1
|
Sarkar S. Pathological role of RAGE underlying progression of various diseases: its potential as biomarker and therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3467-3487. [PMID: 39589529 DOI: 10.1007/s00210-024-03595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor with several structural types, performing a myriad of molecular mechanisms. The RAGE-ligand interactions play important roles in maintaining latent chronic inflammation, and oxidative damage underlying various pathological conditions like metabolic syndrome (MetS), neurodegenerative diseases, stroke, cardiovascular disorders, pulmonary disorders, cancer and infections. RAGE is thoroughly explored in knockout animals and human trials, targeted by small molecule inhibitors, peptides, diet, and natural compounds. But it is yet to be incorporated in the mainstream management of any ailment. This review performs an appraisal of the pathological mechanisms influenced by RAGE to uncover its prospects as a biomarker while also assessing its power to become a promising therapeutic target.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be-University, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Fu J, Wang R, He J, Liu X, Wang X, Yao J, Liu Y, Ran C, Ye Q, He Y. Pathogenesis and therapeutic applications of microglia receptors in Alzheimer's disease. Front Immunol 2025; 16:1508023. [PMID: 40028337 PMCID: PMC11867950 DOI: 10.3389/fimmu.2025.1508023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, continuously monitor the brain's microenvironment through their array of specific receptors. Once brain function is altered, microglia are recruited to specific sites to perform their immune functions, including phagocytosis of misfolded proteins, cellular debris, and apoptotic cells to maintain homeostasis. When toxic substances are overproduced, microglia are over-activated to produce large amounts of pro-inflammatory cytokines, which induce chronic inflammatory responses and lead to neurotoxicity. Additionally, microglia can also monitor and protect neuronal function through microglia-neuron crosstalk. Microglia receptors are important mediators for microglia to receive external stimuli, regulate the functional state of microglia, and transmit signals between cells. In this paper, we first review the role of microglia-expressed receptors in the pathogenesis and treatment of Alzheimer's disease; moreover, we emphasize the complexity of targeting microglia for therapeutic interventions in neurodegenerative disorders to inform the discovery of new biomarkers and the development of innovative therapeutics.
Collapse
Affiliation(s)
- Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - RuoXuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JiHui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XiaoJing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JuMing Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - ChongZhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - QingSong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Lam WLM, Gabernet G, Poth T, Sator-Schmitt M, Oquendo MB, Kast B, Lohr S, de Ponti A, Weiß L, Schneider M, Helm D, Müller-Decker K, Schirmacher P, Heikenwälder M, Klingmüller U, Schneller D, Geisler F, Nahnsen S, Angel P. RAGE is a key regulator of ductular reaction-mediated fibrosis during cholestasis. EMBO Rep 2025; 26:880-907. [PMID: 39747668 PMCID: PMC11811172 DOI: 10.1038/s44319-024-00356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury. Yet, the direct link between RAGE-mediated DR and fibrosis as well as the mode of interaction between BECs and hepatic stellate cells (HSCs) to drive fibrosis remain elusive. Here, we delineate the specific function of RAGE on BECs during DR and its potential association with fibrosis in the context of cholestasis. Employing a biliary lineage tracing cholestatic liver injury mouse model, combined with whole transcriptome sequencing and in vitro analyses, we reveal a role for BEC-specific Rage activity in fostering a pro-fibrotic milieu. RAGE is predominantly expressed in BECs and contributes to DR. Notch ligand Jagged1 is secreted from activated BECs in a Rage-dependent manner and signals HSCs in trans, eventually enhancing fibrosis during cholestasis.
Collapse
Affiliation(s)
- Wai-Ling Macrina Lam
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Morgana Barroso Oquendo
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Bettina Kast
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sabrina Lohr
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Aurora de Ponti
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lena Weiß
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martin Schneider
- Protein Analysis Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Protein Analysis Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Müller-Decker
- Tumor Models Unit, Center for Preclinical Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doris Schneller
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Fabian Geisler
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich, München, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
4
|
Wang Q, Zhao X, Wang S, Lu S. Sarcopenia and immune-mediated inflammatory diseases: Evaluating causality and exploring therapeutic targets for sarcopenia through Mendelian randomization. Int Immunopharmacol 2025; 144:113687. [PMID: 39591827 DOI: 10.1016/j.intimp.2024.113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND An increasing body of evidence has revealed the association between immune-mediated inflammatory diseases (IMIDs) and sarcopenia. However, a genetically direct causality between IMIDs and sarcopenia remains elusive. METHODS To investigate the relationship between IMIDs and sarcopenia-related traits and identify potential therapeutic targets, a Mendelian randomization (MR) was performed. We collected publicly available genome-wide association studies (GWAS) data for seven common IMIDs, including systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), Crohn's disease (CD), ulcerative colitis (UC), psoriasis (PSO), ankylosing spondylitis (AS), and rheumatoid arthritis (RA). Additionally, summary-level GWAS data for sarcopenia-related traits, including appendicular lean mass (ALM), left-hand grip strength, and right-hand grip strength were collected. To search for therapeutic targets, we used two types of genetic instruments to proxy the exposure of druggable genes, including genetic variants within or nearby drug targets and expression quantitative trait loci (eQTLs) of drug targets. Two-sample MR and summary-data-based MR (SMR) were used to calculate effect estimates, and sensitivity analyses were implemented for robustness. Drug tractability, gene enrichment analysis, and protein-protein interaction (PPI) analysis were used to validate the biological and clinical significance of the selected drug targets. RESULTS The two-sample MR analysis indicated the existence of casual associations between IMIDs and sarcopenia-related traits in the overall and sex-stratified populations. In particular, PSO had causal effects on decreased ALM, which showed significance in all six MR analysis tests with directional consistency in the overall population. Grounded in this robust association, HLA-DRB5, HLA-DRB1, and AGER were identified as potential therapeutic targets for ALM decline by drug target MR and further confirmed by SMR analysis. These genes were associated with therapeutic agents currently undergoing evaluations in clinical trials. Gene enrichment and PPI analysis indicated a strong association of these genes with immune functions. CONCLUSIONS This MR study contributes novel genetic evidence supporting the causal link between IMIDs and sarcopenia, with a particular emphasis on the association between PSO and decreased ALM. Additionally, AGER, HLA-DRB1, and HLA-DRB5 emerge as potential therapeutic targets for ALM decline.
Collapse
Affiliation(s)
- Qijun Wang
- Department of Orthopedics & Elderly Spinal Surgery, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xuan Zhao
- Department of Orthopedics & Elderly Spinal Surgery, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuaikang Wang
- Department of Orthopedics & Elderly Spinal Surgery, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shibao Lu
- Department of Orthopedics & Elderly Spinal Surgery, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
5
|
Li W, Chen Q, Peng C, Yang D, Liu S, Lv Y, Jiang L, Xu S, Huang L. Roles of the Receptor for Advanced Glycation End Products and Its Ligands in the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2025; 26:403. [PMID: 39796257 PMCID: PMC11721675 DOI: 10.3390/ijms26010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction. This further promotes inflammatory responses and oxidative stress, ultimately leading to a range of age-related diseases. Given RAGE's significant role in AD, inhibitors that target RAGE and its ligands hold promise as new strategies for treating AD, offering new possibilities for alleviating and treating this serious neurodegenerative disease. This article reviews the various pathogenic mechanisms of AD and summarizes the literature on the interaction between RAGE and its ligands in various AD-related pathological processes, with a particular focus on the evidence and mechanisms by which RAGE interactions with AGEs, HMGB1, Aβ, and S100 proteins induce cognitive impairment in AD. Furthermore, the article discusses the principles of action of RAGE inhibitors and inhibitors targeting RAGE-ligand interactions, along with relevant clinical trials.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Qiuping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Chengjie Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Si Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Yanwen Lv
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Langqi Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
6
|
Sigalov AB. TREM-1 and TREM-2 as therapeutic targets: clinical challenges and perspectives. Front Immunol 2024; 15:1498993. [PMID: 39737196 PMCID: PMC11682994 DOI: 10.3389/fimmu.2024.1498993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
TREM-1 and TREM-2 as Therapeutic Targets: Clinical Challenges and Perspectives.
Collapse
|
7
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
8
|
Vitorakis N, Piperi C. Pivotal role of AGE-RAGE axis in brain aging with current interventions. Ageing Res Rev 2024; 100:102429. [PMID: 39032613 DOI: 10.1016/j.arr.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Brain aging is characterized by several structural, biochemical and molecular changes which can vary among different individuals and can be influenced by genetic, environmental and lifestyle factors. Accumulation of protein aggregates, altered neurotransmitter composition, low-grade chronic inflammation and prolonged oxidative stress have been shown to contribute to brain tissue damage. Among key metabolic byproducts, advanced glycation end products (AGEs), formed endogenously through non-enzymatic reactions or acquired directly from the diet or other exogenous sources, have been detected to accumulate in brain tissue, exerting detrimental effects on cellular structure and function, contributing to neurodegeneration and cognitive decline. Upon binding to signal transduction receptor RAGE, AGEs can initiate pro-inflammatory pathways, exacerbate oxidative stress and neuroinflammation, thus impairing neuronal function and cognition. AGE-RAGE signaling induces programmed cell death, disrupts the blood-brain barrier and promotes protein aggregation, further compromising brain health. In this review, we investigate the intricate relationship between the AGE-RAGE pathway and brain aging in order to detect affected molecules and potential targets for intervention. Reduction of AGE deposition in brain tissue either through novel pharmacological therapeutics, dietary modifications, and lifestyle changes, shows a great promise in mitigating cognitive decline associated with brain aging.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece.
| |
Collapse
|
9
|
Kothandan D, Singh DS, Yerrakula G, D B, N P, Santhana Sophia B V, A R, Ramya Vg S, S K, M J. Advanced Glycation End Products-Induced Alzheimer's Disease and Its Novel Therapeutic Approaches: A Comprehensive Review. Cureus 2024; 16:e61373. [PMID: 38947632 PMCID: PMC11214645 DOI: 10.7759/cureus.61373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Advanced glycation end products (AGEs) accumulate in the brain, leading to neurodegenerative conditions such as Alzheimer's disease (AD). The pathophysiology of AD is influenced by receptors for AGEs and toll-like receptor 4 (TLR4). Protein glycation results in irreversible AGEs through a complicated series of reactions involving the formation of Schiff's base, the Amadori reaction, followed by the Maillard reaction, which causes abnormal brain glucose metabolism, oxidative stress, malfunctioning mitochondria, plaque deposition, and neuronal death. Amyloid plaque and other stimuli activate macrophages, which are crucial immune cells in AD development, triggering the production of inflammatory molecules and contributing to the disease's pathogenesis. The risk of AD is doubled by risk factors for atherosclerosis, dementia, advanced age, and type 2 diabetic mellitus (DM). As individuals age, the prevalence of neurological illnesses such as AD increases due to a decrease in glyoxalase levels and an increase in AGE accumulation. Insulin's role in proteostasis influences hallmarks of AD-like tau phosphorylation and amyloid β peptide clearance, affecting lipid metabolism, inflammation, vasoreactivity, and vascular function. The high-mobility group box 1 (HMGB1) protein, a key initiator and activator of a neuroinflammatory response, has been linked to the development of neurodegenerative diseases such as AD. The TLR4 inhibitor was found to improve memory and learning impairment and decrease Aβ build-up. Therapeutic research into anti-glycation agents, receptor for advanced glycation end products (RAGE) inhibitors, and AGE breakers offers hope for intervention strategies. Dietary and lifestyle modifications can also slow AD progression. Newer therapeutic approaches targeting AGE-related pathways are needed.
Collapse
Affiliation(s)
- Dhivya Kothandan
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Daniel S Singh
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Goutham Yerrakula
- School of Pharmacy, Faculty of Health Sciences, JSS Academy of Higher Education and Research, Vacoas, MUS
| | - Backkiyashree D
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Pratibha N
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | | | - Ramya A
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Sapthami Ramya Vg
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Keshavini S
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Jagadheeshwari M
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| |
Collapse
|
10
|
Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol 2024; 222:116058. [PMID: 38367818 DOI: 10.1016/j.bcp.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The number of patients with chronic pain continues to increase against the background of an ageing society and a high incidence of various epidemics and disasters. One factor contributing to this situation is the absence of truly effective analgesics. Chronic pain is a persistent stress for the organism and can trigger a variety of neuropsychiatric symptoms. Hence, the search for useful analgesic targets is currently being intensified worldwide, and it is anticipated that the key to success may be molecules involved in emotional as well as sensory systems. High mobility group box-1 (HMGB1) has attracted attention as a therapeutic target for a variety of diseases. It is a very unique molecule having a dual role as a nuclear protein while also functioning as an inflammatory agent outside the cell. In recent years, numerous studies have shown that HMGB1 acts as a pain inducer in primary sensory nerves and the spinal dorsal horn. In addition, HMGB1 can function in the brain, and is involved in the symptoms of depression, anxiety and cognitive dysfunction that accompany chronic pain. In this review, we will summarize recent research and discuss the potential of HMGB1 as a useful drug target for chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
11
|
Neha, Wali Z, Pinky, Hattiwale SH, Jamal A, Parvez S. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer's disease pathology and treatment. Ageing Res Rev 2024; 93:102134. [PMID: 38008402 DOI: 10.1016/j.arr.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
According to the facts and figures 2023stated that 6.7 million Americans over the age of 65 have Alzheimer's disease (AD). The scenario of AD has reached up to the maximum, of 4.1 million individuals, 2/3rd are female patients, and approximately 1 in 9 adults over the age of 65 have dementia with AD dementia. The fact that there are now no viable treatments for AD indicates that the underlying disease mechanisms are not fully understood. The progressive neurodegenerative disease, AD is characterized by amyloid plaques and neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by the buildup of amyloid beta (Aβ). Numerous attempts have been made to produce compounds that interfere with these characteristics because of significant research efforts into the primary pathogenic hallmark of this disorder. Here, we summarize several research that highlights interesting therapy strategies and the neuroprotective effects of GLP-1, Sigma, and, AGE-RAGE receptors in pre-clinical and clinical AD models.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Zitin Wali
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pinky
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
13
|
Kim J, Jeon H, Yun Kim H, Kim Y. Failure, Success, and Future Direction of Alzheimer Drugs Targeting Amyloid-β Cascade: Pros and Cons of Chemical and Biological Modalities. Chembiochem 2023; 24:e202300328. [PMID: 37497809 DOI: 10.1002/cbic.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and has become a health concern worldwide urging for an effective therapeutic. The amyloid hypothesis, currently the most pursued basis of AD drug discovery, points the cause of AD to abnormal production and ineffective removal of pathogenic aggregated amyloid-β (Aβ). AD therapeutic research has been focused on targeting different species of Aβ in the amyloidogenic process to control Aβ content and recover cognitive decline. Among the different processes targeted, the clearance mechanism has been found to be the most effective, supported by the recent clinical approval of an Aβ-targeting immunotherapeutic drug which significantly slowed cognitive decline. Although the current AD drug discovery field is extensively researching immunotherapeutic drugs, there are numerous properties of immunotherapy in need of improvements that could be overcome by an equally performing chemical drug. Here, we review chemical and immunotherapy drug candidates, based on their mechanism of modulating the amyloid cascade, selected from the AlzForum database. Through this review, we aim to summarize and evaluate the prospect of Aβ-targeting chemical drugs.
Collapse
Affiliation(s)
- JiMin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hanna Jeon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
14
|
Pujals M, Mayans C, Bellio C, Méndez O, Greco E, Fasani R, Alemany-Chavarria M, Zamora E, Padilla L, Mitjans F, Nuciforo P, Canals F, Nonell L, Abad M, Saura C, Tabernero J, Villanueva J. RAGE/SNAIL1 signaling drives epithelial-mesenchymal plasticity in metastatic triple-negative breast cancer. Oncogene 2023; 42:2610-2628. [PMID: 37468678 DOI: 10.1038/s41388-023-02778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Epithelial/Mesenchymal (E/M) plasticity plays a fundamental role both in embryogenesis and during tumorigenesis. The receptor for advanced glycation end products (RAGE) is a driver of cell plasticity in fibrotic diseases; however, its role and molecular mechanism in triple-negative breast cancer (TNBC) remains unclear. Here, we demonstrate that RAGE signaling maintains the mesenchymal phenotype of aggressive TNBC cells by enforcing the expression of SNAIL1. Besides, we uncover a crosstalk mechanism between the TGF-β and RAGE pathways that is required for the acquisition of mesenchymal traits in TNBC cells. Consistently, RAGE inhibition elicits epithelial features that block migration and invasion capacities. Next, since RAGE is a sensor of the tumor microenvironment, we modeled acute acidosis in TNBC cells and showed it promotes enhanced production of RAGE ligands and the activation of RAGE-dependent invasive properties. Furthermore, acute acidosis increases SNAIL1 levels and tumor cell invasion in a RAGE-dependent manner. Finally, we demonstrate that in vivo inhibition of RAGE reduces metastasis incidence and expands survival, consistent with molecular effects that support the relevance of RAGE signaling in E/M plasticity. These results uncover new molecular insights on the regulation of E/M phenotypes in cancer metastasis and provide rationale for pharmacological intervention of this signaling axis.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carla Mayans
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Chiara Bellio
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emanuela Greco
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mercè Alemany-Chavarria
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Esther Zamora
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Padilla
- LEITAT Technological Center, 08028, Barcelona, Spain
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Abad
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Altos Labs Cambridge Institute of Science, Cambridge, UK
| | - Cristina Saura
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josep Tabernero
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- IOB Institute of Oncology, Quiron Group (Quiron-IOB), Barcelona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Magna M, Hwang GH, McIntosh A, Drews-Elger K, Takabatake M, Ikeda A, Mera BJ, Kwak T, Miller P, Lippman ME, Hudson BI. RAGE inhibitor TTP488 (Azeliragon) suppresses metastasis in triple-negative breast cancer. NPJ Breast Cancer 2023; 9:59. [PMID: 37443146 DOI: 10.1038/s41523-023-00564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic cancer subtype, which is generally untreatable once it metastasizes. We hypothesized that interfering with the Receptor for Advanced Glycation End-products (RAGE) signaling with the small molecule RAGE inhibitors (TTP488/Azeliragon and FPS-ZM1) would impair TNBC metastasis and impair fundamental mechanisms underlying tumor progression and metastasis. Both TTP488 and FPS-ZM1 impaired spontaneous and experimental metastasis of TNBC models, with TTP488 reducing metastasis to a greater degree than FPS-ZM1. Transcriptomic analysis of primary xenograft tumor and metastatic tissue revealed high concordance in gene and protein changes with both drugs, with TTP488 showing greater potency against metastatic driver pathways. Phenotypic validation of transcriptomic analysis by functional cell assays revealed that RAGE inhibition impaired TNBC cell adhesion to multiple extracellular matrix proteins (including collagens, laminins, and fibronectin), migration, and invasion. Neither RAGE inhibitor impaired cellular viability, proliferation, or cell cycle in vitro. Proteomic analysis of serum from tumor-bearing mice revealed RAGE inhibition affected metastatic driver mechanisms, including multiple cytokines and growth factors. Further mechanistic studies by phospho-proteomic analysis of tumors revealed RAGE inhibition led to decreased signaling through critical BC metastatic driver mechanisms, including Pyk2, STAT3, and Akt. These results show that TTP488 impairs metastasis of TNBC and further clarifies the signaling and cellular mechanisms through which RAGE mediates metastasis. Importantly, as TTP488 displays a favorable safety profile in human studies, our study provides the rationale for evaluating TTP488 in clinical trials to treat or prevent metastatic TNBC.
Collapse
Affiliation(s)
- Melinda Magna
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Gyong Ha Hwang
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alec McIntosh
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Drews-Elger
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Masaru Takabatake
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Adam Ikeda
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barbara J Mera
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Taekyoung Kwak
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Philip Miller
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Marc E Lippman
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Barry I Hudson
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
16
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Valiente M, Sepúlveda JM, Pérez A. Emerging targets for cancer treatment: S100A9/RAGE. ESMO Open 2023; 8:100751. [PMID: 36652782 PMCID: PMC9860424 DOI: 10.1016/j.esmoop.2022.100751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Developing better treatments that work for the majority of patients with brain metastasis (BM) is highly necessary. Complementarily, avoiding those therapeutic procedures that will not benefit a specific patient is also very relevant. In general, existing therapies for patients with BM could be improved in terms of molecular stratification and therapeutic efficacy. By questioning the benefit of whole brain radiotherapy as provided nowadays and the lack of biomarkers detecting radioresistance, we identified S100A9 and receptor for advanced glycation end-products (RAGE) as a liquid biopsy biomarker and a potential target for a radiosensitizer, respectively. Both of them are being clinically tested as part of the first comprehensive molecular strategy to personalized radiotherapy in BM.
Collapse
Affiliation(s)
| | - J M Sepúlveda
- Neuro-Oncology Unit, Hospital Universitario 12 de Octubre, Madrid; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid.
| | - A Pérez
- Neuro-Oncology Unit, Hospital Universitario 12 de Octubre, Madrid; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid; Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, Madrid; Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
18
|
Cullinane PW, de Pablo Fernandez E, König A, Outeiro TF, Jaunmuktane Z, Warner TT. Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts. Mov Disord 2023; 38:162-177. [PMID: 36567671 DOI: 10.1002/mds.29298] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
Highly reproducible epidemiological evidence shows that type 2 diabetes (T2D) increases the risk and rate of progression of Parkinson's disease (PD), and crucially, the repurposing of certain antidiabetic medications for the treatment of PD has shown early promise in clinical trials, suggesting that the effects of T2D on PD pathogenesis may be modifiable. The high prevalence of T2D means that a significant proportion of patients with PD may benefit from personalized antidiabetic treatment approaches that also confer neuroprotective benefits. Therefore, there is an immediate need to better understand the mechanistic relation between these conditions and the specific molecular pathways affected by T2D in the brain. Although there is considerable evidence that processes such as insulin signaling, mitochondrial function, autophagy, and inflammation are involved in the pathogenesis of both PD and T2D, the primary aim of this review is to highlight the evidence showing that T2D-associated dysregulation of these pathways occurs not only in the periphery but also in the brain and how this may facilitate neurodegeneration in PD. We also discuss the challenges involved in disentangling the complex relationship between T2D, insulin resistance, and PD, as well as important questions for further research. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eduardo de Pablo Fernandez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.,Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
19
|
Xia ZD, Ma RX, Wen JF, Zhai YF, Wang YQ, Wang FY, Liu D, Zhao XL, Sun B, Jia P, Zheng XH. Pathogenesis, Animal Models, and Drug Discovery of Alzheimer's Disease. J Alzheimers Dis 2023; 94:1265-1301. [PMID: 37424469 DOI: 10.3233/jad-230326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a chronic neurodegenerative disease induced by multiple factors. The high incidence and the aging of the global population make it a growing global health concern with huge implications for individuals and society. The clinical manifestations are progressive cognitive dysfunction and lack of behavioral ability, which not only seriously affect the health and quality of life of the elderly, but also bring a heavy burden to the family and society. Unfortunately, almost all the drugs targeting the classical pathogenesis have not achieved satisfactory clinical effects in the past two decades. Therefore, the present review provides more novel ideas on the complex pathophysiological mechanisms of AD, including classical pathogenesis and a variety of possible pathogenesis that have been proposed in recent years. It will be helpful to find out the key target and the effect pathway of potential drugs and mechanisms for the prevention and treatment of AD. In addition, the common animal models in AD research are outlined and we examine their prospect for the future. Finally, Phase I, II, III, and IV randomized clinical trials or on the market of drugs for AD treatment were searched in online databases (Drug Bank Online 5.0, the U.S. National Library of Medicine, and Alzforum). Therefore, this review may also provide useful information in the research and development of new AD-based drugs.
Collapse
Affiliation(s)
- Zhao-Di Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Ruo-Xin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Jin-Feng Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Yu-Fei Zhai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Yu-Qi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Feng-Yun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Xiao-Long Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Bao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, PR China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| |
Collapse
|
20
|
Hunt NJ, Wahl D, Westwood LJ, Lockwood GP, Le Couteur DG, Cogger VC. Targeting the liver in dementia and cognitive impairment: Dietary macronutrients and diabetic therapeutics. Adv Drug Deliv Rev 2022; 190:114537. [PMID: 36115494 PMCID: PMC10125004 DOI: 10.1016/j.addr.2022.114537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Many people living with dementia and cognitive impairment have dysfunctional mitochondrial and insulin-glucose metabolism resembling type 2 diabetes mellitus and old age. Evidence from human trials shows that nutritional interventions and anti-diabetic medicines that target nutrient-sensing pathways overcome these deficits in glucose and energy metabolism and can improve cognition and/or reduce symptoms of dementia. The liver is the main organ that mediates the systemic effects of diets and many diabetic medicines; therefore, it is an intermediate target for such dementia interventions. A challenge is the efficacy of these treatments in older age. Solutions include the targeted hepatic delivery of diabetic medicines using nanotechnologies and titration of macronutrients to optimize hepatic energy metabolism.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2008, Australia; Sydney Nano Institute, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Devin Wahl
- Department of Health and Exercise Science & Centre for Healthy Aging, Colorado State University, CO 80523, United States
| | - Lara J Westwood
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Glen P Lockwood
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - David G Le Couteur
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Victoria C Cogger
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia.
| |
Collapse
|
21
|
Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer's disease. Front Aging Neurosci 2022; 14:1019412. [PMID: 36389082 PMCID: PMC9664938 DOI: 10.3389/fnagi.2022.1019412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no effective therapeutic drugs currently. The complicated pathophysiology of AD is not well understood, although beta-amyloid (Aβ) cascade and hyperphosphorylated tau protein were regarded as the two main causes of AD. Other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitters, mitochondrial dysfunction, and inflammation, were also proposed and studied as targets in AD. This review aims to summarize the small-molecule drugs that were developed based on the pathogenesis and gives a deeper understanding of the AD. We hope that it could help scientists find new and better treatments to gradually conquer the problems related to AD in future.
Collapse
|
22
|
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022; 20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or multiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history. Video Abstract
Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Peter Goon
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
23
|
Yue Q, Song Y, Liu Z, Zhang L, Yang L, Li J. Receptor for Advanced Glycation End Products (RAGE): A Pivotal Hub in Immune Diseases. Molecules 2022; 27:molecules27154922. [PMID: 35956875 PMCID: PMC9370360 DOI: 10.3390/molecules27154922] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023] Open
Abstract
As a critical molecule in the onset and sustainment of inflammatory response, the receptor for advanced glycation end products (RAGE) has a variety of ligands, such as advanced glycation end products (AGEs), S100/calcium granule protein, and high-mobility group protein 1 (HMGB1). Recently, an increasing number studies have shown that RAGE ligand binding can initiate the intracellular signal cascade, affect intracellular signal transduction, stimulate the release of cytokines, and play a vital role in the occurrence and development of immune-related diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and Alzheimer’s disease. In addition, other RAGE signaling pathways can play crucial roles in life activities, such as inflammation, apoptosis, autophagy, and endoplasmic reticulum stress. Therefore, the strategy of targeted intervention in the RAGE signaling pathway may have significant therapeutic potential, attracting increasing attention. In this paper, through the systematic induction and analysis of RAGE-related signaling pathways and their regulatory mechanisms in immune-related diseases, we provide theoretical clues for the follow-up targeted intervention of RAGE-mediated diseases.
Collapse
Affiliation(s)
- Qing Yue
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Yu Song
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Zi Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu 241002, China;
| | - Ling Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Jinlong Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
- Correspondence: ; Tel.: +86-0315-8805572
| |
Collapse
|
24
|
Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res 2022; 83:1257-1269. [PMID: 35781678 PMCID: PMC9474610 DOI: 10.1002/ddr.21971] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a 45 kDa transmembrane receptor of immunoglobulin family that can bind to various endogenous and exogenous ligands and initiate the inflammatory downstream signaling pathways. RAGE is involved in various disorders including cardiovascular and neurodegenerative diseases, cancer, and diabetes. This review summarizes the structural features of RAGE and its various isoforms along with their pathological effects. Mainly, the article emphasized on the translational significance of antagonizing the interactions of RAGE with its ligands using small molecules reported in the last 5 years and discusses future approaches that could be employed to block the interactions in the treatment of chronic inflammatory ailments. The RAGE inhibitors described in this article could prove as a powerful approach in the management of immune‐inflammatory diseases. A critical review of the literature suggests that there is a dire need to dive deeper into the molecular mechanism of action to resolve critical issues that must be addressed to understand RAGE‐targeting therapy and long‐term blockade of RAGE in human diseases.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
25
|
Ramasamy R, Shekhtman A, Schmidt AM. The RAGE/DIAPH1 Signaling Axis & Implications for the Pathogenesis of Diabetic Complications. Int J Mol Sci 2022; 23:ijms23094579. [PMID: 35562970 PMCID: PMC9102165 DOI: 10.3390/ijms23094579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence links the RAGE (receptor for advanced glycation end products)/DIAPH1 (Diaphanous 1) signaling axis to the pathogenesis of diabetic complications. RAGE is a multi-ligand receptor and through these ligand-receptor interactions, extensive maladaptive effects are exerted on cell types and tissues targeted for dysfunction in hyperglycemia observed in both type 1 and type 2 diabetes. Recent evidence indicates that RAGE ligands, acting as damage-associated molecular patterns molecules, or DAMPs, through RAGE may impact interferon signaling pathways, specifically through upregulation of IRF7 (interferon regulatory factor 7), thereby heralding and evoking pro-inflammatory effects on vulnerable tissues. Although successful targeting of RAGE in the clinical milieu has, to date, not been met with success, recent approaches to target RAGE intracellular signaling may hold promise to fill this critical gap. This review focuses on recent examples of highlights and updates to the pathobiology of RAGE and DIAPH1 in diabetic complications.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY 12222, USA;
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Correspondence:
| |
Collapse
|
26
|
Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism. Nat Med 2022; 28:752-765. [PMID: 35411077 PMCID: PMC9018424 DOI: 10.1038/s41591-022-01749-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
AbstractWhole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9–RAGE–NF-κB–JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.
Collapse
|
27
|
Dual Nature of RAGE in Host Reaction and Nurturing the Mother-Infant Bond. Int J Mol Sci 2022; 23:ijms23042086. [PMID: 35216202 PMCID: PMC8880422 DOI: 10.3390/ijms23042086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Non-enzymatic glycation is an unavoidable reaction that occurs across biological taxa. The final products of this irreversible reaction are called advanced glycation end-products (AGEs). The endogenously formed AGEs are known to be bioactive and detrimental to human health. Additionally, exogenous food-derived AGEs are debated to contribute to the development of aging and various diseases. Receptor for AGEs (RAGE) is widely known to elicit biological reactions. The binding of RAGE to other ligands (e.g., high mobility group box 1, S100 proteins, lipopolysaccharides, and amyloid-β) can result in pathological processes via the activation of intracellular RAGE signaling pathways, including inflammation, diabetes, aging, cancer growth, and metastasis. RAGE is now recognized as a pattern-recognition receptor. All mammals have RAGE homologs; however, other vertebrates, such as birds, amphibians, fish, and reptiles, do not have RAGE at the genomic level. This evidence from an evolutionary perspective allows us to understand why mammals require RAGE. In this review, we provide an overview of the scientific knowledge about the role of RAGE in physiological and pathological processes. In particular, we focus on (1) RAGE biology, (2) the role of RAGE in physiological and pathophysiological processes, (3) RAGE isoforms, including full-length membrane-bound RAGE (mRAGE), and the soluble forms of RAGE (sRAGE), which comprise endogenous secretory RAGE (esRAGE) and an ectodomain-shed form of RAGE, and (4) oxytocin transporters in the brain and intestine, which are important for maternal bonding and social behaviors.
Collapse
|
28
|
Avenues for post-translational protein modification prevention and therapy. Mol Aspects Med 2022; 86:101083. [PMID: 35227517 PMCID: PMC9378364 DOI: 10.1016/j.mam.2022.101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
Non-enzymatic post-translational modifications (nPTMs) of proteins have emerged as novel risk factors for the genesis and progression of various diseases. We now have a variety of experimental and established therapeutic strategies to target harmful nPTMs and potentially improve clinical outcomes. Protein carbamylation and glycation are two common and representative nPTMs that have gained considerable attention lately as favorable therapeutic targets with emerging clinical evidence. Protein carbamylation is associated with the occurrence of cardiovascular disease (CVD) and mortality in patients with chronic kidney disease (CKD); and advanced glycation end products (AGEs), a heterogeneous group of molecules produced in a series of glycation reactions, have been linked to various diabetic complications. Therefore, reducing the burden of protein carbamylation and AGEs is an appealing and promising therapeutic approach. This review chapter summarizes potential anti-nPTM therapy options in CKD, CVD, and diabetes along with clinical implications. Using two prime examples-protein carbamylation and AGEs-we discuss the varied preventative and therapeutic options to mitigate these pathologic nPTMs in detail. We provide in-depth case studies on carbamylation in the setting of kidney disease and AGEs in metabolic disorders, with an emphasis on the relevance to reducing adverse clinical outcomes such as CKD progression, cardiovascular events, and mortality. Overall, whether specific efforts to lower carbamylation and AGE burden will yield definitive clinical improvement in humans remains largely to be seen. However, the scientific rationale for such pursuits is demonstrated herein.
Collapse
|
29
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|
30
|
Xie J, Xu H, Wu X, Xie Y, Lu X, Wang L. Design, synthesis and anti-TNBC activity of Azeliragon triazole analogues. Bioorg Med Chem Lett 2021; 54:128444. [PMID: 34763082 DOI: 10.1016/j.bmcl.2021.128444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/09/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Many studies have shown a significant increase in the marker signal of the receptor for advanced glycation end-products (RAGE) with the malignant progression of tumor growth, metastasis and recurrence of breast cancer, including TNBC of primary tumors and lymph node metastases. Azeliragon is a RAGE inhibitor and it has been shown to actively inhibit the TNBC cell line, SUM149 (IC50 = 5.292 ± 0.310 μM). In order to develop a new anti-TNBC agent, we designed, synthesized and screened 26 Azeliragon triazole analogues to determine their anti-TNBC activities in vitro. The most active compound was KC-10 with an IC50 value of 0.220 ± 0.034 μM.
Collapse
Affiliation(s)
- Jizhao Xie
- Medical College, Guangxi University, Nanning 530004, China; School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Huanji Xu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Xinduo Wu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Yunfeng Xie
- School of Pharmaceutical Science, Guangxi Medical University, Nanning 530021, China
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Lisheng Wang
- Medical College, Guangxi University, Nanning 530004, China.
| |
Collapse
|
31
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
32
|
Lao K, Zhang R, Luan J, Zhang Y, Gou X. Therapeutic Strategies Targeting Amyloid-β Receptors and Transporters in Alzheimer's Disease. J Alzheimers Dis 2021; 79:1429-1442. [PMID: 33459712 DOI: 10.3233/jad-200851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that has been recognized as one of the most intractable medical problems with heavy social and economic costs. Amyloid-β (Aβ) has been identified as a major factor that participates in AD progression through its neurotoxic effects. The major mechanism of Aβ-induced neurotoxicity is by interacting with membrane receptors and subsequent triggering of aberrant cellular signaling. Besides, Aβ transporters also plays an important role by affecting Aβ homeostasis. Thus, these Aβ receptors and transporters are potential targets for the development of AD therapies. Here, we summarize the reported therapeutic strategies targeting Aβ receptors and transporters to provide a molecular basis for future rational design of anti-AD agents.
Collapse
Affiliation(s)
- Kejing Lao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Ruisan Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Jing Luan
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Yuelin Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| |
Collapse
|
33
|
Sellegounder D, Zafari P, Rajabinejad M, Taghadosi M, Kapahi P. Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. Int Immunopharmacol 2021; 98:107806. [PMID: 34352471 PMCID: PMC8141786 DOI: 10.1016/j.intimp.2021.107806] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the novel virus SARS-CoV-2, is often more severe in older adults. Besides age, other underlying conditions such as obesity, diabetes, high blood pressure, and malignancies, which are also associated with aging, have been considered risk factors for COVID-19 mortality. A rapidly expanding body of evidence has brought up various scenarios for these observations and hyperinflammatory reactions associated with COVID-19 pathogenesis. Advanced glycation end products (AGEs) generated upon glycation of proteins, DNA, or lipids play a crucial role in the pathogenesis of age-related diseases and all of the above-mentioned COVID-19 risk factors. Interestingly, the receptor for AGEs (RAGE) is mainly expressed by type 2 epithelial cells in the alveolar sac, which has a critical role in SARS-CoV-2-associated hyper inflammation and lung injury. Here we discuss our hypothesis that AGEs, through their interaction with RAGE amongst other molecules, modulates COVID-19 pathogenesis and related comorbidities, especially in the elderly.
Collapse
Affiliation(s)
- Durai Sellegounder
- (BuckInstitute for Researchon Aging), (Novato), (CA 94945), (United States)
| | - Parisa Zafari
- (Departmentof Immunology), (School of Medicine), (Mazandaran University of Medical Sciences), (Sari), (Iran)
| | - Misagh Rajabinejad
- (Departmentof Immunology), (School of Medicine), (Mazandaran University of Medical Sciences), (Sari), (Iran); (StudentResearch Committee), (Mazandaran University of Medical Sciences), (Iran)
| | - Mahdi Taghadosi
- (Departmentof Immunology), (School of Medicine), (Kermanshah University of Medical Sciences), (Kermanshah), (Iran).
| | - Pankaj Kapahi
- (BuckInstitute for Researchon Aging), (Novato), (CA 94945), (United States).
| |
Collapse
|
34
|
Advanced Glycation End Products: New Clinical and Molecular Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147236. [PMID: 34299683 PMCID: PMC8306599 DOI: 10.3390/ijerph18147236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.
Collapse
|
35
|
Marulanda K, Mercel A, Gillis DC, Sun K, Gambarian M, Roark J, Weiss J, Tsihlis ND, Karver MR, Centeno SR, Peters EB, Clemons TD, Stupp SI, McLean SE, Kibbe MR. Intravenous Delivery of Lung-Targeted Nanofibers for Pulmonary Hypertension in Mice. Adv Healthc Mater 2021; 10:e2100302. [PMID: 34061473 PMCID: PMC8273153 DOI: 10.1002/adhm.202100302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Pulmonary hypertension is a highly morbid disease with no cure. Available treatments are limited by systemic adverse effects due to non-specific biodistribution. Self-assembled peptide amphiphile (PA) nanofibers are biocompatible nanomaterials that can be modified to recognize specific biological markers to provide targeted drug delivery and reduce off-target toxicity. Here, PA nanofibers that target the angiotensin I-converting enzyme and the receptor for advanced glycation end-products (RAGE) are developed, as both proteins are overexpressed in the lung with pulmonary hypertension. It is demonstrated that intravenous delivery of RAGE-targeted nanofibers containing the targeting epitope LVFFAED (LVFF) significantly accumulated within the lung in a chronic hypoxia-induced pulmonary hypertension mouse model. Using 3D light sheet fluorescence microscopy, it is shown that LVFF nanofiber localization is specific to the diseased pulmonary tissue with immunofluorescence analysis demonstrating colocalization of the targeted nanofiber to RAGE in the hypoxic lung. Furthermore, biodistribution studies show that significantly more LVFF nanofibers localized to the lung compared to major off-target organs. Targeted nanofibers are retained within the pulmonary tissue for 24 h after injection. Collectively, these data demonstrate the potential of a RAGE-targeted nanomaterial as a drug delivery platform to treat pulmonary hypertension.
Collapse
Affiliation(s)
- Kathleen Marulanda
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Alexandra Mercel
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - David C Gillis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Kui Sun
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Maria Gambarian
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Joshua Roark
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Jenna Weiss
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Mark R Karver
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - S Ruben Centeno
- Department of Pediatrics, University of North Carolina, 260 MacNider Building CB# 7220, Chapel Hill, NC, 27599, USA
| | - Erica B Peters
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Sean E McLean
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| |
Collapse
|
36
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
37
|
The receptor for advanced glycation endproducts (RAGE) decreases survival of tumor-bearing mice by enhancing the generation of lung metastasis-associated myeloid-derived suppressor cells. Cell Immunol 2021; 365:104379. [PMID: 34038758 DOI: 10.1016/j.cellimm.2021.104379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Metastatic cancer has a poor prognosis. Novel pharmacologic targets need to be identified. The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor constitutively expressed in the lungs. Absence of overt disease in RAGE null mice suggests that RAGE is unnecessary or redundant in health. We report that RAGE null tumor-bearing mice have reduced lung metastasis and improved survival. Bone marrow chimera studies suggest that hematopoietic cell RAGE is an important contributor to these effects. Deletion of RAGE reduces both the quantity and suppressive activity of tumor-induced MDSC. Protein and mRNA studies suggest that RAGE contributes to the generation and function of MDSC including expression of the alarmins S100A8/A9 and activity of inducible nitric oxide synthase, arginase-1, and NF-κB. These findings demonstrate the important role of RAGE in determining the quantity and function of tumor-associated MDSC and suggest RAGE as a pharmacologic target for patients with metastatic disease.
Collapse
|
38
|
Chiappalupi S, Salvadori L, Vukasinovic A, Donato R, Sorci G, Riuzzi F. Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sci 2021; 272:119251. [PMID: 33636175 PMCID: PMC7900755 DOI: 10.1016/j.lfs.2021.119251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
A novel infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in December 2019 and declared as a global pandemic by the World Health. Approximately 15% of patients with COVID-19 progress to severe pneumonia and eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure with high morbidity and mortality. Evidence points towards a determinant pathogenic role of members of the renin-angiotensin system (RAS) in mediating the susceptibility, infection, inflammatory response and parenchymal injury in lungs and other organs of COVID-19 patients. The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, has important roles in pulmonary pathological states, including fibrosis, pneumonia and ARDS. RAGE overexpression/hyperactivation is essential to the deleterious effects of RAS in several pathological processes, including hypertension, chronic kidney and cardiovascular diseases, and diabetes, all of which are major comorbidities of SARS-CoV-2 infection. We propose RAGE as an additional molecular target in COVID-19 patients for ameliorating the multi-organ pathology induced by the virus and improving survival, also in the perspective of future infections by other coronaviruses.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| | - Aleksandra Vukasinovic
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Rosario Donato
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia 06132, Italy
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy.
| |
Collapse
|
39
|
Watanabe H, Son M. The Immune Tolerance Role of the HMGB1-RAGE Axis. Cells 2021; 10:564. [PMID: 33807604 PMCID: PMC8001022 DOI: 10.3390/cells10030564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The disruption of the immune tolerance induces autoimmunity such as systemic lupus erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1 (HMGB1), is released from the nucleus to the extracellular milieu in particular environments such as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE). While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on HMGB1 and RAGE's roles in controlling inflammation and immune tolerance. We also suggest how RAGE heterodimers responding microenvironments functions in immune responses.
Collapse
Affiliation(s)
- Haruki Watanabe
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
40
|
Yang L, Liu Y, Wang Y, Li J, Liu N. Azeliragon ameliorates Alzheimer's disease via the Janus tyrosine kinase and signal transducer and activator of transcription signaling pathway. Clinics (Sao Paulo) 2021; 76:e2348. [PMID: 33681944 PMCID: PMC7920406 DOI: 10.6061/clinics/2021/e2348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES TTP488, an antagonist of the receptor for advanced glycation end-products, was evaluated as a potential treatment for patients with mild-to-moderate Alzheimer's disease (AD). However, the mechanism underlying the protective action of TTP488 against AD has not yet been fully explored. METHODS Healthy male rats were exposed to aberrant amyloid β (Aβ) 1-42. Lipopolysaccharide (LPS) and the NOD-like receptor family pyrin domain containing 1 (NLRP1) overexpression lentivirus were injected to activate the NLRP1 inflammasome and exacerbate AD. TTP488 was administered to reverse AD injury. Finally, tofacitinib and fludarabine were used to inhibit the activity of Janus tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) to prove the relationship between the JAK/STAT signaling pathway and TTP488. RESULTS LPS and NLRP1 overexpression significantly increased the NLRP1 levels, reduced neurological function, and aggravated neuronal damage, as demonstrated by the impact latency time of, time spent by, and length of the platform covered by, the mice in the Morris water maze assay, Nissl staining, and immunofluorescence staining in rats with AD. CONCLUSIONS TTP488 administration successfully reduced AD injury and reversed the aforementioned processes. Additionally, tofacitinib and fludarabine administration could further reverse AD injury after the TTP488 intervention. These results suggest a new potential mechanism underlying the TTP488-mediated alleviation of AD injury.
Collapse
Affiliation(s)
- Lijuan Yang
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
| | - Yepei Liu
- Medical Image Center, Xingtai City Fifth Hospital, Xingtai, Hebei 054008, China
| | - Yuanyuan Wang
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
| | - Junsheng Li
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
- *Corresponding authors. E-mails: /
| | - Na Liu
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
- *Corresponding authors. E-mails: /
| |
Collapse
|
41
|
Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020; 22:ijms22010367. [PMID: 33396481 PMCID: PMC7796379 DOI: 10.3390/ijms22010367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), one of major dose-limiting side effects of first-line chemotherapeutic agents such as paclitaxel, oxaliplatin, vincristine, and bortezomib is resistant to most of existing medicines. The molecular mechanisms of CIPN have not been fully understood. High mobility group box 1 (HMGB1), a nuclear protein, is a damage-associated molecular pattern protein now considered to function as a pro-nociceptive mediator once released to the extracellular space. Most interestingly, HMGB1 plays a key role in the development of CIPN. Soluble thrombomodulin (TMα), known to degrade HMGB1 in a thrombin-dependent manner, prevents CIPN in rodents treated with paclitaxel, oxaliplatin, or vincristine and in patients with colorectal cancer undergoing oxaliplatin-based chemotherapy. In this review, we describe the role of HMGB1 and its upstream/downstream mechanisms in the development of CIPN and show drug candidates that inhibit the HMGB1 pathway, possibly useful for prevention of CIPN.
Collapse
|
42
|
Abstract
The advanced glycosylation end product receptor (RAGE) acts as a recognition receptor and interacts with different types of ligands that form and accumulate in the tissues and circulation, such as diabetes, inflammation, insulin resistance, and obesity. In these environments, RAGE is expressed on the surface of various cells associated with tissue disturbance. This review mainly summarizes the characteristics of RAGE-related signalling, with a particular emphasis on the role of RAGE in the development of obesity. We also briefly describe the phenotypes and characteristics of macrophages and focus on the role of adipose tissue macrophages (ATMs) and the regulatory mechanisms in obesity, diabetes, and other related metabolic diseases. Besides, we will also elaborate on the prospect of new strategies for treating diabetes and obesity-related metabolic diseases by inhibiting RAGE signalling and regulating ATMs recruitment and polarization.
Collapse
Affiliation(s)
- Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Luochen Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
43
|
Drake LR, Brooks AF, Stauff J, Sherman PS, Arteaga J, Koeppe RA, Reed A, Montavon TJ, Skaddan MB, Scott PJ. Strategies for PET imaging of the receptor for advanced glycation endproducts (RAGE). J Pharm Anal 2020; 10:452-465. [PMID: 33133729 PMCID: PMC7591811 DOI: 10.1016/j.jpha.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
The implication of the receptor for advanced glycation end-products (RAGE) in numerous diseases and neurodegenerative disorders makes it interesting both as a therapeutic target and as an inflammatory biomarker. In the context of investigating RAGE as a biomarker, there is interest in developing radiotracers that will enable quantification of RAGE using positron emission tomography (PET) imaging. We have synthesized potential small molecule radiotracers for both the intracellular ([18F]InRAGER) and extracellular ([18F]RAGER) domains of RAGE. Herein we report preclinical evaluation of both using in vitro (lead panel screens) and in vivo (rodent and nonhuman primate PET imaging) methods. Both radiotracers have high affinity for RAGE and show good brain uptake, but suffer from off-target binding. The source of the off-target PET signal is not attributable to binding to melatonin receptors, but remains unexplained. We have also investigated use of lipopolysaccharide (LPS)-treated mice as a possible animal model with upregulated RAGE for evaluation of new imaging agents. Immunoreactivity of the mouse brain sections revealed increases in RAGE in the male cohorts, but no difference in the female groups. However, it proves challenging to quantify the changes in RAGE due to off-target binding of the radiotracers. Nevertheless, they are appropriate lead scaffolds for future development of 2nd generation RAGE PET radiotracers because of their high affinity for the receptor and good CNS penetration.
Collapse
Affiliation(s)
- Lindsey R. Drake
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Phillip S. Sherman
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Janna Arteaga
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aimee Reed
- AbbVie Process Chemistry, North Chicago, IL, 60064, USA
| | | | | | - Peter J.H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
44
|
Positron Emission Tomography in the Inflamed Cerebellum: Addressing Novel Targets among G Protein-Coupled Receptors and Immune Receptors. Pharmaceutics 2020; 12:pharmaceutics12100925. [PMID: 32998351 PMCID: PMC7601272 DOI: 10.3390/pharmaceutics12100925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023] Open
Abstract
Inflammatory processes preceding clinical manifestation of brain diseases are moving increasingly into the focus of positron emission tomographic (PET) investigations. A key role in inflammation and as a target of PET imaging efforts is attributed to microglia. Cerebellar microglia, with a predominant ameboid and activated subtype, is of special interest also regarding improved and changing knowledge on functional involvement of the cerebellum in mental activities in addition to its regulatory role in motor function. The present contribution considers small molecule ligands as potential PET tools for the visualization of several receptors recognized to be overexpressed in microglia and which can potentially serve as indicators of inflammatory processes in the cerebellum. The sphingosine 1 phosphate receptor 1 (S1P1), neuropeptide Y receptor 2 (NPY2) and purinoceptor Y12 (P2Y12) cannabinoid receptors and the chemokine receptor CX3CR1 as G-protein-coupled receptors and the ionotropic purinoceptor P2X7 provide structures with rather classical binding behavior, while the immune receptor for advanced glycation end products (RAGE) and the triggering receptor expressed on myeloid cells 2 (TREM2) might depend for instance on further accessory proteins. Improvement in differentiation between microglial functional subtypes in comparison to the presently used 18 kDa translocator protein ligands as well as of the knowledge on the role of polymorphisms are special challenges in such developments.
Collapse
|
45
|
Pais M, Martinez L, Ribeiro O, Loureiro J, Fernandez R, Valiengo L, Canineu P, Stella F, Talib L, Radanovic M, Forlenza OV. Early diagnosis and treatment of Alzheimer's disease: new definitions and challenges. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2020; 42:431-441. [PMID: 31994640 PMCID: PMC7430379 DOI: 10.1590/1516-4446-2019-0735] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
The prevalence of Alzheimer's disease (AD), a progressive neurodegenerative disorder, is expected to more than double by 2050. Studies on the pathophysiology of AD have been changing our understanding of this disorder and setting a new scenario for drug development and other therapies. Concepts like the "amyloid cascade" and the "continuum of AD," discussed in this article, are now well established. From updated classifications and recommendations to advances in biomarkers of AD, we aim to critically assess the literature on AD, addressing new definitions and challenges that emerged from recent studies on the subject. Updates on the status of major clinical trials are also given, and future perspectives are discussed.
Collapse
Affiliation(s)
- Marcos Pais
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Luana Martinez
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Octávio Ribeiro
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Júlia Loureiro
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Romel Fernandez
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Leandro Valiengo
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Paulo Canineu
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Programa de Gerontologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), São Paulo, SP, Brazil
| | - Florindo Stella
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Leda Talib
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Marcia Radanovic
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
46
|
Ness KK, Wogksch MD. Frailty and aging in cancer survivors. Transl Res 2020; 221:65-82. [PMID: 32360946 PMCID: PMC7321876 DOI: 10.1016/j.trsl.2020.03.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
There are over 15 million survivors of cancer in the United States whose rates of frailty, an aging phenotype, range from just under 10% to over 80%. Frailty impacts not only disease survival but also long-term function and quality of life in children, adolescents, and in all adults diagnosed and/or treated for cancer. This review explains frailty as a construct and model of physiologic well-being. It also describes how frailty at diagnosis impacts cancer outcomes in adult populations and enumerates the prevalence of frailty in different populations of cancer survivors. Biological mechanisms responsible for aging and potentially for frailty among individuals with or who have been treated for cancer are discussed. Finally, promising pharmaceutical and lifestyle interventions designed to impact aging rather than a specific disease, tested in other populations, but likely applicable in cancer patients and survivors, are discussed.
Collapse
Affiliation(s)
- Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Matthew D Wogksch
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
47
|
Candasamy M, Mohamed Elhassan SA, Kumar Bhattamisra S, Hua WY, Sern LM, Binti Busthamin NA, Mohamad Ilni NB, Shun NS, Baohong L, Ya NS, Ying NW. Type 3 diabetes (Alzheimer's disease): new insight for promising therapeutic avenues. Panminerva Med 2020; 62:155-163. [PMID: 32208408 DOI: 10.23736/s0031-0808.20.03879-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) are two of the most commonly occurring diseases worldwide, especially among the elderly population. In particular, the increased prevalence of AD has imposed tremendous psychological and financial burdens on society. Growing evidence suggests both AD and T2D share many similar pathological traits. AD is characterized as a metabolic disorder whereby the glucose metabolism in the brain is impaired. This closely resembles the state of insulin resistance in T2D. Insulin resistance of the brain has been heavily implicated two prominent pathological features of AD, Aβ plaques and neurofibrillary tangles. Brain insulin resistance is known to elicit a positive feed-forward loop towards the formation of AD pathology in which they affect each other in a synergistic manner. Other physiological traits shared between the two diseases include inflammation, oxidative stress and autophagic dysfunction, which are also closely associated with brain insulin resistance. In this review and depending on these underlying pathways that link these two diseases, we have discussed the potential therapeutic implications of AD. By expanding our knowledge of the overlapping pathophysiology involved, we hope to provide scientific basis to the discovery of novel therapeutic strategies to improve the clinical outcomes of AD in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia -
| | | | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Wong Y Hua
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim M Sern
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | | | - Ng S Shun
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim Baohong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Ng S Ya
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Ng W Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Therapeutic Potential of Direct Clearance of the Amyloid-β in Alzheimer's Disease. Brain Sci 2020; 10:brainsci10020093. [PMID: 32050618 PMCID: PMC7071829 DOI: 10.3390/brainsci10020093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by deposition and accumulation of amyloid-β (Aβ) and its corresponding plaques within the brain. Although much debate exists whether these plaques are the cause or the effect of AD, the accumulation of Aβ is linked with the imbalance between the production and clearance of Aβ. The receptor for advanced glycation endproducts (RAGE) facilitates entry of free Aβ from the peripheral stream. Conversely, lipoprotein receptor-related protein 1 (LRP1), located in the abluminal side at the blood–brain barrier mediates the efflux of Aβ. Research on altering the rates of clearance of Aβ by targeting these two pathways has been extensively study. Additionally, a cerebrospinal fluid (CSF) circulation assistant device has also been evaluated as an approach to increase solute concentration in the CSF via mechanical drainage, to allow for removal of Aβ from the brain. Herein, we provide a brief review of these approaches that are designed to re-establish a homeostatic Aβ balance in the brain.
Collapse
|
49
|
Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci 2020; 27:736-750. [PMID: 32210695 PMCID: PMC6997863 DOI: 10.1016/j.sjbs.2019.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aβ aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.
Collapse
Key Words
- AAV, Adeno-associated virus
- ABCA1, ATP binding cassette subfamily A member 1
- AD, Alzheimer’s disease
- ADAMTS9, ADAM Metallopeptidase With Thrombospondin Type 1 Motif 9
- AGPAT1, 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha
- Alzheimer’s disease
- Anti-diabetic drugs
- ApoE, Apolipoprotein E
- Arab population
- Aβ, Amyloid-beta
- BACE1, Beta-secretase 1
- BBB, Blood-Brain Barrier
- BMI, Body mass index
- CALR, calreticulin gene
- CIP2A, Cancerous Inhibitor Of Protein Phosphatase 2A
- COX-2, Cyclooxygenase 2
- CSF, Cerebrospinal fluid
- DM, Diabetes mellitus
- DUSP9, Dual Specificity Phosphatase 9
- Diabetes mellitus
- ECE-1, Endotherin converting enzyme 1
- FDG-PET, Fluorodeoxyglucose- positron emission tomography
- FRMD4A, FERM Domain Containing 4A
- FTO, Fat Mass and Obesity Associated Gene
- GLP-1, Glucagon like peptide
- GNPDA2, Glucosamine-6-phosphate deaminase 2
- GSK-3β, Glycogen synthase kinase 3 beta
- IDE, Insulin degrading enzyme
- IGF-1, Insulin-like growth factor 1
- IR, Insulin receptor
- IR, Insulin resistance
- Insulin signaling
- LPA, Lipophosphatidic acid
- MC4R, Melanocortin 4 receptor
- MCI, Myocardial infarction
- MENA, Middle East North African
- MG-H1, Methylglyoxal-hydroimidazolone isomer trifluoroactic acid salt
- MRI, Magnetic resonance imaging
- NDUFS3, NADH:Ubiquinone Oxidoreductase Core Subunit S3
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFT, Neurofibrillary tangles
- NOTCH4, Neurogenic locus notch homolog protein 4
- PI3K, Phosphoinositide-3
- PP2A, Protein phosphatase 2
- PPAR-γ2, Peroxisome proliferator-activated receptor gamma 2
- Pit-PET, Pittsburgh compound B- positron emission tomography
- RAB1A, Ras-related protein 1A
- SORT, Sortilin
- STZ, Streptozotocin
- T1DM, Type 1 Diabetes Mellitus
- T2DM, Type 2 Diabetes Mellitus
- TCF7L2, Transcription Factor 7 Like 2
- TFAP2B, Transcription Factor AP-2 Beta
Collapse
Affiliation(s)
| | | | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
50
|
Charrin E, Faes C, Sotiaux A, Skinner S, Pialoux V, Joly P, Connes P, Martin C. Receptor for Advanced Glycation End Products Antagonism Blunts Kidney Damage in Transgenic Townes Sickle Mice. Front Physiol 2019; 10:880. [PMID: 31396093 PMCID: PMC6663971 DOI: 10.3389/fphys.2019.00880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023] Open
Abstract
A large proportion of adult patients with sickle cell disease (SCD) develops kidney disease and is at a high risk of mortality. The contribution of advanced glycation end products and their receptor (AGE/RAGE) axis has been established in the pathogenesis of multiple kidney diseases. The aim of the present study was to determine the implication of RAGE in the development of SCD-related kidney complications in a mouse model of SCD, as this has never been investigated. 8-week-old AA (normal) and SS (homozygous SCD) Townes mice were treated with a specific RAGE antagonist (RAP) or vehicle (NaCl). After 3 weeks of treatment, red blood cell count, hematocrit, and hemoglobin levels were significantly higher in RAP-treated SS mice. Reticulocyte count and sickle cell count were reduced in RAP-SS compared to their NaCl-treated littermates. The lower NADPH oxidase activity in the kidney of RAP-treated mice compared to NaCl-treated mice suggests limited ROS production. RAP-treated SS mice had decreased NF-κB protein expression and activation as well as reduced TNF-α mRNA expression in the kidney. Glomerular area, interstitial fibrosis, tubular iron deposits, and KIM-1 protein expression were significantly reduced after RAP treatment. In conclusion, this study provides evidence supporting the pathogenic role of RAGE in kidney injuries in sickle cell mice.
Collapse
Affiliation(s)
- Emmanuelle Charrin
- Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Camille Faes
- Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Amandine Sotiaux
- Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Sarah Skinner
- Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Vincent Pialoux
- Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Institut Universitaire de France, Paris, France
| | - Philippe Joly
- Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Groupement Hospitalier Est, UF "Biochimie des Pathologies érythrocytaires" Centre de Biologie Est, CHU de Lyon, Lyon, France
| | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Institut Universitaire de France, Paris, France
| | - Cyril Martin
- Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Laboratory of Excellence "GR-Ex", Paris, France
| |
Collapse
|