1
|
Hameed SS, Sharma TP. Generation of Retinal Ganglion Cells from Reprogrammed Keratocytes of Non-Glaucoma and Glaucoma Donors. Curr Protoc 2025; 5:e70091. [PMID: 39781605 PMCID: PMC11713219 DOI: 10.1002/cpz1.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures. Given that keratocytes originate from the neural crest and previous reports suggest that ocular fibroblasts from glaucomatous donors carry pathogenic signatures, it is highly plausible that these signatures imprinted within the keratocytes will also be present in the derived RGCs. Thus, we aimed to generate RGCs from both glaucomatous and non-glaucomatous donor keratocytes and validate disease-specific signatures in 3D retinal organoids and in isolated RGCs. Our protocol describes the generation of iPSCs from keratocytes of both glaucomatous and non-glaucomatous donors, followed by their differentiation into retinal organoids. Subsequent isolation and culturing of RGCs were performed. Disease signatures in the RGCs were validated in both 3D retinal organoids (ROs) and 2D RGC cultures, and glaucomatous RGCs in 3D and 2D cultures demonstrated increased cleaved CASP3 and significant RGC loss, indicating disease imprints in the hiPSC-derived RGCs. This model offers a venue and high throughput platform for studying glaucomatous disease pathology and holds significant potential for drug discovery using RGCs derived from human donors. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culturing of keratocytes from human cadaveric donors Basic Protocol 2: Reprogramming donor keratocytes into iPSCs Basic Protocol 3: Evaluation of chromosomal loss during reprogramming in iPSCs by karyotyping Basic Protocol 4: Generation of 3D ROs Basic Protocol 5: Dissociation and culturing of RGCs from 3D ROs Support Protocol 1: Immunostaining for phenotypic characterization of cells Support Protocol 2: Sectioning of 3D ROs and immunostaining Support Protocol 3: Western blotting for cleaved CASP3 and THY1.
Collapse
Affiliation(s)
- Shahna S. Hameed
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndiana
| | - Tasneem P. Sharma
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndiana
| |
Collapse
|
2
|
Wood JPM, Chidlow G, Wall GM, Casson RJ. N-acetylcysteine amide and di- N-acetylcysteine amide protect retinal cells in culture via an antioxidant action. Exp Eye Res 2024; 248:110074. [PMID: 39251120 DOI: 10.1016/j.exer.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Reactive oxygen species (ROS) play a significant role in toxicity to the retina in a variety of diseases. N-acetylcysteine (NAC), N-acetylcysteine amide (NACA) and the dimeric di-N-acetylcysteine amide (diNACA) were evaluated in terms of protecting retinal cells, in vitro, in a variety of stress models. Three types of rat retinal cell cultures were utilized in the study: macroglial-only cell cultures, neuron-only retinal ganglion cell (RGC) cultures, and mixed cultures containing retinal glia and neurons. Ability of test agents to attenuate oxidative stress in all cultures was ascertained. In addition, capability of agents to protect against a variety of alternate clinically-relevant stressors, including excitotoxins and mitochondrial electron transport chain inhibitors, was also evaluated. Capacity of test agents to elevate cellular levels of reduced glutathione under normal and compromised conditions was also determined. NAC, NACA and diNACA demonstrated concentration-dependent cytoprotection against oxidative stress in all cultures. These three compounds, however, had differing effects against a variety of alternate insults to retinal cells. The most protective agent was NACA, which was most potent against the most stressors (including oxidative stress, mitochondrial impairment by antimycin A and azide, and glutamate-induced excitotoxicity). Similar to NAC, NACA increased glutathione levels in non-injured cells, although diNACA did not, suggesting a different, unknown mechanism of antioxidant activity for the latter. In support of this, diNACA was the only agent to attenuate rotenone-induced toxicity in mitochondria. NAC, NACA and diNACA exhibited varying degrees of antioxidant activity, i.e., protected cultured rat retinal cells from a variety of stressors which were designed to mimic aspects of the pathology of different retinal diseases. A general rank order of activity was observed: NACA ≥ diNACA > NAC. These results warrant further exploration of NACA and diNACA as antioxidant therapeutics for the treatment of retinal diseases, particularly those involving oxidative stress. Furthermore, we have defined the battery of tests carried out as the "Wood, Chidlow, Wall and Casson (WCWC) Retinal Antioxidant Indices"; we believe that these are of great value for screening molecules for potential to reduce retinal oxidative stress in a range of retinal diseases.
Collapse
Affiliation(s)
- John P M Wood
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia.
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| | | | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| |
Collapse
|
3
|
Hameed SS, Bodi NE, Miller RC, Sharma TP. Neuritin 1 Drives Therapeutic Preservation of Retinal Ganglion Cells in an Ex Vivo Human Glaucoma Model. J Ocul Pharmacol Ther 2024; 40:596-607. [PMID: 38995841 PMCID: PMC11698685 DOI: 10.1089/jop.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Purpose: Glaucoma is a leading cause of irreversible blindness. Glaucomatous intraocular pressure (IOP) triggers deleterious effects, including gliosis, optic nerve (ON) axonal retraction, neurotrophic factor deprivation, inflammation, and other pathological events, leading to retinal ganglion cell (RGC) loss. Trophic factor impairment enhances RGC apoptosis susceptibility. Neuritin 1 (NRN1), a neurotrophic protein downstream of various neurotrophins, exhibited RGC protection and regeneration in axotomy models. We evaluated human recombinant NRN1's impact on human RGCs cultured in pressurized conditions within the ex vivo translaminar autonomous system to simulate glaucoma pathogenesis. Methods: Human glaucomatous and non-glaucomatous donor eyes were obtained from eye banks according to the Declaration of Helsinki. Initially, we evaluated NRN1and RGC marker expression in glaucoma and non-glaucomatous retina to determine the NRN1 level and its association with RGC loss. Further, we evaluated NRN1's therapeutic potential by treating pressurized human eyes at normal and high IOP for seven days. Retina, ON, and conditioned medium were analyzed for RGC survival (THY1, RBPMS), gliosis (GFAP), apoptosis (CASP3, CASP7), and extracellular matrix deposition (COLIV, FN) by qRT-PCR and western blotting. Paraphenylenediamine staining assessed ON axonal degeneration, whereas ex vivo electroretinogram assessed retinal activity. Results: Glaucomatous retinas exhibited significant reductions in both NRN1 (*p = 0.007, n = 5) and RGC marker expression (*p = 0.04, n = 5). NRN1 treatment reduced gliosis, extracellular matrix deposition, ON degeneration, and increased retinal activity in pressure-perfused eyes. Conclusions: Our study confirms that NRN1 enhances human RGC survival and improves retinal function in degenerative conditions, substantiating it as a promising candidate for rescuing human RGCs from degeneration.
Collapse
Affiliation(s)
- Shahna S. Hameed
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nicole E. Bodi
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ryan C. Miller
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tasneem P. Sharma
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Yuan W, Li J, Gao S, Sun W, Zhao F. Novel therapeutic targets for primary open-angle glaucoma identified through multicenter proteome-wide mendelian randomization. Front Pharmacol 2024; 15:1428472. [PMID: 39221148 PMCID: PMC11362091 DOI: 10.3389/fphar.2024.1428472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Background This study aimed to identify novel therapeutic targets for primary open-angle glaucoma (POAG). Methods The summary-data-based Mendelian randomization (SMR) method was used to evaluate the genetic association between plasma proteins and POAG. Two sets of plasma protein quantitative trait loci (pQTLs) data considered exposures were obtained from the Icelandic Decoding Genetics Study and UK Biobank Pharma Proteomics Project. The summary-level genome-wide association studies data for POAG were extracted from the latest Round 10 release of the FinnGen consortium (8,530 cases and 391,275 controls) and the UK Biobank (4,737 cases and 458,196 controls). Colocalization analysis was used to screen out pQTLs that share the same variant with POAG as drug targets identified. The two-sample Mendelian randomization, reverse causality testing and phenotype scanning were performed to further validate the main findings. Protein-protein interaction, pathway enrichment analysis and druggability assessment were conducted to determine whether the identified plasma proteins have potential as drug targets. Results After systematic analysis, this study identified eight circulating proteins as potential therapeutic targets for POAG. Three causal proteins with strong evidence of colocalization, ROBO1 (OR = 1.38, p = 1.48 × 10-4, PPH4 = 0.865), FOXO3 (OR = 0.35, p = 4.34 × 10-3, PPH4 = 0.796), ITIH3 (OR = 0.89, p = 2.76 × 10-4, PPH4 = 0.767), were considered tier one targets. Five proteins with medium support evidence of colocalization, NCR1 (OR = 1.25, p = 4.18 × 10-4, PPH4 = 0.682), NID1 (OR = 1.38, p = 1.54 × 10-3, PPH4 = 0.664), TIMP3 (OR = 0.91, p = 4.01 × 10-5, PPH4 = 0.659), SERPINF1 (OR = 0.81, p = 2.77 × 10-4, PPH4 = 0.59), OXT (OR = 1.17, p = 9.51 × 10-4, PPH4 = 0.526), were classified as tier two targets. Additional sensitivity analyses further validated the robustness and directionality of these findings. According to druggability assessment, Pimagedine, Resveratrol, Syringaresinol and Clozapine may potentially be important in the development of new anti-glaucoma agents. Conclusion Our integrated study identified eight potential associated proteins for POAG. These proteins play important roles in neuroprotection, extracellular matrix regulation and oxidative stress. Therefore, they have promising potential as therapeutic targets to combat POAG.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Jun Li
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shang Gao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Wei Sun
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| |
Collapse
|
5
|
Meng J, Yang XM, Scheer O, Lange J, Müller H, Bürger S, Rothemund S, Younis R, Unterlauft JD, Eichler W. Pigment Epithelium-Derived Factor Binding to VEGFR-1 (Flt-1) Increases the Survival of Retinal Neurons. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39167401 PMCID: PMC11346174 DOI: 10.1167/iovs.65.10.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose The purpose of this study was to examine possible involvement of vascular endothelial growth factor (VEGF) receptor (VEGFR)-1/Flt-1 in pigment epithelium-derived factor (PEDF)-promoted survival of retinal neurons. Methods Survival of growth factor-deprived retinal ganglion cells (RGCs) and R28 cells and activation of ERK-1/-2 MAP kinases were assessed in the presence of PEDF, placental growth factor (PlGF), and VEGF using cell cultures, viability assays and quantitation of ERK-1/-2 phosphorylation. VEGFR-1/Flt-1 expression was determined using quantitative PCR (qPCR) and Western blotting. VEGFR-1/Flt-1 was knocked down in R28 cells by small interfering RNA (siRNA). Binding of a PEDF-IgG Fc fusion protein (PEDF-Fc) to retinal neurons, immobilized VEGFR-1/Flt-1 and VEGFR-1/Flt-1-derived peptides was studied using binding assays and peptide scanning. Results PEDF in combination with PlGF stimulated increased cell survival and ERK-1/-2 MAP kinase activation compared to effects of either factor alone. VEGFR-1/Flt-1 expression in RGCs and R28 cells was significantly upregulated by hypoxia, VEGF, and PEDF. VEGFR-1/Flt-1 ligands (VEGF and PlGF) or soluble VEGFR-1 (sflt-1) competed with PEDF-Fc for binding to R28 cells. Depleting R28 cells of VEGFR-1/Flt-1 resulted in reduced PEDF-Fc binding when comparing VEGFR-1/Flt-1 siRNA- and control siRNA-treated cells. PEDF-Fc interacted with immobilized sflt-1, which was specifically blocked by VEGF and PlGF. PEDF-Fc binding sites were mapped to VEGFR-1/Flt-1 extracellular domains D3 and D4. Peptides corresponding to D3 and D4 specifically inhibited PEDF-Fc binding to R28 cells. These peptides and sflt-1 significantly inhibited PEDF-promoted survival of R28 cells. Conclusions These results suggest that PEDF can target VEGFR-1/Flt-1 and this interaction plays a significant role in PEDF-mediated neuroprotection in the retina.
Collapse
Affiliation(s)
- Jie Meng
- Department of Ophthalmology and Eye Hospital, Leipzig University, Leipzig, Germany
| | - Xiu Mei Yang
- Department of Ophthalmology, PLA Army General Hospital, Beijing, China
| | - Oliver Scheer
- Department of Ophthalmology and Eye Hospital, Leipzig University, Leipzig, Germany
| | - Johannes Lange
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Norway
| | - Heidi Müller
- Department of Ophthalmology and Eye Hospital, Leipzig University, Leipzig, Germany
| | - Susanne Bürger
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Sven Rothemund
- Core Unit Peptide Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ruaa Younis
- Department of Ophthalmology and Eye Hospital, Leipzig University, Leipzig, Germany
| | - Jan D. Unterlauft
- Department of Ophthalmology, University Hospital, Inselspital, Bern, Switzerland
| | - Wolfram Eichler
- Department of Ophthalmology and Eye Hospital, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Peng M, Curry SM, Liu Y, Lohawala H, Sharma G, Sharma TP. The ex vivo human translaminar autonomous system to study spaceflight associated neuro-ocular syndrome pathogenesis. NPJ Microgravity 2022; 8:44. [PMID: 36307487 DOI: 10.1038/s41526-022-00232-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Spaceflight-Associated Neuro-ocular Syndrome (SANS) is a significant unexplained adverse reaction to long-duration spaceflight. We employ an ex vivo translaminar autonomous system (TAS) to recreate a human ocular ground-based spaceflight analogue model to study SANS pathogenesis. To recapitulate the human SANS conditions, human ocular posterior segments are cultured in the TAS model for 14 days. Translaminar pressure differentials are generated by simulating various flow rates within intracranial pressure (ICP) and intraocular (IOP) chambers to maintain hydrostatic pressures of ICP: IOP (12:16, 15:16, 12:21, 21:16 mmHg). In addition, optic nerves are mechanically kinked by 6- and 10-degree tilt inserts for the ICP: IOP;15:16 mmHg pressure paradigm. The TAS model successfully maintains various pressure differentials for all experimental groups over 14 days. Post culture, we determine inflammatory and extracellular component expression changes within posterior segments. To further characterize the SANS pathogenesis, axonal transport capacity, optic nerve degeneration and retinal functional are measured. Identifiable pathogenic alterations are observed in posterior segments by morphologic, apoptotic, and inflammatory changes including transport and functional deficits under various simulated SANS conditions. Here we report our TAS model provides a unique preclinical application system to mimic SANS pathology and a viable therapeutic testing device for countermeasures.
Collapse
Affiliation(s)
- Michael Peng
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stacy M Curry
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Yang Liu
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | | | - Gaurav Sharma
- Software Engineer Consultant, Indianapolis, IN, 46074, USA
| | - Tasneem P Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
8
|
Cell-Based Neuroprotection of Retinal Ganglion Cells in Animal Models of Optic Neuropathies. BIOLOGY 2021; 10:biology10111181. [PMID: 34827174 PMCID: PMC8615038 DOI: 10.3390/biology10111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells (RGCs) comprise a heterogenous group of projection neurons that transmit visual information from the retina to the brain. Progressive degeneration of these cells, as it occurs in inflammatory, ischemic, traumatic or glaucomatous optic neuropathies, results in visual deterioration and is among the leading causes of irreversible blindness. Treatment options for these diseases are limited. Neuroprotective approaches aim to slow down and eventually halt the loss of ganglion cells in these disorders. In this review, we have summarized preclinical studies that have evaluated the efficacy of cell-based neuroprotective treatment strategies to rescue retinal ganglion cells from cell death. Intraocular transplantations of diverse genetically nonmodified cell types or cells engineered to overexpress neurotrophic factors have been demonstrated to result in significant attenuation of ganglion cell loss in animal models of different optic neuropathies. Cell-based combinatorial neuroprotective approaches represent a potential strategy to further increase the survival rates of retinal ganglion cells. However, data about the long-term impact of the different cell-based treatment strategies on retinal ganglion cell survival and detailed analyses of potential adverse effects of a sustained intraocular delivery of neurotrophic factors on retina structure and function are limited, making it difficult to assess their therapeutic potential.
Collapse
|
9
|
Ye Q, Wang J, Liu X, Liu Z, BaZong L, Ma J, Shen R, Ye W, Zhang W, Wang D. The Role of RAD6B and PEDF in Retinal Degeneration. Neuroscience 2021; 480:19-31. [PMID: 34774969 DOI: 10.1016/j.neuroscience.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
RAD6B is an E2 ubiquitin-conjugating enzyme, playing an important role in DNA damage repair, gene expression, senescence, apoptosis and protein degradation. However, the specific mechanism between ubiquitin and retinal degeneration requires more investigation. Pigment epithelium-derived factor (PEDF) has a potent neurotrophic effect on the retina, protecting retinal neurons and photoreceptors from cell death caused by pathological damage. In this study, we found that loss of RAD6B leads to retinal degeneration in mice, especially in old age. Affymetrix microarray analysis showed that the PEDF signal was changed in RAD6B deficient groups. The expression of γ-H2AX, β-Gal, P53, Caspase-3, P21 and P16 was increased significantly in retinas of RAD6B knockout (KO) mice. Our studies suggest that RAD6B and PEDF play an important role in the health of retina, whereas the absence of RAD6B accelerates the degeneration.
Collapse
Affiliation(s)
- Qiang Ye
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Jiaqi Wang
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Xiangwen Liu
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Zihua Liu
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - LuoSong BaZong
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Jinhai Ma
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Rong Shen
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China.
| | - Degui Wang
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|
10
|
Bascuas T, Zedira H, Kropp M, Harmening N, Asrih M, Prat-Souteyrand C, Tian S, Thumann G. Human Retinal Pigment Epithelial Cells Overexpressing the Neuroprotective Proteins PEDF and GM-CSF to Treat Degeneration of the Neural Retina. Curr Gene Ther 2021; 22:168-183. [PMID: 34238157 DOI: 10.2174/1566523221666210707123809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-viral transposon-mediated gene delivery can overcome viral vectors' limitations. Transposon gene delivery offers the safe and life-long expression of genes such as pigment epithelium-derived factor (PEDF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) to counteract retinal degeneration by reducing oxidative stress damage. OBJECTIVE Use Sleeping Beauty transposon to transfect human retinal pigment epithelial (RPE) cells with the neuroprotective factors PEDF and GM-CSF to investigate the effect of these factors on oxidative stress damage. METHODS Human RPE cells were transfected with PEDF and GM-CSF by electroporation, using the hyperactive Sleeping Beauty transposon gene delivery system (SB100X). Gene expression was determined by RT-qPCR and protein level by Western Blot as well as ELISA. The cellular stress level and the neuroprotective effect of the proteins were determined by measuring the concentrations of the antioxidant glutathione in human RPE cells and immunohistochemical examination of retinal integrity, inflammation, and apoptosis of rat retina-organotypic cultures (ROC) exposed to H2O2. RESULTS Human RPE cells were efficiently transfected, showing a significantly augmented gene expression and protein secretion. Human RPE cells overexpressing PEDF and/or GM-CSF or pre-treated with recombinant proteins presented significantly increased glutathione levels post-H2O2 incubation than non-transfected/untreated controls. rPEDF and/or rGM-CSF-treated ROC exhibited decreased inflammatory reactions and cell degeneration. CONCLUSION GM-CSF and/or PEDF could be delivered successfully to RPE cells by combining the use of SB100X and electroporation. PEDF and/or GM-CSF reduced H2O2-mediated oxidative stress damage in RPE cells and ROC offering an encouraging technique to re-establish a cell-protective environment to halt age-related retinal degeneration.
Collapse
Affiliation(s)
- Thais Bascuas
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| | - Hajer Zedira
- Experimental Ophthalmology, University of Geneva, Geneva, Switzerland
| | - Martina Kropp
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| | - Nina Harmening
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| | - Mohamed Asrih
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Shuwei Tian
- The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Zwanzig A, Meng J, Müller H, Bürger S, Schmidt M, Pankonin M, Wiedemann P, Unterlauft JD, Eichler W. Neuroprotective effects of glial mediators in interactions between retinal neurons and Müller cells. Exp Eye Res 2021; 209:108689. [PMID: 34216615 DOI: 10.1016/j.exer.2021.108689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
Progressive retinal ganglion cell (RGC) loss underlies a number of retinal neurodegenerative disorders, which may lead to permanent vision loss. However, secreted neuroprotective factors, such as PEDF, VEGF and IL-6, which are produced by Müller cells, have been shown to promote RGC survival. Assuming that the communication of RGCs with Müller cells involves a release of glioactive substances we sought to determine whether retinal neurons are able to modulate expression levels of Müller cell-derived PEDF, VEGF and IL-6. We demonstrate elevated mRNA levels of these factors in Müller cells in co-cultures with RGCs or R28 cells when compared to homotypic Müller cell cultures. Furthermore, R28 cells were more protected from apoptosis when co-cultured with Müller cells. IL-6 and VEGF were upregulated in Müller cells under hypoxia. Both cytokines, as well as PEDF, induced an altered neuronal expression of members of the Bcl-2 family, which are central molecules in the regulation of apoptosis. These results suggest that in retinal ischemia, via own secreted mediators, RGCs can resist a potential demise by stimulating Müller cells to increase production of neuroprotective factors, which counteract RGC apoptosis.
Collapse
Affiliation(s)
- Annette Zwanzig
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Jie Meng
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Heidi Müller
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Susanne Bürger
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Manuela Schmidt
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Maik Pankonin
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Peter Wiedemann
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Jan Darius Unterlauft
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Wolfram Eichler
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| |
Collapse
|
12
|
Michelis G, German OL, Villasmil R, Soto T, Rotstein NP, Politi L, Becerra SP. Pigment epithelium-derived factor (PEDF) and derived peptides promote survival and differentiation of photoreceptors and induce neurite-outgrowth in amacrine neurons. J Neurochem 2021; 159:840-856. [PMID: 34133756 DOI: 10.1111/jnc.15454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a cytoprotective protein for the retina. We hypothesize that this protein acts on neuronal survival and differentiation of photoreceptor cells in culture. The purpose of the present study was to evaluate the neurotrophic effects of PEDF and its fragments in an in vitro model of cultured primary retinal neurons that die spontaneously in the absence of trophic factors. We used Wistar albino rats. Cell death was assayed by immunofluorescence and flow cytometry through TUNEL assay, propidium iodide, mitotracker, and annexin V. Immunofluorescence of cells for visualizing rhodopsin, CRX, and antisyntaxin under confocal microscopy was performed. Neurite outgrowth was also quantified. Results show that PEDF protected photoreceptor precursors from apoptosis, preserved mitochondrial function and promoted polarization of opsin enhancing their developmental process, as well as induced neurite outgrowth in amacrine neurons. These effects were abolished by an inhibitor of the PEDF receptor or receptor-derived peptides that block ligand/receptor interactions. While all the activities were specifically conferred by short peptide fragments (17 amino acid residues) derived from the PEDF neurotrophic domain, no effects were triggered by peptides from the PEDF antiangiogenic region. The observed effects on retinal neurons imply a specific activation of the PEDF receptor by a small neurotrophic region of PEDF. Our findings support the neurotrophic PEDF peptides as neuronal guardians for the retina, highlighting their potential as promoters of retinal differentiation, and inhibitors of retinal cell death and its blinding consequences.
Collapse
Affiliation(s)
- Germán Michelis
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute - National Institutes of Health, Bethesda, MD, USA.,Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Olga Lorena German
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Rafael Villasmil
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute - National Institutes of Health, Bethesda, MD, USA
| | - Tamara Soto
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Nora P Rotstein
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Luis Politi
- Department of Biology, Pharmacy and Biochemistry, Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute - National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Rhee J, Shih KC. Use of Gene Therapy in Retinal Ganglion Cell Neuroprotection: Current Concepts and Future Directions. Biomolecules 2021; 11:biom11040581. [PMID: 33920974 PMCID: PMC8071340 DOI: 10.3390/biom11040581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
We systematically reviewed published translational research on gene-based therapy for retinal ganglion cell (RGC) neuroprotection. A search was conducted on Entrez PubMed on 23 December 2020 using the keywords "gene therapy", "retinal ganglion cell" and "neuroprotection". The initial search yielded 82 relevant articles. After restricting publications to those with full text available and in the English language, and then curating for only original articles on gene-based therapy, the final yield was 18 relevant articles. From the 18 papers, 17 of the papers utilized an adeno-associated viral (AAV) vector for gene therapy encoding specific genes of interest. Specifically, six of the studies utilized an AAV vector encoding brain-derived neurotrophic factor (BDNF), two of the studies utilized an AAV vector encoding erythropoietin (EPO), the remaining 10 papers utilized AAV vectors encoding different genes and one microRNA study. Although the literature shows promising results in both in vivo and in vitro models, there is still a significant way to go before gene-based therapy for RGC neuroprotection can proceed to clinical trials. Namely, the models of injury in many of the studies were more acute in nature, unlike the more progressive and neurodegenerative pathophysiology of diseases, such as glaucoma. The regulation of gene expression is also highly unexplored despite the use of AAV vectors in the majority of the studies reviewed. It is also expected that with the successful launch of messenger ribonucleic acid (mRNA)-based vaccinations in 2020, we will see a shift towards this technology for gene-based therapy in glaucoma neuroprotection.
Collapse
Affiliation(s)
- Jess Rhee
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A3K7, Canada;
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
14
|
Fudalej E, Justyniarska M, Kasarełło K, Dziedziak J, Szaflik JP, Cudnoch-Jędrzejewska A. Neuroprotective Factors of the Retina and Their Role in Promoting Survival of Retinal Ganglion Cells: A Review. Ophthalmic Res 2021; 64:345-355. [PMID: 33454713 DOI: 10.1159/000514441] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/09/2021] [Indexed: 11/19/2022]
Abstract
Retinal ganglion cells (RGCs) play a crucial role in the visual pathway. As their axons form the optic nerve, apoptosis of these cells causes neurodegenerative vision loss. RGC death could be triggered by increased intraocular pressure, advanced glycation end products, or mitochondrial dysfunction. In this review, we summarize the role of some neuroprotective factors in RGC injury: ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor, vascular endothelial growth factor, pigment epithelium-derived factor, glial cell line-derived neurotrophic factor, and Norrin. Each, in their own unique way, prevents RGC damage caused by glaucoma, ocular hypertension, ischemic neuropathy, and even oxygen-induced retinopathy. These factors are produced mainly by neurons, leukocytes, glial cells, and epithelial cells. Neuroprotective factors act via various signaling pathways, including JAK/STAT, MAPK, TrkA, and TrkB, which promotes RGC survival. Many attempts have been made to develop therapeutic strategies using these factors. There are ongoing clinical trials with CNTF and NGF, but they have not yet been accepted for clinical use.
Collapse
Affiliation(s)
- Ewa Fudalej
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland,
| | - Jacek Dziedziak
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Kim JY, Park S, Park SH, Lee D, Kim GH, Noh JE, Lee KJ, Kim GJ. Overexpression of pigment epithelium-derived factor in placenta-derived mesenchymal stem cells promotes mitochondrial biogenesis in retinal cells. J Transl Med 2021; 101:51-69. [PMID: 32724163 DOI: 10.1038/s41374-020-0470-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/05/2020] [Accepted: 07/12/2020] [Indexed: 01/13/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) plays a role in protecting retinal pigment epithelial (RPE) cells from oxidative stress (OS), a causative factor of RPE cell death. Genetically modified mesenchymal stem cells (MSCs) can be used to treat critical and incurable retinal diseases. Here, we overexpressed PEDF in placenta-derived MSCs (PD-MSCsPEDF, PEDF+) using a nonviral gene delivery system and evaluated the characteristics of PD-MSCsPEDF and their potential regenerative effects on RPE cells damaged by H2O2-induced OS. PD-MSCsPEDF maintained their stemness, cell surface marker, and differentiation potential characteristics. Compared to naive cells, PD-MSCsPEDF promoted mitochondrial respiration by enhancing biogenesis regulators (e.g., NRF1, PPARGC1A, and TFAM) as well as antioxidant enzymes (e.g., HMOXs, SODs, and GPX1). Compared to OS-damaged RPE cells cocultured with naive cells, OS-damaged RPE cells cocultured with PD-MSCsPEDF showed PEDF upregulation and VEGF downregulation. The expression levels of antioxidant genes and RPE-specific genes, such as RPE65, RGR, and RRH, were significantly increased in RPE cells cocultured with PD-MSCsPEDF. Furthermore, OS-damaged RPE cells cocultured with PD-MSCsPEDF had dramatically enhanced mitochondrial functions, and antiapoptotic effects improved due to cell survival signaling pathways. In the H2O2-induced retinal degeneration rat model, compared to administration of the naive counterpart, intravitreal administration of PD-MSCsPEDF alleviated proinflammatory cytokines and restored retinal structure and function by increasing PEDF expression and decreasing VEGF expression. Intravitreal administration of PD-MSCsPEDF also protected retinal degeneration against OS by increasing antioxidant gene expression and regulating the mitochondrial ROS levels and biogenesis. Taken together, PEDF overexpression in PD-MSCs improved the mitochondrial activities and induced OS-damaged RPE cell regeneration by regulating the oxidative status and mitochondrial biogenesis in vitro and in vivo. These data suggest that genetic modification of PEDF in PD-MSCs might be a new cell therapy for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - So Hyun Park
- Paju 365 Veterinary Medical Center, Paju, 10892, Republic of Korea
| | - Dongsook Lee
- Hamchoon Women's clinic, Research Center of Fertility & Genetics, Seoul, 06643, Republic of Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jung Eun Noh
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
16
|
Bürger S, Meng J, Zwanzig A, Beck M, Pankonin M, Wiedemann P, Eichler W, Unterlauft JD. Pigment Epithelium-Derived Factor (PEDF) Receptors Are Involved in Survival of Retinal Neurons. Int J Mol Sci 2020; 22:E369. [PMID: 33396450 PMCID: PMC7795132 DOI: 10.3390/ijms22010369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 02/02/2023] Open
Abstract
The demise of retinal ganglion cells (RGCs) is characteristic of diseases of the retina such as glaucoma and diabetic or ischemic retinopathies. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted protein that mediates neuroprotection and inhibition of angiogenesis in the retina. We have studied expression and regulation of two of several receptors for PEDF, patatin-like phospholipase 2 gene product/PEDF-R and laminin receptor (LR), in serum-starved RGC under normoxia and hypoxia and investigated their involvement in the survival of retinal neuronal cells. We show that PEDF-R and LR are co-expressed in RGC and R28 retinal precursor cells. Expression of both receptors was enhanced in the presence of complex secretions from retinal glial (Müller) cells and upregulated by VEGF and under hypoxic conditions. PEDF-R- and LR-knocked-down cells demonstrated a markedly attenuated expression of anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-xL) and neuroprotective mediators (PEDF, VEGF, BDNF) suggesting that both PEDF-R and LR mediate pro-survival effects of PEDF on RGC. While this study does not provide evidence for a differential survival-promoting influence of either PEDF-R or LR, it nevertheless highlights the importance of both PEDF receptors for the viability of retinal neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wolfram Eichler
- Department of Ophthalmology and Eye Hospital, Leipzig University, Liebigstrasse 10-14, D-04103 Leipzig, Germany; (S.B.); (J.M.); (A.Z.); (M.B.); (M.P.); (P.W.); (J.D.U.)
| | | |
Collapse
|
17
|
Choi SH, Kim KY, Perkins GA, Phan S, Edwards G, Xia Y, Kim J, Skowronska-Krawczyk D, Weinreb RN, Ellisman MH, Miller YI, Ju WK. AIBP protects retinal ganglion cells against neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration. Redox Biol 2020; 37:101703. [PMID: 32896719 PMCID: PMC7484594 DOI: 10.1016/j.redox.2020.101703] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide in individuals 60 years of age and older. Despite its high prevalence, the factors contributing to glaucoma progression are currently not well characterized. Glia-driven neuroinflammation and mitochondrial dysfunction play critical roles in glaucomatous neurodegeneration. Here, we demonstrated that elevated intraocular pressure (IOP) significantly decreased apolipoprotein A-I binding protein (AIBP; gene name Apoa1bp) in retinal ganglion cells (RGCs), but resulted in upregulation of TLR4 and IL-1β expression in Müller glia endfeet. Apoa1bp-/- mice had impaired visual function and Müller glia characterized by upregulated TLR4 activity, impaired mitochondrial network and function, increased oxidative stress and induced inflammatory responses. We also found that AIBP deficiency compromised mitochondrial network and function in RGCs and exacerbated RGC vulnerability to elevated IOP. Administration of recombinant AIBP prevented RGC death and inhibited inflammatory responses and cytokine production in Müller glia in vivo. These findings indicate that AIBP protects RGCs against glia-driven neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration and suggest that recombinant AIBP may be a potential therapeutic agent for glaucoma.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Genea Edwards
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yining Xia
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology, Biophysics & Ophthalmology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
19
|
de Diego-Otero Y, Giráldez-Pérez RM, Lima-Cabello E, Heredia-Farfan R, Calvo Medina R, Sanchez-Salido L, Pérez Costillas L. Pigment epithelium-derived factor (PEDF) and PEDF-receptor in the adult mouse brain: Differential spatial/temporal localization pattern. J Comp Neurol 2020; 529:141-158. [PMID: 32427349 DOI: 10.1002/cne.24940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF. There are no relevant data regarding the distribution of both proteins in the brain, therefore the main goal of this work was to investigate the spatiotemporal presence of PEDF and PEDFR in the adult mouse brain, and to determine the PEDF blood level in mouse and human. The localization of both proteins was analyzed by different experimental methods such as immunohistochemistry, western-blotting, and also by enzyme-linked immunosorbent assay. Differential expression was found in some telencephalic structures and positive signals for both proteins were detected in the cerebellum. The magnitude of the PEDFR labeling pattern was higher than PEDF and included some cortical and subventricular areas. Age-dependent changes in intensity of both protein immunoreactions were found in the cortical and hippocampal areas with greater reactivity between 4 and 8 months of age, whilst others, like the subventricular zones, these differences were more evident for PEDFR. Although ubiquitous presence was not found in the brain for these two proteins, their relevant functions must not be underestimated. It has been described that PEDF plays an important role in neuroprotection and data provided in the present work represents the first extensive study to understand the relevance of these two proteins in specific brain areas.
Collapse
Affiliation(s)
- Yolanda de Diego-Otero
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Research Unit, International Institute of Innovation and Attention to Neurodevelopment and Language, Málaga, Spain
| | - Rosa María Giráldez-Pérez
- Cellular Biology, Physiology and Immunology Department, University of Cordoba, Edificio Charles Darwin, Córdoba, Spain
| | - Elena Lima-Cabello
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Raúl Heredia-Farfan
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Rocío Calvo Medina
- Pediatric Clinic Unit. Regional University Hospital, Hospital Materno-Infantil Avd, Arroyo de los Angeles, Málaga, Spain
| | - Lourdes Sanchez-Salido
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Lucía Pérez Costillas
- Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Psychiatry and Physiotherapy Department, University of Malaga. Medical School, Málaga, Spain
| |
Collapse
|
20
|
Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury. Gene Ther 2019; 27:27-39. [PMID: 31243393 DOI: 10.1038/s41434-019-0089-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Accepted: 06/10/2019] [Indexed: 11/08/2022]
Abstract
After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.
Collapse
|
21
|
Cao L, Liu J, Pu J, Milne G, Chen M, Xu H, Shipley A, Forrester JV, McCaig CD, Lois N. Polarized retinal pigment epithelium generates electrical signals that diminish with age and regulate retinal pathology. J Cell Mol Med 2018; 22:5552-5564. [PMID: 30160348 PMCID: PMC6201363 DOI: 10.1111/jcmm.13829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
The transepithelial potential difference (TEP) across the retinal pigment epithelial (RPE) is dependent on ionic pumps and tight junction "seals" between epithelial cells. RPE cells release neurotrophic growth factors such as pigment epithelial derived factor (PEDF), which is reduced in age-related macular degeneration (AMD). The mechanisms that control the secretion of PEDF from RPE cells are not well understood. Using the CCL2/CX3CR1 double knockout mouse model (DKO), which demonstrates RPE damage and retinal degeneration, we uncovered an interaction between PEDF and the TEP which is likely to play an important role in retinal ageing and in the pathogenesis of AMD. We found that: (a) the expression of ATP1B1 (the Na+ /K+ -ATPase β1 subunit) was reduced significantly in RPE from aged mice, in patients with CNV (Choroidal Neovascularization) and in DKO mice; (b) the expression of PEDF also was decreased in aged persons and in DKO mice; (c) the TEP across RPE was reduced markedly in RPE cells from DKO mice and (d) an applied electric field (EF) of 50-100 mV/mm, used to mimic the natural TEP, increased the expression and secretion of PEDF in primary RPE cells. In conclusion, the TEP across the RPE depends on the expression of ATP1B1 and this regulates the secretion of PEDF by RPE cells and so may regulate the onset of retinal disease. Increasing the expression of PEDF using an applied EF to replenish a disease or age-reduced TEP may offer a new way of preventing or reversing retinal dysfunction.
Collapse
Affiliation(s)
- Lin Cao
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
- Yizhou International Proton Medical Centre and Cancer HospitalHe BeiChina
| | - Jie Liu
- Department of OphthalmologyFrist Hospital Affiliated to the Chinese PLA General HospitalBeijingChina
| | - Jin Pu
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gillian Milne
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Mei Chen
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| | - Heping Xu
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| | - Alan Shipley
- Biological Research & DevelopmentUniversity of New EnglandBiddefordMaine
| | - John V Forrester
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Colin D McCaig
- School of MedicineMedical Sciences and NutritionInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Noemi Lois
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's UniversityBelfastUK
| |
Collapse
|
22
|
Hao X, Cheng J, Zhang Z. Polymorphisms in PEDF linked with the susceptibility to age-related macular degeneration: A case-control study. Medicine (Baltimore) 2018; 97:e11981. [PMID: 30142832 PMCID: PMC6113020 DOI: 10.1097/md.0000000000011981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To study the relationship between pigment epithelium-derived factor (PEDF) rs1136287, rs1894286 polymorphisms and the risk of age-related macular degeneration (AMD) in northern Chinese populations.The study was carried out on case-control methods. Ninety-six patients with AMD and 98 health controls were recruited who were matched with the former by age and gender, rs1136287 and rs1894286 were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Hardy-Weinberg equilibrium (HWE) was also checked by χ test. The distribution frequencies of genotype, allele, and haplotype were calculated by direct counting method. The genotype, allele, and haplotype distribution differences between the case and control groups were analyzed by chi-square test, and odds ratio (OR) and 95% confidence interval (CI) was used to express the relative risk of AMD in northern Chinese populations. The linkage disequilibrium (LD) and haplotype analyses were conducted with Haploview software.The genotype and allele distribution frequencies in rs1136287 were obviously between in cases and controls (P < .05). TT genotype might lead to 3.24 times risk of AMD occurrence compared with CC genotype (OR = 3.24, 95% CI = 1.26-8.32), and C allele also played an increased risk role in the attack of AMD (OR = 1.58, 95% CI = 1.06-2.38). The T-C haplotype frequency of rs1136287-rs1894286 in PEDF were significantly correlated to the increased susceptibility to AMD (OR = 1.57, 95% CI = 1.02-2.40).The rs1136287 polymorphism in PEDF may be related to the occurrence risk of AMD. Additionally, a haplotype is also a non-ignorable risk factor.
Collapse
|
23
|
PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7183516. [PMID: 28191465 PMCID: PMC5278211 DOI: 10.1155/2017/7183516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/23/2016] [Indexed: 01/07/2023]
Abstract
Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation.
Collapse
|
24
|
Yin W, M. Stover C. The potential of circulating autoantibodies in the early diagnosis of Alzheimer’s disease. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.2.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Gong J, Belinsky G, Sagheer U, Zhang X, Grippo PJ, Chung C. Pigment Epithelium-derived Factor (PEDF) Blocks Wnt3a Protein-induced Autophagy in Pancreatic Intraepithelial Neoplasms. J Biol Chem 2016; 291:22074-22085. [PMID: 27557659 PMCID: PMC5063990 DOI: 10.1074/jbc.m116.729962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Indexed: 02/05/2023] Open
Abstract
An increase in autophagy characterizes pancreatic carcinogenesis, but the signals that regulate this process are incompletely understood. Because canonical Wnt/β-catenin signaling is necessary for the transition from early to advanced pancreatic intraepithelial neoplasia (PanIN) lesions, we assessed whether Wnt ligands and endogenous inhibitors of Wnt signaling modulate autophagy. In this study, canonical Wnt3a ligand induced autophagy markers and vacuoles in murine PanIN cells. Furthermore, pigment epithelium-derived factor (PEDF), a secreted glycoprotein known for its anti-tumor properties, blocked Wnt3a-directed induction of autophagy proteins. Autophagy inhibition was complemented by reciprocal regulation of the oxidative stress enzymes, superoxide dismutase 2 (SOD2) and catalase. Transcriptional control of Sod2 expression was mediated by PEDF-induced NFκB nuclear translocation. PEDF-dependent SOD2 expression in PanIN lesions was recapitulated in a murine model of PanIN formation where PEDF was deleted. In human PanIN lesions, co-expression of PEDF and SOD2 was observed in the majority of early PanIN lesions (47/50, 94%), whereas PEDF and SOD2 immunolocalization in high-grade human PanIN-2/3 was uncommon (7/50, 14%). These results indicate that PEDF regulates autophagy through coordinate Wnt signaling blockade and NFκB activation.
Collapse
Affiliation(s)
| | | | - Usman Sagheer
- the Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Xuchen Zhang
- the Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516 Pathology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Paul J Grippo
- the Department of Medicine, University of Illinois School of Medicine, Chicago, Illinois 60612, and
| | - Chuhan Chung
- From the Departments of Medicine and the Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
26
|
Zhang WM, Zhang ZR, Zhang YG, Gao YS. Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:382-90. [PMID: 27582587 PMCID: PMC4967482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose a cell-based system that provided sustained delivery of PEDF and compared the effect of weekly injections of PEDF and neural stem cell (NSC)-based intraocular administration of PEDF on retinal ganglion cell (RGC) survival and axon regeneration after optic nerve injury. METHODS Seventy-two rats were randomly assigned to 3 groups: group with injections of phosphate buffered saline (PBS) (n=24), group with weekly injections of PEDF (n=24), and group with NSC-based administration of PEDF (n=24). Western blot was used to analyze the PEDF protein level 2 weeks after injection. Retinal flat mounts and immunohistochemistry were employed to analyze RGC survival and axon regeneration 2 weeks and 4 weeks after injection. The data were analyzed with one-way ANOVA in SPSS (version 19.0). A P<0.05 was considered significant. RESULTS The PEDF protein level in the group with NSC-based administration of PEDF increased compared with that in the groups with injections of PEDF and PBS (P<0.05). The PEDF-modified NSCs differentiated into GFAP-positive astrocytes andβ-tubulin-III-positive neurons. NSC-based administration of PEDF effectively increased RGC survival and improved the axon regeneration of the optic nerve compared with weekly injections of PEDF. CONCLUSION Subretinal space transplantation of PEDF-secreting NSCs sustained high concentrations of PEDF, differentiated into neurons and astrocytes, and significantly promoted RGC survival and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Wei-Min Zhang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Zhi-Ren Zhang
- Department of Medical Administration, Zhumadian Central Hospital, Zhumadian, China,Correspondence: Zhi-Ren Zhang, MD; Department of Medical Administration, Zhumadian Central Hospital, Zhumadian, 463000, China Tel: +86 369 2726911 Fax: +86 396 2726209
| | - Yong-Gang Zhang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Yan-Sheng Gao
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| |
Collapse
|
27
|
Jang SY, Lee ES, Ohn YH, Park TK. Expression of Aquaporin-6 in Rat Retinal Ganglion Cells. Cell Mol Neurobiol 2016; 36:965-970. [PMID: 26526333 PMCID: PMC11482295 DOI: 10.1007/s10571-015-0283-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/03/2015] [Indexed: 11/24/2022]
Abstract
Several aquaporins (AQPs) have been identified to be present in the eyes, and it has been suggested that they are involved in the movement of water and small solutes. AQP6, which has low water permeability and transports mainly anions, was recently discovered in the eyes. In the present study, we investigate the localization of AQP6 in the rat retina and show that AQP6 is selectively localized to the ganglion cell layer and the outer plexiform layer. Along with the gradual decrease in retinal ganglion cells after a crushing injury of optic nerve, immunofluorescence signals of AQP6 gradually decreased. Confocal microscope images confirmed AQP6 expression in retinal ganglion cells and Müller cells in vitro. Therefore, AQP6 might participate in water and anion transport in these cells.
Collapse
Affiliation(s)
- Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon, 420-767, Korea
| | - Eung Suk Lee
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon, 420-767, Korea
| | - Young-Hoon Ohn
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon, 420-767, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon, 420-767, Korea.
- Laboratory for Translational Research on Retinal and Macular Degeneration, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| |
Collapse
|
28
|
Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH, Clark AF. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener 2016; 11:30. [PMID: 27098079 PMCID: PMC4839164 DOI: 10.1186/s13024-016-0093-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 04/08/2016] [Indexed: 01/24/2023] Open
Abstract
Background The c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in neuronal pathophysiology. Using JNK inhibitors, we examined involvement of the JNK pathway in cultured rat retinal ganglion cell (RGC) death and in mouse retinal ischemia/reperfusion (I/R) injury of the visual axis. The in vitro effects of JNK inhibitors were evaluated in cultured adult rat retinal cells enriched in RGCs. Retinal I/R was induced in C57BL/6J mice through elevation of intraocular pressure to 120 mmHg for 60 min followed by reperfusion. SP600125 was administered intraperitoneally once daily for 28 days. Phosphorylation of JNK and c-Jun in the retina was examined by immunoblotting and immunohistochemistry. The thickness of retinal layers and cell numbers in the ganglion cell layer (GCL) were examined using H&E stained retinal cross sections and spectral domain optical coherence tomography (SD-OCT). Retinal function was measured by scotopic flash electroretinography (ERG). Volumetric measurement of the superior colliculus (SC) as well as VGLUT2 and PSD95 expression were studied. Results JNK inhibitors SP600125 and TAT-JNK-III, dose-dependently and significantly (p < 0.05) protected against glutamate excitotoxicity and trophic factor withdrawal induced RGC death in culture. In the I/R model, phosphorylation of JNK (pJNK) in the retina was significantly (p < 0.05) increased after injury. I/R injury significantly (p < 0.05) decreased the thickness of retinal layers, including the whole retina, inner plexiform layer, and inner nuclear layer and cell numbers in the GCL. Administration of SP600125 for 28 days protected against all these degenerative morphological changes (p < 0.05). In addition, SP600125 significantly (p < 0.05) protected against I/R-induced reduction in scotopic ERG b-wave amplitude at 3, 7, 14, 21 and 28 days after injury. SP600125 also protected against the I/R-induced losses in volume and levels of synaptic markers in the SC. Moreover, the protective effects of SP600125 in the retina and SC were also detected even with only 7 days (Days 1–7 after I/R) of SP600125 treatment. Conclusions Our results demonstrate the important role the JNK pathway plays in retinal degeneration in both in vitro and in vivo models and suggest that JNK inhibitors may be a useful therapeutic strategy for neuroprotection of RGCs in the retina. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0093-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Present Address: Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21231, USA
| | - Sean M Silverman
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert J Wordinger
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA. .,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
29
|
Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR, Meyer JS. Stepwise Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells Enables Analysis of Glaucomatous Neurodegeneration. Stem Cells 2016; 34:1553-62. [PMID: 26996528 DOI: 10.1002/stem.2356] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells (hPSCs), including both embryonic and induced pluripotent stem cells, possess the unique ability to readily differentiate into any cell type of the body, including cells of the retina. Although previous studies have demonstrated the ability to differentiate hPSCs to a retinal lineage, the ability to derive retinal ganglion cells (RGCs) from hPSCs has been complicated by the lack of specific markers with which to identify these cells from a pluripotent source. In the current study, the definitive identification of hPSC-derived RGCs was accomplished by their directed, stepwise differentiation through an enriched retinal progenitor intermediary, with resultant RGCs expressing a full complement of associated features and proper functional characteristics. These results served as the basis for the establishment of induced pluripotent stem cells (iPSCs) from a patient with a genetically inherited form of glaucoma, which results in damage and loss of RGCs. Patient-derived RGCs specifically exhibited a dramatic increase in apoptosis, similar to the targeted loss of RGCs in glaucoma, which was significantly rescued by the addition of candidate neuroprotective factors. Thus, the current study serves to establish a method by which to definitively acquire and identify RGCs from hPSCs and demonstrates the ability of hPSCs to serve as an effective in vitro model of disease progression. Moreover, iPSC-derived RGCs can be utilized for future drug screening approaches to identify targets for the treatment of glaucoma and other optic neuropathies. Stem Cells 2016;34:1553-1562.
Collapse
Affiliation(s)
- Sarah K Ohlemacher
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Akshayalakshmi Sridhar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Yucheng Xiao
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - Alexandra E Hochstetler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Mansoor Sarfarazi
- Molecular Ophthalmic Genetics Laboratory, University of Connecticut Health Center, Farmington, CT, USA
| | - Theodore R Cummins
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
30
|
Riera M, Fontrodona L, Albert S, Ramirez DM, Seriola A, Salas A, Muñoz Y, Ramos D, Villegas-Perez MP, Zapata MA, Raya A, Ruberte J, Veiga A, Garcia-Arumi J. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Mol Ther Methods Clin Dev 2016; 3:16010. [PMID: 27006969 PMCID: PMC4793806 DOI: 10.1038/mtm.2016.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/30/2022]
Abstract
Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD.
Collapse
Affiliation(s)
- Marina Riera
- Ophthalmology Research, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| | - Laura Fontrodona
- Ophthalmology Research, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Silvia Albert
- Center of Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Diana Mora Ramirez
- Ophthalmology Research, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Surgery, Faculty of Medicine, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Anna Seriola
- Center of Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
| | - Anna Salas
- Ophthalmology Research, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yolanda Muñoz
- Center of Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
| | - David Ramos
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIISA, Faculdade de Medicina Veterinaria, Universidade de Lisboa, Lisboa, Portugal
| | | | - Miguel Angel Zapata
- Ophthalmology Research, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIISA, Faculdade de Medicina Veterinaria, Universidade de Lisboa, Lisboa, Portugal
- Department of Anatomy and Animal Health, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Veiga
- Center of Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
| | - Jose Garcia-Arumi
- Ophthalmology Research, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| |
Collapse
|
31
|
Lee SJ, Duncan DS, Echevarria FD, McLaughlin WM, Hatcher JB, Sappington RM. Pressure-Induced Alterations in PEDF and PEDF-R Expression: Implications for Neuroprotective Signaling in Glaucoma. ACTA ACUST UNITED AC 2015; 6. [PMID: 26807306 PMCID: PMC4721587 DOI: 10.4172/2155-9570.1000491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction Alterations in neuron-glia signaling are implicated in glaucoma, a neurodegenerative disease characterized by retinal ganglion cell (RGC) death. Pigment epithelium derived factor (PEDF) is a secreted protein with potential neuroprotective qualities in retinal disease, including chronic ocular hypertension. Here we sought to determine whether moderate, short-term elevations in IOP alter PEDF signaling and whether pressure-induced PEDF signaling directly impacts RGC apoptosis. Methods In retina from naïve mice and mice with unilateral, microbead-induced glaucoma, we examined expression and cell type-specific localization of PEDF and its receptor (PEDF-R), using quantitative PCR and immunohistochemistry. Using primary cultures of purified RGCs and Müller cells, we examined cell type-specific expression of PEDF in response to 48 hours of elevated hydrostatic pressure, using multiplex ELISA and immunocytochemistry. We also measured pressure-induced apoptosis of RGCs in the presence or absence of atglistatin, a potent and selective inhibitor of PEDF-R, and recombinant PEDF, using TUNEL assays. Results PEDF and PEDF-R are constitutively expressed in naïve retina, primarily in the ganglion cell and nerve fiber layers. Elevated IOP increases PEDF and PEDF-R expression, particularly associated with RGCs and Müller cells. Elevated pressure in vitro increased PEDF secretion by 6-fold in RGCs and trended towards an increase in expression by Müller cells, as compared to ambient pressure. This was accompanied by changes in the subcellular localization of PEDF-R in both cell types. Inhibition of PEDF signaling with atglistatin increased pressure-induced apoptosis in RGCs and treatment with recombinant PEDF inhibited pressure-induced apoptosis, both in a dose-dependent manner. Conclusion Our findings suggest that moderate, short-term elevations in IOP promote PEDF signaling via up-regulation of both PEDF and PEDF-R. Based on in vivo and in vitro studies, this PEDF signaling likely arises from both Müller cells and RGCs, and has the potential to directly inhibit RGC apoptosis.
Collapse
Affiliation(s)
- Sean J Lee
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, USA
| | - D'Anne S Duncan
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, USA
| | | | | | - Jeremy B Hatcher
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, USA
| | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, USA; Department of Pharmacology, Vanderbilt University Medical Center, USA
| |
Collapse
|
32
|
Vigneswara V, Esmaeili M, Deer L, Berry M, Logan A, Ahmed Z. Eye drop delivery of pigment epithelium-derived factor-34 promotes retinal ganglion cell neuroprotection and axon regeneration. Mol Cell Neurosci 2015; 68:212-21. [PMID: 26260110 PMCID: PMC4604765 DOI: 10.1016/j.mcn.2015.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/16/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
Axotomised retinal ganglion cells (RGCs) die rapidly by apoptosis and fail to regenerate because of the limited availability of neurotrophic factors and a lack of axogenic stimuli. However, we have recently showed that pigment epithelium-derived factor (PEDF) promotes RGC survival and axon regeneration after optic nerve crush injury. PEDF has multiple fragments of the native peptide that are neuroprotective, anti-angiogenic and anti-inflammatory. Here we investigated the neuroprotective and axogenic properties of a fragment of PEDF, PEDF-34, in retinal neurons in vitro and when delivered by intravitreal injection and eye drops in vivo. We found that PEDF-34 was 43% more neuroprotective and 52% more neuritogenic than PEDF-44 in vitro. Moreover, in vivo, intravitreal delivery of 1.88 nM PEDF-34 was 71% RGC neuroprotective at 21 days after optic nerve crush compared to intact controls, whilst daily eye drops containing 1.88 nM PEDF-34 promoted 87% RGC survival. After topical eye drop delivery, PEDF-34 was detected in the vitreous body within 30 min and attained physiologically relevant concentrations in the retina by 4 h peaking at 1.4 ± 0.05 nM by 14 days. In eye drop- compared to intravitreal-treated PEDF-34 animals, 55% more RGC axons regenerated 250 μm beyond the optic nerve lesion. We conclude that daily topical eye drop application of PEDF-34 is superior to weekly intravitreal injections in promoting RGC survival and axon regeneration through both direct effects on retinal neurons and indirect effects on other retinal cells. PEDF-34 is more neuroprotective and neuritogenic than PEDF-44. PEDF-34 is more neuroprotective and neuritogenic than full-length PEDF. PEDF-34 can reach the retina after topical application to the eyes. PEDF-34 eye drops are more neuroprotective and axogenic than intravitreal injection.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maryam Esmaeili
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Louise Deer
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
33
|
Sharma TP, Liu Y, Wordinger RJ, Pang IH, Clark AF. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis 2015; 6:e1661. [PMID: 25719245 PMCID: PMC4669798 DOI: 10.1038/cddis.2015.22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 12/11/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6–7, P<0.01) and neurite outgrowth in RGCs by 141% compared to controls (n=15, P<0.05). RGC transduction with AAV2-CAG–hNRN1 prior to ONC promoted RGC survival (450%, n=3–7, P<0.05) and significantly preserved RGC function by 70% until 28 days post crush (dpc) (n=6, P<0.05) compared with the control AAV2-CAG–green fluorescent protein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5–8, P<0.001) and growth cone marker, growth-associated protein 43 (Gap43; 36%, n=3, P<0.01) were observed 28 dpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5–6, P<0.05) expression was observed within the optic nerves of the AAV2–hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- T P Sharma
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Y Liu
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - R J Wordinger
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - I-H Pang
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA
| | - A F Clark
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
34
|
Park YH, Mueller BH, McGrady NR, Ma HY, Yorio T. AMPA receptor desensitization is the determinant of AMPA receptor mediated excitotoxicity in purified retinal ganglion cells. Exp Eye Res 2015; 132:136-50. [PMID: 25643624 DOI: 10.1016/j.exer.2015.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
The ionotropic glutamate receptors (iGLuR) have been hypothesized to play a role in neuronal pathogenesis by mediating excitotoxic death. Previous studies on iGluR in the retina have focused on two broad classes of receptors: NMDA and non-NMDA receptors including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) and kainate receptor. In this study, we examined the role of receptor desensitization on the specific excitotoxic effects of AMPAR activation on primary retinal ganglion cells (RGCs). Purified rat RGCs were isolated from postnatal day 4-7 Sprague-Dawley rats. Calcium imaging was used to identify the functionality of the AMPARs and selectivity of the s-AMPA agonist. Phosphorylated CREB and ERK1/2 expression were performed following s-AMPA treatment. s-AMPA excitotoxicity was determined by JC-1 mitochondrial membrane depolarization assay, caspase 3/7 luciferase activity assay, immunoblot analysis for α-fodrin, and Live (calcein AM)/Dead (ethidium homodimer-1) assay. RGC cultures of 98% purity, lacking Iba1 and GFAP expression were used for the present studies. Isolated prenatal RGCs expressed calcium permeable AMPAR and s-AMPA (100 μM) treatment of cultured RGCs significantly increased phosphorylation of CREB but not that of ERK1/2. A prolonged (6 h) AMPAR activation in purified RGCs using s-AMPA (100 μM) did not depolarize the RGC mitochondrial membrane potential. In addition, treatment of cultured RGCs with s-AMPA, both in the presence and absence of trophic factors (BDNF and CNTF), did not increase caspase 3/7 activities or the cleavage of α-fodrin (neuronal apoptosis marker), as compared to untreated controls. Lastly, a significant increase in cell survival of RGCs was observed after s-AMPA treatment as compared to control untreated RGCs. However, preventing the desensitization of AMPAR with the treatment with either kainic acid (100 μM) or the combination of s-AMPA and cyclothiazide (50 μM) significantly reduced cell survivability. Activation of the AMPAR in RGCs does not appear to activate a signaling cascade to apoptosis, suggesting that RGCs in vitro are not susceptible to AMPA excitotoxicity as previously hypothesized. Conversely, preventing AMPAR desensitization through differential agonist activation caused AMPAR mediated excitotoxicity. Activation of the AMPAR in increasing CREB phosphorylation was dependent on the presence of calcium, which may help explain this action in increasing RGC survival.
Collapse
Affiliation(s)
- Yong H Park
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Brett H Mueller
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nolan R McGrady
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hai-Ying Ma
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Thomas Yorio
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
35
|
Unterlauft JD, Claudepierre T, Schmidt M, Müller K, Yafai Y, Wiedemann P, Reichenbach A, Eichler W. Enhanced survival of retinal ganglion cells is mediated by Müller glial cell-derived PEDF. Exp Eye Res 2014; 127:206-14. [PMID: 25128578 DOI: 10.1016/j.exer.2014.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 01/01/2023]
Abstract
The death of retinal ganglion cells (RGC) leads to visual impairment and blindness in ocular neurodegenerative diseases, primarily in glaucoma and diabetic retinopathy; hence, mechanisms that contribute to protecting RGC from ischemia/hypoxia are of great interest. We here address the role of retinal glial (Müller) cells and of pigment-epithelium-derived factor (PEDF), one of the main neuroprotectants released from the glial cells. We show that the hypoxia-induced loss in the viability of cultured purified RGC is due to apoptosis, but that the number of viable RGC increases when co-cultured with Müller glial cells suggesting that glial soluble mediators attenuate the death of RGC. When PEDF was ablated from Müller cells a significantly lower number of RGC survived in RGC-Müller cell co-cultures indicating that PEDF is a major survival factor allowing RGC to escape cell death. We further found that RGC express a PEDF receptor known as patatin-like phospholipase domain-containing protein 2 (PNPLA2) and that PEDF exposure, as well as the presence of Müller cells, leads to an activation of nuclear factor (NF)-κB in RGC. Furthermore, adding an NF-κB inhibitor (SN50) to PEDF-treated RGC cultures reduced the survival of RGC. These findings strongly suggest that NF-κB activation in RGC is critically involved in the pro-survival action of Müller-cell derived PEDF and plays an important role in maintaining neuronal survival.
Collapse
Affiliation(s)
| | - Thomas Claudepierre
- ENSAIA, UR AFPA, Team BFLA, Université de Lorraine, Vandœuvre-lès-Nancy Cedex, France
| | - Manuela Schmidt
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Germany
| | - Katja Müller
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Germany
| | - Yousef Yafai
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute for Brain Research, Pathophysiology of Glia, University of Leipzig, Germany
| | - Wolfram Eichler
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Germany
| |
Collapse
|
36
|
Aleksandrova MA, Kuznetsova AV, Verdiev BI, Milyushina-Rzhanova LA, Sukhinich KK. Effect of transplants of retinal pigment epithelial cells from adult human eye on degenerative processes in the brain of rats with experimental acute hypoxia. Bull Exp Biol Med 2014; 157:125-31. [PMID: 24913577 DOI: 10.1007/s10517-014-2507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 10/25/2022]
Abstract
Stimulation of cell regeneration in the brain and eye retina in various degenerative processes is a pressing problem in neurobiology. A promising approach is transplantation of somatic cells reprogrammed towards neural lineage. We studied the effect of transplantation of retinal pigment epithelial cells from adult human eye transdifferentiated in culture on degenerative processes in the brain of rats subjected to acute hypoxia. Immunohistochemical and molecular genetic analysis suggests that retinal pigment epithelial cells transdifferentiate in vitro and express markers of low-differentiated neural cells. The cells transplanted into rat brain survive for at least 20 days. During this period, they stimulate compensatory and reparative processes that protected cortical neurons in the recipients from hypoxia-induced degeneration.
Collapse
Affiliation(s)
- M A Aleksandrova
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
37
|
Rapp M, Woo G, Al-Ubaidi MR, Becerra SP, Subramanian P. Pigment epithelium-derived factor protects cone photoreceptor-derived 661W cells from light damage through Akt activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:813-20. [PMID: 24664775 PMCID: PMC11343582 DOI: 10.1007/978-1-4614-3209-8_102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Pigment epithelium-derived factor (PEDF) can delay and prevent the death of photoreceptors in vivo. We investigated the survival activity of PEDF on cone photoreceptor-derived 661W cells in culture, the presence of PEDF receptor (PEDF-R) in these cells and the activation of prosurvival Akt. Cell death was induced by light exposure in the presence of 9-cis retinal. Cell viability assays showed that PEDF increased the number of 661W cells exposed to these conditions. Western blots showed that PEDF-treated 661W cells had a higher ratio of phosphorylated Akt to total Akt than untreated cells. The PEDF receptor PEDF-R was immunodetected in the plasma membrane fractions of 661W cells. The results demonstrated that PEDF can protect 661W cells against light-induced cell death and suggest that the binding of PEDF to cell surface PEDF-R triggers a prosurvival signaling pathway.
Collapse
Affiliation(s)
- Matthew Rapp
- National Eye Institute, National Institutes of Health, Bldg. 6, Rm. 131F, 6 Center Dr., MSC 0608, 20892-0608, Bethesda, MD, USA,
| | | | | | | | | |
Collapse
|
38
|
Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration. ASN Neuro 2013; 5:e00126. [PMID: 24160756 PMCID: PMC3840469 DOI: 10.1042/an20130028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AMD (age-related macular degeneration) is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor) is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2−/−/Cx3cr1−/− on C57BL/6N [Crb1rd8]) mice, a model for progressive, focal rd (retinal degeneration). First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium) than WT (wild-type, C57BL/6N). Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg), followed by a subconjunctival injection of PEDF (3 μg) 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment. Apoptosis and inflammation play important roles in age-related macular degeneration. As a potent neurotrophic and anti-inflammatory glycoprotein, PEDF potently stabilizes photoreceptor degeneration via suppression of apoptotic and inflammatory pathways in a mouse model of progressive, focal rd.
Collapse
|
39
|
Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, Heller JP, Villasmil R, Bull ND, Martin KR, Tomarev SI. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. ACTA ACUST UNITED AC 2013; 137:503-19. [PMID: 24176979 DOI: 10.1093/brain/awt292] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of neuroprotective strategies to attenuate retinal ganglion cell death could lead to novel therapies for chronic optic neuropathies such as glaucoma. Intravitreal transplantation of mesenchymal stem cells slows retinal ganglion cell death in models of optic nerve injury, but the mechanism of action remains unclear. Here we characterized the neuroprotective effects of mesenchymal stem cells and mesenchymal stem cell-derived factors in organotypic retinal explant culture and an in vivo model of ocular hypertensive glaucoma. Co-culture of rat and human bone marrow-derived mesenchymal stem cells with retinal explants increased retinal ganglion cell survival, after 7 days ex vivo, by ∼2-fold and was associated with reduced apoptosis and increased nerve fibre layer and inner plexiform layer thicknesses. These effects were not demonstrated by co-culture with human or mouse fibroblasts. Conditioned media from mesenchymal stem cells conferred neuroprotection, suggesting that the neuroprotection is mediated, at least partly, by secreted factors. We compared the concentrations of 29 factors in human mesenchymal stem cell and fibroblast conditioned media, and identified 11 enriched in the mesenchymal stem cell secretome. Treatment of retinal explants with a cocktail of these factors conferred retinal ganglion cell neuroprotection, with factors from the platelet-derived growth factor family being the most potent. Blockade of platelet-derived growth factor signalling with neutralizing antibody or with small molecule inhibitors of platelet-derived growth factor receptor kinase or downstream phosphatidylinositol 3 kinase eliminated retinal ganglion cell neuroprotection conferred by mesenchymal stem cell co-culture. Intravitreal injection of platelet-derived growth factor -AA or -AB led to profound optic nerve neuroprotection in vivo following experimental induction of elevated intraocular pressure. These data demonstrate that mesenchymal stem cells secrete a number of neuroprotective proteins and suggest that platelet-derived growth factor secretion in particular may play an important role in mesenchymal stem cell-mediated retinal ganglion cell neuroprotection. Furthermore, platelet-derived growth factor may represent an independent target for achieving retinal ganglion cell neuroprotection.
Collapse
Affiliation(s)
- Thomas V Johnson
- 1 Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Qian S, Tang Y, Cheng L, Sun X, Tian J, Zhou C. Interaction of copolymer-1-activated T cells and microglia in retinal ganglion cell protection. Clin Exp Ophthalmol 2013; 41:881-90. [PMID: 23566072 DOI: 10.1111/ceo.12110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 03/14/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Shaohong Qian
- Department of Ophthalmology; EENT Hospital of Fudan University; Shanghai China
| | - Yating Tang
- Department of Ophthalmology; EENT Hospital of Fudan University; Shanghai China
| | - Lina Cheng
- Department of Ophthalmology; no. 2 Hospital of Xi'an; Shanxi China
| | - Xinghuai Sun
- Department of Ophthalmology; EENT Hospital of Fudan University; Shanghai China
| | - Jie Tian
- Central Lab; EENT Hospital of Fudan University; Shanghai China
| | - Chuandi Zhou
- Department of Ophthalmology; EENT Hospital of Fudan University; Shanghai China
| |
Collapse
|
41
|
Subramanian P, Locatelli-Hoops S, Kenealey J, DesJardin J, Notari L, Becerra SP. Pigment epithelium-derived factor (PEDF) prevents retinal cell death via PEDF Receptor (PEDF-R): identification of a functional ligand binding site. J Biol Chem 2013; 288:23928-42. [PMID: 23818523 DOI: 10.1074/jbc.m113.487884] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular pigment epithelium-derived factor (PEDF) displays retina survival activity by interacting with receptor proteins on cell surfaces. We have previously reported that PEDF binds and stimulates PEDF receptor (PEDF-R), a transmembrane phospholipase. However, the PEDF binding site of PEDF-R and its involvement in survival activity have not been identified. The purpose of this work is to identify a biologically relevant ligand-binding site on PEDF-R. PEDF bound the PEDF-R ectodomain L4 (Leu(159)-Met(325)) with affinity similar to the full-length PEDF-R (Met(1)-Leu(504)). Binding assays using synthetic peptides spanning L4 showed that PEDF selectively bound E5b (Ile(193)-Leu(232)) and P1 (Thr(210)-Leu(249)) peptides. Recombinant C-terminal truncated PEDF-R4 (Met(1)-Leu(232)) and internally truncated PEDF-R and PEDF-R4 (ΔHis(203)-Leu(232)) retained phospholipase activity of the full-length PEDF-R. However, PEDF-R polypeptides without the His(203)-Leu(232) region lost the PEDF affinity that stimulated their enzymatic activity. Cell surface labeling showed that PEDF-R is present in the plasma membranes of retina cells. Using siRNA to selectively knock down PEDF-R in retina cells, we demonstrated that PEDF-R is essential for PEDF-mediated cell survival and antiapoptotic activities. Furthermore, preincubation of PEDF with P1 and E5b peptides blocked the PEDF·PEDF-R-mediated retina cell survival activity, implying that peptide binding to PEDF excluded ligand-receptor interactions on the cell surface. Our findings establish that PEDF-R is required for the survival and antiapoptotic effects of PEDF on retina cells and has determinants for PEDF binding within its L4 ectodomain that are critical for enzymatic stimulation.
Collapse
Affiliation(s)
- Preeti Subramanian
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Craword SE, Fitchev P, Veliceasa D, Volpert OV. The many facets of PEDF in drug discovery and disease: a diamond in the rough or split personality disorder? Expert Opin Drug Discov 2013; 8:769-92. [PMID: 23642051 DOI: 10.1517/17460441.2013.794781] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pigment epithelium-derived factor (PEDF) was discovered as a neurotrophic factor secreted by retinal pigment epithelial cells. A decade later, it re-emerged as a powerful angiogenesis inhibitor guarding ocular function. Since then, significant advances were made identifying PEDF's mechanisms, targets and biomedical applications. AREAS COVERED The authors review several methodologies that have generated significant new information about the potential of PEDF as a drug. Furthermore, the authors review and discuss mechanistic and structure-function analyses combined with the functional mapping of active fragments, which have yielded several short bioactive PEDF peptides. Additionally, the authors present functional studies in knockout animals and human correlates that have provided important information about conditions amenable to PEDF-based therapies. EXPERT OPINION Through its four known receptors, PEDF causes a wide range of cellular events vitally important for the organism, which include survival and differentiation, migration and invasion, lipid metabolism and stem cell maintenance. These processes are deregulated in multiple pathological conditions, including cancer, metabolic and cardiovascular disease. PEDF has been successfully used in countless preclinical models of these conditions and human correlates suggest a wide utility of PEDF-based drugs. The most significant clinical application of PEDF, to date, is its potential therapeutic use for age-related macular degeneration. Moreover, PEDF-based gene therapy has advanced to early stage clinical trials. PEDF active fragments have been mapped and used to design short peptide mimetics conferring distinct functions of PEDF, which may address specific clinical problems and become prototype drugs.
Collapse
Affiliation(s)
- Susan E Craword
- St. Louis University School of Medicine, Department of Pathology, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
43
|
Vigneswara V, Berry M, Logan A, Ahmed Z. Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury. Invest Ophthalmol Vis Sci 2013; 54:2624-33. [PMID: 23513062 DOI: 10.1167/iovs.13-11803] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate neuroprotective and axogenic properties of pigment epithelium-derived factor (PEDF) in retinal ganglion cells (RGC) in vitro and in vivo. METHODS Adult rat retinal cultures were treated with combinations of PBS and PEDF with or without a cell permeable analogue of cAMP, and RGC survival and neurite lengths quantified. The optic nerves of anesthetised rats were also crushed intraorbitally to transect all RGC axons followed by intravitreal injections of either PBS, PEDF, or cAMP+PEDF every 7 days. RGC were back filled with FluoroGold to quantify RGC survival and longitudinal optic nerve sections were stained with GAP43 antibodies to detect regenerating RGC axons. RESULTS An optimal dose of 2.5 × 10(-5) μg/μL, promoted 65% more RGC survival than controls in vitro, increasing by 4.4- and 5-fold the number of RGC with neurites and the mean neurite length, respectively. Addition of cAMP with or without PEDF did not potentiate RGC survival or the mean number of RGC with neurites, but enhanced RGC neurite length by 1.4-fold, compared with PEDF alone. After optic nerve crush (ONC), PEDF protected RGC from apoptosis and increased the numbers of regenerating RGC axons in the optic nerve by 4.6- and 3.4-fold, respectively when compared with controls. cAMP did not enhance PEDF-induced RGC neuroprotection, but potentiated its neuroregenerative effects by 2- to 3-fold, increasing the number of RGC axons regenerating at 500 and 1000 μm from the lesions site. CONCLUSIONS This study is the first to demonstrate that PEDF enhances both RGC survival and axon regeneration in vitro and in vivo.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
44
|
Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer 2013; 13:258-71. [PMID: 23486238 PMCID: PMC3707632 DOI: 10.1038/nrc3484] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The potent actions of pigment epithelium-derived factor (PEDF) on tumour-associated cells, and its extracellular localization and secretion, stimulated research on this multifunctional serpin. Such studies have identified several PEDF receptors and downstream signalling pathways. Known cellular PEDF responses have expanded from the initial discovery that PEDF induces retinoblastoma cell differentiation to its anti-angiogenic, antitumorigenic and antimetastatic properties. Although the diversity of PEDF activities seems to be complex, they are consistent with the varied mechanisms that regulate this multimodal factor. If PEDF is to be used for cancer management, a deeper appreciation of its many functions and mechanisms of action is needed.
Collapse
Affiliation(s)
- S Patricia Becerra
- National Eye Institute, US National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
45
|
Iwamoto K, Mata D, Linn DM, Linn CL. Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors. Neuroscience 2013; 237:184-98. [PMID: 23402849 DOI: 10.1016/j.neuroscience.2013.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/23/2013] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Glutamate-induced excitotoxicity is thought to play an important role in several neurodegenerative diseases in the central nervous system (CNS). In this study, neuroprotection against glutamate-induced excitotoxicity was analyzed using acetylcholine (ACh), nicotine and the α7 specific nicotinic acetylcholine receptor (α7 nAChR) agonist, N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987), in cultured adult rat retinal neurons. Adult Long Evans rat retinas were dissociated and retinal ganglion cells (RGCs) were isolated from all other retinal tissue using a two-step panning technique. Once isolated, RGCs were cultured under various pharmacological conditions to demonstrate excitotoxicity and neuroprotection against excitotoxicity. After 3 days, RGCs were immunostained with antibodies against the glycoprotein, Thy 1.1, counted and cell survival was assessed relative to control untreated conditions. 500 μM glutamate induced excitotoxicity in large and small RGCs in an adult rat dissociated culture. After 3 days in culture with glutamate, the cell survival of large RGCs decreased by an average of 48.16% while the cell survival of small RGCs decreased by an average of 42.03%. Using specific glutamate receptor agonists and antagonists, we provide evidence that the excitotoxic response was mediated through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) and N-methyl-d-aspartate (NMDA) glutamate receptors through an apoptotic mechanism. However, the excitotoxic effect of glutamate on all RGCs was eliminated if cells were cultured for an hour with 10 μM ACh, 100 μM nicotine or 100 nM of the α7 nAChR agonist, PNU-282987, before the glutamate insult. Inhibition studies using 10nM methyllycaconitine (MLA) or α-bungarotoxin (α-Bgt) supported the hypothesis that neuroprotection against glutamate-induced excitotoxicity on rat RGCs was mediated through α7 nAChRs. In immunocytochemical studies, double-labeled experiments using antibodies against Thy 1.1 and α7 nAChR subunits demonstrated that both large and small RGCs contained α7 nAChR subunits. The data presented in this study support the hypothesis that ACh and nicotinic acetylcholine receptor (nAChR) agonists provide neuroprotection against glutamate-induced excitotoxicity in adult rat RGCs through activation of α7 nAChR subunits. These studies lay the groundwork required for analyzing the effect of specific α7 nAChR agonists using in vivo models of excitotoxicity. Understanding the type of ACh receptors involved in neuroprotection in the rat retina could ultimately lead to therapeutic treatment for any CNS disease that involves excitotoxicity.
Collapse
Affiliation(s)
- K Iwamoto
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
46
|
Chang ZY, Yeh MK, Chiang CH, Chen YH, Lu DW. Erythropoietin protects adult retinal ganglion cells against NMDA-, trophic factor withdrawal-, and TNF-α-induced damage. PLoS One 2013; 8:e55291. [PMID: 23383140 PMCID: PMC3559395 DOI: 10.1371/journal.pone.0055291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022] Open
Abstract
Purpose This study aimed to evaluate the neuroprotective effect of EPO in the presence of N-methyl-d-aspartate (NMDA)-, trophic factor withdrawal (TFW)-, and tumor necrosis factor-alpha (TNF-α)-induced toxicity on total, small, and large retinal ganglion cells (RGCs). Methods Retinal cells from adult rats were cultured in a medium containing brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF), and forskolin. Expression of RGC markers and EPOR was examined using immunocytochemistry. RGCs were classified according to their morphological properties. Cytotoxicity was induced by NMDA, TFW, or TNF-α. RGC survival was assessed by counting thy-1 and neurofilament-l double-positive cells. Results EPO offered dose-dependent (EC50 = 5.7 ng/mL) protection against NMDA toxicity for small RGCs; protection was not significant for large RGCs. Time-course analysis showed that the presence of EPO either before or after NMDA exposure gave effective protection. For both small and large RGCs undergoing trophic factor withdrawal, EPO at concentrations of 1, 10, or 100 ng/mL improved survival. However, EPO had to be administered soon after the onset of injury to provide effective protection. For TNF-α-induced toxicity, survival of small RGCs was seen only for the highest examined concentration (100 ng/mL) of EPO, whereas large RGCs were protected at concentrations of 1, 10, or 100 ng/mL of EPO. Time-course analysis showed that pretreatment with EPO provided protection only for large RGCs; early post-treatment with EPO protected both small and large RGCs. Inhibitors of signal transduction and activators of transcription such as (STAT)-5, mitogen-activated protein kinases (MAPK)/extracellular-regulated kinase (ERK), and phosphatidyl inositol-3 kinase (PI3K)/Akt impaired the protective effect of EPO on RGCs exposed to different insults. Conclusion EPO provided neuroprotection to cultured adult rat RGCs; however, the degree of protection varied with the type of toxic insult, RGC subtype, and timing of EPO treatment.
Collapse
Affiliation(s)
- Zhi-Yang Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Ming-Kung Yeh
- Institute of Preventive Medicine, National Defense Medical Center, Sanhsia, Taipei, Taiwan
| | - Chiao-Hsi Chiang
- School of Pharmacy, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Neihu, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Protective effects of 7,8-dihydroxyflavone on retinal ganglion and RGC-5 cells against excitotoxic and oxidative stress. J Mol Neurosci 2012; 49:96-104. [PMID: 23054592 DOI: 10.1007/s12031-012-9899-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023]
Abstract
A preferential loss of retinal ganglion cells (RGCs) is observed in glaucoma and optic neuritis. Loss of tropomyosin-related kinase receptor B (TrkB)-mediated signaling has been implicated in this degeneration. Our study indicates that 7,8-dihydroxyflavone (7,8 DHF) robustly upregulates the TrkB signaling in the primary rat RGCs and the retinal neuronal precursor RGC-5 cell line by promoting phosphorylation of TrkB receptor, leading to enhanced TrkB receptor tyrosine kinase activity. The flavonoid derivative 7,8 DHF acts a potent TrkB agonist and upregulates the downstream AKT and MAPK/ERK survival signaling pathways in a TrkB-dependent manner in both primary rat RGCs as well as the RGC-5 cell line. Excitotoxicity and oxidative injury have been alleged in the specific RGC degeneration in various forms of glaucoma. A novel finding of this study is that treatment with 7,8 DHF protects these cells significantly from excitotoxic and oxidative stress-induced apoptosis and cell death. 7,8 DHF also promotes neuritogenesis by stimulating neurite outgrowth, suggesting a possible therapeutic strategy for protection of RGCs in various optic neuropathies.
Collapse
|
48
|
Chidlow G, Wood JPM, Ebneter A, Casson RJ. Interleukin-6 is an efficacious marker of axonal transport disruption during experimental glaucoma and stimulates neuritogenesis in cultured retinal ganglion cells. Neurobiol Dis 2012; 48:568-81. [PMID: 22884876 DOI: 10.1016/j.nbd.2012.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/22/2012] [Accepted: 07/25/2012] [Indexed: 01/16/2023] Open
Abstract
It is increasingly recognised that chronically activated glia contribute to the pathology of various neurodegenerative diseases, including glaucoma. One means by which this can occur is through the release of neurotoxic, proinflammatory factors. In the current study, we therefore investigated the spatio-temporal patterns of expression of three such cytokines, IL-1β, TNFα and IL-6, in a validated rat model of experimental glaucoma. First, only weak evidence was found for increased expression of IL-1β and TNFα following induction of ocular hypertension. Second, and much more striking, was that robust evidence was uncovered showing IL-6 to be synthesised by injured retinal ganglion cells following elevation of intraocular pressure and transported in an orthograde fashion along the nerve, accumulating at sites of axonal disruption in the optic nerve head. Verification that IL-6 represents a novel marker of disrupted axonal transport in this model was obtained by performing double labelling immunofluorescence with recognised markers of fast axonal transport. The stimulus for IL-6 synthesis and axonal transport during experimental glaucoma arose from axonal injury rather than ocular hypertension, as the response was identical after optic nerve crush and bilateral occlusion of the carotid arteries, each of which is independent of elevated intraocular pressure. Moreover, the response of IL-6 was not a generalised feature of the gp130 family of cytokines, as it was not mimicked by another family member, ciliary neurotrophic factor. Finally, further study suggested that IL-6 may be an early part of the endogenous regenerative response as the cytokine colocalised with growth-associated membrane phosphoprotein-43 in some putative regenerating axons, and potently stimulated neuritogenesis in retinal ganglion cells in culture, an effect that was additive to that of ciliary neurotrophic factor. These data comprise clear evidence that IL-6 is actively involved in the attempt of injured retinal ganglion cells to regenerate their axons.
Collapse
Affiliation(s)
- Glyn Chidlow
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Rd, Adelaide, SA 5000, Australia.
| | | | | | | |
Collapse
|
49
|
The emerging role of PEDF in stem cell biology. J Biomed Biotechnol 2012; 2012:239091. [PMID: 22675247 PMCID: PMC3362874 DOI: 10.1155/2012/239091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/15/2012] [Indexed: 01/07/2023] Open
Abstract
Encoded by a single gene, PEDF is a 50 kDa glycoprotein that is highly conserved and is widely expressed among many tissues. Most secreted PEDF deposits within the extracellular matrix, with cell-type-specific functions. While traditionally PEDF is known as a strong antiangiogenic factor, more recently, as this paper highlights, PEDF has been linked with stem cell biology, and there is now accumulating evidence demonstrating the effects of PEDF in a variety of stem cells, mainly in supporting stem cell survival and maintaining multipotency.
Collapse
|
50
|
Toops KA, Berlinicke C, Zack DJ, Nickells RW. Hydrocortisone stimulates neurite outgrowth from mouse retinal explants by modulating macroglial activity. Invest Ophthalmol Vis Sci 2012; 53:2046-61. [PMID: 22395888 DOI: 10.1167/iovs.11-8646] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE There is mounting evidence that retinal ganglion cells (RGCs) require a complex milieu of trophic factors to enhance cell survival and axon regeneration after optic nerve injury. The authors' goal was to examine the contribution of components of a combination of hormones, growth factors, steroids, and small molecules to creating a regenerative environment and to determine if any of these components modulated macroglial behavior to aid in regeneration. METHODS Postnatal day 7 mouse retinal explants embedded in collagen were used as an in vitro model of neurite regeneration. Explants were treated with the culture supplements fetal bovine serum, N2, and G5 and a mixture of G5 and N2 components, designated enhanced N2 (EN2). Explants were evaluated for neurite outgrowth over 7 days in culture. The effects of each treatment were also evaluated on cultured RGCs purified by Thy1 immunopanning. Immunohistochemistry and qPCR analysis were used to evaluate differences in gene expression in the explants due to different treatments. RESULTS EN2 stimulated significant neurite outgrowth from explants but not from purified RGCs. Elimination of hydrocortisone (HC) from EN2 reduced the mean neurites per explant by 37%. EN2-treated explants demonstrated increased expression of Gfap, Glul, Glt1, Cntf, Pedf, and VegfA compared with explants treated with EN2 without HC. Subsequent experiments showed that increased expression of Cntf and Glul was critical to the trophic effect of HC. CONCLUSIONS These data suggest that the HC in EN2 indirectly contributed to neurite outgrowth by activating macroglia to produce neurotrophic and neuroprotective molecules.
Collapse
Affiliation(s)
- Kimberly A Toops
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|