1
|
Yadav M, Sharma A, Patne K, Tabasum S, Suryavanshi J, Rawat L, Machaalani M, Eid M, Singh RP, Choueiri TK, Pal S, Sabarwal A. AXL signaling in cancer: from molecular insights to targeted therapies. Signal Transduct Target Ther 2025; 10:37. [PMID: 39924521 PMCID: PMC11808115 DOI: 10.1038/s41392-024-02121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/02/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025] Open
Abstract
AXL, a member of the TAM receptor family, has emerged as a potential target for advanced-stage human malignancies. It is frequently overexpressed in different cancers and plays a significant role in various tumor-promoting pathways, including cancer cell proliferation, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, DNA damage response, acquired therapeutic resistance, immunosuppression, and inflammatory responses. Beyond oncology, AXL also facilitates viral infections, including SARS-CoV-2 and Zika highlighting its importance in both cancer and virology. In preclinical models, small-molecule kinase inhibitors targeting AXL have shown promising anti-tumorigenic potential. This review primarily focuses on the induction, regulation and biological functions of AXL in mediating these tumor-promoting pathways. We discuss a range of therapeutic strategies, including recently developed small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and antibody-drug conjugates (ADCs), anti-AXL-CAR, and combination therapies. These interventions are being examined in both preclinical and clinical studies, offering the potential for improved drug sensitivity and therapeutic efficacy. We further discuss the mechanisms of acquired therapeutic resistance, particularly the crosstalk between AXL and other critical receptor tyrosine kinases (RTKs) such as c-MET, EGFR, HER2/HER3, VEGFR, PDGFR, and FLT3. Finally, we highlight key research areas that require further exploration to enhance AXL-mediated therapeutic approaches for improved clinical outcomes.
Collapse
Affiliation(s)
- Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- Laboratory of Nanotechnology and Chemical Biology, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Akansha Sharma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ketki Patne
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jyoti Suryavanshi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Laxminarayan Rawat
- Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Marc Machaalani
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marc Eid
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Toni K Choueiri
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumitro Pal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| | - Akash Sabarwal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Naguib EM, Ismail EF, Badran DI, Sherief MH, El-Abaseri TB. Clinicopathological significance of c-MET and HER2 altered expression in bladder cancer. J Egypt Natl Canc Inst 2024; 36:42. [PMID: 39722090 DOI: 10.1186/s43046-024-00250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Tumor recurrence or metastasis after surgery is a significant factor influencing bladder cancer (BC) prognosis. Novel molecular biomarkers are necessary to determine each patient's specific outcome because current biomarkers have limited power for predicting prognosis. The proto-oncogene MET encodes c-MET, a tyrosine kinase receptor. When c-MET attaches to its ligand, it triggers several steps in the signal transduction cascade that control cell survival, proliferation, and invasion. c-MET is overexpressed in several carcinomas. The HER2 gene encodes another receptor tyrosine kinase (RTK). HER2 overexpression is linked to altered proliferation and increased aggressiveness in several malignancies. Identifying crosstalk partners of RTKs implicated in bladder cancer development may have a unique role in predicting aggressiveness. This study explored the expression status of c-MET and HER2 in human BC and their clinical significance in disease outcomes. METHODS A quantitative real-time polymerase chain reaction was done on 40 BC patients who had undergone transurethral resection (TUR) or radical cystectomy and had a pathologically verified diagnosis of primary tumor without prior chemoradiotherapy as well as 20 patients with benign diseases who served as controls. The c-MET and HER2 expression levels were investigated, and their relationship with clinicopathological features was analyzed. RESULTS c-MET and HER2 gene expression were significantly higher, 6.1- and 4.5-fold, in the study group compared to the controls. The frequency of c-MET and HER2 overexpression in the study group was 80% (32/40) and 90% (36/40), respectively. c-MET overexpression was associated with pathological stage(P = 0.002), tumor grade (P = 0.019), muscle invasion (P = 0.008), and node involvement (P = 0.017), while HER2 overexpression was associated with pathological stage(P = 0.033), invasion to muscles (P = 0.003), and node involvement (P = 0.005). Based on the Log-rank test, patients expressing both c-MET and HER2 had the poorest disease-free survival rates among all studied patients (median = 10 m, 3.0-16.9 95%CI). CONCLUSION There is a possible correlation between c-MET and HER2 gene overexpression and poor clinical outcomes in patients with BC.
Collapse
Affiliation(s)
- Engy Mohammed Naguib
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - E F Ismail
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - D I Badran
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - M H Sherief
- Urology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - T B El-Abaseri
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Moon DO. Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management. Int J Mol Sci 2024; 25:2911. [PMID: 38474160 DOI: 10.3390/ijms25052911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This paper delves into the diverse and significant roles of curcumin, a polyphenolic compound from the Curcuma longa plant, in the context of cancer and inflammatory diseases. Distinguished by its unique molecular structure, curcumin exhibits potent biological activities including anti-inflammatory, antioxidant, and potential anticancer effects. The research comprehensively investigates curcumin's molecular interactions with key proteins involved in cancer progression and the inflammatory response, primarily through molecular docking studies. In cancer, curcumin's effectiveness is determined by examining its interaction with pivotal proteins like CDK2, CK2α, GSK3β, DYRK2, and EGFR, among others. These interactions suggest curcumin's potential role in impeding cancer cell proliferation and survival. Additionally, the paper highlights curcumin's impact on inflammation by examining its influence on proteins such as COX-2, CRP, PDE4, and MD-2, which are central to the inflammatory pathway. In vitro and clinical studies are extensively reviewed, shedding light on curcumin's binding mechanisms, pharmacological impacts, and therapeutic application in various cancers and inflammatory conditions. These studies are pivotal in understanding curcumin's functionality and its potential as a therapeutic agent. Conclusively, this review emphasizes the therapeutic promise of curcumin in treating a wide range of health issues, attributed to its complex chemistry and broad pharmacological properties. The research points towards curcumin's growing importance as a multi-faceted natural compound in the medical and scientific community.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
Houssiau H, Pairet G, Dano H, Seront E. The Role of c-MET as a Biomarker in Patients with Bladder Cancer Treated with Radical Chemo-Radiotherapy. Curr Oncol 2023; 30:10550-10555. [PMID: 38132404 PMCID: PMC10742392 DOI: 10.3390/curroncol30120770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Bladder cancer is a highly aggressive cancer, and muscle invasive urothelial carcinoma (MIUC) requires aggressive strategy. Concomitant chemo-radiotherapy (CRT) appears as a therapeutic option that allows bladder sparing. No biomarker is currently available to optimally select patients for CRT. METHODS We retrospectively enrolled patients with MIUC who were treated in a curative setting with CRT. Based on c-MET expression in pre-treatment tumor tissue, patients were stratified into two groups: no expression of c-MET (group A) and expression of c-MET (group B). We evaluated the outcome of these patients based on c-MET expression. RESULTS After a median follow-up of 40 months, 13 patients were enrolled in this analysis, 8 in group A and 5 in group B. The disease recurrence was 25% in group A and 100% in group B. Compared to group A, patients from group B experienced more frequent and more rapid recurrence in terms of metastases; the 3-year metastatic recurrence rate was 13% and 100%, respectively. The c-MET expression was also associated with a higher rate of cancer-related deaths. CONCLUSIONS In this retrospective analysis, c-MET expression was associated with worse disease-free survival and survival in patients treated radically with CRT.
Collapse
Affiliation(s)
- Hélène Houssiau
- Department of Medical Oncology, Groupe Jolimont, 7100 Haine Saint Paul, Belgium;
| | - Géraldine Pairet
- Department of Pathology, Groupe Jolimont, 7100 Haine Saint Paul, Belgium;
| | - Hélène Dano
- Department of Pathology, Cliniques Universitaires Saint Luc, 1200 Brussels, Belgium;
| | - Emmanuel Seront
- Department of Medical Oncology, Groupe Jolimont, 7100 Haine Saint Paul, Belgium;
| |
Collapse
|
5
|
Brayford S, Duly A, Teo WS, Dwarte T, Gonzales-Aloy E, Ma Z, McVeigh L, Failes TW, Arndt GM, McCarroll JA, Kavallaris M. βIII-tubulin suppression enhances the activity of Amuvatinib to inhibit cell proliferation in c-Met positive non-small cell lung cancer cells. Cancer Med 2023; 12:4455-4471. [PMID: 35946957 PMCID: PMC9972117 DOI: 10.1002/cam4.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/07/2022] Open
Abstract
Non-Small Cell Lung Carcinoma (NSCLC) remains a leading cause of cancer death. Resistance to therapy is a significant problem, highlighting the need to find new ways of sensitising tumour cells to therapeutic agents. βIII-tubulin is associated with aggressive tumours and chemotherapy resistance in a range of cancers including NSCLC. βIII-tubulin expression has been shown to impact kinase signalling in NSCLC cells. Here, we sought to exploit this interaction by identifying co-activity between βIII-tubulin suppression and small-molecule kinase inhibitors. To achieve this, a forced-genetics approach combined with a high-throughput drug screen was used. We show that activity of the multi-kinase inhibitor Amuvatinib (MP-470) is enhanced by βIII-tubulin suppression in independent NSCLC cell lines. We also show that this compound significantly inhibits cell proliferation among βIII-tubulin knockdown cells expressing the receptor tyrosine kinase c-Met. Together, our results highlight that βIII-tubulin suppression combined with targeting specific receptor tyrosine kinases may represent a novel therapeutic approach for otherwise difficult-to-treat lung carcinomas.
Collapse
Affiliation(s)
- Simon Brayford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Alastair Duly
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Wee Siang Teo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Tanya Dwarte
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Zerong Ma
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Laura McVeigh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Timothy W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia.,ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| |
Collapse
|
6
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
Feng Y, Yang Z, Xu X. c-Met: A Promising Therapeutic Target in Bladder Cancer. Cancer Manag Res 2022; 14:2379-2388. [PMID: 35967753 PMCID: PMC9374328 DOI: 10.2147/cmar.s369175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal-epithelial transition factor (c-Met) belongs to the tyrosine kinase receptor family and is overexpressed in various human cancers. Its ligand is hepatocyte growth factor (HGF), and the HGF/c-Met signaling pathway is involved in a wide range of cellular processes, including cell proliferation, migration, and metastasis. Emerging studies have indicated that c-Met expression is strongly associated with bladder cancer (BCa) development and prognosis. Therefore, c-Met is a potential therapeutic target for BCa treatment. Recently, the aberrant expression of noncoding RNAs was found to play a significant role in tumour progression. There is a close connection between c-Met and noncoding RNA. Herein, we summarized the biological function and prognostic value of c-Met in BCa, as well as its potential role as a drug target. The relation of c-Met and ncRNA was also described in the paper.
Collapse
Affiliation(s)
- Yanfei Feng
- The Second Affiliated College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Zitong Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xin Xu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, Terry S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol 2022; 13:869676. [PMID: 35572601 PMCID: PMC9092944 DOI: 10.3389/fimmu.2022.869676] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
Collapse
Affiliation(s)
- Agnete S. T. Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria L. Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jean-Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
| | - James B. Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Stéphane Terry
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
- Research Department, Inovarion, Paris, France
| |
Collapse
|
9
|
Lotsberg ML, Davidsen KT, D’Mello Peters S, Haaland GS, Rayford A, Lorens JB, Engelsen AST. The Role of AXL Receptor Tyrosine Kinase in Cancer Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2022:307-327. [DOI: 10.1007/978-3-030-98950-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Garcia-Robledo JE, Rosell R, Ruíz-Patiño A, Sotelo C, Arrieta O, Zatarain-Barrón L, Ordoñez C, Jaller E, Rojas L, Russo A, de Miguel-Pérez D, Rolfo C, Cardona AF. KRAS and MET in non-small-cell lung cancer: two of the new kids on the 'drivers' block. Ther Adv Respir Dis 2022; 16:17534666211066064. [PMID: 35098800 PMCID: PMC8808025 DOI: 10.1177/17534666211066064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a heterogeneous disease, and therapeutic management has advanced to identify various critical oncogenic mutations that promote lung cancer tumorigenesis. Subsequent studies have developed targeted therapies against these oncogenes in the hope of personalized treatment based on the tumor's molecular genomics. This review presents a comprehensive review of the biology, new therapeutic interventions, and resistance patterns of two well-defined subgroups, tumors with KRAS and MET alterations. We also discuss the status of molecular testing practices for these two key oncogenic drivers, considering the progressive introduction of next-generation sequencing (NGS) and RNA sequencing in regular clinical practice.
Collapse
Affiliation(s)
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP)/Dr. Rosell Oncology Institute (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | - Alejandro Ruíz-Patiño
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, México
| | - Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, México
| | - Camila Ordoñez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Elvira Jaller
- Department of Internal Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Department of Clinical Oncology, Clínica Colsanitas, Bogotá, Colombia Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Alessandro Russo
- Medical Oncology Unit, A.O. Papardo, Messina, Italy Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Diego de Miguel-Pérez
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
11
|
Bian Q, Anderson JC, Zhang XW, Huang ZQ, Ebefors K, Nyström J, Hall S, Novak L, Julian BA, Willey CD, Novak J. Mesangioproliferative Kidney Diseases and Platelet-Derived Growth Factor-Mediated AXL Phosphorylation. Kidney Med 2021; 3:1003-1013.e1. [PMID: 34939009 PMCID: PMC8664734 DOI: 10.1016/j.xkme.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
RATIONALE & OBJECTIVE Immunoglobulin A nephropathy (IgAN) is a common glomerular disease, with mesangial cell proliferation as a major feature. There is no disease-specific treatment. Platelet-derived growth factor (PDGF) contributes to the pathogenesis of IgAN. To better understand its pathogenic mechanisms, we assessed PDGF-mediated AXL phosphorylation in human mesangial cells and kidney tissue biopsy specimens. STUDY DESIGN Immunostaining using human kidney biopsy specimens and in vitro studies using primary human mesangial cells. SETTING & PARTICIPANTS Phosphorylation of AXL was assessed in cultured mesangial cells and 10 kidney-biopsy specimens from 5 patients with IgAN, 3 with minimal change disease, 1 with membranous nephropathy, and 1 with mesangioproliferative glomerulonephritis (GN). PREDICTOR Glomerular staining for phospho-AXL in kidney biopsy specimens of patients with mesangioproliferative diseases. OUTCOMES Phosphorylated AXL detected in biopsy tissues of patients with IgAN and mesangioproliferative GN and in cultured mesangial cells stimulated with PDGF. ANALYTIC APPROACH t test, Mann-Whitney test, and analysis of variance were used to assess the significance of mesangial cell proliferative changes. RESULTS Immunohistochemical staining revealed enhanced phosphorylation of glomerular AXL in IgAN and mesangioproliferative GN, but not in minimal change disease and membranous nephropathy. Confocal-microscopy immunofluorescence analysis indicated that mesangial cells rather than endothelial cells or podocytes expressed phospho-AXL. Kinomic profiling of primary mesangial cells treated with PDGF revealed activation of several protein-tyrosine kinases, including AXL. Immunoprecipitation experiments indicated association of AXL and PDGF receptor proteins. An AXL-specific inhibitor (bemcentinib) partially blocked PDGF-induced cellular proliferation and reduced phosphorylation of AXL and PDGF receptor and the downstream signals (AKT1 and ERK1/2). LIMITATIONS Small number of kidney biopsy specimens to correlate the activation of AXL with disease severity. CONCLUSIONS PDGF-mediated signaling in mesangial cells involves transactivation of AXL. Finding appropriate inhibitors to block PDGF-mediated transactivation of AXL may provide new therapeutic options for mesangioproliferative kidney diseases such as IgAN.
Collapse
Affiliation(s)
- Qi Bian
- University of Alabama at Birmingham, Birmingham, AL
- Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | | | - Xian Wen Zhang
- University of Alabama at Birmingham, Birmingham, AL
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, AL
| | - Lea Novak
- University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Tsamouri MM, Steele TM, Mudryj M, Kent MS, Ghosh PM. Comparative Cancer Cell Signaling in Muscle-Invasive Urothelial Carcinoma of the Bladder in Dogs and Humans. Biomedicines 2021; 9:1472. [PMID: 34680588 PMCID: PMC8533305 DOI: 10.3390/biomedicines9101472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Muscle-invasive urothelial carcinoma (MIUC) is the most common type of bladder malignancy in humans, but also in dogs that represent a naturally occurring model for this disease. Dogs are immunocompetent animals that share risk factors, pathophysiological features, clinical signs and response to chemotherapeutics with human cancer patients. This review summarizes the fundamental pathways for canine MIUC initiation, progression, and metastasis, emerging therapeutic targets and mechanisms of drug resistance, and proposes new opportunities for potential prognostic and diagnostic biomarkers and therapeutics. Identifying similarities and differences between cancer signaling in dogs and humans is of utmost importance for the efficient translation of in vitro research to successful clinical trials for both species.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Graduate Group in Integrative Pathobiology, University of California Davis, Davis, CA 95616, USA
| | - Thomas M. Steele
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
13
|
Akgül M, Baykan Ö, Çağman Z, Özyürek M, Tinay İ, Akbal C, Uras F, Türkeri L. Gas6 expression and Tyrosine kinase Axl Sky receptors: Their relation with tumor stage and grade in patients with bladder cancer. Arch Ital Urol Androl 2021; 93:148-152. [PMID: 34286546 DOI: 10.4081/aiua.2021.2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES It has been shown that the dysregulation of tyrosine kinase Axl receptor and its ligand growth arrest-specific gene (Gas6) are associated with poor prognosis in various types of tumors but there is not enough study about their importance in bladder cancer (BC). We evaluated the relation of Gas6 gene expression and tyrosine- kinase Axl and Sky (Tyro 3) receptors with tumor stage and grade in patients with BC. MATERIAL AND METHODS The study group consists of 55 patients whose transurethral resection of bladder (TUR-B) has been performed due to BC and the control group consists of 12 patients with normal bladder mucosa. In tissues mRNAs of Gas6, Axl, and Sky receptors were examined by quantitative (Real-Time) PCR (qPCR). Protein expression was measured by immunohistochemistry. Plasma Gas6 protein levels were compared with control group by ELISA method. RESULTS Patients with BC were grouped as Ta low (n=17), Ta high (n=5), T1 low (n=9), T1 high (n=8) and T2 (n=16) according to their TUR-B pathologies. The qPCR analysis showed that the expression of Gas6 gene and Axl receptor is higher in the tumor-positive group and the immune-histochemical showed that the bladder samples of the tumor-positive group stained significantly positive. When the patients are grouped according to the TUR-B pathologies, a statistical significant difference was observed among groups in the qPCR analysis ratios of Gas6 gene and Axl receptor by (p < 0.05) but no significance was found for Sky receptor (p > 0.05). When Gas6 protein levels in plasma samples were compared by ELISA method, a statistical significance was determined among groups (p = 0.001). CONCLUSIONS Our findings indicate that mRNAs of Gas6 and Axl receptor are closely related to tumor stage and grade in patients with BC. Further studies are needed for understanding the role of Gas6 and its receptors on the neoplastic transformation in terms of novel biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Murat Akgül
- Department of Urology, Tekirdag Namık Kemal University Medical School, Tekirdag.
| | - Özgür Baykan
- Department of Biochemistry, Balıkesir University Medical School, Balıkesir.
| | - Zeynep Çağman
- Department of Biochemistry, Bezmialem University, School of Pharmacy, Istanbul.
| | - Mustafa Özyürek
- Department of Physiology, Marmara University, School of Medicine, Istanbul.
| | | | - Cem Akbal
- Department of Urology, Acıbadem University, School of Medicine, Istanbul.
| | - Fikriye Uras
- Department of Biochemistry, Marmara University, School of Pharmacy, Istanbul.
| | - Levent Türkeri
- Department of Urology, Acıbadem University, School of Medicine, Istanbul.
| |
Collapse
|
14
|
Yılmaz Y, Batur T, Korhan P, Öztürk M, Atabey N. Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma. LIVER CANCER IN THE MIDDLE EAST 2021:333-364. [DOI: 10.1007/978-3-030-78737-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Gupta A, Belsky JA, Schieffer KM, Leraas K, Varga E, McGrath SD, Koo SC, Magrini V, Wilson RK, White P, Mardis ER, Jatana KR, Cottrell CE, Setty BA. Infantile fibrosarcoma-like tumor driven by novel RBPMS-MET fusion consolidated with cabozantinib. Cold Spring Harb Mol Case Stud 2020; 6:a005645. [PMID: 33028644 PMCID: PMC7552925 DOI: 10.1101/mcs.a005645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Infantile fibrosarcoma (IFS) is nearly universally driven by gene fusions involving the NTRK family. ETV6-NTRK3 fusions account for ∼85% of alterations; the remainder are attributed to NTRK-variant fusions. Rarely, other genomic aberrations have been described in association with tumors identified as IFS or IFS-like. We describe the utility of genomic characterization of an IFS-like tumor. We also describe the successful treatment combination of VAC (vincristine, actinomycin, cyclophosphamide) with tyrosine kinase inhibitor (TKI) maintenance in this entity. This patient presented at birth with a right facial mass, enlarging at 1 mo to 4.9 × 4.5 × 6.3 cm. Biopsy demonstrated hypercellular fascicles of spindle cells with patchy positivity for smooth muscle actin (SMA) and negativity for S100, desmin, myogenin, and MyoD1. Targeted RNA sequencing identified a novel RBPMS-MET fusion with confirmed absence of ETV6-NTRK3, and the patient was diagnosed with an IFS-like tumor. A positron emission tomography (PET) scan was negative for metastatic disease. VAC was given for a duration of 10 mo. Resection at 13 mo of age demonstrated positive margins. Cabozantinib, a MET-targeting TKI, was initiated. The patient tolerated cabozantinib well and has no evidence of disease at 24 mo of age. We describe a novel RBPMS-MET driver fusion in association with a locally aggressive IFS-like tumor. MET functions as an oncogene and, when associated with the RNA binding protein RBPMS, forms an in-frame fusion product that retains the MET kinase domain. This fusion is associated with aberrant cell signaling pathway expression and subsequent malignancy. We describe treatment with cabozantinib in a patient with an IFS-like neoplasm.
Collapse
Affiliation(s)
- Ajay Gupta
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jennifer A Belsky
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Elizabeth Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Selene C Koo
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kris R Jatana
- Department of Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bhuvana A Setty
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
16
|
Chung CT, Yeh KC, Lee CH, Chen YY, Ho PJ, Chang KY, Chen CH, Lai YK, Chen CT. Molecular profiling of afatinib-resistant non-small cell lung cancer cells in vivo derived from mice. Pharmacol Res 2020; 161:105183. [PMID: 32896579 DOI: 10.1016/j.phrs.2020.105183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. NSCLC patients with overexpressed or mutated epidermal growth factor receptor (EGFR) related to disease progression are treated with EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Acquired drug resistance after TKI treatments has been a major focus for development of NSCLC therapies. This study aimed to establish afatinib-resistant cell lines from which afatinib resistance-associated genes are identified and the underlying mechanisms of multiple-TKI resistance in NSCLC can be further investigated. Nude mice bearing subcutaneous NSCLC HCC827 tumors were administered with afatinib at different dose intensities (5-100 mg/kg). We established three HCC827 sublines resistant to afatinib (IC50 > 1 μM) with cross-resistance to gefitinib (IC50 > 5 μM). cDNA microarray revealed several of these sublines shared 27 up- and 13 down-regulated genes. The mRNA expression of selective novel genes - such as transmembrane 4 L six family member 19 (TM4SF19), suppressor of cytokine signaling 2 (SOCS2), and quinolinate phosphoribosyltransferase (QPRT) - are responsive to afatinib treatments only at high concentrations. Furthermore, c-MET amplification and activations of a subset of tyrosine kinase receptors were observed in all three resistant cells. PHA665752, a c-MET inhibitor, remarkably increased the sensitivity of these resistant cells to afatinib (IC50 = 12-123 nM). We established afatinib-resistant lung cancer cell lines and here report genes associated with afatinib resistance in human NSCLC. These cell lines and the identified genes serve as useful investigational tools, prognostic biomarkers of TKI therapies, and promising molecule targets for development of human NSCLC therapeutics.
Collapse
Affiliation(s)
- Cheng-Ta Chung
- Graduate Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Pai-Jiun Ho
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kai-Yen Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chieh-Hsin Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yiu-Kay Lai
- Graduate Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
17
|
Zangouei AS, Barjasteh AH, Rahimi HR, Mojarrad M, Moghbeli M. Role of tyrosine kinases in bladder cancer progression: an overview. Cell Commun Signal 2020; 18:127. [PMID: 32795296 PMCID: PMC7427778 DOI: 10.1186/s12964-020-00625-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Bladder cancer (BCa) is a frequent urothelial malignancy with a high ratio of morbidity and mortality. Various genetic and environmental factors are involved in BCa progression. Since, majority of BCa cases are diagnosed after macroscopic clinical symptoms, it is required to find efficient markers for the early detection. Receptor tyrosine-kinases (RTKs) and non-receptor tyrosine-kinases (nRTKs) have pivotal roles in various cellular processes such as growth, migration, differentiation, and metabolism through different signaling pathways. Tyrosine-kinase deregulations are observed during tumor progressions via mutations, amplification, and chromosomal abnormalities which introduces these factors as important candidates of anti-cancer therapies. Main body For the first time in present review we have summarized all of the reported tyrosine-kinases which have been significantly associated with the clinicopathological features of BCa patients. Conclusions This review highlights the importance of tyrosine-kinases as critical markers in early detection and therapeutic purposes among BCa patients and clarifies the molecular biology of tyrosine-kinases during BCa progression and metastasis. Video abstract
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
19
|
Xu Z, Wang C, Xiang X, Li J, Huang J. Characterization of mRNA Expression and Endogenous RNA Profiles in Bladder Cancer Based on The Cancer Genome Atlas (TCGA) Database. Med Sci Monit 2019; 25:3041-3060. [PMID: 31020952 PMCID: PMC6498884 DOI: 10.12659/msm.915487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Bladder cancer is a multifactorial disease with increasing incidence and mortality. Genetic alterations and altered expressions of mRNAs, long non-coding RNAs (lncRNAs), and miRNAs have been shown to play important roles in the tumorigenesis of bladder cancer. However, the functions of key RNAs and their regulatory network in bladder cancer are still to be elucidated. Material/Methods RNA profiles were downloaded from The Cancer Genome Atlas (TCGA) database. The differentially expressed mRNAs, lncRNAs, and miRNAs in bladder cancer were acquired through analyses of data from 414 bladder cancer tissues and 19 normal bladder tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis was performed by using “DAVID6.8” and the R package “ClusterProfile”. Protein–protein interaction and competing endogenous RNA (ceRNA) networks were constructed by using “STRING” database and Cytoscape 3.6.2. Based on the clinical data and Cox regression, a prognosis model was established, and survival analysis was performed. Results A total of 1819 mRNAs, 659 lncRNAs, and 160 miRNAs were identified as significantly differentially expressed in bladder cancer of which 52 mRNAs, 58 lncRNAs, and 22 miRNAs were incorporated in the ceRNA network. CFL2 and TPM2 were found to be downregulated and showed significant correlation to each other in bladder cancer. HOXB5 and 6 lncRNAs (ADAMTS9-AS1, AC112721.1, LINC00460, AC110491.1, LINC00163, and HCG22) were strongly associated with high-grade, disease stages, and overall survival. Conclusions In this study, we have identified differentially expressed mRNAs, lncRNAs, and miRNAs in bladder cancer which were strongly associated with oncogenesis and prognosis. Further experimental studies are necessary to validate these results.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Chuang Wang
- Department of Urology, People' Hospital of Guilin, Guilin, Guangxi, China (mainland)
| | - Xuebao Xiang
- Department of Urology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Junming Li
- Department of Urology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Jiefu Huang
- Department of Urology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China (mainland)
| |
Collapse
|
20
|
Abstract
IMPACT STATEMENT Cancer is among the leading causes of death worldwide. In 2016, 8.9 million people are estimated to have died from various forms of cancer. The current treatments, including surgery with chemotherapy and/or radiation therapy, are not effective enough to provide full protection from cancer, which highlights the need for developing novel therapy strategies. In this review, we summarize the molecular biology of a unique member of a subfamily of receptor tyrosine kinase, TYRO3 and discuss the new insights in TYRO3-targeted treatment for cancer therapy.
Collapse
Affiliation(s)
- Pei-Ling Hsu
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jonathan Jou
- 2 College of Medicine, University of Illinois, IL 60612, USA
| | - Shaw-Jenq Tsai
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
21
|
The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells 2018; 7:cells7100166. [PMID: 30322068 PMCID: PMC6210017 DOI: 10.3390/cells7100166] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate cellular processes by converting signals from the extracellular environment to the cytoplasm and nucleus. Tyro3, Axl, and Mer (TAM) receptors form an RTK family that plays an intricate role in tissue maintenance, phagocytosis, and inflammation as well as cell proliferation, survival, migration, and development. Defects in TAM signaling are associated with numerous autoimmune diseases and different types of cancers. Here, we review the structure of TAM receptors, their ligands, and their biological functions. We discuss the role of TAM receptors and soluble circulating TAM receptors in the autoimmune diseases systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Lastly, we discuss the effect of TAM receptor deregulation in cancer and explore the therapeutic potential of TAM receptors in the treatment of diseases.
Collapse
|
22
|
Tsai T, Chen HE, Lin JF, Hwang TS, Lin YC, Chou KY, Hour MJ. A novel quinazoline derivative, MJ-56, exhibits phototoxicity toward human bladder cancer cells. UROLOGICAL SCIENCE 2018. [DOI: 10.4103/uros.uros_2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Han Z, Wu Y, Wang K, Xiao Y, Cheng Z, Sun X, Shen B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Res 2017; 7:41. [PMID: 28485003 PMCID: PMC5422222 DOI: 10.1186/s13550-017-0286-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/17/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mesenchymal-epithelial transition factor also named c-MET is a receptor tyrosine kinase for the hepatocyte growth factor that plays a pivotal role in tumorigenesis. c-MET-targeted therapies have been tested in preclinical models and patients, with significant benefits for cancer treatment. In recent years, many studies have shown that the expression level and activation status of c-MET are closely correlated to c-MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the c-MET status during and prior to targeted therapy. Molecular imaging allows the monitoring of abnormal alterations of c-MET in real time and in vivo. RESULTS In this review, we initially summarize the recent advances in c-MET-targeted molecular imaging, with a special focus on the development of imaging agents ranging in size from monoclonal antibody to small molecule. The aim of this review is to report the preclinical results and clinical application of all molecular imaging studies completed until now for in vivo detection of c-MET in cancer, in order to be beneficial to development of molecular probe and the combination of molecular imaging technologies for in vivo evaluation of c-MET. Various molecular probe targeted to c-MET possesses distinctive advantages and disadvantages. For example, antibody-based probes have high binding affinity but with long metabolic cycle as well as remarkable immunogenicity. CONCLUSIONS Although studies for c-MET-targeted molecular imaging have made many important advances, most of imaging agents specifically target to extracellular area of c-MET receptor; however, it is difficult to reflect entirely activation of c-MET. Therefore, small molecule probes based on tyrosine kinase inhibitors, which could target to intracellular area of c-MET without any immunogenicity, should be paid more attention.
Collapse
Affiliation(s)
- Zhaoguo Han
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yadi Xiao
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Xilin Sun
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Baozhong Shen
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
24
|
Park H, Kim D, Son E, Shin S, Sa JK, Kim SH, Yoon Y, Nam DH. Antitumor activity, pharmacokinetics, tumor-homing effect, and hepatotoxicity of a species cross-reactive c-Met antibody. Biochem Biophys Res Commun 2017; 494:409-415. [DOI: 10.1016/j.bbrc.2017.09.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023]
|
25
|
Expression and role of TYRO3 and AXL as potential therapeutical targets in leiomyosarcoma. Br J Cancer 2017; 117:1787-1797. [PMID: 29024938 PMCID: PMC5729471 DOI: 10.1038/bjc.2017.354] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/31/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Leiomyosarcoma (LMS) are 15% of adult sarcomas and remain seldom curable in metastatic phase. The TAM receptors and their ligands are overexpressed or activated in multiple malignancies, including LMS. Methods: The TAM receptor and ligand expression was evaluated in LMS cell lines and 358 sarcoma samples by either gene expression or immunohistochemistry. TYRO3 and AXL were knocked down. Crizotinib and foretinib were investigated in vitro. Results: High expression of TYRO3 and AXL was detected in LMS cell lines. TYRO3 or AXL gene knockdown reduced cell proliferation/colony formation. Crizotinib and foretinib decreased TYRO3 and AXL phosphorylation, apoptosis, G2/arrest and reduced colony formation. Immunohistochemistry performed in 107 sarcomas showed higher expression of TYRO3 and GAS6 in LMS vs other sarcomas and nuclear TYRO3 only in LMS. Microarray gene expression performed in 251 sarcomas revealed significantly higher expression of TYRO3 and GAS6 in LMS than other sarcomas. Leiomyosarcoma patients with high expression of GAS6 or PROS1 present a significantly worse PFS. Conclusions: Leiomyosarcoma patients, especially those whom develop metastasis, express higher levels of TYRO3 and GAS6. Crizotinib and foretinib showed effective antitumour activity in LMS through TYRO3 and AXL deactivation indicating that clinical trials using TYRO3 and AXL inhibitors are warranted in advanced LMS.
Collapse
|
26
|
Abstract
A major challenge in anticancer treatment is the pre-existence or emergence of resistance to therapy. AXL and MER are two members of the TAM (TYRO3-AXL-MER) family of receptor tyrosine kinases, which, when activated, can regulate tumor cell survival, proliferation, migration and invasion, angiogenesis, and tumor-host interactions. An increasing body of evidence strongly suggests that these receptors play major roles in resistance to targeted therapies and conventional cytotoxic agents. Multiple resistance mechanisms exist, including the direct and indirect crosstalk of AXL and MER with other receptors and the activation of feedback loops regulating AXL and MER expression and activity. These mechanisms may be innate, adaptive, or acquired. A principal role of AXL appears to be in sustaining a mesenchymal phenotype, itself a major mechanism of resistance to diverse anticancer therapies. Both AXL and MER play a role in the repression of the innate immune response which may also limit response to treatment. Small molecule and antibody inhibitors of AXL and MER have recently been described, and some of these have already entered clinical trials. The optimal design of treatment strategies to maximize the clinical benefit of these AXL and MER targeting agents are discussed in relation to the different cancer types and the types of resistance encountered. One of the major challenges to successful development of these therapies will be the application of robust predictive biomarkers for clear-cut patient stratification.
Collapse
|
27
|
Chang HY, Chang HM, Wu TJ, Chaing CY, Tzai TS, Cheng HL, Raghavaraju G, Chow NH, Liu HS. The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis. J Biomed Sci 2017; 24:61. [PMID: 28841878 PMCID: PMC6389174 DOI: 10.1186/s12929-017-0360-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background Lutheran/basal cell adhesion molecule (Lu/BCAM) is a membrane bound glycoprotein. This study was performed to investigate the role and downstream signaling pathway of Lu/BCAM in human bladder tumorigenesis. Methods Five human bladder cancer (E6, RT4, TSGH8301, TCCSUP and J82), one stable mouse fibroblast cell line (NIH-Lu) expressing Lu/BCAM transgene and sixty human uroepithelial carcinoma specimens were analyzed by real-time PCR, immunohistochemistry (IHC), immunofluorescence (IFA) staining, Western blotting and promoter luciferase assay for Lu/BCAM, respectively. The tumorigenicity of Lu/BCAM was demonstrated by focus formation, colony-forming ability, tumour formation, cell adhesion and migration. Results H-rasV12 was revealed to up-regulate Lu/BCAM at both transcriptional and translation levels. Lu/BCAM expression was detected on the membrane of primary human bladder cancer cells. Over-expression of Lu/BCAM in NIH-Lu stable cells increased focus number, colony formation and cell adhesion accompanied with F-actin rearrangement and decreased cell migration compared with parental NIH3T3 fibroblasts. In the presence of laminin ligand, Lu/BCAM overexpression further suppressed cell migration accompanied with increased cell adhesion. We further revealed that laminin-Lu/BCAM-induced cell adhesion and F-actin rearrangement were through increased Erk phosphorylation with an increase of RhoA and a decrease of Rac1 activity. Similarly, high Lu/BCAM expression was detected in the tumors of human renal pelvis, ureter and bladder, and was significantly associated with advanced tumor stage (p = 0.02). Patients with high Lu/BCAM expression showed a trend toward larger tumor size (p = 0.07) and lower disease-specific survival (p = 0.08), although not reaching statistical significance. Conclusion This is the first report showing that Lu/BCAM, in the presence of its ligand laminin, is oncogenic in human urothelial cancers and may have potential as a novel therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0360-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong-Yi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hsin-Mei Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tsung-Jung Wu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chang-Yao Chaing
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzong-Shin Tzai
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hong-Lin Cheng
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Giri Raghavaraju
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
28
|
Davidsen KT, Haaland GS, Lie MK, Lorens JB, Engelsen AST. The Role of Axl Receptor Tyrosine Kinase in Tumor Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2017:351-376. [DOI: 10.1007/978-3-319-39147-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Jeon HM, Lee J. MET: roles in epithelial-mesenchymal transition and cancer stemness. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:5. [PMID: 28164090 DOI: 10.21037/atm.2016.12.67] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a number of cancers, deregulated MET pathway leads to aberrantly activated proliferative and invasive signaling programs that promote malignant transformation, cell motility and migration, angiogenesis, survival in hypoxia, and invasion. A better understanding of oncogenic MET signaling will help us to discover effective therapeutic approaches and to identify which tumors are likely to respond to MET-targeted cancer therapy. In this review, we will summarize the roles of MET signaling in cancer, with particular focus on epithelial-mesenchymal transition (EMT) and cancer stemness. Then, we will provide update on MET targeting agents and discuss the challenges that should be overcome for the development of an effective therapy.
Collapse
Affiliation(s)
- Hye-Min Jeon
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
30
|
Zhang Y, Du Z, Zhang M. Biomarker development in MET-targeted therapy. Oncotarget 2016; 7:37370-37389. [PMID: 27013592 PMCID: PMC5095083 DOI: 10.18632/oncotarget.8276] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2022] Open
Abstract
Activation of the MET receptor tyrosine kinase by its ligand, hepatocyte growth factor (HGF), has been implicated in a variety of cellular processes, including cell proliferation, survival, migration, motility and invasion, all of which may be enhanced in human cancers. Aberrantly activated MET/HGF signaling correlates with tumorigenesis and metastasis, and is regarded as a robust target for the development of novel anti-cancer treatments. Various clinical trials were conducted to evaluate the safety and efficacy of selective HGF/MET inhibitors in cancer patients. There is currently no optimal or standardized method for accurate and reliable assessment of MET levels, or other biomarkers that are predictive of the patient response to MET-targeted therapeutics. In this review, we discuss the importance of accurate HGF/MET signal detection as a predictive biomarker to guide patient selection for clinical trials of MET-targeted therapies in human cancers.
Collapse
Affiliation(s)
- Yanni Zhang
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| | - Zhiqiang Du
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| | - Mingqiang Zhang
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd, Shanghai, China
| |
Collapse
|
31
|
Apolo AB, Kwiatkowski DJ. Targeting molecular aberrations in urothelial carcinoma: are we almost there? AMERICAN SOCIETY OF CLINICAL ONCOLOGY EDUCATIONAL BOOK. AMERICAN SOCIETY OF CLINICAL ONCOLOGY. ANNUAL MEETING 2016. [PMID: 23714499 DOI: 10.1200/edbook_am.2013.33.195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Advances in tumor biology and cancer genetics have led to the development of effective targeted therapies in oncology over the past decade. However, targeted drug development for urothelial carcinoma has been slower than for some other malignancies. The path forward in drug development is through a better understanding of the aberrant pathways driving urothelial tumor development. Steady progress has been made in the characterization of genomic alterations in urothelial carcinoma. The Cancer Genome Atlas (TCGA) project is well underway in the analysis of a large set of urothelial cancer specimens using multiple approaches and technologies. In addition, there are already many well-established mutations and genetic alterations in urothelial carcinoma that likely contribute in an important way to tumor development. In addition, urothelial cancer genome-wide association studies have identified common variants associated with urothelial cancer risk and protein expression that can potentially be therapeutically targeted. Furthermore, the MET pathway has emerged as an exciting target in multiple tumors, including urothelial carcinoma. Our knowledge of how to clinically target many emerging molecular aberrations in urothelial cancer is still in the early stages of development. However, there is much promise in the ongoing research being conducted in urothelial cancer molecular pathogenesis.
Collapse
Affiliation(s)
- Andrea B Apolo
- From the Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; the Translational Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA
| | | |
Collapse
|
32
|
Cui J, Xia T, Xie D, Gao Y, Jia Z, Wei D, Wang L, Huang S, Quan M, Xie K. HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene 2016; 35:4708-18. [PMID: 26876216 PMCID: PMC4985506 DOI: 10.1038/onc.2016.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 02/06/2023]
Abstract
Purpose Hepatocyte growth factor (HGF)/Met signaling plays critical roles in pancreatic ductal adenocarcinoma (PDA) development and progression and is considered a potential therapeutic target for this disease. However, the mechanism of aberrant activation of HGF/Met signaling and resistance to Met inhibition in PDA remains unclear. Experimental Design The mechanistic role of cross-talk between Forkhead box M1 (FOXM1) and HGF/Met signaling in promotion of PDA growth and resistance to Met inhibition was examined using cell culture, molecular biology and mouse models; and the relevance of our experimental and mechanistic findings were validated using human PDA tissues. Results Met was markedly overexpressed in both PDA cell lines and pancreatic tumor specimens, and the expression of Met correlated directly with that of FOXM1 in human tumor specimens. Mechanistically, FOXM1 bound to the promoter region of the Met gene and transcriptionally increased the expression of Met. Increased expression of FOXM1 enhanced the activation of HGF/Met signaling and its downstream pathways, including RAS/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/AKT, and signal transducer and activator of transcription 3. Furthermore, activation of HGF/Met signaling increased the expression and transcriptional activity of FOXM1, and the cross-talk between FOXM1 and HGF/Met signaling promoted PDA growth and resistance to Met inhibition. Conclusions Collectively, our findings identified a positive feedback loop formed by FOXM1 and HGF/Met and revealed that this loop is a potentially effective therapeutic target for PDA.
Collapse
Affiliation(s)
- J Cui
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T Xia
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - D Xie
- Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China
| | - Y Gao
- Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China
| | - Z Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Quan
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China
| | - K Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Hattori S, Kikuchi E, Kosaka T, Miyazaki Y, Tanaka N, Miyajima A, Mikami S, Oya M. Relationship Between Increased Expression of the Axl/Gas6 Signal Cascade and Prognosis of Patients with Upper Tract Urothelial Carcinoma. Ann Surg Oncol 2015; 23:663-70. [PMID: 26350366 DOI: 10.1245/s10434-015-4848-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE Axl, which is in the TAM family of receptor tyrosine kinases, and its ligand, growth arrest-specific gene 6 (Gas6), have been associated with worse prognoses after the surgical treatment of some types of cancers. We herein investigated the biological significance of the protein expression of Axl and Gas6 on the outcomes of patients with upper tract urothelial carcinoma (UTUC). METHODS The protein expression of Axl and Gas6 was evaluated by immunohistochemistry, and their relationships with clinicopathological features were investigated in surgical specimens obtained from 161 patients who had been surgically treated for UTUC. RESULTS Axl labeling was strong in 67 of 161 (42 %) cases, while Gas6 labeling was strong in 72 of 161 (45 %) cases. The strong expression of Axl correlated with that of Gas6. A high pathological stage (p = 0.009), strong expression of Gas6 (p = 0.038), and strong expression of Axl (p = 0.016) were independent factors for predicting worse cancer-specific survival (CSS). In a subgroup analysis of patients with pT < 2 (N = 53), no significant difference in CSS was observed between patients weakly and strongly expressing Axl/Gas6. In contrast, a subgroup analysis of patients with pT ≥ 2 (N = 108) revealed that the expression levels of Axl and Gas6 correlated with CSS. CONCLUSION The protein expression of Axl and its ligand Gas6 may be a useful indicator for a worse clinical outcome in UTUC patients, especially patients with pT ≥ 2, who underwent radical nephroureterectomy.
Collapse
Affiliation(s)
- Seiya Hattori
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan.
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Yasumasa Miyazaki
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Mikami
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Marano L, Chiari R, Fabozzi A, De Vita F, Boccardi V, Roviello G, Petrioli R, Marrelli D, Roviello F, Patriti A. c-Met targeting in advanced gastric cancer: An open challenge. Cancer Lett 2015; 365:30-36. [PMID: 26049023 DOI: 10.1016/j.canlet.2015.05.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
Despite significant improvements in systemic chemotherapy over the last two decades, the prognosis of patients with advanced gastric and gastroesophageal junction adenocarcinoma (GC) remains poor. Because of molecular heterogeneity, it is essential to classify tumors based on the underlying oncogenic pathways and to develop targeted therapies acting on individual tumors. High-quality research and advances in technology have contributed to the elucidation of molecular pathways underlying disease progression and have stimulated many clinical studies testing target therapies in an advanced disease setting. In particular, strong preclinical evidence for the aberrant activation of the HGF/c-Met signaling pathways in GC cancers exists. This review will cover the c-Met pathway, the mechanisms of c-Met activation and the different strategies of its inhibition. Next, we will focus on the current state of the art in the clinical evaluation of c-Met-targeted therapies and the description of ongoing randomized trials with the idea that in this disease, high quality translational research to identify and validate biomarkers is a priority task.
Collapse
Affiliation(s)
- Luigi Marano
- General, Minimally Invasive and Robotic Surgery, Department of Surgery, "San Matteo degli Infermi" Hospital, ASL Umbria 2, 06049 Spoleto, Italy.
| | - Rita Chiari
- Department of Medical Oncology, "Santa Maria della Misericordia" Hospital, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy
| | - Alessio Fabozzi
- Division of Medical Oncology, Department of Clinical and Experimental Medicine "F. Magrassi-A. Lanzara", Second University of Naples, 80131 Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Clinical and Experimental Medicine "F. Magrassi-A. Lanzara", Second University of Naples, 80131 Naples, Italy
| | - Virginia Boccardi
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | | | | | - Daniele Marrelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Franco Roviello
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Alberto Patriti
- General, Minimally Invasive and Robotic Surgery, Department of Surgery, "San Matteo degli Infermi" Hospital, ASL Umbria 2, 06049 Spoleto, Italy
| |
Collapse
|
35
|
Kim YW, Yun SJ, Jeong P, Kim SK, Kim SY, Yan C, Seo SP, Lee SK, Kim J, Kim WJ. The c-MET Network as Novel Prognostic Marker for Predicting Bladder Cancer Patients with an Increased Risk of Developing Aggressive Disease. PLoS One 2015. [PMID: 26225770 PMCID: PMC4520492 DOI: 10.1371/journal.pone.0134552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that c-MET is overexpressed in cases of aggressive bladder cancer (BCa). Identification of crosstalk between c-MET and other RTKs such as AXL and PDGFR suggest that c-MET network genes (c-MET-AXL-PDGFR) may be clinically relevant to BCa. Here, we examine whether expression of c-MET network genes can be used to identify BCa patients at increased risk of developing aggressive disease. In vitro analysis, c-MET knockdown suppressed cell proliferation, invasion, and migration, and increased sensitivity to cisplatin-induced apoptosis. In addition, c-MET network gene (c-MET, AXL, and PDGFR) expression allowed discrimination of BCa tissues from normal control tissues and appeared to predict poor disease progression in non-muscle invasive BCa patients and poor overall survival in muscle invasive BCa patients. These results suggest that c-MET network gene expression is a novel prognostic marker for predicting which BCa patients have an increased risk of developing aggressive disease. These genes might be a useful marker for co-targeting therapy, and are expected to play an important role in improving both response to treatment and survival of BCa patients.
Collapse
Affiliation(s)
- Young-Won Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Phildu Jeong
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Seon-Kyu Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Chunri Yan
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung Phil Seo
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sang Keun Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jayoung Kim
- Department of Surgery, Harvard Medical School, Boston, MA, United States of America
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- * E-mail: (W-JK); (JK)
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, South Korea
- * E-mail: (W-JK); (JK)
| |
Collapse
|
36
|
Mazzola CR, Chin J. Targeting the VEGF pathway in metastatic bladder cancer. Expert Opin Investig Drugs 2015; 24:913-27. [DOI: 10.1517/13543784.2015.1041588] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Clarisse R Mazzola
- Western University, Division of Urology and Division of Surgical Oncology, London, Ontario, Canada ;
| | - Joseph Chin
- Western University, Division of Urology and Division of Surgical Oncology, London, Ontario, Canada ;
| |
Collapse
|
37
|
Zuo RC, Apolo AB, DiGiovanna JJ, Parnes HL, Keen CM, Nanda S, Dahut WL, Cowen EW. Cutaneous adverse effects associated with the tyrosine-kinase inhibitor cabozantinib. JAMA Dermatol 2015; 151:170-7. [PMID: 25427282 DOI: 10.1001/jamadermatol.2014.2734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Cabozantinib S-malate is a vascular endothelial growth factor receptor 2, c-MET, and RET multitargeted tyrosine kinase inhibitor that has antiangiogenic and antitumorigenic properties with potential efficacy for the treatment of several cancers. Cutaneous reactions, one of the most frequently observed adverse effects associated with tyrosine kinase inhibitors, can significantly affect patients' quality of life and drug adherence and represent a major therapeutic challenge to maximizing the efficacy of targeted cancer therapy. OBJECTIVE To describe the frequency and spectrum of skin reactions in patients with urothelial carcinoma receiving cabozantinib as monotherapy. DESIGN, SETTING, AND PARTICIPANTS A single-institution study at the Clinical Research Center at the National Institutes of Health included 41 consecutive adults with metastatic, progressive urothelial carcinoma enrolled in a National Cancer Institute open-label, nonrandomized, phase 2 clinical trial. Patients receiving cabozantinib were evaluated for the development of skin reactions at each treatment visit from October 2012 to June 2014 by the primary oncology team and referred for dermatologic evaluation as appropriate. MAIN OUTCOMES AND MEASURES A detailed history, full-body physical examination, and clinical photographs of cutaneous lesions were obtained. RESULTS Of 41 consecutive patients who received cabozantinib, 30 (73%) developed 1 or more cutaneous toxic effects. Adverse events included hand-foot skin reaction (22 [54%]), generalized pigment dilution and/or hair depigmentation (18 [44%]), xerosis (8 [20%]), scrotal erythema/ulceration (6 [15%]), and nail splinter hemorrhages (5 [12%]). Eighteen patients (44%) had 2 or more cutaneous adverse events. Reactions developed in 17 of 30 patients (57%) during the first month of cabozantinib treatment and in 24 of 30 (80%) by the second month. Of patients with skin toxic effects, dose reduction was required for symptom management in 9 of 30 patients (30%), and treatment discontinuation was required in 4 of 30 (13%). CONCLUSIONS AND RELEVANCE Cabozantinib monotherapy is associated with 1 or more cutaneous adverse events in most patients. Early detection and prompt treatment may increase patients' adherence to tyrosine kinase inhibitor therapy. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01688999.
Collapse
Affiliation(s)
- Rena C Zuo
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John J DiGiovanna
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Howard L Parnes
- Prostate and Urologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Corrine M Keen
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Swati Nanda
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William L Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Edward W Cowen
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland4section editor, JAMA Dermatology
| |
Collapse
|
38
|
Rad E, Dodd K, Thomas L, Upadhyaya M, Tee A. STAT3 and HIF1α Signaling Drives Oncogenic Cellular Phenotypes in Malignant Peripheral Nerve Sheath Tumors. Mol Cancer Res 2015; 13:1149-60. [PMID: 25833823 DOI: 10.1158/1541-7786.mcr-14-0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 03/26/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Therapeutic options are limited for neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumors (MPNST) and clinical trials using drug agents have so far been unsuccessful. This lack of clinical success is likely attributed to high levels of intratumoral molecular heterogeneity and variations in signal transduction within MPNSTs. To better explore the variance of malignant signaling properties within heterogeneous MPNSTs, four MPNST cell lines (ST8814, S462, S1844.1, and S1507.2) were used. The data demonstrate that small-molecule inhibition of the MET proto-oncogene and mTOR had variable outcome when preventing wound healing, cell migration, and invasion, with the S462 cells being highly resistant to both. Of interest, targeted inhibition of the STAT3 transcription factor suppressed wound healing, cell migration, invasion, and tumor formation in all four MPNST lines, which demonstrates that unlike MET and mTOR, STAT3 functions as a common driver of tumorigenesis in NF1-MPNSTs. Of clinical importance, STAT3 knockdown was sufficient to block the expression of hypoxia-inducible factor (HIF)1α, HIF2α, and VEGF-A in all four MPNST lines. Finally, the data demonstrate that wound healing, cell migration, invasion, and tumor formation through STAT3 are highly dependent on HIF signaling, where knockdown of HIF1α ablated these oncogenic facets of STAT3. IMPLICATIONS This research reveals that aberrant STAT3 and HIF1a activity drives tumor progression in MPNSTs, indicating that inhibition of the STAT3/HIF1α/VEGF-A signaling axis is a viable treatment strategy.
Collapse
Affiliation(s)
- Ellie Rad
- Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Kayleigh Dodd
- Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Laura Thomas
- Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Meena Upadhyaya
- Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Andrew Tee
- Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom.
| |
Collapse
|
39
|
Miyata Y, Asai A, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H. Met in urological cancers. Cancers (Basel) 2014; 6:2387-403. [PMID: 25521854 PMCID: PMC4276973 DOI: 10.3390/cancers6042387] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
Met is a tyrosine kinase receptor that is considered to be a proto-oncogene. The hepatocyte growth factor (HGF)-Met signaling system plays an important role in tumor growth, invasion, and metastasis in many types of malignancies. Furthermore, Met expression has been reported to be a useful predictive biomarker for disease progression and patient survival in these malignancies. Many studies have focused on the clinical significance and prognostic role of Met in urological cancers, including prostate cancer (PCa), renal cell carcinoma (RCC), and urothelial cancer. Several preclinical studies and clinical trials are in progress. In this review, the current understanding of the pathological role of Met in cancer cell lines, its clinical significance in cancer tissues, and its predictive value in patients with urological cancers are summarized. In particular, Met-related malignant behavior in castration-resistant PCa and the different pathological roles Met plays in papillary RCC and other histological types of RCC are the subjects of focus. In addition, the pathological significance of phosphorylated Met in these cancers is shown. In recent years, Met has been recognized as a potential therapeutic target in various types of cancer; therapeutic strategies used by Met-targeted agents in urological cancers are summarized in this review.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Akihiro Asai
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
40
|
Jardim DLF, Tang C, Gagliato DDM, Falchook GS, Hess K, Janku F, Fu S, Wheler JJ, Zinner RG, Naing A, Tsimberidou AM, Holla V, Li MM, Roy-Chowdhuri S, Luthra R, Salgia R, Kurzrock R, Meric-Bernstam F, Hong DS. Analysis of 1,115 patients tested for MET amplification and therapy response in the MD Anderson Phase I Clinic. Clin Cancer Res 2014; 20:6336-45. [PMID: 25326232 DOI: 10.1158/1078-0432.ccr-14-1293] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE This study aimed to assess MET amplification among different cancers, association with clinical factors and genetic aberrations and targeted therapy response modifications. EXPERIMENTAL DESIGN From May 2010 to November 2012, samples from patients with advanced tumors referred to the MD Anderson Phase I Clinic were analyzed for MET gene amplification by FISH. Patient demographic, histologic characteristics, molecular characteristics, and outcomes in phase I protocols were compared per MET amplification status. RESULTS Of 1,115 patients, 29 (2.6%) had MET amplification. The highest prevalence was in adrenal (2 of 13; 15%) and renal (4 of 28; 14%) tumors, followed by gastroesophageal (6%), breast (5%), and ovarian cancers (4%). MET amplification was associated with adenocarcinomas (P = 0.007), high-grade tumors (P = 0.003), more sites of metastasis, higher BRAF mutation, and PTEN loss (all P < 0.05). Median overall survival was 7.23 and 8.62 months for patients with and without a MET amplification, respectively (HR = 1.12; 95% confidence intervals, 0.83-1.85; P = 0.29). Among the 20 patients with MET amplification treated on a phase I protocol, 4 (20%) achieved a partial response with greatest response rate on agents targeting angiogenesis (3 of 6, 50%). No patient treated with a c-MET inhibitor (0 of 7) achieved an objective response. CONCLUSION MET amplification was detected in 2.6% of patients with solid tumors and was associated with adenocarcinomas, high-grade histology, and higher metastatic burden. Concomitant alterations in additional pathways (BRAF mutation and PTEN loss) and variable responses on targeted therapies, including c-MET inhibitors, suggest that further studies are needed to target this population.
Collapse
Affiliation(s)
- Denis L F Jardim
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debora De Melo Gagliato
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gerald S Falchook
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenneth Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer J Wheler
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ralph G Zinner
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vijaykumar Holla
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marylin M Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sinchita Roy-Chowdhuri
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raja Luthra
- Department of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Razelle Kurzrock
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
41
|
Luo M, Fu LW. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors. Am J Cancer Res 2014; 4:608-28. [PMID: 25520855 PMCID: PMC4266699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance to EGFR-TKIs mediated by redundant kinase activation.
Collapse
Affiliation(s)
- Min Luo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, 510060, China
| | - Li-Wu Fu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, 510060, China
| |
Collapse
|
42
|
Pénzes K, Baumann C, Szabadkai I, Őrfi L, Kéri G, Ullrich A, Torka R. Combined inhibition of AXL, Lyn and p130Cas kinases block migration of triple negative breast cancer cells. Cancer Biol Ther 2014; 15:1571-82. [PMID: 25482942 PMCID: PMC4623058 DOI: 10.4161/15384047.2014.956634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blocking the migration of metastatic cancer cells is a major goal in the therapy of cancer. The receptor tyrosine kinase AXL is one of the main triggers for cancer cell migration in neoplasia of breast, colon, skin, thyroid and prostate. In our study we analyzed the effect of AXL inhibition on cell motility and viability in triple negative breast cancer cell lines overexpressing AXL. Thereby we reveal that the compound BMS777607, exhibiting the lowest IC50 values for inhibition of AXL kinase activity in the studied cell lines, attenuates cell motility to a lower extent than the kinase inhibitors MPCD84111 and SKI606. By analyzing the target kinases of MPCD84111 and SKI606 with kinase profiling assays we identified Lyn, a Src family kinase, as a target of both compounds. Knockdown of Lyn and the migration-related CRK-associated substrate (p130Cas), had a significant inhibitory effect on cell migration. Taken together, our findings highlight the importance of combinatorial or multikinase inhibition of non-receptor tyrosine kinases and AXL receptor tyrosine kinase in the therapy of triple negative breast cancer.
Collapse
Key Words
- AKT, RAC-α serine/threonine-protein kinase
- AXL
- EGFR, epidermal growth factor receptor
- ELISA, enzyme-linked immunosorbant assay
- FAK, focal adhesion kinase
- Gas6, growth arrest specific 6
- Lyn
- MAPK, mitogen activated protein kinases
- PI3K, phosphatidylinositol 3-kinase
- Pyk2, proline-rich tyrosine kinase 2
- RTK, receptor tyrosine kinase
- TKI, tyrosine kinase inhibitor
- TNBC, triple negative breast cancer
- breast cancer
- migration
- migration related kinases
- p130Cas
- siRNA, short interfering RNA
- tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Kinga Pénzes
- Department of Molecular Biology; Max-Planck-Institute of Biochemistry; Martinsried, Germany,MTA-SE Pathobiochemistry Research Group; Department of Medical Chemistry; Semmelweis University; Budapest, Hungary
| | - Christine Baumann
- Department of Molecular Biology; Max-Planck-Institute of Biochemistry; Martinsried, Germany
| | | | - László Őrfi
- Vichem Chemie Research Ltd.; Budapest, Hungary,Department of Pharmaceutical Chemistry; Semmelweis University; Budapest, Hungary
| | - György Kéri
- Vichem Chemie Research Ltd.; Budapest, Hungary,MTA-SE Pathobiochemistry Research Group; Department of Medical Chemistry; Semmelweis University; Budapest, Hungary
| | - Axel Ullrich
- Department of Molecular Biology; Max-Planck-Institute of Biochemistry; Martinsried, Germany
| | - Robert Torka
- Department of Molecular Biology; Max-Planck-Institute of Biochemistry; Martinsried, Germany,Correspondence to: Robert Torka;
| |
Collapse
|
43
|
Simone BA, Ly D, Savage JE, Hewitt SM, Dan TD, Ylaya K, Shankavaram U, Lim M, Jin L, Camphausen K, Mitchell JB, Simone NL. microRNA alterations driving acute and late stages of radiation-induced fibrosis in a murine skin model. Int J Radiat Oncol Biol Phys 2014; 90:44-52. [PMID: 24986745 DOI: 10.1016/j.ijrobp.2014.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE Although ionizing radiation is critical in treating cancer, radiation-induced fibrosis (RIF) can have a devastating impact on patients' quality of life. The molecular changes leading to radiation-induced fibrosis must be elucidated so that novel treatments can be designed. METHODS AND MATERIALS To determine whether microRNAs (miRs) could be responsible for RIF, the fibrotic process was induced in the right hind legs of 9-week old CH3 mice by a single-fraction dose of irradiation to 35 Gy, and the left leg served as an unirradiated control. Fibrosis was quantified by measurements of leg length compared with control leg length. By 120 days after irradiation, the irradiated legs were 20% (P=.013) shorter on average than were the control legs. RESULTS Tissue analysis was done on muscle, skin, and subcutaneous tissue from irradiated and control legs. Fibrosis was noted on both gross and histologic examination by use of a pentachrome stain. Microarrays were performed at various times after irradiation, including 7 days, 14 days, 50 days, 90 days, and 120 days after irradiation. miR-15a, miR-21, miR-30a, and miR-34a were the miRs with the most significant alteration by array with miR-34a, proving most significant on confirmation by reverse transcriptase polymerase chain reaction, c-Met, a known effector of fibrosis and downstream molecule of miR-34a, was evaluated by use of 2 cell lines: HCT116 and 1522. The cell lines were exposed to various stressors to induce miR changes, specifically ionizing radiation. Additionally, in vitro transfections with pre-miRs and anti-miRs confirmed the relationship of miR-34a and c-Met. CONCLUSIONS Our data demonstrate an inverse relationship with miR-34a and c-Met; the upregulation of miR-34a in RIF causes inhibition of c-Met production. miRs may play a role in RIF; in particular, miR-34a should be investigated as a potential target to prevent or treat this devastating side effect of irradiation.
Collapse
Affiliation(s)
- Brittany A Simone
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - David Ly
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jason E Savage
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M Hewitt
- Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tu D Dan
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Kris Ylaya
- Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Meng Lim
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Lianjin Jin
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nicole L Simone
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University Hospital, Philadelphia, Pennsylvania.
| |
Collapse
|
44
|
Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer 2014; 14:465. [PMID: 24964787 PMCID: PMC4082678 DOI: 10.1186/1471-2407-14-465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 06/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background Development and further characterization of animal models for human cancers is important for the improvement of cancer detection and therapy. Canine bladder cancer closely resembles human bladder cancer in many aspects. In this study, we isolated and characterized four primary transitional cell carcinoma (K9TCC) cell lines to be used for future in vitro validation of novel therapeutic agents for bladder cancer. Methods Four K9TCC cell lines were established from naturally-occurring canine bladder cancers obtained from four dogs. Cell proliferation rates of K9TCC cells in vitro were characterized by doubling time. The expression profile of cell-cycle proteins, cytokeratin, E-cadherin, COX-2, PDGFR, VEGFR, and EGFR were evaluated by immunocytochemistry (ICC) and Western blotting (WB) analysis and compared with established human bladder TCC cell lines, T24 and UMUC-3. All tested K9TCC cell lines were assessed for tumorigenic behavior using athymic mice in vivo. Results Four established K9TCC cell lines: K9TCC#1Lillie, K9TCC#2Dakota, K9TCC#4Molly, and K9TCC#5Lilly were confirmed to have an epithelial-cell origin by morphology analysis, cytokeratin, and E-cadherin expressions. The tested K9TCC cells expressed UPIa (a specific marker of the urothelial cells), COX-2, PDGFR, and EGFR; however they lacked the expression of VEGFR. All tested K9TCC cell lines confirmed a tumorigenic behavior in athymic mice with 100% tumor incidence. Conclusions The established K9TCC cell lines (K9TCC#1Lillie, K9TCC#2Dakota, K9TCC#4Molly, and K9TCC#5Lilly) can be further utilized to assist in development of new target-specific imaging and therapeutic agents for canine and human bladder cancer.
Collapse
|
45
|
Malik N, Wang X, Shah S, Efthymiou AG, Yan B, Heman-Ackah S, Zhan M, Rao M. Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes. PLoS One 2014; 9:e96139. [PMID: 24848099 PMCID: PMC4029581 DOI: 10.1371/journal.pone.0096139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 04/04/2014] [Indexed: 01/07/2023] Open
Abstract
Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression analysis of human fetal astrocytes to identify genes and signaling pathways that are important for astrocyte development and maintenance. Our analysis confirmed that the fetal astrocytes express high levels of the core astrocyte marker GFAP and the transcription factors from the NFI family which have been shown to play important roles in astrocyte development. A group of novel markers were identified that distinguish fetal astrocytes from pluripotent stem cell-derived neural stem cells (NSCs) and NSC-derived neurons. As in murine astrocytes, the Notch signaling pathway appears to be particularly important for cell fate decisions between the astrocyte and neuronal lineages in human astrocytes. These findings unveil the repertoire of genes expressed in human astrocytes and serve as a basis for further studies to better understand astrocyte biology, especially as it relates to disease.
Collapse
Affiliation(s)
- Nasir Malik
- National Institutes of Health, NIAMS, Bethesda, Maryland, United States of America
- * E-mail:
| | - Xiantao Wang
- National Institutes of Health, NIAMS, Bethesda, Maryland, United States of America
| | - Sonia Shah
- National Institutes of Health, NIAMS, Bethesda, Maryland, United States of America
| | | | - Bin Yan
- Hong Kong Baptist University, Department of Biology, Hong Kong
| | - Sabrina Heman-Ackah
- National Institutes of Health, NIAMS, Bethesda, Maryland, United States of America
| | - Ming Zhan
- The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, Texas, United States of America
| | - Mahendra Rao
- National Institutes of Health, NIAMS, Bethesda, Maryland, United States of America
- National Institutes of Health, NIH Center for Regenerative Medicine, Bethesda, Maryland, United States of America
| |
Collapse
|
46
|
Kluth M, Reynolds K, Rink M, Chun F, Dahlem R, Fisch M, Höppner W, Wagner W, Doh O, Terracciano L, Simon R, Sauter G, Minner S. Reduced membranous MET expression is linked to bladder cancer progression. Cancer Genet 2014; 207:147-52. [PMID: 24853099 DOI: 10.1016/j.cancergen.2014.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 11/24/2022]
Abstract
The MET protein is involved in the malignant progression of different tumors. This study aimed to analyze the relationship of MET expression with tumor phenotype and clinical outcome in bladder cancer and the role of gene amplification for MET overexpression. A bladder cancer tissue microarray containing 686 bladder cancers was analyzed by immunohistochemistry and by fluorescence in situ hybridization. MET immunostaining was seen in normal urothelium and was recorded in 459 of 560 analyzable urothelial carcinomas (82.0%). Low MET staining was associated with a more unfavorable tumor phenotype. MET staining was seen in 89.8% of 266 pTa, 81.1% of 132 pT1, and 69.4% of 160 pT2-4 cancers (P < 0.0001). MET staining was detectable in 92.4% of 66 grade 1, 85.6% of 257 grade 2, and 75.1% of 237 grade 3 cancers (P = 0.001). MET expression status was not associated with overall or tumor-specific survival in muscle-invasive cancers (pT2-4), tumor progression in pT1 cancers, or recurrences in pTa tumors. Only four of the analyzed tumors (0.8%) showed amplification of the MET gene. We conclude that MET is not overexpressed in urothelial cancer but rather downregulated in a fraction of cancers. Accordingly, rare amplification of the genomic area including the MET gene was not associated with MET protein overexpression.
Collapse
Affiliation(s)
- Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Reynolds
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Chun
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Höppner
- Department of Urology, Clinical Center Itzehoe, Itzehoe, Germany
| | - Walter Wagner
- Department of Urology, German Armed Forces Hospital, Hamburg, Germany
| | - Ousman Doh
- Department of Urology, Regio Clinic Wedel, Wedel, Germany
| | | | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
47
|
Cirone P, Andresen CJ, Eswaraka JR, Lappin PB, Bagi CM. Patient-derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer. Cancer Chemother Pharmacol 2014; 73:525-38. [PMID: 24442130 DOI: 10.1007/s00280-014-2376-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metastatic bladder cancer is a serious condition with a 5-year survival rate of approximately 14 %, a rate that has remained unchanged for almost three decades. Thus, there is a profound need to identify the driving mutations for these aggressive tumors to better determine appropriate treatments. Mutational analyses of clinical samples suggest that mutations in either the phosphoinositide-3 kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) or RAS/MEK/ERK pathways drive bladder cancer progression, although it remains to be tested whether the inhibition of either (or both) of these pathways can arrest PI3K/mTOR- or Ras-driven proliferation. METHODS Herein, we used several bladder cancer cell lines to determine drug sensitivity according to genetic background and also studied mouse models of engrafted UM-UC-3 cells and patient-derived xenografts (PDXs) to test PI3K/mTOR and MEK inhibition in vivo. RESULTS Inhibition of these pathways utilizing PF-04691502, a PI3K and mTOR inhibitor, and PD-0325901, a MEK inhibitor, slowed the tumor growth of PDX models of bladder cancer. The growth inhibitory effect of combination therapy was similar to that of the clinical maximum dose of cisplatin; mechanistically, this appeared to predominantly occur via drug-induced cytostatic growth inhibition as well as diminished vascular endothelial growth factor secretion in the tumor models. Kinase arrays of tumors harvested after treatment demonstrated activated p53 and Axl as well as STAT1 and STAT3. CONCLUSION Taken together, these results indicate that clinically relevant doses of PF-04691502 and PD-0325901 can suppress bladder tumor growth in PDX models, thus offering additional potential treatment options by a precision medicine approach.
Collapse
|
48
|
Romero GG. The Role of the Cell Background in Biased Signaling. BIASED SIGNALING IN PHYSIOLOGY, PHARMACOLOGY AND THERAPEUTICS 2014:41-79. [DOI: 10.1016/b978-0-12-411460-9.00002-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Abstract
INTRODUCTION Advanced urothelial carcinoma is associated with a poor prognosis. In the metastatic setting, the response rate to first-line, cisplatin-containing chemotherapy is high, but survival is poor. Second-line treatment options are limited. Advanced age at diagnosis and the presence of comorbidities often preclude treatment with cisplatin-containing regimens. AREAS COVERED This review addresses the current therapy of urothelial carcinoma, the unmet needs in treatment and the status of drug development in this disease. The molecular targets identified and efforts to incorporate targeted agents into therapy will be addressed. EXPERT OPINION There have been no major advances in the treatment of urothelial carcinoma in three decades. Despite high response rates in the first-line setting, survival is limited. Major impediments to improved outcomes include poor durability of response to first-line chemotherapy and lack of second-line treatments. Better understanding in tumor biology has identified multiple targets in urothelial carcinoma; however, such discoveries have yet to lead to the incorporation of targeted agents into the routine treatment of urothelial carcinoma. Multiple ongoing clinical trials are investigating the use of targeted agents in urothelial carcinoma. Continued efforts are underway to better understand the molecular drivers of disease and such efforts are likely to identify additional therapeutic targets.
Collapse
Affiliation(s)
- Benjamin A Gartrell
- Albert Einstein College of Medicine, Montefiore Medical Center, Department of Medical Oncology , 111 E 210th St, Bronx, NY, 10467 , USA +1 718 920 4826 ; +1 718 798 7474 ;
| | | |
Collapse
|
50
|
Meyer AS, Miller MA, Gertler FB, Lauffenburger DA. The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci Signal 2013; 6:ra66. [PMID: 23921085 DOI: 10.1126/scisignal.2004155] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The relationship between drug resistance, changes in signaling, and emergence of an invasive phenotype is well appreciated, but the underlying mechanisms are not well understood. Using machine learning analysis applied to the Cancer Cell Line Encyclopedia database, we identified expression of AXL, the gene that encodes the epithelial-to-mesenchymal transition (EMT)-associated receptor tyrosine kinase (RTK) AXL, as exceptionally predictive of lack of response to ErbB family receptor-targeted inhibitors. Activation of EGFR (epidermal growth factor receptor) transactivated AXL, and this ligand-independent AXL activity diversified EGFR-induced signaling into additional downstream pathways beyond those triggered by EGFR alone. AXL-mediated signaling diversification was required for EGF (epidermal growth factor)-elicited motility responses in AXL-positive TNBC (triple-negative breast cancer) cells. Using cross-linking coimmunoprecipitation assays, we determined that AXL associated with EGFR, other ErbB receptor family members, MET (hepatocyte growth factor receptor), and PDGFR (platelet-derived growth factor receptor) but not IGF1R (insulin-like growth factor 1 receptor) or INSR (insulin receptor). From these AXL interaction data, we predicted AXL-mediated signaling synergy for additional RTKs and validated these predictions in cells. This alternative mechanism of receptor activation limits the use of ligand-blocking therapies and indicates against therapy withdrawal after acquired resistance. Further, subadditive interaction between EGFR- and AXL-targeted inhibitors across all AXL-positive TNBC cell lines may indicate that increased abundance of EGFR is principally a means to transactivation-mediated signaling.
Collapse
Affiliation(s)
- Aaron S Meyer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|