: 10.1523/eneuro.0412-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity forms the basis for neuronal circuit complexity and differences between otherwise similar circuits. We show that the microphthalmia-associated transcription factor (Mitf) plays a central role in intrinsic plasticity of olfactory bulb (OB) projection neurons. Mitral and tufted (M/T) neurons from Mitf mutant mice are hyperexcitable, have a reduced A-type potassium current (IA) and exhibit reduced expression of Kcnd3, which encodes a potassium voltage-gated channel subunit (Kv4.3) important for generating the IA Furthermore, expression of the Mitf and Kcnd3 genes is activity dependent in OB projection neurons and the MITF protein activates expression from Kcnd3 regulatory elements. Moreover, Mitf mutant mice have changes in olfactory habituation and have increased habituation for an odorant following long-term exposure, indicating that regulation of Kcnd3 is pivotal for long-term olfactory adaptation. Our findings show that Mitf acts as a direct regulator of intrinsic homeostatic feedback and links neuronal activity, transcriptional changes and neuronal function.
Collapse
|
20
|
Kedrov AV, Mineyeva OA, Enikolopov GN, Anokhin KV. Involvement of Adult-born and Preexisting Olfactory Bulb and Dentate Gyrus Neurons in Single-trial Olfactory Memory Acquisition and Retrieval. Neuroscience 2019; 422:75-87. [DOI: 10.1016/j.neuroscience.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/24/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
|
21
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic Access to Gustatory Disgust-Associated Neurons in the Interstitial Nucleus of the Posterior Limb of the Anterior Commissure in Male Mice. Neuroscience 2019; 413:45-63. [PMID: 31229633 DOI: 10.1016/j.neuroscience.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Orofacial and somatic disgust reactions are observed in rats following intraoral infusion of not only bitter quinine (innate disgust) but also sweet saccharin previously paired with illness (learned disgust). It remains unclear, however, whether these innate and learned disgust reactions share a common neural basis and which brain regions, if any, host it. In addition, there is no established method to genetically access neurons whose firing is associated with disgust (disgust-associated neurons). Here, we examined the expression of cFos and Arc, two markers of neuronal activity, in the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) of male mice that showed innate disgust and mice that showed learned disgust. Furthermore, we used a targeted recombination in active populations (TRAP) method to genetically label the disgust-associated neurons in the IPAC with YFP. We found a significant increase of both cFos-positive neurons and Arc-positive neurons in the IPAC of mice that showed innate disgust and mice that showed learned disgust. In addition, TRAP following quinine infusion (Quinine-TRAP) resulted in significantly more YFP-positive neurons in the IPAC, compared to TRAP following water infusion. A significant number of the YFP-positive neurons following Quinine-TRAP were co-labeled with Arc following the second quinine infusion, confirming that Quinine-TRAP preferentially labeled quinine-activated neurons in the IPAC. Our results suggest that the IPAC activity is associated with both innate and learned disgust and that disgust-associated neurons in the IPAC are genetically accessible by TRAP.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
22
|
Xu C, Li Q, Efimova O, Jiang X, Petrova M, K Vinarskaya A, Kolosov P, Aseyev N, Koshkareva K, Ierusalimsky VN, Balaban PM, Khaitovich P. Identification of Immediate Early Genes in the Nervous System of Snail Helix lucorum. eNeuro 2019; 6:ENEURO.0416-18.2019. [PMID: 31053606 PMCID: PMC6584072 DOI: 10.1523/eneuro.0416-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/02/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Immediate early genes (IEGs) are useful markers of neuronal activation and essential components of neuronal response. While studies of gastropods have provided many insights into the basic learning and memory mechanisms, the genome-wide assessment of IEGs has been mainly restricted to vertebrates. In this study, we identified IEGs in the terrestrial snail Helix lucorum In the absence of the genome, we conducted de novo transcriptome assembly using reads with short and intermediate lengths cumulatively covering more than 98 billion nucleotides. Based on this assembly, we identified 37 proteins corresponding to contigs differentially expressed (DE) in either the parietal ganglia (PaG) or two giant interneurons located within the PaG of the snail in response to the neuronal stimulation. These proteins included homologues of well-known mammalian IEGs, such as c-jun/jund, C/EBP, c-fos/fosl2, and Egr1, as well as homologues of genes not yet implicated in the neuronal response.
Collapse
Affiliation(s)
- Chuan Xu
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Li
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Xi Jiang
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Marina Petrova
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Alia K Vinarskaya
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Peter Kolosov
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Kira Koshkareva
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | | | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Comparative Biology Laboratory, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
23
|
Murata K, Kinoshita T, Fukazawa Y, Kobayashi K, Yamanaka A, Hikida T, Manabe H, Yamaguchi M. Opposing Roles of Dopamine Receptor D1- and D2-Expressing Neurons in the Anteromedial Olfactory Tubercle in Acquisition of Place Preference in Mice. Front Behav Neurosci 2019; 13:50. [PMID: 30930757 PMCID: PMC6428768 DOI: 10.3389/fnbeh.2019.00050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/27/2019] [Indexed: 11/17/2022] Open
Abstract
Olfaction induces adaptive motivated behaviors. Odors associated with food induce attractive behavior, whereas those associated with dangers induce aversive behavior. We previously reported that learned odor-induced attractive and aversive behaviors accompany activation of the olfactory tubercle (OT) in a domain- and cell type-specific manner. Odor cues associated with a sugar reward induced attractive behavior and c-fos expression in the dopamine receptor D1-expressing neurons (D1 neurons) in the anteromedial OT. In contrast, odor cues associated with electrical shock induced aversive behavior and c-fos expression in the pamine receptor D2-expressing neurons (D2 neurons) in the anteromedial OT, as well as the D1 neurons in the lateral OT. Here, we investigated whether the D1 and D2 neurons in the anteromedial OT play distinct roles in attractive or aversive behaviors, using optogenetic stimulation and real-time place preference (RTPP) tests. Mice expressing ChETA (ChR2/E123T)-enhanced yellow fluorescent protein (EYFP) in the D1 neurons in the anteromedial OT spent a longer time in the photo-stimulation side of the place preference chamber than the control mice expressing EYFP. On the other hand, upon optogenetic stimulation of the D2 neurons in the anteromedial OT, the mice spent a shorter time in the photo-stimulation side than the control mice. Local neural activation in the anteromedial OT during the RTPP tests was confirmed by c-fos mRNA expression. These results suggest that the D1 and D2 neurons in the anteromedial OT play opposing roles in attractive and aversive behaviors, respectively.
Collapse
Affiliation(s)
- Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Tomoki Kinoshita
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, Japan
- Research Center for Child Mental Health Development, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Aichi, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hiroyuki Manabe
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
24
|
Velazco-Mendoza M, Camacho FJ, Paredes RG, Portillo W. The First Mating Experience Induces New Neurons in the Olfactory Bulb in Male Mice. Neuroscience 2018; 396:166-174. [PMID: 30471356 DOI: 10.1016/j.neuroscience.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
In rodents, neurogenesis in the olfactory bulbs (OBs) is enhanced by exposure to olfactory enriched environments including sexually relevant odors. In the present study we evaluated whether sexual stimulation in male mice increases the number of newly generated cells that reach the OB and whether these cells differentiate into neurons. To this end, we used sexually naive male C57BL mice randomly assigned to one of three groups: (1) control, in which animals were left alone in their home cages; (2) exposure, in which animals were exposed to a receptive female precluding any physical contact; and (3) mating, in which males copulated with females. Males were given three injections of the DNA synthesis marker 5-bromo-2'-deoxyuridine (BrdU) 2 h before, at the end and 2 h after the test. Fifteen days after BrdU administration, brains were removed and processed to identify new cells and evaluate if they had differentiated into neurons in the granular (GR), mitral (MI) and glomerular (GL) cell layers of the main and accessory OB (MOB and AOB, respectively). We found an increase in the percentage of new cells that differentiate into neurons in the GL cell layer of the MOB of males from the mating group compared with those from the exposure and control groups. No differences were found in the number of new cells or percentage of new neurons in the rest of the analyzed regions. In male mice, the first sexual experience increases the percentage of new cells that differentiate into neurons in the GL cell layer of the MOB.
Collapse
Affiliation(s)
- M Velazco-Mendoza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - F J Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
25
|
Brown SM, Bush SJ, Summers KM, Hume DA, Lawrence AB. Environmentally enriched pigs have transcriptional profiles consistent with neuroprotective effects and reduced microglial activity. Behav Brain Res 2018; 350:6-15. [PMID: 29778628 PMCID: PMC6002610 DOI: 10.1016/j.bbr.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
Environmental enrichment (EE) is widely used to study the effects of external factors on brain development, function and health in rodent models, but very little is known of the effects of EE on the brain in a large animal model such as the pig. Twenty-four young pigs (aged 5 weeks at start of study, 1:1 male: female ratio) were housed in environmentally enriched (EE) pens and provided with additional enrichment stimulation (a bag filled with straw) once daily. Litter, weight and sex matched controls n= (24) were housed in barren (B) conditions. Behaviour was recorded on alternate days from study day 10. After 21 days, RNA-sequencing of the frontal cortex of male piglets culled one hour after the enrichment stimulation, but not those at 4 h after stimulation, showed upregulation of genes involved in neuronal activity and synaptic plasticity in the EE compared to the B condition. This result is mirrored in the behavioural response to the stimulation which showed a peak in activity around the 1 h time-point. By contrast, EE piglets displayed a signature consistent with a relative decrease in microglial activity compared to those in the B condition. These results confirm those from rodents, suggesting that EE may also confer neuronal health benefits in large mammal models, through a potential relative reduction in neuroinflammatory process and increase in neuroprotection driven by an enrichment-induced increase in behavioural activity.
Collapse
Affiliation(s)
- S M Brown
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| | - S J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - K M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - D A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - A B Lawrence
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| |
Collapse
|
26
|
Murofushi W, Mori K, Murata K, Yamaguchi M. Functional development of olfactory tubercle domains during weaning period in mice. Sci Rep 2018; 8:13204. [PMID: 30181622 PMCID: PMC6123493 DOI: 10.1038/s41598-018-31604-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Mammals shift their feeding habits from mother’s milk to environmental foods postnatally. While this weaning process accompanies the acquisition of attractive behaviour toward environmental foods, the underlying neural mechanism for the acquisition is poorly understood. We previously found that adult mouse olfactory tubercle (OT), which belongs to the olfactory cortex and ventral striatum, has functional domains that represent odour-induced motivated behaviours, and that c-fos induction occurs mainly in the anteromedial domain of OT following learned odour-induced food seeking behaviour. To address the question whether the anteromedial OT domain is involved in the postnatal acquisition of food seeking behaviour, we examined OT development during weaning of mice. Whereas at postnatal day 15 (P15), all mice were attracted to lactating mothers, P21 mice were more attracted to familiar food pellets. Mapping of c-fos induction during food seeking and eating behaviours showed that while c-fos activation was observed across wide OT domains at P15, the preferential activation of c-fos in the anteromedial domain occurred at P21 and later ages. These results indicate that preferential c-fos activation in the anteromedial OT domain occurred concomitantly with the acquisition of attractive behaviour toward food, which suggests the importance of this domain in the weaning process.
Collapse
Affiliation(s)
- Wataru Murofushi
- Department of Physiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Kensaku Mori
- Department of Physiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan. .,Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, 910-1193, Japan.
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan.
| |
Collapse
|
27
|
Takahashi H, Yoshihara S, Tsuboi A. The Functional Role of Olfactory Bulb Granule Cell Subtypes Derived From Embryonic and Postnatal Neurogenesis. Front Mol Neurosci 2018; 11:229. [PMID: 30034321 PMCID: PMC6043811 DOI: 10.3389/fnmol.2018.00229] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/12/2018] [Indexed: 02/01/2023] Open
Abstract
It has been shown in a variety of mammalian species that sensory experience can regulate the development of various structures, including the retina, cortex, hippocampus, and olfactory bulb (OB). In the mammalian OB, the development of dendrites in excitatory projection neurons, such as mitral and tufted cells, is well known to be dependent on odor experience. Odor experience is also involved in the development of another OB population, a subset of inhibitory interneurons that are generated in the ventricular-subventricular zone throughout life and differentiate into granule cells (GCs) and periglomerular cells. However, the roles that each type of interneuron plays in the control of olfactory behaviors are incompletely understood. We recently found that among the various types of OB interneurons, a subtype of GCs expressing the oncofetal trophoblast glycoprotein 5T4 gene is required for odor detection and discrimination behaviors. Our results suggest that embryonic-born OB interneurons, including 5T4-positive GCs, play a crucial role in fundamental olfactory responses such as simple odor detection and discrimination behaviors. By contrast, postnatal- and adult-born OB interneurons are important in the learning of more complicated olfactory behaviors. Here, we highlight the subtypes of OB GCs, and discuss their roles in olfactory processing and behavior, with a particular focus on the relative contributions of embryonically and postnatally generated subsets of GCs in rodents.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| | - Seiichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan.,Laboratory for the Molecular and Cellular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
28
|
Zhang Z, Liu Q, Wen P, Zhang J, Rao X, Zhou Z, Zhang H, He X, Li J, Zhou Z, Xu X, Zhang X, Luo R, Lv G, Li H, Cao P, Wang L, Xu F. Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward. eLife 2017; 6:25423. [PMID: 29251597 PMCID: PMC5777817 DOI: 10.7554/elife.25423] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023] Open
Abstract
Odor-preferences are usually influenced by life experiences. However, the neural circuit mechanisms remain unclear. The medial olfactory tubercle (mOT) is involved in both reward and olfaction, whereas the ventral tegmental area (VTA) dopaminergic (DAergic) neurons are considered to be engaged in reward and motivation. Here, we found that the VTA (DAergic)-mOT pathway could be activated by different types of naturalistic rewards as well as odors in DAT-cre mice. Optogenetic activation of the VTA-mOT DAergic fibers was able to elicit preferences for space, location and neutral odor, while pharmacological blockade of the dopamine receptors in the mOT fully prevented the odor-preference formation. Furthermore, inactivation of the mOT-projecting VTA DAergic neurons eliminated the previously formed odor-preference and strongly affected the Go-no go learning efficiency. In summary, our results revealed that the VTA (DAergic)-mOT pathway mediates a variety of naturalistic reward processes and different types of preferences including odor-preference in mice.
Collapse
Affiliation(s)
- Zhijian Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Qing Liu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Pengjie Wen
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jiaozhen Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoping Rao
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ziming Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongruo Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaobin He
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Juan Li
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Zheng Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoran Xu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xueyi Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Luo
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Guanghui Lv
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Haohong Li
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Pei Cao
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fuqiang Xu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| |
Collapse
|
29
|
Wei Q, Zhang H, Ma S, Guo D. Sex- and age-related differences inc-fosexpression in dog olfactory bulbs. ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qinguo Wei
- College of life science; Qufu Normal University; Jingxuan West Street No. 57 Qufu Shandong 273165 China
- Department of Biotechnology; Weifang Business Vocational College; Phoenix Road No. 1600 Zhucheng Shandong 262234 China
| | - Honghai Zhang
- College of life science; Qufu Normal University; Jingxuan West Street No. 57 Qufu Shandong 273165 China
| | - Shisheng Ma
- College of life science; Qufu Normal University; Jingxuan West Street No. 57 Qufu Shandong 273165 China
| | - Dongge Guo
- College of life science; Qufu Normal University; Jingxuan West Street No. 57 Qufu Shandong 273165 China
| |
Collapse
|
30
|
Yoshihara SI, Takahashi H, Tsuboi A. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner. Front Neurosci 2016; 9:514. [PMID: 26793053 PMCID: PMC4709855 DOI: 10.3389/fnins.2015.00514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/02/2022] Open
Abstract
Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb.
Collapse
Affiliation(s)
- Sei-Ichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| |
Collapse
|
31
|
Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits. J Neurosci 2015; 35:12432-45. [PMID: 26354912 DOI: 10.1523/jneurosci.3648-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities.
Collapse
|
32
|
Damborsky JC, Slaton GS, Winzer-Serhan UH. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain. Front Neuroanat 2015; 9:145. [PMID: 26633966 PMCID: PMC4649027 DOI: 10.3389/fnana.2015.00145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/30/2015] [Indexed: 12/29/2022] Open
Abstract
The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission.
Collapse
Affiliation(s)
- Joanne C Damborsky
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System Health Science Center Bryan, TX, USA
| | - G Simona Slaton
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System Health Science Center Bryan, TX, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System Health Science Center Bryan, TX, USA
| |
Collapse
|
33
|
Abstract
An odor induces food-seeking behaviors when humans and animals learned to associate the odor with food, whereas the same odor elicits aversive behaviors following odor-danger association learning. It is poorly understood how central olfactory circuits transform the learned odor cue information into appropriate motivated behaviors. The olfactory tubercle (OT) is an intriguing area of the olfactory cortex in that it contains medium spiny neurons as principal neurons and constitutes a part of the ventral striatum. The OT is therefore a candidate area for participation in odor-induced motivated behaviors. Here we mapped c-Fos activation of medium spiny neurons in different domains of the mouse OT following exposure to learned odor cues. Mice were trained to associate odor cues to a sugar reward or foot shock punishment to induce odor-guided approach behaviors or aversive behaviors. Regardless of odorant types, the anteromedial domain of the OT was activated by learned odor cues that induced approach behaviors, whereas the lateral domain was activated by learned odor cues that induced aversive behaviors. In each domain, a larger number of dopamine receptor D1 type neurons were activated than D2 type neurons. These results indicate that specific domains of the OT represent odor-induced distinct motivated behaviors rather than odor stimuli, and raise the possibility that neuronal type-specific activation in individual domains of the OT plays crucial roles in mediating the appropriate learned odor-induced motivated behaviors. Significance statement: Although animals learn to associate odor cues with various motivated behaviors, the underlying circuit mechanisms are poorly understood. The olfactory tubercle (OT), a subarea of the olfactory cortex, also constitutes the ventral striatum. Here, we trained mice to associate odors with either reward or punishment and mapped odor-induced c-Fos activation in the OT. Regardless of odorant types, the anteromedial domain was activated by approach behavior-inducing odors, whereas the lateral domain was activated by aversive behavior-inducing odors. In each domain, dopamine receptor D1 neurons were preferentially activated over D2 neurons. The results indicate that specific OT domains represent odor-induced distinct motivated behaviors rather than odor types, and suggest the importance of neuronal type-specific activation in individual domains in mediating appropriate behaviors.
Collapse
|
34
|
Fortes-Marco L, Lanuza E, Martínez-García F, Agustín-Pavón C. Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice. Front Neurosci 2015; 9:336. [PMID: 26500474 PMCID: PMC4594011 DOI: 10.3389/fnins.2015.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/07/2015] [Indexed: 01/11/2023] Open
Abstract
Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively) than 2-HP (35 μmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation–dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish the ethological significance of odorants.
Collapse
Affiliation(s)
- Lluís Fortes-Marco
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain ; Departament de Biologia Cel·lular, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel·lular, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Fernando Martínez-García
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain
| |
Collapse
|
35
|
Nasal Administration of Cholera Toxin as a Mucosal Adjuvant Damages the Olfactory System in Mice. PLoS One 2015; 10:e0139368. [PMID: 26422280 PMCID: PMC4589288 DOI: 10.1371/journal.pone.0139368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/12/2015] [Indexed: 12/30/2022] Open
Abstract
Cholera toxin (CT) induces severe diarrhea in humans but acts as an adjuvant to enhance immune responses to vaccines when administered orally. Nasally administered CT also acts as an adjuvant, but CT and CT derivatives, including the B subunit of CT (CTB), are taken up from the olfactory epithelium and transported to the olfactory bulbs and therefore may be toxic to the central nervous system. To assess the toxicity, we investigated whether nasally administered CT or CT derivatives impair the olfactory system. In mice, nasal administration of CT, but not CTB or a non-toxic CT derivative, reduced the expression of olfactory marker protein (OMP) in the olfactory epithelium and olfactory bulbs and impaired odor responses, as determined with behavioral tests and optical imaging. Thus, nasally administered CT, like orally administered CT, is toxic and damages the olfactory system in mice. However, CTB and a non-toxic CT derivative, do not damage the olfactory system. The optical imaging we used here will be useful for assessing the safety of nasal vaccines and adjuvants during their development for human use and CT can be used as a positive control in this test.
Collapse
|
36
|
Genetic dissection of pheromone processing reveals main olfactory system-mediated social behaviors in mice. Proc Natl Acad Sci U S A 2015; 112:E311-20. [PMID: 25564662 DOI: 10.1073/pnas.1416723112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most mammals have two major olfactory subsystems: the main olfactory system (MOS) and vomeronasal system (VNS). It is now widely accepted that the range of pheromones that control social behaviors are processed by both the VNS and the MOS. However, the functional contributions of each subsystem in social behavior remain unclear. To genetically dissociate the MOS and VNS functions, we established two conditional knockout mouse lines that led to either loss-of-function in the entire MOS or in the dorsal MOS. Mice with whole-MOS loss-of-function displayed severe defects in active sniffing and poor survival through the neonatal period. In contrast, when loss-of-function was confined to the dorsal MOB, sniffing behavior, pheromone recognition, and VNS activity were maintained. However, defects in a wide spectrum of social behaviors were observed: attraction to female urine and the accompanying ultrasonic vocalizations, chemoinvestigatory preference, aggression, maternal behaviors, and risk-assessment behaviors in response to an alarm pheromone. Functional dissociation of pheromone detection and pheromonal induction of behaviors showed the anterior olfactory nucleus (AON)-regulated social behaviors downstream from the MOS. Lesion analysis and neural activation mapping showed pheromonal activation in multiple amygdaloid and hypothalamic nuclei, important regions for the expression of social behavior, was dependent on MOS and AON functions. Identification of the MOS-AON-mediated pheromone pathway may provide insights into pheromone signaling in animals that do not possess a functional VNS, including humans.
Collapse
|
37
|
Klarić T, Lardelli M, Key B, Koblar S, Lewis M. Activity-dependent expression of neuronal PAS domain-containing protein 4 (npas4a) in the developing zebrafish brain. Front Neuroanat 2014; 8:148. [PMID: 25538572 PMCID: PMC4255624 DOI: 10.3389/fnana.2014.00148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022] Open
Abstract
In rodents, the Npas4 gene has recently been identified as being an important regulator of synaptic plasticity and memory. Homologs of Npas4 have been found in invertebrate species though their functions appear to be too divergent for them to be studied as a proxy for the mammalian proteins. The aim of this study, therefore, was to ascertain the suitability of the zebrafish as a model organism for investigating the function of Npas4 genes. We show here that the expression and regulation of the zebrafish Npas4 homolog, npas4a, is remarkably similar to that of the rodent Npas4 genes. As in mammals, expression of the zebrafish npas4a gene is restricted to the brain where it is up-regulated in response to neuronal activity. Furthermore, we also show that knockdown of npas4a during embryonic development results in a number of forebrain-specific defects including increased apoptosis and misexpression of the forebrain marker genes dlx1a and shha. Our work demonstrates that the zebrafish is a suitable model organism for investigating the role of the npas4a gene and one that is likely to provide valuable insights into the function of the mammalian homologs. Furthermore, our findings highlight a potential role for npas4a in forebrain development.
Collapse
Affiliation(s)
- Thomas Klarić
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Michael Lardelli
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Brian Key
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Simon Koblar
- School of Medicine, The University of Adelaide Adelaide, SA, Australia
| | - Martin Lewis
- School of Molecular and Biomedical Sciences, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
38
|
Ahuja G, Korsching S. Zebrafish olfactory receptor ORA1 recognizes a putative reproductive pheromone. Commun Integr Biol 2014; 7:970501. [PMID: 26842458 PMCID: PMC4594460 DOI: 10.4161/19420889.2014.970501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/03/2023] Open
Abstract
Teleost v1r-related ora genes constitute a small and
highly conserved olfactory receptor gene family, and their direct orthologs are present in
lineages as distant as cartilaginous fishes. Recently, the first member of the
ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic
acid with high sensitivity and specificity. This compound elicits olfactory-mediated
oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a
reproductive pheromone for pHPAA itself or a related substance. This association of an
odor and its cognate receptor with an oviposition response may provide a molecular basis
for studying neural circuits involved in fish reproduction.
Collapse
Affiliation(s)
- Gaurav Ahuja
- Institute for Genetics; University at Cologne ; Cologne, Germany
| | - Sigrun Korsching
- Institute for Genetics; University at Cologne ; Cologne, Germany
| |
Collapse
|
39
|
Brai E, Marathe S, Zentilin L, Giacca M, Nimpf J, Kretz R, Scotti A, Alberi L. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour. Eur J Neurosci 2014; 40:3436-49. [PMID: 25234246 DOI: 10.1111/ejn.12719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour.
Collapse
Affiliation(s)
- Emanuele Brai
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route de Gockel, 1, Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Horie M, Watanabe K, Bepari AK, Nashimoto JI, Araki K, Sano H, Chiken S, Nambu A, Ono K, Ikenaka K, Kakita A, Yamamura KI, Takebayashi H. Disruption of actin-binding domain-containing Dystonin protein causesdystonia musculorumin mice. Eur J Neurosci 2014; 40:3458-71. [DOI: 10.1111/ejn.12711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Masao Horie
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Asahimachi Chuo-ku Niigata 951-8510 Japan
| | - Keisuke Watanabe
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Asahimachi Chuo-ku Niigata 951-8510 Japan
| | - Asim K. Bepari
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Asahimachi Chuo-ku Niigata 951-8510 Japan
| | - Jun-ichiro Nashimoto
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Asahimachi Chuo-ku Niigata 951-8510 Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis; Kumamoto University; Kumamoto Japan
| | - Hiromi Sano
- Division of System Neurophysiology; National Institute for Physiological Sciences; Okazaki Japan
| | - Satomi Chiken
- Division of System Neurophysiology; National Institute for Physiological Sciences; Okazaki Japan
| | - Atsushi Nambu
- Division of System Neurophysiology; National Institute for Physiological Sciences; Okazaki Japan
| | - Katsuhiko Ono
- Department of Biology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki Japan
| | - Akiyoshi Kakita
- Department of Pathology; Brain Research Institute; Niigata University; Niigata Japan
| | - Ken-ichi Yamamura
- Institute of Resource Development and Analysis; Kumamoto University; Kumamoto Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Asahimachi Chuo-ku Niigata 951-8510 Japan
- PRESTO; Japan Science and Technology Agency (JST); Saitama Japan
| |
Collapse
|
41
|
Yoshihara SI, Takahashi H, Nishimura N, Kinoshita M, Asahina R, Kitsuki M, Tatsumi K, Furukawa-Hibi Y, Hirai H, Nagai T, Yamada K, Tsuboi A. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons. Cell Rep 2014; 8:843-57. [DOI: 10.1016/j.celrep.2014.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023] Open
|
42
|
Cellular registration without behavioral recall of olfactory sensory input under general anesthesia. Anesthesiology 2014; 120:890-905. [PMID: 24694846 DOI: 10.1097/aln.0000000000000137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies suggest that sensory information is "received" but not "perceived" under general anesthesia. Whether and to what extent the brain continues to process sensory inputs in a drug-induced unconscious state remain unclear. METHODS One hundred seven rats were randomly assigned to 12 different anesthesia and odor exposure paradigms. The immunoreactivities of the immediate early gene products c-Fos and Egr1 as neural activity markers were combined with behavioral tests to assess the integrity and relationship of cellular and behavioral responsiveness to olfactory stimuli under a surgical plane of ketamine-xylazine general anesthesia. RESULTS The olfactory sensory processing centers could distinguish the presence or absence of experimental odorants even when animals were fully anesthetized. In the anesthetized state, the c-Fos immunoreactivity in the higher olfactory cortices revealed a difference between novel and familiar odorants similar to that seen in the awake state, suggesting that the anesthetized brain functions beyond simply receiving external stimulation. Reexposing animals to odorants previously experienced only under anesthesia resulted in c-Fos immunoreactivity, which was similar to that elicited by familiar odorants, indicating that previous registration had occurred in the anesthetized brain. Despite the "cellular memory," however, odor discrimination and forced-choice odor-recognition tests showed absence of behavioral recall of the registered sensations, except for a longer latency in odor recognition tests. CONCLUSIONS Histologically distinguishable registration of sensory processing continues to occur at the cellular level under ketamine-xylazine general anesthesia despite the absence of behavioral recognition, consistent with the notion that general anesthesia causes disintegration of information processing without completely blocking cellular communications.
Collapse
|
43
|
Bovetti S, Bonzano S, Garzotto D, Giannelli SG, Iannielli A, Armentano M, Studer M, De Marchis S. COUP-TFI controls activity-dependent tyrosine hydroxylase expression in adult dopaminergic olfactory bulb interneurons. Development 2013; 140:4850-9. [DOI: 10.1242/dev.089961] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
COUP-TFI is an orphan nuclear receptor acting as a strong transcriptional regulator in different aspects of forebrain embryonic development. In this study, we investigated COUP-TFI expression and function in the mouse olfactory bulb (OB), a highly plastic telencephalic region in which continuous integration of newly generated inhibitory interneurons occurs throughout life. OB interneurons belong to different populations that originate from distinct progenitor lineages. Here, we show that COUP-TFI is highly expressed in tyrosine hydroxylase (TH)-positive dopaminergic interneurons in the adult OB glomerular layer (GL). We found that odour deprivation, which is known to downregulate TH expression in the OB, also downregulates COUP-TFI in dopaminergic cells, indicating a possible correlation between TH- and COUP-TFI-activity-dependent action. Moreover, we demonstrate that conditional inactivation of COUP-TFI in the EMX1 lineage results in a significant reduction of both TH and ZIF268 expression in the GL. Finally, lentiviral vector-mediated COUP-TFI deletion in adult-generated interneurons confirmed that COUP-TFI acts cell-autonomously in the control of TH and ZIF268 expression. These data indicate that COUP-TFI regulates TH expression in OB cells through an activity-dependent mechanism involving ZIF268 induction and strongly argue for a maintenance rather than establishment function of COUP-TFI in dopaminergic commitment. Our study reveals a previously unknown role for COUP-TFI in the adult brain as a key regulator in the control of sensory-dependent plasticity in olfactory dopaminergic neurons.
Collapse
Affiliation(s)
- Serena Bovetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gerzole 10, 10043, Orbassano, Italy
| | - Donatella Garzotto
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Serena Gea Giannelli
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, San Raffaele Scientific Institute, Via Olgettina28, 20132, Milano, Italy
| | - Angelo Iannielli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gerzole 10, 10043, Orbassano, Italy
| | - Maria Armentano
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gerzole 10, 10043, Orbassano, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Napoli, Italy
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Napoli, Italy
- University of Nice Sophia-Antipolis, Parc Valrose, 28 Avenue Valrose, F-06108 Nice, France
- INSERM UMR 1091, Parc Valrose, 28 Avenue Valrose, F-06108 Nice, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gerzole 10, 10043, Orbassano, Italy
| |
Collapse
|
44
|
Fortes-Marco L, Lanuza E, Martinez-Garcia F. Of pheromones and kairomones: what receptors mediate innate emotional responses? Anat Rec (Hoboken) 2013; 296:1346-63. [PMID: 23904448 DOI: 10.1002/ar.22745] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 11/10/2022]
Abstract
Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation.
Collapse
Affiliation(s)
- Lluis Fortes-Marco
- Laboratori de Neuroanatomia Funcional Comparada, Department of Functional Biology, University of València, C. Dr. Moliner, 50, 46100, Burjassot, Spain
| | | | | |
Collapse
|
45
|
deCarvalho TN, Akitake CM, Thisse C, Thisse B, Halpern ME. Aversive cues fail to activate fos expression in the asymmetric olfactory-habenula pathway of zebrafish. Front Neural Circuits 2013; 7:98. [PMID: 23734103 PMCID: PMC3659297 DOI: 10.3389/fncir.2013.00098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/02/2013] [Indexed: 11/17/2022] Open
Abstract
The dorsal habenular nuclei of the zebrafish epithalamus have become a valuable model for studying the development of left-right (L-R) asymmetry and its function in the vertebrate brain. The bilaterally paired dorsal habenulae exhibit striking differences in size, neuroanatomical organization, and molecular properties. They also display differences in their efferent connections with the interpeduncular nucleus (IPN) and in their afferent input, with a subset of mitral cells distributed on both sides of the olfactory bulb innervating only the right habenula. Previous studies have implicated the dorsal habenulae in modulating fear/anxiety responses in juvenile and adult zebrafish. It has been suggested that the asymmetric olfactory-habenula pathway (OB-Ha), revealed by selective labeling from an lhx2a:YFP transgene, mediates fear behaviors elicited by alarm pheromone. Here we show that expression of the fam84b gene demarcates a unique region of the right habenula that is the site of innervation by lhx2a:YFP-labeled olfactory axons. Upon ablation of the parapineal, which normally promotes left habenular identity; the fam84b domain is present in both dorsal habenulae and lhx2a:YFP-labeled olfactory bulb neurons form synapses on the left and the right side. To explore the relevance of the asymmetric olfactory projection and how it might influence habenular function, we tested activation of this pathway using odorants known to evoke behaviors. We find that alarm substance or other aversive odors, and attractive cues, activate fos expression in subsets of cells in the olfactory bulb but not in the lhx2a:YFP expressing population. Moreover, neither alarm pheromone nor chondroitin sulfate elicited fos activation in the dorsal habenulae. The results indicate that L-R asymmetry of the epithalamus sets the directionality of olfactory innervation, however, the lhx2a:YFP OB-Ha pathway does not appear to mediate fear responses to aversive odorants.
Collapse
Affiliation(s)
- Tagide N deCarvalho
- Department of Embryology, Carnegie Institution for Science Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
46
|
Brechbühl J, Moine F, Klaey M, Nenniger-Tosato M, Hurni N, Sporkert F, Giroud C, Broillet MC. Mouse alarm pheromone shares structural similarity with predator scents. Proc Natl Acad Sci U S A 2013; 110:4762-7. [PMID: 23487748 PMCID: PMC3607058 DOI: 10.1073/pnas.1214249110] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sensing the chemical warnings present in the environment is essential for species survival. In mammals, this form of danger communication occurs via the release of natural predator scents that can involuntarily warn the prey or by the production of alarm pheromones by the stressed prey alerting its conspecifics. Although we previously identified the olfactory Grueneberg ganglion as the sensory organ through which mammalian alarm pheromones signal a threatening situation, the chemical nature of these cues remains elusive. We here identify, through chemical analysis in combination with a series of physiological and behavioral tests, the chemical structure of a mouse alarm pheromone. To successfully recognize the volatile cues that signal danger, we based our selection on their activation of the mouse olfactory Grueneberg ganglion and the concomitant display of innate fear reactions. Interestingly, we found that the chemical structure of the identified mouse alarm pheromone has similar features as the sulfur-containing volatiles that are released by predating carnivores. Our findings thus not only reveal a chemical Leitmotiv that underlies signaling of fear, but also point to a double role for the olfactory Grueneberg ganglion in intraspecies as well as interspecies communication of danger.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; and
| | - Fabian Moine
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; and
| | - Magali Klaey
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; and
| | - Monique Nenniger-Tosato
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; and
| | - Nicolas Hurni
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; and
| | - Frank Sporkert
- University Center of Legal Medicine, Lausanne-Geneva, CH-1011 Lausanne, Switzerland
| | - Christian Giroud
- University Center of Legal Medicine, Lausanne-Geneva, CH-1011 Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland; and
| |
Collapse
|