1
|
Guo N, Wang S, Whitfield CT, Batchelor WD, Wang Y, Blersch D, Higgins BT, Feng Y, Liles MR, de-Bashan LE, Wang Y, Ma Y. High-Efficiency CRISPR-Cas9 Genome Editing Unveils Biofilm Insights and Enhances Antimicrobial Activity in Bacillus velezensis FZB42. Biotechnol Bioeng 2025; 122:983-994. [PMID: 39871438 DOI: 10.1002/bit.28933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/29/2025]
Abstract
Bacillus velezensis FZB42 is a prominent plant growth-promoting rhizobacterium and biocontrol agent known for producing a wide array of antimicrobial compounds. The capability to genetically manipulate this strain would facilitate understanding its metabolism and enhancing its sustainable agriculture applications. In this study, we report the first successful implementation of high-efficiency CRISPR-Cas9 genome editing in B. velezensis FZB42, enabling targeted genetic modifications to gain insights into its plant growth-promotion and biocontrol properties. Deletion of the slrR gene, a key regulator of biofilm formation, resulted in significant alterations in biofilm structure and development, as demonstrated by scanning electron microscopy and quantitative biofilm assays. These findings provide valuable insights into the mechanisms of biofilm formation, which are critical for root colonization and plant growth promotion. Additionally, we overexpressed the bac gene cluster responsible for bacilysin biosynthesis by replacing its native promoter with the strong constitutive promoter P43 and integrating an additional copy of the bacG gene. This genetic manipulation led to a 2.7-fold increase in bacB gene expression and significantly enhanced antibacterial activity against Escherichia coli and Lactobacillus diolivorans. The successful implementation of the CRISPR-Cas9 system for genome editing in FZB42 provides a valuable tool for genetic engineering, with the potential to improve its biocontrol efficacy and broaden its applications in agriculture and other biotechnology areas. Our principles and procedures are broadly applicable to other agriculturally significant microorganisms.
Collapse
Affiliation(s)
- Na Guo
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Shangjun Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | | | - William D Batchelor
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Yifen Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - David Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Brendan T Higgins
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Yucheng Feng
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Luz E de-Bashan
- The Bashan Institute of Science, Auburn, Alabama, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Yuechao Ma
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
2
|
Sanadhya S, Jain D, Saheewala H, Sharma D, Chauhan PK, Singh G, Upadhyay SK, Mohanty SR. Efficacy of molecularly diversified phosphorus-solubilizing rhizobacterial isolates in phytostimulation, antimicrobial attributes and phosphorus-transporter genes mediated plant growth performance in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109521. [PMID: 39842169 DOI: 10.1016/j.plaphy.2025.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/07/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
This study evaluated a dual management approach to enhance plant-growth by improving soil fertility, reducing pathogenic stress using PGPR that affect phosphorus-transporter (pht) genes. Among 213 maize rhizobacterial isolates, 40 demonstrated the ability to solubilize tri-calcium phosphate, potassium, zinc, and silicon, showing various PGP traits. Nine of these isolates exhibited significant antagonistic activity against the plant pathogens Colletotrichum chlorophyti and Xanthomonas axonopodis. These pathogens cause root infection, reduces plant-immunity and growth. In pot experiments, these nine strains significantly improved root length, shoot length, chlorophyll content, fresh weight, proline, APX, CAT, GR, NPK, and Zn content in maize plants after 60 days under pathogenic stress. Notably, PSB-25 increased root length by up to 66% under C. chlorophyti stress and 64% under X. axonopodis stress. PSB21 enhanced proline content by 49%, APX by 70%, and GR by 41%, while PSB-16 raised CAT activity by 55% under X. axonopodis stress. Molecular diversity analysis of the 40 PS-RB strains using ERIC, BOX, REP, and ARDRA showed two major clusters with Jaccard coefficients from 0.72 to 1.00. 16S rRNA gene sequencing identified PSB10, PSB16, and PSB25 as Serratia sp., Enterobacter cloacae, and Enterobacter sp., respectively. The effects of PSB10, PSB16, and PSB25 on growth parameters under pathogen stress were also studied. Field trials indicated that treatment T6 (100% RDF + PSB16) was most effective in promoting plant growth. Additionally, significant differences in the expression of six Pht1 transporter genes were noted between PS-RB treated and untreated maize seedlings, and these genes improving phosphorus acquisition.
Collapse
Affiliation(s)
- Suman Sanadhya
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Devendra Jain
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India.
| | - Heena Saheewala
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India; SKN College of Agriculture, Sri Karan Narendra Agriculture University, Jobner 303329, India
| | - Deepak Sharma
- All India Network Project on Soil Biodiversity and Biofertilizers, Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India; School of Agriculture, Nirwan University, Jaipur, 303305, Rajasthan, India
| | - Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India; Department of Environmental Science, A.K.S. University, Satna, 485001, India
| | - Garima Singh
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Santosh Ranjan Mohanty
- All India Network Project on Soil Biodiversity-Biofertilizers, ICAR-Indian Institute of Soil Science, Bhopal, 462038, India
| |
Collapse
|
3
|
Yang J, Li S, Zhou X, Du C, Fang J, Li X, Zhao J, Ding F, Wang Y, Zhang Q, Wang Z, Liu J, Dong G, Zhang J, Xu F, Xu W. Bacillus amyloliquefaciens promotes cluster root formation of white lupin under low phosphorus by mediating auxin levels. PLANT PHYSIOLOGY 2025; 197:kiae676. [PMID: 39719153 PMCID: PMC11831804 DOI: 10.1093/plphys/kiae676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
White lupin (Lupinus albus L.) produces cluster roots to acquire more phosphorus under phosphorus deficiency. Bacillus amyloliquefaciens SQR9 contributes to plant growth, but whether and how it promotes cluster root formation in white lupin remain unclear. Here, we investigated the roles of SQR9 in cluster root formation under low phosphorus conditions using a microbial mutant and virus-induced gene silencing (VIGS) in white lupin. SQR9 substantially enhanced cluster root formation under low phosphorus conditions. The ysnE gene encodes an auxin biosynthesis enzyme in SQR9 and was associated with cluster root formation, as ysnE-defective SQR9 did not trigger cluster root formation. SQR9 inoculation induced the expression of PIN-formed2 (LaPIN2, encoding an auxin transporter) and YUCCA4 (LaYUC4, encoding an auxin biosynthesis enzyme) in white lupin roots. VIGS-mediated knockdown of LaPIN2 and LaYUC4 prevented wild-type SQR9-induced cluster root formation in white lupin. Finally, white lupin LaYUC4-derived auxin and SQR9-derived auxin pools were both transported by LaPIN2, promoting cluster root formation under low phosphorus conditions. Taken together, we propose that B. amyloliquefaciens promotes cluster root formation in white lupin under low phosphorus conditions by stimulating auxin biosynthesis and transport. Our results provide insights into the interplay between bacteria and root auxin in crop phosphorus use efficiency.
Collapse
Affiliation(s)
- Jinyong Yang
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shenglan Li
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangxue Zhou
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongxuan Du
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ju Fang
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xing Li
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Zhao
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fan Ding
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Zhang
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengrui Wang
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianping Liu
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Liu Y, Yin C, Zhu M, Zhan Y, Lin M, Yan Y. Comparative Genomic Analysis of Bacillus velezensis BRI3 Reveals Genes Potentially Associated with Efficient Antagonism of Sclerotinia sclerotiorum (Lib.) de Bary. Genes (Basel) 2024; 15:1588. [PMID: 39766855 PMCID: PMC11675273 DOI: 10.3390/genes15121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacillus velezensis has recently received increased attention as a potential biological agent because of its broad-spectrum antagonistic capacity against harmful bacteria and fungi. This study aims to thoroughly analyze the genomic characteristics of B. velezensis BRI3, thereby providing theoretical groundwork for the agronomic utilization of this strain. METHODS In this work, we evaluated the beneficial traits of the newly isolated strain B. velezensis BRI3 via in vitro experiments, whole-genome sequencing, functional annotation, and comparative genomic analysis. RESULTS B. velezensis BRI3 exhibits broad-spectrum antifungal activity against various soilborne pathogens, displays inhibitory effects comparable to those of the type strain FZB42, and exhibits particularly effective antagonism against Sclerotinia sclerotiorum (Lib.) de Bary. Whole-genome sequencing and assembly revealed that the genome of BRI3 contains one chromosome and two plasmids, which carry a large amount of genetic information. Moreover, 13 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites were predicted within the BRI3 genome. Among these, two unique BGCs (cluster 11 and cluster 13), which were not previously reported in the genomes of other strains and could potentially encode novel metabolic products, were identified. The results of the comparative genomic analysis demonstrated the genomic structural conservation and genetic homogeneity of BRI3. CONCLUSIONS The unique characteristics and genomic data provide insights into the potential application of BRI3 as a biocontrol and probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Guardado-Fierros BG, Tuesta-Popolizio DA, Lorenzo-Santiago MA, Rodriguez-Campos J, Contreras-Ramos SM. Comparative study between Salkowski reagent and chromatographic method for auxins quantification from bacterial production. FRONTIERS IN PLANT SCIENCE 2024; 15:1378079. [PMID: 38947947 PMCID: PMC11212217 DOI: 10.3389/fpls.2024.1378079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Introduction The Salkowski reagent method is a colorimetric technique used to determine auxin production, specifically as indole-3-acetic acid (IAA). It was developed to determine indoles rapidly; however, it does not follow Beer's law at high concentrations of IAA. Thus, there could be an overestimation of IAA with the Salkowski technique due to the detection of other indole compounds. Methods This study aims to compare the Salkowski colorimetric method versus a chromatographic method to evidence the imprecision or overestimation obtained when auxins, such as indole-acetic acid (IAA), are determined as traits from promoting growth plant bacteria (PGPB), using ten different strains from three different isolation sources. The analysis used the same bacterial culture to compare the Salkowski colorimetric and chromatographic results. Each bacterium was cultivated in the modified TSA without or with tryptophan for 96 h. The same supernatant culture was used in both methods: Salkowski reagent and ultra-performance liquid chromatography coupled with a Mass Spectrometer (LC-MS/MS). Results The first method indicated 5.4 to 27.4 mg L-1 without tryptophan in ten evaluated strains. When tryptophan was used as an inductor of auxin production, an increase was observed with an interval from 4.4 to 160 mg L-1. The principal auxin produced by all strains was IAA from that evaluated by the LC-MS/MS method, with significantly higher concentration with tryptophan addition than without. Strains belonging to the Kocuria genus were highlighted by high IAA production. The indole-3-propionic acid (IPA) was detected in all the bacterial cultures without tryptophan and only in K. turfanensis As05 with tryptophan, while it was not detected in other strains. In addition, indole-3-butyric acid (IBA) was detected at trace levels (13-16 µg L-1). Conclusions The Salkowski reagent overestimates the IAA concentration with an interval of 41-1042 folds without tryptophan and 7-16330 folds with tryptophan as inductor. In future works, it will be necessary to determine IAA or other auxins using more suitable sensitive techniques and methodologies.
Collapse
Affiliation(s)
- Beatriz G. Guardado-Fierros
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Diego A. Tuesta-Popolizio
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Miguel A. Lorenzo-Santiago
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | | | - Silvia M. Contreras-Ramos
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Mian S, Machado ACZ, Hoshino RT, Mosela M, Higashi AY, Shimizu GD, Teixeira GM, Nogueira AF, Giacomin RM, Ribeiro LAB, Koltun A, de Assis R, Gonçalves LSA. Complete genome sequence of Bacillus velezensis strain Ag109, a biocontrol agent against plant-parasitic nematodes and Sclerotinia sclerotiorum. BMC Microbiol 2024; 24:194. [PMID: 38849775 PMCID: PMC11157790 DOI: 10.1186/s12866-024-03282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/28/2024] [Indexed: 06/09/2024] Open
Abstract
Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.
Collapse
Affiliation(s)
- Silas Mian
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | | - Rodrigo Thibes Hoshino
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Mirela Mosela
- Microbiology Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Allan Yukio Higashi
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Gabriel Danilo Shimizu
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | - Gustavo Manoel Teixeira
- Microbiology Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | | - Renata Mussoi Giacomin
- Biology Department, Universidade Estadual Do Centro Oeste, Guarapuava, Paraná, 85015-430, Brazil
| | | | - Alessandra Koltun
- Center for Molecular Biology and Genetic Engineering, UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Rafael de Assis
- Agronomy Department, Universidade Estadual de Londrina, Londrina, Paraná, 86097-570, Brazil
| | | |
Collapse
|
7
|
Cheng C, Su S, Bo S, Zheng C, Liu C, Zhang L, Xu S, Wang X, Gao P, Fan K, He Y, Zhou D, Gong Y, Zhong G, Liu Z. A Bacillus velezensis strain isolated from oats with disease-preventing and growth-promoting properties. Sci Rep 2024; 14:12950. [PMID: 38839805 PMCID: PMC11153497 DOI: 10.1038/s41598-024-63756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytes have been shown to promote plant growth and health. In the present study, a Bacillus velezensis CH1 (CH1) strain was isolated and identified from high-quality oats, which was capable of producing indole-3-acetic acid (IAA) and strong biofilms, and capabilities in the nitrogen-fixing and iron carriers. CH1 has a 3920 kb chromosome with 47.3% GC content and 3776 code genes. Compared genome analysis showed that the largest proportion of the COG database was metabolism-related (44.79%), and 1135 out of 1508 genes were associated with the function "biosynthesis, transport, and catabolism of secondary metabolites." Furthermore, thirteen gene clusters had been identified in CH1, which were responsible for the synthesis of fifteen secondary metabolites that exhibit antifungal and antibacterial properties. Additionally, the strain harbors genes involved in plant growth promotion, such as seven putative genes for IAA production, spermidine and polyamine synthase genes, along with multiple membrane-associated genes. The enrichment of these functions was strong evidence of the antimicrobial properties of strain CH1, which has the potential to be a biofertilizer for promoting oat growth and disease resistance.
Collapse
Affiliation(s)
- Chao Cheng
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China.
| | - Shaofeng Su
- Inner Mongolia Academy of Agriculture and Husbandry Science, Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot, 010000, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Chengzhong Zheng
- Ulanqab Institute for Agricultural and Forestry Science, Ulanqab, 012000, China
| | - Chunfang Liu
- Ulanqab Center for Disease Control and Prevention, Ulanqab, 012000, China
| | - Linchong Zhang
- Jinyu Baoling Biological Drugs Co., LTD, Hohhot, 010000, China
| | - Songhe Xu
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Xiaoyun Wang
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Pengfei Gao
- Vocational and Technical College of Ulanqab, Ulanqab, 012000, China
| | - Kongxi Fan
- Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Yiwei He
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Di Zhou
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Yanchun Gong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010000, China
| | - Gang Zhong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010000, China
| | - Zhiguo Liu
- Inner Mongolia Agricultural University, Hohhot, 010000, China.
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 100000, China.
| |
Collapse
|
8
|
Kondo T, Sibponkrung S, Hironao KY, Tittabutr P, Boonkerd N, Ishikawa S, Ashida H, Teaumroong N, Yoshida KI. Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones. J GEN APPL MICROBIOL 2023; 69:175-183. [PMID: 36858546 DOI: 10.2323/jgam.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Bacillus velezensis S141, a plant growth-promoting rhizobacteria (PGPR), was isolated from a soybean field in Thailand. Previous studies demonstrated that S141 enhanced soybean growth, stimulating nodulation for symbiotic nitrogen fixation with soybean root nodule bacteria, including Bradyrhizobium diazoefficience USDA110. Isoflavone glycosides are produced in soybean roots and hydrolyzed into their aglycones, triggering nodulation. This study revealed that S141 efficiently hydrolyzed two isoflavone glycosides in soybean roots (daidzin and genistin) to their aglycones (daidzein and genistein, respectively). However, S141, Bacillus subtilis 168, NCIB3610, and B. velezensis FZB42 hydrolyzed isoflavone glucosides into aglycones. A BLASTp search suggested that S141 and the other three strains shared four genes encoding β-glucosidases corresponding to bglA, bglC, bglH, and gmuD in B. subtilis 168. The gene inactivation analysis of B. subtilis 168 revealed that bglC encoded the major β-glucosidase, contributing about half of the total activity to hydrolyze isoflavone glycosides and that bglA, bglH, and gmuD, all barely committed to the hydrolysis of isoflavone glycosides. Thus, an unknown β-glucosidase exists, and our genetic knowledge of β-glucosidases was insufficient to evaluate the ability to hydrolyze isoflavone glycosides. Nevertheless, S141 could predominate in the soybean rhizosphere, releasing isoflavone aglycones to enhance soybean nodulation.
Collapse
Affiliation(s)
- Takahiko Kondo
- Department of Science, Technology and Innovation, Kobe University
| | - Surachat Sibponkrung
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Ken-Yu Hironao
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University
| |
Collapse
|
9
|
Huang T, Zhang Y, Yu Z, Zhuang W, Zeng Z. Bacillus velezensis BV01 Has Broad-Spectrum Biocontrol Potential and the Ability to Promote Plant Growth. Microorganisms 2023; 11:2627. [PMID: 38004639 PMCID: PMC10673169 DOI: 10.3390/microorganisms11112627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
To evaluate the potential of a bacterial strain as a fungal disease control agent and plant growth promoter, its inhibitory effects on phytopathogens such as Bipolaris sorokiniana, Botrytis cinerea, Colletotrichum capsici, Fusarium graminearum, F. oxysporum, Neocosmospora rubicola, Rhizoctonia solani, and Verticillium dahliae were investigated. The results showed that the inhibitory rates in dual-culture and sterile filtrate assays against these eight phytopathogens ranged from 57% to 83% and from 36% to 92%. The strain was identified as Bacillus velezensis based on morphological and physiological characterization as well as phylogenetic analyses of 16S rRNA and the gyrase subunit A protein (gyrA) regions. The results demonstrated that B. velezensis was able to produce fungal cell-wall-degrading enzymes, namely, protease, cellulase, and β-1,3-glucanase, and the growth-promotion substances indole-3-acetic acid (IAA) and siderophore. Furthermore, B. velezensis BV01 had significant control effects on wheat root rot and pepper Fusarium wilt in a greenhouse. Potted growth-promotion experiments displayed that BV01 significantly increased the height, stem diameter, and aboveground fresh and dry weights of wheat and pepper. The results imply that B. velezensis BV01, a broad-spectrum biocontrol bacterium, is worth further investigation regarding its practical applications in agriculture.
Collapse
Affiliation(s)
- Ting Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.H.); (Y.Z.); (W.Z.)
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
| | - Yi Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.H.); (Y.Z.); (W.Z.)
| | - Zhihe Yu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
| | - Wenying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.H.); (Y.Z.); (W.Z.)
| | - Zhaoqing Zeng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.H.); (Y.Z.); (W.Z.)
| |
Collapse
|
10
|
Sarkar R, Mukherjee S, Pradhan B, Chatterjee G, Goswami R, Ali MN, Ray SS. Molecular characterization of vermicompost-derived IAA-releasing bacterial isolates and assessment of their impact on the root improvement of banana during primary hardening. World J Microbiol Biotechnol 2023; 39:351. [PMID: 37864056 DOI: 10.1007/s11274-023-03809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
The hardening step of micropropagation is crucial to make the in vitro raised plants mature and further enhancing their survivability in the external environment. Auxin regulates various root physiological parameters in plant systems. Therefore, the present study aimed to assess the impact of three vermicompost-derived IAA-releasing microbial strains, designated S1, S2, and S3, as biofertilizers on in vitro raised banana plantlets during primary hardening. The High-Performance Thin-Layer Chromatography (HPTLC) analysis of these strains revealed a higher IAA content for S1 and S2 than that of S3 after 144 h of incubation. In total, seven different treatments were applied to banana plantlets, and significant variations were observed in all plant growth parameters for all treatments except autoclaved cocopeat (100%) mixed with autoclaved vermicompost (100%) at a 1:1 ratio. Among these treatments, the application of S3 biofertilizer: autoclaved cocopeat (1:1), followed by S2 biofertlizer: autoclaved cocopeat (1:1), was found to be better than other treatments for root numbers per plant, root length per plant, root volume, and chlorophyll content. These findings have confirmed the beneficial effects of microbial strains on plant systems and propose a link between root improvement and bacterial auxin. Further, these strains were identified at the molecular level as Bacillus sp. As per our knowledge, this is the first report of Bacillus strains isolated from vermicompost and applied as biofertilizer along with cocopeat for the primary hardening of banana. This unique approach may be adopted to improve the quality of plants during hardening, which increases their survival under abiotic stresses.
Collapse
Affiliation(s)
- Rajdeep Sarkar
- Division of Agricultural Biotechnology, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Shibasis Mukherjee
- Division of Agricultural Biotechnology, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Bhubaneswar Pradhan
- Division of Agricultural Biotechnology, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Gautam Chatterjee
- Division of Agricultural Biotechnology, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Rupak Goswami
- Division of Rural Development, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Md Nasim Ali
- Department of Agricultural Biotechnology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Syandan Sinha Ray
- Division of Agricultural Biotechnology, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India.
| |
Collapse
|
11
|
Samaniego-Gámez BY, Valle-Gough RE, Garruña-Hernández R, Reyes-Ramírez A, Latournerie-Moreno L, Tun-Suárez JM, Villanueva-Alonzo HDJ, Nuñez-Ramírez F, Diaz LC, Samaniego-Gámez SU, Minero-García Y, Hernandez-Zepeda C, Moreno-Valenzuela OA. Induced Systemic Resistance in the Bacillus spp.- Capsicum chinense Jacq.-PepGMV Interaction, Elicited by Defense-Related Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112069. [PMID: 37299048 DOI: 10.3390/plants12112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Induced systemic resistance (ISR) is a mechanism involved in the plant defense response against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal of the present study was to analyze the effect of the inoculation of Bacillus on the expression of genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1 were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in these plants were less severe compared to the plants infected with PepGMV and non-inoculated with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1 was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation of Bacillus strains interferes with the viral replication, through the increase in the transcription of pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved yield in the greenhouse, regardless of PepGMV infection status.
Collapse
Affiliation(s)
- Blancka Yesenia Samaniego-Gámez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Raúl Enrique Valle-Gough
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - René Garruña-Hernández
- CONACYT-National Technological Institute of Mexico, Technological Institute of Conkal, CONACYT, Tecnológico Ave. s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Arturo Reyes-Ramírez
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Luis Latournerie-Moreno
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - José María Tun-Suárez
- National Technological Institute of Mexico, Conkal Institute of Technology, Division of Graduate Studies and Research, Av. Tecnológico s/n, Conkal P.O. Box 97345, Yucatán, Mexico
| | - Hernán de Jesús Villanueva-Alonzo
- Regional Research Center "Dr. Hideyo Noguchi", Cell Biology Laboratory, Autonomous University of Yucatan, Av. Itzáez, Nmbr. 490 by 59 St. Centro, Merida P.O. Box 97000, Yucatán, Mexico
| | - Fidel Nuñez-Ramírez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Lourdes Cervantes Diaz
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Samuel Uriel Samaniego-Gámez
- Institute of Agricultural Sciences, Autonomous University of Baja California, Delta Highway s/n Ejido Nuevo León, Mexicali P.O. Box 21705, Baja California, Mexico
| | - Yereni Minero-García
- Yucatan Center of Scientific Research, Plant Biochemistry and Molecular Biology Unit, 43 St., Nmbr. 130, Chuburna de Hidalgo, Merida P.O. Box 97200, Yucatán, Mexico
| | - Cecilia Hernandez-Zepeda
- Yucatan Center of Scientific Research, Water Sciences Unit, 8 St., Nmbr. 39, SM 64, Mz. 29, Cancun P.O. Box 77500, Quintana Roo, Mexico
| | - Oscar A Moreno-Valenzuela
- Yucatan Center of Scientific Research, Plant Biochemistry and Molecular Biology Unit, 43 St., Nmbr. 130, Chuburna de Hidalgo, Merida P.O. Box 97200, Yucatán, Mexico
| |
Collapse
|
12
|
Dong H, Gao R, Dong Y, Yao Q, Zhu H. Bacillus velezensis RC116 Inhibits the Pathogens of Bacterial Wilt and Fusarium Wilt in Tomato with Multiple Biocontrol Traits. Int J Mol Sci 2023; 24:ijms24108527. [PMID: 37239871 DOI: 10.3390/ijms24108527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Soil-borne plant diseases seriously threaten the tomato industry worldwide. Currently, eco-friendly biocontrol strategies have been increasingly considered as effective approaches to control the incidence of disease. In this study, we identified bacteria that could be used as biocontrol agents to mitigate the growth and spread of the pathogens causing economically significant diseases of tomato plants, such as tomato bacterial wilt and tomato Fusarium wilt. Specifically, we isolated a strain of Bacillus velezensis (RC116) from tomato rhizosphere soil in Guangdong Province, China, with high biocontrol potential and confirmed its identity using both morphological and molecular approaches. RC116 not only produced protease, amylase, lipase, and siderophores but also secreted indoleacetic acid, and dissolved organophosphorus in vivo. Moreover, 12 Bacillus biocontrol maker genes associated with antibiotics biosynthesis could be amplified in the RC116 genome. Extracellular secreted proteins of RC116 also exhibited strong lytic activity against Ralstonia solanacearum and Fusarium oxysporum f. sp. Lycopersici. Pot experiments showed that the biocontrol efficacy of RC116 against tomato bacteria wilt was 81%, and consequently, RC116 significantly promoted the growth of tomato plantlets. Based on these multiple biocontrol traits, RC116 is expected to be developed into a broad-spectrum biocontrol agent. Although several previous studies have examined the utility of B. velezensis for the control of fungal diseases, few studies to date have evaluated the utility of B. velezensis for the control of bacterial diseases. Our study fills this research gap. Collectively, our findings provide new insights that will aid the control of soil-borne diseases, as well as future studies of B. velezensis strains.
Collapse
Affiliation(s)
- Honghong Dong
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruixiang Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yijie Dong
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qing Yao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
13
|
Chaudhary R, Kumar V, Gupta S, Naik B, Prasad R, Mishra S, Saris PEJ, Kumar V. Finger Millet ( Eleusine coracana) Plant-Endophyte Dynamics: Plant Growth, Nutrient Uptake, and Zinc Biofortification. Microorganisms 2023; 11:microorganisms11040973. [PMID: 37110396 PMCID: PMC10143119 DOI: 10.3390/microorganisms11040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Endophytic fungi and bacteria were isolated from finger millet and their effects on finger millet growth parameters and zinc and NPK contents in grains were studied. Out of 70 fungal and 112 bacterial endophytes, the two best fungal and bacterial isolates were selected on the basis of zinc solubilization and plant-growth-promoting attributes. The fungal isolates identified were Aspergillus terreus and Lecanicillium sp., and the bacterial isolates were Pseudomonas bijieensis and Priestia megaterium. The endophytic zinc, NPK mobilization, and plant-growth-promoting efficacy were determined in a pot experiment with zinc carbonate as the zinc source. Endophytic-primed plants showed enhanced shoot and root lengths compared to the unprimed control. Endophytes increased the zinc content in grains by between 12.12% and 18.80% compared to control plants. Endophytes also augmented the NPK concentrations in seeds compared to control plants and exhibited stability in a diverse range of pHs, temperatures, and NaCl concentrations, and exhibited growth on various carbohydrate and nitrogen sources. This is the first study reporting the interaction of Aspergillus terreus, Lecanicillium sp., Pseudomonas bijieensis, and Priestia megaterium with finger millet for grain Zn biofortification and NPK concentration enhancement. This study indicated that zinc-dissolving endophytes possess the potential for enhancing the zinc and NPK content in grains in addition to the plant-growth-promoting attributes.
Collapse
Affiliation(s)
- Renu Chaudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Bindu Naik
- Department of Life Sciences, Graphic Era (Deemed to be) University, Bell Road, Clement Town, Dehradun 248002, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100 Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| |
Collapse
|
14
|
Chamkhi I, Zwanzig J, Ibnyasser A, Cheto S, Geistlinger J, Saidi R, Zeroual Y, Kouisni L, Bargaz A, Ghoulam C. Siccibacter colletis as a member of the plant growth-promoting rhizobacteria consortium to improve faba-bean growth and alleviate phosphorus deficiency stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rhizosphere is a hot spot and a source of beneficial microorganisms known as plant growth-promoting rhizobacteria (PGPR). From the alfalfa (Medicago sativa) rhizosphere, 115 bacteria were isolated, and from the screening for PGP traits, 26 interesting isolates were selected as PGP rhizobacteria for the next tests. The objective of this study was to use a consortium of PGPR to enhance the growth of faba-bean under phosphate (P) deficiency by taking advantage of their ability to release phosphorus from rock phosphate (RP). Several examined strains were found to have a relatively high activity on P solubilization, auxin, siderophore, ammoniac production, antifungal activity, and the ability to tolerate hypersalinity and water stress. 16S rRNA gene sequencing of the collection revealed six different genera, including Bacillus (46.15%), Siccibacter (23.07%), and Acinetobacter (15.38%) which were identified as the most abundant. Three of the interesting strains (Siccibacter colletis, Enterobacter huaxiensis, and Pantoea sp.) showed high plant growth promotion traits and no antagonism with Rhizobium laguerreae. These three bacteria were retained to establish a rhizobia-including consortium. The inoculation of faba-bean plants with the consortium improved growth parameters as root and shoot dried biomasses and some physiological criteria (chlorophyll content and P uptake under low P availability conditions), and the increase reached 40%. Our study could be the first report of faba-bean growth promotion by a multi-strain PGPR-rhizobia consortium involving S. colletis, E. huaxiensis, and Pantoea sp. Thus, this consortium could be recommended for faba-bean inoculation, particularly under P-limiting conditions.
Collapse
|
15
|
Aslam MM, Pueyo JJ, Pang J, Yang J, Chen W, Chen H, Waseem M, Li Y, Zhang J, Xu W. Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition. PLANT PHYSIOLOGY 2022; 190:2449-2465. [PMID: 36066452 PMCID: PMC9706455 DOI: 10.1093/plphys/kiac418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 05/11/2023]
Abstract
The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; -P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD-P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD-P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD-P conditions.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Department of Biology, Hong Kong Baptist University, Hong Kong
- State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong
| | - José J Pueyo
- Institute of Agricultural Sciences, ICA-CSIC, Madrid 28006, Spain
| | - Jiayin Pang
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jinyong Yang
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiguo Chen
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Chen
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong
- State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Klein M, Stewart JD, Porter SS, Weedon JT, Kiers ET. Evolution of manipulative microbial behaviors in the rhizosphere. Evol Appl 2022; 15:1521-1536. [PMID: 36330300 PMCID: PMC9624083 DOI: 10.1111/eva.13333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
The rhizosphere has been called "one of the most complex ecosystems on earth" because it is a hotspot for interactions among millions of microbial cells. Many of these are microbes are also participating in a dynamic interplay with host plant tissues, signaling pathways, and metabolites. Historically, breeders have employed a plant-centric perspective when trying to harness the potential of microbiome-derived benefits to improve productivity and resilience of economically important plants. This is potentially problematic because: (i) the evolution of the microbes themselves is often ignored, and (ii) it assumes that the fitness of interacting plants and microbes is strictly aligned. In contrast, a microbe-centric perspective recognizes that putatively beneficial microbes are still under selection to increase their own fitness, even if there are costs to the host. This can lead to the evolution of sophisticated, potentially subtle, ways for microbes to manipulate the phenotype of their hosts, as well as other microbes in the rhizosphere. We illustrate this idea with a review of cases where rhizosphere microbes have been demonstrated to directly manipulate host root growth, architecture and exudation, host nutrient uptake systems, and host immunity and defense. We also discuss indirect effects, whereby fitness outcomes for the plant are a consequence of ecological interactions between rhizosphere microbes. If these consequences are positive for the plant, they can potentially be misconstrued as traits that have evolved to promote host growth, even if they are a result of selection for unrelated functions. The ubiquity of both direct microbial manipulation of hosts and context-dependent, variable indirect effects leads us to argue that an evolutionary perspective on rhizosphere microbial ecology will become increasingly important as we continue to engineer microbial communities for crop production.
Collapse
Affiliation(s)
- Malin Klein
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Justin D. Stewart
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - James T. Weedon
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
17
|
Mosela M, Andrade G, Massucato LR, de Araújo Almeida SR, Nogueira AF, de Lima Filho RB, Zeffa DM, Mian S, Higashi AY, Shimizu GD, Teixeira GM, Branco KS, Faria MV, Giacomin RM, Scapim CA, Gonçalves LSA. Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops. Sci Rep 2022; 12:15284. [PMID: 36088482 PMCID: PMC9464197 DOI: 10.1038/s41598-022-19515-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Soybean and maize are some of the main drivers of Brazilian agribusiness. However, biotic and abiotic factors are of great concern, causing huge grain yield and quality losses. Phosphorus (P) deficiency is important among the abiotic factors because most Brazilian soils have a highly P-fixing nature. Thus, large amounts of phosphate fertilizers are regularly applied to overcome the rapid precipitation of P. Searching for alternatives to improve the use of P by crops is essential to reduce the demand for P input. The use of multifunctional rhizobacteria can be considered one of these alternatives. In this sense, the objective of the present work was to select and validate bacterial strains with triple action (plant growth promoter, phosphate solubilizer, and biocontrol agent) in maize and soybean, aiming to develop a multifunctional microbial inoculant for Brazilian agriculture. Bacterial strains with high indole acetic acid (IAA) production, phosphate solubilization, and antifungal activity against soil pathogenic fungi (Rhizoctonia solani, Macrophomina phaseolina, and Fusarium solani) were selected from the maize rhizosphere. Then, they were evaluated as growth promoters in maize under greenhouse conditions. Based on this study, strain 03 (Ag75) was selected due to its high potential for increasing biomass (root and shoot) and shoot P content in maize. This strain was identified through genomic sequencing as Bacillus velezensis. In field experiments, the inoculation of this bacterium increased maize and soybean yields by 17.8 and 26.5%, respectively, compared to the control (25 kg P2O5). In addition, the inoculation results did not differ from the control with 84 kg P2O5, indicating that it is possible to reduce the application of phosphate in these crops. Thus, the Ag75 strain has great potential for developing a multifunctional microbial inoculant that combines the ability to solubilize phosphate, promote plant growth, and be a biocontrol agent for several phytopathogenic fungi.
Collapse
|
18
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Mashabela MD, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA, Mhlongo MI. Untargeted metabolite profiling to elucidate rhizosphere and leaf metabolome changes of wheat cultivars (Triticum aestivum L.) treated with the plant growth-promoting rhizobacteria Paenibacillus alvei (T22) and Bacillus subtilis. Front Microbiol 2022; 13:971836. [PMID: 36090115 PMCID: PMC9453603 DOI: 10.3389/fmicb.2022.971836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The rhizosphere is a highly complex and biochemically diverse environment that facilitates plant–microbe and microbe–microbe interactions, and this region is found between plant roots and the bulk soil. Several studies have reported plant root exudation and metabolite secretion by rhizosphere-inhabiting microbes, suggesting that these metabolites play a vital role in plant–microbe interactions. However, the biochemical constellation of the rhizosphere soil is yet to be fully elucidated and thus remains extremely elusive. In this regard, the effects of plant growth-promoting rhizobacteria (PGPR)–plant interactions on the rhizosphere chemistry and above ground tissues are not fully understood. The current study applies an untargeted metabolomics approach to profile the rhizosphere exo-metabolome of wheat cultivars generated from seed inoculated (bio-primed) with Paenibacillus (T22) and Bacillus subtilis strains and to elucidate the effects of PGPR treatment on the metabolism of above-ground tissues. Chemometrics and molecular networking tools were used to process, mine and interpret the acquired mass spectrometry (MS) data. Global metabolome profiling of the rhizosphere soil of PGPR-bio-primed plants revealed differential accumulation of compounds from several classes of metabolites including phenylpropanoids, organic acids, lipids, organoheterocyclic compounds, and benzenoids. Of these, some have been reported to function in plant–microbe interactions, chemotaxis, biocontrol, and plant growth promotion. Metabolic perturbations associated with the primary and secondary metabolism were observed from the profiled leaf tissue of PGPR-bio-primed plants, suggesting a distal metabolic reprograming induced by PGPR seed bio-priming. These observations gave insights into the hypothetical framework which suggests that PGPR seed bio-priming can induce metabolic changes in plants leading to induced systemic response for adaptation to biotic and abiotic stress. Thus, this study contributes knowledge to ongoing efforts to decipher the rhizosphere metabolome and mechanistic nature of biochemical plant–microbe interactions, which could lead to metabolome engineering strategies for improved plant growth, priming for defense and sustainable agriculture.
Collapse
Affiliation(s)
- Manamele D. Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- *Correspondence: Msizi I. Mhlongo,
| |
Collapse
|
20
|
The Genome of Bacillus velezensis SC60 Provides Evidence for Its Plant Probiotic Effects. Microorganisms 2022; 10:microorganisms10040767. [PMID: 35456817 PMCID: PMC9025316 DOI: 10.3390/microorganisms10040767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Root colonization and plant probiotic function are important traits of plant growth-promoting rhizobacteria (PGPR). Bacillus velezensis SC60, a plant endophytic strain screened from Sesbania cannabina, has a strong colonization ability on various plant roots, which indicates that SC60 has a preferable adaptability to plants. However, the probiotic function of the strain SC60 is not well-understood. Promoting plant growth and suppressing soil-borne pathogens are key to the plant probiotic functions. In this study, the genetic mechanism of plant growth-promoting and antibacterial activity of the strain SC60 was analyzed by biological and bioinformatics methods. The complete genome size of strain SC60 was 3,962,671 bp, with 4079 predicted genes and an average GC content of 46.46%. SC60 was designated as Bacillus velezensis according to the comparative analysis, including average nucleotide polymorphism (ANI), digital DNA–DNA hybridization (dDDH), and phylogenetic analysis. Genomic secondary metabolite analyses indicated two clusters encoding potential new antimicrobials. The antagonism experiments revealed that strain SC60 had the ability to inhibit the growth of a variety of plant pathogens and its closely related strains of Bacillus spp., which was crucial to the rhizospheric competitiveness and growth-promoting effect of the strain. The present results further suggest that B. velezensis SC60 could be used as a PGPR strain to develop new biocontrol agents or microbial fertilizers.
Collapse
|
21
|
Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Microbiol Spectr 2022; 10:e0216921. [PMID: 35107331 PMCID: PMC8809340 DOI: 10.1128/spectrum.02169-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Collapse
|
22
|
Bacillus as a source of phytohormones for use in agriculture. Appl Microbiol Biotechnol 2021; 105:8629-8645. [PMID: 34698898 DOI: 10.1007/s00253-021-11492-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Microbial plant biostimulants (MPBs) are capable of improving the productivity and quality of crops by activating plant physiological and molecular processes, representing an efficient tool in sustainable agriculture. Through phytohormone production, MPBs are capable of regulating plant physiological processes, increasing the productivity and quality of crops, in addition to being an efficient alternative in the industrial production of phytohormones. Bacillus is a bacterial genus with various species on the market being used as biopesticides, due to their ability to produce antimicrobial, nematicidal and insecticidal compounds. The capability of Bacillus species to protect plants against pests and/or pathogens also entails the triggering or increase of plant defense responses. Furthermore, a relevant number of species from the genus Bacillus provoke plant growth promotion by different mechanisms such as increasing the tolerance of their host plants under abiotic stress conditions or improving plant nutrition. In several cases, the plant response is mediated by the bacterial production of phytohormones. In the present work, all studies from recent decades where the production of phytohormones by Bacillus species are reported, highlighting their role in host plants and the mechanisms by which they are capable of increasing plant growth, promoting their development, and improving their response to different stresses. KEY POINTS: • Different Bacillus-species are known as agricultural biopesticides. • Bacillus role as biostimulants is being increasingly addressed. • Bacillus represents a good source of phytohormones of agricultural interest.
Collapse
|
23
|
Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, Rchiad Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol Res 2021; 252:126842. [PMID: 34438221 DOI: 10.1016/j.micres.2021.126842] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Although research on plant growth promoting bacteria began in the 1950s, basic and applied research on bacteria improving use of phosphorus (P) continues to be a priority among many agricultural research institutions. Ultimately, identifying agriculturally beneficial microbes, notably P solubilizing bacteria (PSB), that enhance the efficient use of P supports more sustainable cropping systems and the judicious use of mineral nutrients. In parallel, there is more attention on improving crop root P acquisition of existing soil P pools as well as by increasing the proportion of fertilizer P that is taken up by crops. Today, new lines of research are emerging to investigate the co-optimization of PSB-fertilizer-crop root processes for improved P efficiency and agricultural performance. In this review, we compile and summarize available findings on the beneficial effects of PSB on crop production with a focus on crop P acquisition via root system responses at the structural, functional and transcriptional levels. We discuss the current state of knowledge on the mechanisms of PSB-mediated P availability, both soil- and root-associated, as well as crop uptake via P solubilization, mineralization and mobilization, mainly through the production of organic acids and P-hydrolyzing enzymes, and effects on phytohormone signaling for crop root developement. The systematic changes caused by PSB on crop roots are discussed and contextualized within promising functional trait-based frameworks. We also detail agronomic profitability of P (mineral and organic) and PSB co-application, in amended soils and inoculated crops, establishing the connection between the influence of PSB on agroecosystem production and the impact of P fertilization on microbial diversity and crop functional traits for P acquisition.
Collapse
Affiliation(s)
- Adnane Bargaz
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco.
| | - Wissal Elhaissoufi
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco; Cadi Ayyad University, Faculty of Sciences and Techniques, Biology Dep., Marrakech, Morocco
| | - Said Khourchi
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco; University of Liège, Gembloux Agro-Bio Tech, Liège, Belgium
| | - Bouchra Benmrid
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco
| | - Kira A Borden
- University of British Columbia, Faculty of Land and Food Systems, Vancouver, V6T 1Z4, Canada
| | - Zineb Rchiad
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco
| |
Collapse
|
24
|
Alzate Zuluaga MY, Martinez de Oliveira AL, Valentinuzzi F, Tiziani R, Pii Y, Mimmo T, Cesco S. Can Inoculation With the Bacterial Biostimulant Enterobacter sp. Strain 15S Be an Approach for the Smarter P Fertilization of Maize and Cucumber Plants? FRONTIERS IN PLANT SCIENCE 2021; 12:719873. [PMID: 34504509 PMCID: PMC8421861 DOI: 10.3389/fpls.2021.719873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is an essential nutrient for plants. The use of plant growth-promoting bacteria (PGPB) may also improve plant development and enhance nutrient availability, thus providing a promising alternative or supplement to chemical fertilizers. This study aimed to evaluate the effectiveness of Enterobacter sp. strain 15S in improving the growth and P acquisition of maize (monocot) and cucumber (dicot) plants under P-deficient hydroponic conditions, either by itself or by solubilizing an external source of inorganic phosphate (Pi) [Ca3(PO4)2]. The inoculation with Enterobacter 15S elicited different effects on the root architecture and biomass of cucumber and maize depending on the P supply. Under sufficient P, the bacterium induced a positive effect on the whole root system architecture of both plants. However, under P deficiency, the bacterium in combination with Ca3(PO4)2 induced a more remarkable effect on cucumber, while the bacterium alone was better in improving the root system of maize compared to non-inoculated plants. In P-deficient plants, bacterial inoculation also led to a chlorophyll content [soil-plant analysis development (SPAD) index] like that in P-sufficient plants (p < 0.05). Regarding P nutrition, the ionomic analysis indicated that inoculation with Enterobacter 15S increased the allocation of P in roots (+31%) and shoots (+53%) of cucumber plants grown in a P-free nutrient solution (NS) supplemented with the external insoluble phosphate, whereas maize plants inoculated with the bacterium alone showed a higher content of P only in roots (36%) but not in shoots. Furthermore, in P-deficient cucumber plants, all Pi transporter genes (CsPT1.3, CsPT1.4, CsPT1.9, and Cucsa383630.1) were upregulated by the bacterium inoculation, whereas, in P-deficient maize plants, the expression of ZmPT1 and ZmPT5 was downregulated by the bacterial inoculation. Taken together, these results suggest that, in its interaction with P-deficient cucumber plants, Enterobacter strain 15S might have solubilized the Ca3(PO4)2 to help the plants overcome P deficiency, while the association of maize plants with the bacterium might have triggered a different mechanism affecting plant metabolism. Thus, the mechanisms by which Enterobacter 15S improves plant growth and P nutrition are dependent on crop and nutrient status.
Collapse
Affiliation(s)
- Mónica Yorlady Alzate Zuluaga
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina, Brazil
| | | | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Raphael Tiziani
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| |
Collapse
|
25
|
Healthy Photosynthetic Mechanism Suggests ISR Elicited by Bacillus spp. in Capsicum chinense Plants Infected with PepGMV. Pathogens 2021; 10:pathogens10040455. [PMID: 33920312 PMCID: PMC8069211 DOI: 10.3390/pathogens10040455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effect of inoculation with Bacillus spp. isolates on the photosynthetic apparatus of Capsicum chinense plants infected with PepGMV. In vitro and greenhouse experiments were performed to evaluate whether the inoculation improved plants’ performance through the increase in photosynthetic efficiency to control PepGMV. The results showed that despite PepGMV infection, the plants inoculated with some isolates of Bacillus spp. had a healthy photosynthetic mechanism, as the photochemical parameters and gas exchange increased. The maximum photochemical quantum yield of PSII (Fv/Fm) of plants with PepGMV and inoculated with Bacillus isolates (M9, K46, and K47) increased (7.85, 7.09, and 7.77%, respectively) with respect to uninoculated controls. In inoculated plants, the CO2 assimilation rate increased and the transpiration rate decreased, therefore indicating an increased water use efficiency. This effect was reflected by the less severe symptoms caused by PepGMV in the plants obtained from seeds inoculated with different Bacillus spp. Plants inoculated with K47 isolates showed an increase in fruit yield and quality. This study suggests that it is possible to protect, at the greenhouse level, C. chinense plants from PepGMV through selected rhizobacteria inoculation.
Collapse
|
26
|
Baudson C, Delory BM, Spaepen S, du Jardin P, Delaplace P. Developmental plasticity of Brachypodium distachyon in response to P deficiency: Modulation by inoculation with phosphate-solubilizing bacteria. PLANT DIRECT 2021; 5:e00296. [PMID: 33532689 PMCID: PMC7833465 DOI: 10.1002/pld3.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/17/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mineral phosphorus (P) fertilizers must be used wisely in order to preserve rock phosphate, a limited and non-renewable resource. The use of bio-inoculants to improve soil nutrient availability and trigger an efficient plant response to nutrient deficiency is one potential strategy in the attempt to decrease P inputs in agriculture. METHOD An in vitro co-cultivation system was used to study the response of Brachypodium distachyon to contrasted P supplies (soluble and poorly soluble forms of P) and inoculation with P solubilizing bacteria. Brachypodium's responses to P conditions and inoculation with bacteria were studied in terms of developmental plasticity and P use efficiency. RESULTS Brachypodium showed plasticity in its biomass allocation pattern in response to variable P conditions, specifically by prioritizing root development over shoot productivity under poorly soluble P conditions. Despite the ability of the bacteria to solubilize P, shoot productivity was depressed in plants inoculated with bacteria, although the root system development was maintained. The negative impact of bacteria on biomass production in Brachypodium might be attributed to inadequate C supply to bacteria, an increased competition for P between both organisms under P-limiting conditions, or an accumulation of toxic bacterial metabolites in our cultivation system. Both P and inoculation treatments impacted root system morphology. The modulation of Brachypodium's developmental response to P supplies by P solubilizing bacteria did not lead to improved P use efficiency. CONCLUSION Our results support the hypothesis that plastic responses of Brachypodium cultivated under P-limited conditions are modulated by P solubilizing bacteria. The considered experimental context impacts plant-bacteria interactions. Choosing experimental conditions as close as possible to real ones is important in the selection of P solubilizing bacteria. Both persistent homology and allometric analyses proved to be useful tools that should be considered when studying the impact of bio-inoculants on plant development in response to varying nutritional context.
Collapse
Affiliation(s)
- Caroline Baudson
- Plant SciencesGembloux Agro‐Bio TechUniversity of LiègeLiègeBelgium
| | | | - Stijn Spaepen
- Leuven Institute for Beer ResearchUniversity of LeuvenLeuvenBelgium
| | | | - Pierre Delaplace
- Plant SciencesGembloux Agro‐Bio TechUniversity of LiègeLiègeBelgium
| |
Collapse
|
27
|
Hayat K, Menhas S, Bundschuh J, Zhou P, Niazi NK, Hussain A, Hayat S, Ali H, Wang J, Khan AA, Ali A, Munis FH, Chaudhary HJ. Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1372-1384. [PMID: 32579378 DOI: 10.1080/15226514.2020.1780410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In developing countries, Cd contamination is ubiquitous which limits agriculture productivity. The current study was designed to investigate the efficacy of plant-Bacillus pumilus-ethylene diamine tetraacetic acid (EDTA) and plant-microbe-chelator (PMC) synergy for enhanced plant growth and Cd-uptake potential of Zea mays in industrially contaminated and cadmium (Cd) spiked soil. A pot experiment was conducted by growing Z. mays seedlings either inoculated with B. pumilus or un-inoculated along with the application of 5 mM EDTA. Plants were exposed to two levels of Cd contamination for 45 days. An increase in Cd uptake was observed in Z. mays inoculated with B. pumilus followed by EDTA treatment as compared to non-inoculated and un-treated ones. Zea mays showed improved values with PMC approach for different growth parameters including root length (41%), shoot length (40%), fresh weight (59%), dry weight (49%), chlorophyll contents (49%), and relative water contents (30%). Higher tolerance index (117%) was observed for plants grown in soil spiked with 300 mg kg-1 Cd (S2). PMC application markedly enhanced Cd uptake potential of Z. mays up to 12% and 68.8%, respectively, in S1 and S2 soil. While the PMC application increased Cd accumulation capacity of Z. mays by 71.2% and 52.5% in S1 and S2 soil. The calculated bioaccumulation and translocation factor revealed that Z. mays possess Cd uptake potential, and this ability can be significantly enhanced with PMC application.
Collapse
Affiliation(s)
- Kashif Hayat
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saiqa Menhas
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Australia
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Australia
| | - Pei Zhou
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nabeel Khan Niazi
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Australia
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amjad Hussain
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sikandar Hayat
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Hazrat Ali
- Green & Environmental Chemistry, Ecotoxicology and Ecology Laboratory, Department of Zoology, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Juncai Wang
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Amir Abdullah Khan
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Plant Biology and Ecology, Nankai University, Tianjin, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Farooq Hussain Munis
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hassan Javed Chaudhary
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
28
|
Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition. Sci Rep 2020; 10:5855. [PMID: 32246044 PMCID: PMC7125087 DOI: 10.1038/s41598-020-62725-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
Phosphorus (P) availability and salinity stress are two major constraints for agriculture productivity. A combination of salinity and P starvation is known to be more deleterious to plant health. Plant growth promoting rhizobacteria are known to ameliorate abiotic stress in plants by increasing the availability of different nutrients. However, interaction mechanisms of plant grown under salinity and P stress condition and effect of beneficial microbe for stress alleviation is still obscure. Earlier we reported the molecular insight of auxin producing, phosphate solubilising Pseudomonas putida MTCC 5279 (RAR) mediated plant growth promotion in Arabidopsis thaliana. In present study new trait of proline and phosphatase production of RAR and its impact on modulation of physiological phenomenon under phosphate starved-salinity stress condition in A. thaliana has been investigated. Different physiological and molecular determinants under RAR- A. thaliana interaction showed that auxin producing RAR shows tryptophan dependence for growth and proline production in ATP dependant manner under salinity stress. However, under P deprived conditions growth and proline production are independent of tryptophan. RAR mediated lateral root branching and root hair density through modulation of abscisic acid signalling was observed. Acidic phosphatase activity under P starved and salinity stress condition was majorly modulated along with ROS metabolism and expression of stress responsive/phosphate transporter genes. A strong correlation of different morpho-physiological factor with RAR + salt conditions, showed We concluded that enhanced adverse effect of salinity with unavailability of P was dampened in presence of P. putida MTCC 5279 (RAR) in A. thaliana, though more efficiently salinity stress conditions. Therefore, alleviation of combined stress of salinity induced phosphate nutrient deficiency by inoculation of beneficial microbe, P. putida MTCC 5279 offer good opportunities for enhancing the agricultural productivity.
Collapse
|
29
|
Bhatt K, Maheshwari DK. Zinc solubilizing bacteria ( Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech 2020; 10:36. [PMID: 31988830 DOI: 10.1007/s13205-019-2033-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022] Open
Abstract
The present study was designed to isolate an array of zinc solubilizing bacteria (ZSB) and to characterize them for plant growth promotion (PGP) attributes with respect to Capsicum annuum L. For this purpose, seventy bacteria were procured from cow dung and screened for zinc solubilization (ZnO and ZnCO3). Where, isolate CDK25 was found to be the most potent owing to its maximum zinc solubilization (ZnO) ability (5.0 cm). For quantitative assay, atomic absorption spectroscopy (AAS) was used, where CDK25 showed markedly higher solubilization of ZnO (20.33 ppm). It was investigated that CDK25 also endowed with multiple PGP attributes viz., Phosphate solubilization, Phytase production, Indole acetic acid (IAA) and Siderophore production. Quantitative study revealed isolate CDK25 to solubilize and produce maximum quantity of phosphate (281.59 μg/ml) and IAA (13.8 μg/ml) respectively. ZSB was applied in different treatments under pot culture assay, where T3 (seeds + CDK25) showed significant impact on plant growth parameters, besides showing maximum zinc content in fruit (0.25 mg/100 g). Hence, isolate CDK25 expresses highest potential throughout the experiments; as zinc solubilizer, PGP strain, and based on 16S rRNA gene sequencing identified as Bacillus megaterium. Therefore, meticulous use of this bacterium could aid in providing adequate amount of soluble zinc along with enhanced plants growth, nutrient uptake and yield in sustainable manner.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404 India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404 India
| |
Collapse
|
30
|
Wang C, Zhao D, Qi G, Mao Z, Hu X, Du B, Liu K, Ding Y. Effects of Bacillus velezensis FKM10 for Promoting the Growth of Malus hupehensis Rehd. and Inhibiting Fusarium verticillioides. Front Microbiol 2020; 10:2889. [PMID: 31998247 PMCID: PMC6965166 DOI: 10.3389/fmicb.2019.02889] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 11/26/2022] Open
Abstract
Bacillus velezensis is a novel species of Bacillus that has been widely investigated and used because of its direct or indirect growth improvement effect for many plants. B. velezensis FKM10 was previously isolated from rhizosphere soil of apple trees and shows potential as a plant growth-promoting and biocontrol bacterium. In this study, strain FKM10 was verified to inhibit some fungal pathogens of soil-borne plant diseases, produce siderophores to absorb ferric iron for plants, and degrade proteins. Pot experiments showed that the application of strain FKM10 could directly promote the growth of Malus hupehensis Rehd. by increasing biomass, promoting the absorption of nutrients, improving soil fertility, changing the soil microbial community structure, and reducing fungal diversity. The results of this study provided a basis for using strain FKM10 to improve crop yield and overcome diseases of plants. The mechanism of strain FKM10 to control the phytopathogenic fungus Fusarium verticillioides was studied by interoperation with RNA sequencing. Strain FKM10 can destroy the cell wall and cell membrane of F. verticillioides. The secretion of glucosidases, such as β-glucanase, might be one of the causes of the destruction of the fungal cell wall. The regulation of amino acid metabolism might also play an important role in the antibacterial process of strain FKM10. During the antibacterial process, strain FKM10 attacks F. verticillioides and strain FKM10 itself is also affected: the expression of spores is increased, the number of viable cells is decreased, and the ribonucleoprotein complex and flagellar assembly-related genes are downregulated. The results of this study indicate that both strain FKM10 and F. verticillioides have mutually inhibitory activities in a liquid environment. Comparative genome analysis of B. velezensis FKM10 reveals that the general features of their genomes are similar overall and contain the core genome for this species. The results of this study further reveal that B. velezensis can also serve as a basis for developing new biocontrol agents or microbial fertilizers.
Collapse
Affiliation(s)
- Chengqiang Wang
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Dongying Zhao
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Guozhen Qi
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhiquan Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiuna Hu
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Kai Liu
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanqin Ding
- Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
31
|
Functional and Genetic Diversity of Bacteria Associated with the Surfaces of Agronomic Plants. PLANTS 2019; 8:plants8040091. [PMID: 30987359 PMCID: PMC6524364 DOI: 10.3390/plants8040091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/03/2022]
Abstract
The main objective of this study was to evaluate the genetic diversity and agricultural significance of bacterial communities associated with the surfaces of selected agronomic plants (carrot, cabbage and turnip). The bacterial diversity of fresh agricultural produce was targeted to identify beneficial plant microflora or opportunistic human pathogens that may be associated with the surfaces of plants. Bacterial strains were screened in vitro for auxin production, biofilm formation and antibiotic resistance. 16S rRNA gene sequencing confirmed the presence of several bacterial genera including Citrobacter, Pseudomonas, Pantoea, Bacillus, Kluyvera, Lysinibacillus, Acinetobacter, Enterobacter, Serratia, Staphylococcus, Burkholderia, Exiguobacterium, Stenotrophomonas, Arthrobacter and Klebsiella. To address the biosafety issue, the antibiotic susceptibility pattern of strains was determined against different antibiotics. The majority of the strains were resistant to amoxicillin (25 µg) and nalidixic acid (30 µg). Strains were also screened for plant growth-promoting attributes to evaluate their positive interaction with colonized plants. Maximum auxin production was observed with Stenotrophomonas maltophilia MCt-1 (101 µg mL−1) and Bacillus cereus PCt-1 (97 µg mL−1). Arthrobacter nicotianae Lb-41 and Exiguobacterium mexicanum MCb-4 were strong biofilm producers. In conclusion, surfaces of raw vegetables were inhabited by different bacterial genera. Potential human pathogens such as Bacillus cereus, Bacillus anthracis, Enterobacter cloacae, Enterobacter amnigenus and Klebsiella pneumoniae were also isolated, which makes the biosafety of these vegetable a great concern for the local community. Nevertheless, these microbes also harbor beneficial plant growth-promoting traits that indicated their positive interaction with their host plants. In particular, bacterial auxin production may facilitate the growth of agronomic plants under natural conditions. Moreover, biofilm formation may help bacteria to colonize plant surfaces to show positive interactions with host plants.
Collapse
|
32
|
Son JS, Hwang YJ, Lee SY, Ghim SY. Bacillus salidurans sp. nov., isolated from salt-accumulated pepper rhizospheric soil. Int J Syst Evol Microbiol 2019; 69:116-122. [DOI: 10.1099/ijsem.0.003110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jin-Soo Son
- 1School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
- 2School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Ye-Ji Hwang
- 1School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Soo-Yeong Lee
- 1School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
- 2School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Sa-Youl Ghim
- 2School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
- 1School of Life Sciences, Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front Microbiol 2018; 9:2491. [PMID: 30386322 PMCID: PMC6198173 DOI: 10.3389/fmicb.2018.02491] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bacillus velezensis FZB42, the model strain for Gram-positive plant-growth-promoting and biocontrol rhizobacteria, has been isolated in 1998 and sequenced in 2007. In order to celebrate these anniversaries, we summarize here the recent knowledge about FZB42. In last 20 years, more than 140 articles devoted to FZB42 have been published. At first, research was mainly focused on antimicrobial compounds, apparently responsible for biocontrol effects against plant pathogens, recent research is increasingly directed to expression of genes involved in bacteria–plant interaction, regulatory small RNAs (sRNAs), and on modification of enzymes involved in synthesis of antimicrobial compounds by processes such as acetylation and malonylation. Till now, 13 gene clusters involved in non-ribosomal and ribosomal synthesis of secondary metabolites with putative antimicrobial action have been identified within the genome of FZB42. These gene clusters cover around 10% of the whole genome. Antimicrobial compounds suppress not only growth of plant pathogenic bacteria and fungi, but could also stimulate induced systemic resistance (ISR) in plants. It has been found that besides secondary metabolites also volatile organic compounds are involved in the biocontrol effect exerted by FZB42 under biotic (plant pathogens) and abiotic stress conditions. In order to facilitate easy access to the genomic data, we have established an integrating data bank ‘AmyloWiki’ containing accumulated information about the genes present in FZB42, available mutant strains, and other aspects of FZB42 research, which is structured similar as the famous SubtiWiki data bank.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Cong Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany.,Nord Reet UG, Greifswald, Germany
| |
Collapse
|
34
|
Lo KJ, Lin SS, Lu CW, Kuo CH, Liu CT. Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3). Sci Rep 2018; 8:12769. [PMID: 30143697 PMCID: PMC6109142 DOI: 10.1038/s41598-018-31128-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/13/2018] [Indexed: 11/14/2022] Open
Abstract
Rhodopseudomonas palustris strains PS3 and YSC3 are purple non-sulfur phototrophic bacteria isolated from Taiwanese paddy soils. PS3 has beneficial effects on plant growth and enhances the uptake efficiency of applied fertilizer nutrients. In contrast, YSC3 has no significant effect on plant growth. The genomic structures of PS3 and YSC3 are similar; each contains one circular chromosome that is 5,269,926 or 5,371,816 bp in size, with 4,799 or 4,907 protein-coding genes, respectively. In this study, a large class of genes involved in chemotaxis and motility was identified in both strains, and genes associated with plant growth promotion, such as nitrogen fixation-, IAA synthesis- and ACC deamination-associated genes, were also identified. We noticed that the growth rate, the amount of biofilm formation, and the relative expression levels of several chemotaxis-associated genes were significantly higher for PS3 than for YSC3 upon treatment with root exudates. These results indicate that PS3 responds better to the presence of plant hosts, which may contribute to the successful interactions of PS3 with plant hosts. Moreover, these findings indicate that the existence of gene clusters associated with plant growth promotion is required but not sufficient for a bacterium to exhibit phenotypes associated with plant growth promotion.
Collapse
Affiliation(s)
- Kai-Jiun Lo
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Chia-Wei Lu
- Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 115, Taiwan. .,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung City, 402, Taiwan.
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
35
|
Santos RM, Kandasamy S, Rigobelo EC. Sugarcane growth and nutrition levels are differentially affected by the application of PGPR and cane waste. Microbiologyopen 2018; 7:e00617. [PMID: 29653035 PMCID: PMC6291826 DOI: 10.1002/mbo3.617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 11/16/2022] Open
Abstract
Mineral and organic fertilization can be optimized by using rhizobacteria which increases dry matter, yield, and nutrients in the soil and plant, among the other biological inputs. However, the discovery of single microbes or a consortium that can benefit plants has been a challenge. In this context, this study aimed to evaluate the effects of Bacillus subtilis and Bacillus pumilus combined with mineral fertilization and sugar and alcohol industry by‐products in presprouted and the initial growth phase of sugar cane seedlings. The study was carried out in two phases. Phase 1 included presprouted seedlings with T1 = untreated control, T2 = B. subtilis, T3 = B. pumilus, and T4 = B. subtilis + B. pumilus treatments. Phase 2 included the same treatments with four types of fertilization: F1 = mineral fertilization, F2 = mineral fertilization + vinasse, F3 = mineral fertilization + filter cake, and F4 = mineral fertilization + filter cake compost. Of the phase 1 treatments, T2 (B. subtilis) was the best promoter of root growth and the total dry matter compared to the control with an increase of 23.0% compared to the control. In phase 2, B. pumilus application, increased the total dry matter by 13%, the number of tillers by 37%, and the diameter of the tillers by 48% when combined with mineral fertilization. The combined application of B. subtilis and B. pumilus increased the phosphorus content by 13% in soil treated with mineral fertilization and filter cake compost. The results of the this study strongly suggest that the use of B. subtilis and B. pumilus together with these by‐products can improve soil fertility parameters and decrease adverse effects associated with vinasse fertilization, in addition to providing shoot and root growth and providing collective synergy for a high yield of sugarcane production with environmental benefits.
Collapse
Affiliation(s)
- Roberta M Santos
- Agricultural and Livestock Microbiology Post - Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Saveetha Kandasamy
- A&L Biologicals, Agroecological Research Services Centre, London, ON, Canada
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post - Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
36
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
37
|
Cox CE, Brandl MT, de Moraes MH, Gunasekera S, Teplitski M. Production of the Plant Hormone Auxin by Salmonella and Its Role in the Interactions with Plants and Animals. Front Microbiol 2018; 8:2668. [PMID: 29375530 PMCID: PMC5770404 DOI: 10.3389/fmicb.2017.02668] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022] Open
Abstract
The ability of human enteric pathogens to colonize plants and use them as alternate hosts is now well established. Salmonella, similarly to phytobacteria, appears to be capable of producing the plant hormone auxin via an indole-3-pyruvate decarboxylase (IpdC), a key enzyme of the IPyA pathway. A deletion of the Salmonella ipdC significantly reduced auxin synthesis in laboratory culture. The Salmonella ipdC gene was expressed on root surfaces of Medicago truncatula. M. truncatula auxin-responsive GH3::GUS reporter was activated by the wild type Salmonella, and not but the ipdC mutant, implying that the bacterially produced IAA (Indole Acetic Acid) was detected by the seedlings. Seedling infections with the wild type Salmonella caused an increase in secondary root formation, which was not observed in the ipdC mutant. The wild type Salmonella cells were detected as aggregates at the sites of lateral root emergence, whereas the ipdC mutant cells were evenly distributed in the rhizosphere. However, both strains appeared to colonize seedlings well in growth pouch experiments. The ipdC mutant was also less virulent in a murine model of infection. When mice were infected by oral gavage, the ipdC mutant was as proficient as the wild type strain in colonization of the intestine, but it was defective in the ability to cross the intestinal barrier. Fewer cells of the ipdC mutant, compared with the wild type strain, were detected in Peyer's patches, spleen and in the liver. Orthologs of ipdC are found in all Salmonella genomes and are distributed among many animal pathogens and plant-associated bacteria of the Enterobacteriaceae, suggesting a broad ecological role of the IpdC-catalyzed pathway.
Collapse
Affiliation(s)
- Clayton E Cox
- Department of Soil and Water Science, University of Florida, Gainesville, FL, United States
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - Marcos H de Moraes
- Department of Soil and Water Science, University of Florida, Gainesville, FL, United States
| | | | - Max Teplitski
- Department of Soil and Water Science, University of Florida, Gainesville, FL, United States.,Smithsonian Marine Station, Ft. Pierce, FL, United States
| |
Collapse
|
38
|
Ibort P, Imai H, Uemura M, Aroca R. Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:43-59. [PMID: 29145071 DOI: 10.1016/j.jplph.2017.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Feeding an increasing global population as well as reducing environmental impact of crops is the challenge for the sustainable intensification of agriculture. Plant-growth-promoting bacteria (PGPB) management could represent a suitable method but elucidation of their action mechanisms is essential for a proper and effective utilization. Furthermore, ethylene is involved in growth and response to environmental stimuli but little is known about the implication of ethylene perception in PGPB activity. The ethylene-insensitive tomato never ripe and its isogenic wild-type cv. Pearson lines inoculated with Bacillus megaterium or Enterobacter sp. C7 strains were grown until mature stage to analyze growth promotion, and bacterial inoculation effects on root proteomic profiles. Enterobacter C7 promoted growth in both plant genotypes, meanwhile Bacillus megaterium PGPB activity was only noticed in wt plants. Moreover, PGPB inoculation affected proteomic profile in a strain- and genotype-dependent manner modifying levels of stress-related and interaction proteins, and showing bacterial inoculation effects on antioxidant content and phosphorus acquisition capacity. Ethylene perception is essential for properly recognition of Bacillus megaterium and growth promotion mediated in part by increased levels of reduced glutathione. In contrast, Enterobacter C7 inoculation improves phosphorus nutrition keeping plants on growth independently of ethylene sensitivity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Hiroyuki Imai
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
39
|
Qin Y, Shang Q, Zhang Y, Li P, Chai Y. Bacillus amyloliquefaciens L-S60 Reforms the Rhizosphere Bacterial Community and Improves Growth Conditions in Cucumber Plug Seedling. Front Microbiol 2017; 8:2620. [PMID: 29312278 PMCID: PMC5744474 DOI: 10.3389/fmicb.2017.02620] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/15/2017] [Indexed: 12/05/2022] Open
Abstract
Vegetable plug seedling has become the most important way to produce vegetable seedlings in China. This seedling method can significantly improve the quality and yield of vegetables compared to conventional methods. In the process of plug seedling, chemical fertilizers or pesticides are often used to improve the yield of the seedlings albeit with increasing concerns. Meanwhile, little is known about the impact of beneficial bacteria on the rhizosphere microbiota and the growth conditions of vegetables during plug seedling. In this study, we applied a culture-independent next-generation sequencing-based approach and investigated the impact of a plant beneficial bacterium, Bacillus amyloliquefaciens L-S60, on the composition and dynamics of rhizosphere microbiota and the growth conditions of cucumbers during plug seedling. Our results showed that application of L-S60 significantly altered the structure of the bacterial community associated with the cucumber seedling; presence of beneficial rhizosphere species such as Bacillus, Rhodanobacter, Paenibacillus, Pseudomonas, Nonomuraea, and Agrobacterium was higher upon L-S60 treatment than in the control group. We also measured the impact of L-S60 application on the physiological properties of the cucumber seedlings as well as the availability of main mineral elements in the seedling at different time points during the plug seedling. Results from those measurements indicated that L-S60 application promoted growth conditions of cucumber seedlings and that more available mineral elements were detected in the cucumber seedlings from the L-S60 treated group than from the control group. The findings in this study provided evidence for the beneficial effects of plant growth-promoting rhizosphere bacteria on the bacterial community composition and growth conditions of the vegetables during plug seedling.
Collapse
Affiliation(s)
- Yuxuan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China.,Department of Biology, Northeastern University, Boston, MA, United States
| | - Qingmao Shang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, United States
| |
Collapse
|
40
|
Ibort P, Molina S, Núñez R, Zamarreño ÁM, García-Mina JM, Ruiz-Lozano JM, Orozco-Mosqueda MDC, Glick BR, Aroca R. Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria. ANNALS OF BOTANY 2017; 120:101-122. [PMID: 28586422 PMCID: PMC5737082 DOI: 10.1093/aob/mcx052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/20/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Plant growth-promoting bacteria (PGPB) are soil micro-organisms able to interact with plants and stimulate their growth, positively affecting plant physiology and development. Although ethylene plays a key role in plant growth, little is known about the involvement of ethylene sensitivity in bacterial inoculation effects on plant physiology. Thus, the present study was pursued to establish whether ethylene perception is critical for plant-bacteria interaction and growth induction by two different PGPB strains, and to assess the physiological effects of these strains in juvenile and mature tomato ( Solanum lycopersicum ) plants. METHODS An experiment was performed with the ethylene-insensitive tomato never ripe and its isogenic wild-type line in which these two strains were inoculated with either Bacillus megaterium or Enterobacter sp. C7. Plants were grown until juvenile and mature stages, when biomass, stomatal conductance, photosynthesis as well as nutritional, hormonal and metabolic statuses were analysed. KEY RESULTS Bacillus megaterium promoted growth only in mature wild type plants. However, Enterobacter C7 PGPB activity affected both wild-type and never ripe plants. Furthermore, PGPB inoculation affected physiological parameters and root metabolite levels in juvenile plants; meanwhile plant nutrition was highly dependent on ethylene sensitivity and was altered at the mature stage. Bacillus megaterium inoculation improved carbon assimilation in wild-type plants. However, insensitivity to ethylene compromised B. megaterium PGPB activity, affecting photosynthetic efficiency, plant nutrition and the root sugar content. Nevertheless, Enterobacter C7 inoculation modified the root amino acid content in addition to stomatal conductance and plant nutrition. CONCLUSIONS Insensitivity to ethylene severely impaired B. megaterium interaction with tomato plants, resulting in physiological modifications and loss of PGPB activity. In contrast, Enterobacter C7 inoculation stimulated growth independently of ethylene perception and improved nitrogen assimilation in ethylene-insensitive plants. Thus, ethylene sensitivity is a determinant for B. megaterium , but is not involved in Enterobacter C7 PGPB activity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Sonia Molina
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Rafael Núñez
- Scientific Instrumental Service, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ángel María Zamarreño
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - José María García-Mina
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | | | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
41
|
Zhang J, Pang H, Ma M, Bu Y, Shao W, Huang W, Ji Q, Yao Y. An Apple Fruit Fermentation (AFF) Treatment Improves the Composition of the Rhizosphere Microbial Community and Growth of Strawberry (Fragaria × ananassa Duch 'Benihoppe') Seedlings. PLoS One 2016; 11:e0164776. [PMID: 27755580 PMCID: PMC5068704 DOI: 10.1371/journal.pone.0164776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
Plant growth can be promoted by the application of apple fruit fermentation (AFF), despite unclear of the underlying mechanisms, the effects involved in AFF on rhizosphere microorganisms have been hypothesized. We investigated the consequences of applying AFF alone or in combination with Bacillus licheniformis to strawberry tissue culture seedlings in vitro, the analyses of Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA were performed to determine AFF effects on rhizosphere. Moreover, the growth index and antioxidant enzyme activities were determined 30 days after treatments. We identified five dominant bacteria in AFF: Coprinus atramentarius, Bacillus megaterium, Bacillus licheniformis, Weissella and B. subtilis. The greatest number of bacterial species were observed in the rhizosphere of control matrix (water treated), and the lowest diversity appeared in the rhizosphere soil treated with 108 cfu/mL B. licheniformis alone. Combining AFF plus B. licheniformis in one treatment resulted in the largest leaf area, plant height, root length, plant weight, and the markedly higher activities of antioxidant enzymes. We conclude that a combination of AFF plus B. licheniformis treatment to matrix can increase antioxidant enzymes activities in strawberry seedlings, optimize the status of rhizosphere microbial, and promote plant growth.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Collaborative innovation center for eco-environmental improvement with forestry and fruit trees, Beijing, 102206, China
| | - Hui Pang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Collaborative innovation center for eco-environmental improvement with forestry and fruit trees, Beijing, 102206, China
| | - Mengxia Ma
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Collaborative innovation center for eco-environmental improvement with forestry and fruit trees, Beijing, 102206, China
| | - Yufen Bu
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Collaborative innovation center for eco-environmental improvement with forestry and fruit trees, Beijing, 102206, China
| | - Wei Shao
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Weijing Huang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Qianlong Ji
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuncong Yao
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Collaborative innovation center for eco-environmental improvement with forestry and fruit trees, Beijing, 102206, China
| |
Collapse
|
42
|
Rahman A, Uddin W, Wenner NG. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. MOLECULAR PLANT PATHOLOGY 2015; 16:546-58. [PMID: 25285593 PMCID: PMC6638512 DOI: 10.1111/mpp.12209] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The suppressive ability of several strains of cyclic lipopeptide-producing Bacillus rhizobacteria to grey leaf spot disease caused by Magnaporthe oryzae has been documented previously; however, the underlying mechanism(s) involved in the induced systemic resistance (ISR) activity in perennial ryegrass (Lolium perenne L.) remains unknown. Root-drench application of solid-phase extraction (SPE)-enriched surfactin and live cells of mutant Bacillus amyloliquefaciens strain FZB42-AK3 (produces surfactin, but not bacillomycin D and fengycin) significantly reduced disease incidence and severity on perennial ryegrass. The application of the treatments revealed a pronounced multilayered ISR defence response activation via timely and enhanced accumulation of hydrogen peroxide (H2O2), elevated cell wall/apoplastic peroxidase activity, and deposition of callose and phenolic/polyphenolic compounds underneath the fungal appressoria in naïve leaves, which was significantly more intense in treated plants than in mock-treated controls. Moreover, a hypersensitive response (HR)-type reaction and enhanced expression of LpPrx (Prx, peroxidase), LpOXO4 (OXO, oxalate oxidase), LpPAL (PAL, phenylalanine ammonia lyase), LpLOXa (LOX, lipoxygenase), LpTHb (putative defensin) and LpDEFa (DEFa, putative defensin) in perennial ryegrass were associated with SPE-enriched surfactin and live AK3 cell treatments, acting as a second layer of defence when pre-invasive defence responses failed. The results indicate that ISR activity following surfactin perception may sensitize H2O2 -mediated defence responses, thereby providing perennial ryegrass with enhanced protection against M. oryzae.
Collapse
Affiliation(s)
- Alamgir Rahman
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wakar Uddin
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nancy G Wenner
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
43
|
Zayda PMM, Elizabeth AAD, Thiago ASDO, Fernando PM, Leandro LL, Jorge TDS. Host and tissue preferences of Enterobacter cloacae and Bacillus amyloliquefaciens for endophytic colonization. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2015.7475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
De-la-Peña C, Loyola-Vargas VM. Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. PLANT PHYSIOLOGY 2014; 166:701-19. [PMID: 25118253 PMCID: PMC4213099 DOI: 10.1104/pp.114.241810] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/10/2014] [Indexed: 05/08/2023]
Abstract
Microbes and plants have evolved biochemical mechanisms to communicate with each other. The molecules responsible for such communication are secreted during beneficial or harmful interactions. Hundreds of these molecules secreted into the rhizosphere have been identified, and their functions are being studied in order to understand the mechanisms of interaction and communication among the different members of the rhizosphere community. The importance of root and microbe secretion to the underground habitat in improving crop productivity is increasingly recognized, with the discovery and characterization of new secreting compounds found in the rhizosphere. Different omic approaches, such as genomics, transcriptomics, proteomics, and metabolomics, have expanded our understanding of the first signals between microbes and plants. In this review, we highlight the more recent discoveries related to molecules secreted into the rhizosphere and how they affect plant productivity, either negatively or positively. In addition, we include a survey of novel approaches to studying the rhizosphere and emerging opportunities to direct future studies.
Collapse
Affiliation(s)
- Clelia De-la-Peña
- Unidad de Biotecnología (C.D.) and Unidad de Bioquímica y Biología Molecular de Plantas (V.M.L.-V.), Centro de Investigación Científica de Yucatán, 97200 Merida, Yucatan, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Biotecnología (C.D.) and Unidad de Bioquímica y Biología Molecular de Plantas (V.M.L.-V.), Centro de Investigación Científica de Yucatán, 97200 Merida, Yucatan, Mexico
| |
Collapse
|