1
|
Kanjanasirirat P, Jearawuttanakul K, Seemakhan S, Borwornpinyo S, Wongtrakoongate P, Hongeng S, Charoensutthivarakul S. High-throughput screening of FDA-approved drugs identifies colchicine as a potential therapeutic agent for atypical teratoid/rhabdoid tumors (AT/RTs). RSC Adv 2025; 15:12331-12341. [PMID: 40248220 PMCID: PMC12004362 DOI: 10.1039/d5ra01341k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a rare and aggressive tumor of the primary central nervous system primarily affecting children. It typically originates in the cerebellum and brain stem and is associated with a low survival rate. While standard chemotherapy has been used as a primary treatment for AT/RTs, its success rate is unsatisfactory, and patients often experience severe side effects. Therefore, there is an urgent need to develop new and effective treatment strategies. One promising approach for identifying new therapies is drug repurposing. Although many FDA-approved drugs have been repurposed for various cancers, there have been no reports of such applications for AT/RTs. In this study, a library of 2130 FDA-approved drugs was screened using a high-throughput screening system against 2D traditional cultures and 3D spheroid cultures of AT/RT cell lines (BT-12 and BT-16). From this screening, colchicine, a non-chemotherapeutic agent, was identified as a promising candidate. It exhibited IC50 values of 0.016 and 0.056 μM against 2D BT-12 and 2D BT-16 cells, respectively, and IC50 values of 0.004 and 0.023 μM against 3D BT-12 and BT-16 spheroid cultures. Additionally, the cytotoxic effects of colchicine on human brain endothelial cells and human astrocytes were evaluated, and CC50 > 20 μM was observed, which is over two orders of magnitude higher than its effective concentrations in AT/RT cells, indicating considerably lower toxicity to normal brain cells and brain endothelial cells. In conclusion, colchicine shows significant potential to be repurposed as a treatment for AT/RTs, providing a safer and more effective therapeutic option for this rare and challenging disease.
Collapse
Affiliation(s)
- Phongthon Kanjanasirirat
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University Bangkok 10400 Thailand +66-2-201-5899
- Department of Pathobiology, Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Kedchin Jearawuttanakul
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Sawinee Seemakhan
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Suradej Hongeng
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University Bangkok 10400 Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University Bangkok 10400 Thailand +66-2-201-5899
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University Bangkok 10400 Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
2
|
Kataki AD, Gupta PG, Cheema U, Nisbet A, Wang Y, Kocher HM, Pérez-Mancera PA, Velliou EG. Mapping Tumor-Stroma-ECM Interactions in Spatially Advanced 3D Models of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16708-16724. [PMID: 40052705 PMCID: PMC11931495 DOI: 10.1021/acsami.5c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/21/2025]
Abstract
Bioengineering-based in vitro tumor models are increasingly important as tools for studying disease progression and therapy response for many cancers, including the deadly pancreatic ductal adenocarcinoma (PDAC) that exhibits a tumor/tissue microenvironment of high cellular/biochemical complexity. Therefore, it is crucial for in vitro models to capture that complexity and to enable investigation of the interplay between cancer cells and factors such as extracellular matrix (ECM) proteins or stroma cells. Using polyurethane (PU) scaffolds, we performed a systematic study on how different ECM protein scaffold coatings impact the long-term cell evolution in scaffolds containing only cancer or only stroma cells (activated stellate and endothelial cells). To investigate potential further changes in those biomarkers due to cancer-stroma interactions, we mapped their expression in dual/zonal scaffolds consisting of a cancer core and a stroma periphery, spatially mimicking the fibrotic/desmoplastic reaction in PDAC. In our single scaffolds, we observed that the protein coating affected the cancer cell spatial aggregation, matrix deposition, and biomarker upregulation in a cell-line-dependent manner. In single stroma scaffolds, different levels of fibrosis/desmoplasia in terms of ECM composition/quantity were generated depending on the ECM coating. When studying the evolution of cancer and stroma cells in our dual/zonal model, biomarkers linked to cell aggressiveness/invasiveness were further upregulated by both cancer and stroma cells as compared to single scaffold models. Collectively, our study advances the understanding of how different ECM proteins impact the long-term cell evolution in PU scaffolds. Our findings show that within our bioengineered models, we can stimulate the cells of the PDAC microenvironment to develop different levels of aggressiveness/invasiveness, as well as different levels of fibrosis. Furthermore, we highlight the importance of considering spatial complexity to map cell invasion. Our work contributes to the design of in vitro models with variable, yet biomimetic, tissue-like properties for studying the tumor microenvironment's role in cancer progression.
Collapse
Affiliation(s)
- Anna-Dimitra Kataki
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Priyanka G. Gupta
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
- School
of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, U.K.
| | - Umber Cheema
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Yaohe Wang
- Centre
for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Hemant M. Kocher
- Centre
for Tumour Biology and Experimental Cancer Medicine, Barts Cancer
Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Pedro A. Pérez-Mancera
- Department
of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Eirini G. Velliou
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| |
Collapse
|
3
|
Sekeroglu ZA, Sekeroglu V. A Review on Patient-derived 3D Micro Cancer Approach for Drug Screen in Personalized Cancer Medicine. Curr Cancer Drug Targets 2025; 25:118-130. [PMID: 38445692 DOI: 10.2174/0115680096285910240206044830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 03/07/2024]
Abstract
Precision medicine in oncology aims to identify an individualized treatment plan based on genomic alterations in a patient's tumor. It helps to select the most beneficial therapy for an individual patient. As it is now known that no patient's cancer is the same, and therefore, different patients may respond differently to conventional treatments, precision medicine, which replaces the one-size-fits-all approach, supports the development of tailored treatments for specific cancers of different patients. Patient-specific organoid or spheroid models as 3D cell culture models are very promising for predicting resistance to anti-cancer drugs and for identifying the most effective cancer therapy for high-throughput drug screening combined with genomic analysis in personalized medicine. Because tumor spheroids incorporate many features of solid tumors and reflect resistance to drugs and radiation, as in human cancers, they are widely used in drug screening studies. Testing patient-derived 3D cancer spheroids with some anticancer drugs based on information from molecular profiling can reveal the sensitivity of tumor cells to drugs and provide the right compounds to be effective against resistant cells. Given that many patients do not respond to standard treatments, patient-specific treatments will be more effective, less toxic. They will affect survival better compared to the standard approach used for all patients.
Collapse
Affiliation(s)
- Zulal Atlı Sekeroglu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| | - Vedat Sekeroglu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| |
Collapse
|
4
|
Gayibov E, Sychra T, Spálenková A, Souček P, Oliverius M. The use of patient-derived xenografts and patient-derived organoids in the search for new therapeutic regimens for pancreatic carcinoma. A review. Biomed Pharmacother 2025; 182:117750. [PMID: 39689516 DOI: 10.1016/j.biopha.2024.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024] Open
Abstract
Patient-derived organoids (PDOs) and xenografts (PDXs) are powerful tools for personalized medicine in pancreatic cancer (PC) research. This study explores the complementary strengths of PDOs and PDXs in terms of practicality, genetic fidelity, cost, and labor considerations. Among other models like 2D cell cultures, spheroids, cancer-on-chip systems, cell line-derived xenografts (CDX), and genetically engineered mouse models (GEMMs), PDOs and PDXs uniquely balance genetic fidelity and personalized medicine potential, offering distinct advantages over the simplicity of 2D cultures and the advanced, but often resource-intensive, GEMMs and cancer-on-chip systems. PDOs excel in high-throughput drug screening due to their ease of use, lower cost, and shorter experimental timelines. However, they lack a complete tumor microenvironment. Conversely, PDXs offer a more complex microenvironment that closely reflects patient tumors, potentially leading to more clinically relevant results. Despite limitations in size, number of specimens, and engraftment success, PDXs demonstrate significant concordance with patient responses to treatment, highlighting their value in personalized medicine. Both models exhibit significant genetic fidelity, making them suitable for drug sensitivity testing. The choice between PDOs and PDXs depends on the research focus, resource availability, and desired level of microenvironment complexity. PDOs are advantageous for high-throughput screening of a diverse array of potential therapeutic agents due to their relative ease of culture and scalability. PDXs, on the other hand, offer a more physiologically relevant model, allowing for a comprehensive evaluation of drug efficacy and mechanisms of action.
Collapse
Affiliation(s)
- Emin Gayibov
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomáš Sychra
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic; Centre of Toxicology and Health Safety, National Institute of Public Health, Prague, Czech Republic; Department of General Surgery, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Alžběta Spálenková
- Centre of Toxicology and Health Safety, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Souček
- Centre of Toxicology and Health Safety, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Martin Oliverius
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic; Department of General Surgery, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic.
| |
Collapse
|
5
|
Sellars E, Savguira M, Wu J, Cancelliere S, Jen M, Krishnan R, Hakem A, Barsyte-Lovejoy D, Hakem R, Narod SA, Kotsopoulos J, Salmena L. A high-throughput approach to identify BRCA1-downregulating compounds to enhance PARP inhibitor sensitivity. iScience 2024; 27:110180. [PMID: 38993666 PMCID: PMC11238136 DOI: 10.1016/j.isci.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
PARP inhibitors (PARPi) are efficacious in BRCA1-null tumors; however, their utility is limited in tumors with functional BRCA1. We hypothesized that pharmacologically reducing BRCA1 protein levels could enhance PARPi effectiveness in BRCA1 wild-type tumors. To identify BRCA1 downregulating agents, we generated reporter cell lines using CRISPR-mediated editing to tag endogenous BRCA1 protein with HiBiT. These reporter lines enable the sensitive measurement of BRCA1 protein levels by luminescence. Validated reporter cells were used in a pilot screen of epigenetic-modifying probes and a larger screen of more than 6,000 compounds. We identified 7 compounds that could downregulate BRCA1-HiBiT expression and synergize with olaparib. Three compounds, N-acetyl-N-acetoxy chlorobenzenesulfonamide (NANAC), A-443654, and CHIR-124, were validated to reduce BRCA1 protein levels and sensitize breast cancer cells to the toxic effects of olaparib. These results suggest that BRCA1-HiBiT reporter cells hold promise in developing agents to improve the clinical utility of PARPi.
Collapse
Affiliation(s)
- Erin Sellars
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
| | - Margarita Savguira
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jie Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabrina Cancelliere
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Network Biology Collaborative Centre, High-Throughput Screening, Mt. Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Anne Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Joanne Kotsopoulos
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
| |
Collapse
|
6
|
Mengji R, Paladugu D, Saha B, Jana A. Single-Photon Deep-Red Light-Triggered Direct Release of an Anticancer Drug: An Investigative Tumor Regression Study on a Breast Cancer Spheroidal Tumor Model. J Med Chem 2024; 67:11069-11085. [PMID: 38913981 DOI: 10.1021/acs.jmedchem.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Breast adenocarcinoma ranks high among the foremost lethal cancers affecting women globally, with its triple-negative subtype posing the greatest challenge due to its aggressiveness and resistance to treatment. To enhance survivorship and patients' quality of life, exploring advanced therapeutic approaches beyond conventional chemotherapies is imperative. To address this, innovative nanoscale drug delivery systems have been developed, offering precise, localized, and stimuli-triggered release of anticancer agents. Here, we present perylenemonoimide nanoparticle-based vehicles engineered for deep-red light activation, enabling direct chlorambucil release. Synthesized via the reprecipitation technique, these nanoparticles were thoroughly characterized. Light-induced drug release was monitored via spectroscopic and reverse-phase HPLC. The efficacy of the said drug delivery system was evaluated in both two-dimensional and three-dimensional spheroidal cancer models, demonstrating significant tumor regression attributed to apoptotic cell death induced by efficient drug release within cells and spheroids. This approach holds promise for advancing targeted breast cancer therapy, enhancing treatment efficacy and minimizing adverse effects.
Collapse
Affiliation(s)
- Rakesh Mengji
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dileep Paladugu
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Biswajit Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Avijit Jana
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Gupta P, Bermejo-Rodriguez C, Kocher H, Pérez-Mancera PA, Velliou EG. Chemotherapy Assessment in Advanced Multicellular 3D Models of Pancreatic Cancer: Unravelling the Importance of Spatiotemporal Mimicry of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2300580. [PMID: 38327154 DOI: 10.1002/adbi.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Camino Bermejo-Rodriguez
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eirini G Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| |
Collapse
|
8
|
Vaid P, Saini AK, Gupta RK, Sinha ES, Sharma D, Alsanie WF, Thakur VK, Saini RV. Sustainable Nanoparticles from Stephania glabra and Analysis of Their Anticancer Potential on 2D and 3D Models of Prostate Cancer. Appl Biochem Biotechnol 2024; 196:3511-3533. [PMID: 37682510 DOI: 10.1007/s12010-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
In pursuit of a novel effective treatment for prostate cancer, methanolic extract of Stephania glabra tubers (Sg-ME) was utilized to fabricate silver (Sg-AgNP), copper oxide (Sg-CuONP), and silver-copper bimetallic nanoparticles (Sg-BNP). The characterization of the nanoparticles confirmed spherical shape with average diameters of 30.72, 32.19, and 25.59 nm of Sg-AgNP, Sg-CuONP, and Sg-BNP, respectively. Interestingly, these nanoparticles exhibited significant cytotoxicity toward the prostate cancer (PC3) cell line while being non-toxic toward normal cells. The nanoparticles were capable of inducing apoptosis in PC3 cells by enhancing reactive oxygen species (ROS) generation and mitochondrial depolarization. Furthermore, the shrinkage of 3D prostate tumor spheroids was observed after 4 days of treatment with these green nanoparticles. The 3D model system was less susceptible to nanoparticles as compared to the 2D model system. Sg-BNP showed the highest anticancer potential on 2D and 3D prostate cancer models.
Collapse
Affiliation(s)
- Prachi Vaid
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, 173229, H, Solan, .P, India
| | - Adesh K Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, U, Kanpur, .P, India
| | - Eshu Singhal Sinha
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Deepak Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
9
|
Ribeiro D, Latancia M, de Souza I, Ariwoola AB, Mendes D, Rocha CRR, Lengert A, Menck C. Temozolomide resistance mechanisms: unveiling the role of translesion DNA polymerase kappa in glioblastoma spheroids in vitro. Biosci Rep 2024; 44:BSR20230667. [PMID: 38717250 PMCID: PMC11139666 DOI: 10.1042/bsr20230667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 μM); (iii) exerts antiproliferative effects (≤25 μM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Diego Luis Ribeiro
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela Teatin Latancia
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Izadora de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Abu-Bakr Adetayo Ariwoola
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Davi Mendes
- Departament of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - André Van Helvoort Lengert
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Jamshidi N, Jamshidi N, Modarresi Chahardehi A, Shams E, Chaleshi V. A promising breakthrough in pancreatic cancer research: The potential of spheroids as 3D models. BIOIMPACTS : BI 2024; 15:30241. [PMID: 39963557 PMCID: PMC11830132 DOI: 10.34172/bi.30241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as the fourth leading cause of cancer-related deaths, primarily attributable to its resistance to chemotherapy, resulting in a nearly universal fatality rate. Despite the promise exhibited by numerous drugs in preclinical studies, their subsequent failure in clinical trials underscores the inherent limitations of conventional two-dimensional cell culture models commonly employed in early drug screening endeavors. The inadequacies of two-dimensional (2D) models prompted the exploration of three-dimensional (3D) culture systems, which more faithfully recapitulate the native tumor microenvironment. These 3D systems have distinct advantages over 2D models in morphology, proliferation, drug response, and protein expression. Among these 3D platforms, tumor organoids and spheroids, generated through different methodologies, have emerged as next-generation models that closely mirror aspects of pancreatic tumor biology. This comprehensive review scrutinizes pancreatic cancer spheroids' techniques, tissue sources, and applications, offering a nuanced analysis of their advantages and limitations. By comparing these distinct 3D culture systems, researchers gain valuable insights to inform the selection of optimal model designs aligned with their specific experimental objectives. The utilization of these advanced models holds significant promise for enhancing the clinical relevance of both in vitro and in vivo cancer research, thereby contributing to the development of improved therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Nazanin Jamshidi
- Kimia Andisheh Teb Medical and Molecular Laboratory Research Co, Tehran, Iran
| | - Negar Jamshidi
- Kimia Andisheh Teb Medical and Molecular Laboratory Research Co, Tehran, Iran
| | | | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
He Q, Zheng Y, Lu L, Shen H, Gu W, Yang J, Zhang X, Jin H. Hyperthermia improves gemcitabine sensitivity of pancreatic cancer cells by suppressing the EFNA4/β-catenin axis and activating dCK. Heliyon 2024; 10:e28488. [PMID: 38590861 PMCID: PMC10999932 DOI: 10.1016/j.heliyon.2024.e28488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background Previously, our investigations have underscored the potential of hyperthermia to improve the therapeutic efficacy of gemcitabine (GEM) in pancreatic cancer (PC). Nonetheless, the precise underlying mechanisms remain elusive. Methods We engineered two GEM-resistant PC cell lines (BxPC-3/GEM and PANC-1/GEM) and treated them with GEM alongside hyperthermia. The impact of hyperthermia on the therapeutic potency of GEM was ascertained through MTT assay, assessment of the concentration of its active metabolite dFdCTP, and evaluation of deoxycytidine kinase (dCK) activity. Lentivirus-mediated dCK silencing was further employed to validate its involvement in mediating the GEM-sensitizing effect of hyperthermia. The mechanism underlying hyperthermia-mediated dCK activation was explored using bioinformatics analyses. The interplay between hyperthermia and the ephrin A4 (EFNA4)/β-catenin/dCK axis was investigated, and their roles in GEM resistance was further explored via the establishment of xenograft tumor models in nude mice. Results Hyperthermia restored dCK expression in GEM-resistant cell lines, concurrently enhancing GEM sensitivity and fostering DNA damage and cell death. These observed effects were negated by dCK silencing. Regarding the mechanism, hyperthermia activated dCK by downregulating EFNA4 expression and mitigating β-catenin activation. Overexpression of EFNA4 activated the β-catenin while suppressing dCK, thus diminishing cellular GEM sensitivity-a phenomenon remediated by the β-catenin antagonist MSAB. Consistently, in vivo, hyperthermia augmented the therapeutic efficacy of GEM on xenograft tumors through modulation of the ephrin A4/β-catenin/dCK axis. Conclusion This study delineates the role of hyperthermia in enhancing GEM sensitivity of PC cells, primarily mediated through the suppression of the EFNA4/β-catenin axis and activation of dCK.
Collapse
Affiliation(s)
- Qiaoxian He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Yangyang Zheng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Lei Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Hongzhang Shen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Weigang Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
| | - Hangbin Jin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, Zhejiang, PR China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, PR China
| |
Collapse
|
12
|
Guerriero G, Viel A, Feltri V, Balboni A, Yan G, Monnier S, Lollo G, Dehoux T. Predicting nanocarriers' efficacy in 3D models with Brillouin microscopy. NANOSCALE 2023; 15:19255-19267. [PMID: 37990811 DOI: 10.1039/d3nr03502f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Thanks to their unique nanoscale properties, nanomedicines can overcome some of the shortcomings of conventional therapies. For better predictive screening, it is important to assess their performance in three-dimensional (3D) multicellular tumour spheroids (MCTS) that can recapitulate the physiological barriers found in real tumours. Today, the evaluation of drug delivery nanosystems in MCTS is mainly explored by means of microscopy techniques that are invasive and require fluorescent labels which modify the composition and fate of the carriers. In recent years, a new quantitative microscopy technique based on Brillouin light scattering (BLS) has been proposed that uses the interaction of laser light with picosecond timescale density fluctuations in the sample. Because it is label-free, all-optical and non-destructive, BLS has gained interest in the pharmaceutical and biomedical fields. In this work, we implemented a fast BLS spectrometer and used the Brillouin frequency shift at the center of the MCTS as a quantitative readout for drug efficacy. We first investigated the ability of this setup to quantify drug efficacy in MCTS grown in classical multiwell plates and concluded that the low number of samples available in the multiwells limits the statistical significance of the results. To improve the throughput, we then combined the microscope with agarose microwells designed to fabricate a large number of MCTS and test 50 MCTS in less than a minute. Using this platform, we assessed the efficacy of polymeric nanoparticles (NPs) loaded with a platinum derivative anticancer drug (dichloro(1,2-diaminocyclohexane)platinum(II)) in reducing the growth of colorectal cancer cells (HCT-116) in MCTS. We observe a time- and dose-dependent decrease in the frequency shift, revealing the progressive loss of mechanical integrity in the MCTS. These results demonstrate that BLS probing of MCTS grown in agarose microwells is a promising tool for high-throughput screening of nanocarriers in 3D models.
Collapse
Affiliation(s)
- Giulia Guerriero
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Alexis Viel
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France.
| | - Veronica Feltri
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Alice Balboni
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Guqi Yan
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France.
| | - Sylvain Monnier
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France.
| | - Giovanna Lollo
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Thomas Dehoux
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France.
| |
Collapse
|
13
|
Niwetbowornchai N, Chaisirirat T, Sriswasdi S, Saithong S, Filbertine G, Wright HL, Edwards SW, Virakul S, Chiewchengchol D. Regulation of dermal fibroblasts by human neutrophil peptides. Sci Rep 2023; 13:17499. [PMID: 37840103 PMCID: PMC10577140 DOI: 10.1038/s41598-023-44889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023] Open
Abstract
Human neutrophil peptides (HNPs) can induce cell proliferation and activation so their growth promoting activities may have potential clinical benefit. This study investigated the effects of HNPs on human dermal fibroblasts. Differential gene expression in HNP-treated cells and genes involved in regulating intracellular pathways were explored. Dermal fibroblasts were isolated from healthy neonatal foreskin and treated with HNPs in 2D and 3D cell culture systems. The expression of cell proliferation (Ki-67) gene and cell activation (COL1A1) gene plus their proteins was measured. Differential gene expression was determined using RNA-seq, and upregulated and downregulated genes were mapped onto intracellular pathways by KEGG analysis and Gene Ontology databases. HNPs significantly increased cell proliferation without cytotoxicity whilst HNP1 enhanced expression of COL1A1 and type I collagen production in 2D cells and 3D spheroids. RNA-sequencing analysis showed gene clustering with clear separation between HNP1-treated and control groups. A heatmap of top 50 differentially expressed genes was consistent among HNP1-treated samples. Most upregulated genes were associated with cell proliferation and activation as mapped into intracellular pathways whilst most downregulated genes belonged to steroid/arachidonic acid metabolism and inflammatory signaling pathways. HNP1 increased cell proliferation and activation but reduced lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Nattarika Niwetbowornchai
- Center of Excellence in Translational Research in Inflammation and Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Immunology Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanawat Chaisirirat
- Center of Excellence in Computational Molecular Biology, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Chulalongkorn University, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supichcha Saithong
- Center of Excellence in Translational Research in Inflammation and Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Immunology Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Grace Filbertine
- Center of Excellence in Translational Research in Inflammation and Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Immunology Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Helen L Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Sita Virakul
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Immunology Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Direkrit Chiewchengchol
- Center of Excellence in Translational Research in Inflammation and Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Immunology Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Manduca N, Maccafeo E, De Maria R, Sistigu A, Musella M. 3D cancer models: One step closer to in vitro human studies. Front Immunol 2023; 14:1175503. [PMID: 37114038 PMCID: PMC10126361 DOI: 10.3389/fimmu.2023.1175503] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.
Collapse
Affiliation(s)
- Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario ‘A. Gemelli’ - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Navarro-Serer B, Wood LD. Organoids: A Promising Preclinical Model for Pancreatic Cancer Research. Pancreas 2022; 51:608-616. [PMID: 36206467 DOI: 10.1097/mpa.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer is one of the most lethal cancer types, estimated to become the second leading cause of cancer-related deaths in the United States in 2030. The use of 3-dimensional culture systems has greatly expanded over the past few years, providing a valuable tool for the study of pancreatic cancer. In this review, we highlight some of the preclinical in vitro and in vivo models used in pancreatic cancer research, each with its own advantages and disadvantages, and focus on one of the recently used 3-dimensional culture models: organoids. Organoids are multicellular units derived from tissue samples and embedded within extracellular matrix gels after mechanical and enzymatic digestion. We define organoids, differentiate them from other 3-dimensional culture systems such as spheroids, and describe some applications of this model that have recently advanced our understanding of pancreatic cancer and its tumor microenvironment. Organoids have provided valuable insights into pancreatic cancer progression, heterogeneity, and invasion, and they have enabled the creation of biobanks, providing a platform for drug screening. In addition, we discuss some of the future directions and challenges in this model when addressing research questions.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- From the Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine
| | | |
Collapse
|
16
|
Watanabe S, Yogo A, Otsubo T, Umehara H, Oishi J, Kodo T, Masui T, Takaishi S, Seno H, Uemoto S, Hatano E. Establishment of patient-derived organoids and a characterization-based drug discovery platform for treatment of pancreatic cancer. BMC Cancer 2022; 22:489. [PMID: 35505283 PMCID: PMC9063137 DOI: 10.1186/s12885-022-09619-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal tumors. The aim of this study is to provide an effective therapeutic discovery platform for pancreatic cancer by establishing and characterizing patient-derived organoids (PDOs). METHODS PDOs were established from pancreatic tumor surgical specimens, and the mutations were examined using a panel sequence. Expression of markers was assessed by PCR, immunoblotting, and immunohistochemistry; tumorigenicity was examined using immunodeficient mice, and drug responses were examined in vitro and in vivo. RESULTS PDOs were established from eight primary and metastatic tumors, and the characteristic mutations and expression of cancer stem cell markers and CA19-9 were confirmed. Tumorigenicity of the PDOs was confirmed in subcutaneous transplantation and in the peritoneal cavity in the case of PDOs derived from disseminated nodules. Gemcitabine-sensitive/resistant PDOs showed consistent responses in vivo. High throughput screening in PDOs identified a compound effective for inhibiting tumor growth of a gemcitabine-resistant PDO xenograft model. CONCLUSIONS This PDO-based platform captures important aspects of treatment-resistant pancreatic cancer and its metastatic features, suggesting that this study may serve as a tool for the discovery of personalized therapies.
Collapse
Affiliation(s)
- Sadanori Watanabe
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan.
| | - Akitada Yogo
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuguteru Otsubo
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan
| | - Hiroki Umehara
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan
| | - Jun Oishi
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan
| | - Toru Kodo
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan
| | - Toshihiko Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Shigeo Takaishi
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Tang-Schomer MD, Chandok H, Wu WB, Lau CC, Bookland MJ, George J. 3D patient-derived tumor models to recapitulate pediatric brain tumors In Vitro. Transl Oncol 2022; 20:101407. [PMID: 35381525 PMCID: PMC8980497 DOI: 10.1016/j.tranon.2022.101407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Brain tumors are the leading cause of cancer-related deaths in children. Tailored therapies need preclinical brain tumor models representing a wide range of molecular subtypes. Here, we adapted a previously established brain tissue-model to fresh patient tumor cells with the goal of establishing3D in vitro culture conditions for each tumor type.Wereported our findings from 11 pediatric tumor cases, consisting of three medulloblastoma (MB) patients, three ependymoma (EPN) patients, one glioblastoma (GBM) patient, and four juvenile pilocytic astrocytoma (Ast) patients. Chemically defined media consisting of a mixture of pro-neural and pro-endothelial cell culture medium was found to support better growth than serum-containing medium for all the tumor cases we tested. 3D scaffold alone was found to support cell heterogeneity and tumor type-dependent spheroid-forming ability; both properties were lost in 2D or gel-only control cultures. Limited in vitro models showed that the number of differentially expressed genes between in vitro vs. primary tissues, are 104 (0.6%) of medulloblastoma, 3,392 (20.2%) of ependymoma, and 576 (3.4%) of astrocytoma, out of total 16,795 protein-coding genes and lincRNAs. Two models derived from a same medulloblastoma patient clustered together with the patient-matched primary tumor tissue; both models were 3D scaffold-only in Neurobasal and EGM 1:1 (v/v) mixture and differed by a 1-mo gap in culture (i.e., 6wk versus 10wk). The genes underlying the in vitrovs. in vivo tissue differences may provide mechanistic insights into the tumor microenvironment. This study is the first step towards establishing a pipeline from patient cells to models to personalized drug testing for brain cancer.
Collapse
Affiliation(s)
- Min D. Tang-Schomer
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, Connecticut 06030, USA,Correspondence author.
| | - Harshpreet Chandok
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06030, USA
| | - Wei-Biao Wu
- University of Chicago, Department of Statistics, 5747 S.Ellis Avenue, Chicago, IL 60637, USA
| | - Ching C. Lau
- Connecticut Children's Medical Center, 282 Washington St, Hartford, CT 06106, USA,UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, Connecticut 06030, USA,The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06030, USA
| | - Markus J. Bookland
- Connecticut Children's Medical Center, 282 Washington St, Hartford, CT 06106, USA,UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06030, USA
| |
Collapse
|
18
|
Freitas Misakyan MF, Wijeratne EMK, Issa ME, Xu YM, Monteillier A, Gunatilaka AAL, Cuendet M. Structure-Activity Relationships of Withanolides as Antiproliferative Agents for Multiple Myeloma: Comparison of Activity in 2D Models and a 3D Coculture Model. JOURNAL OF NATURAL PRODUCTS 2021; 84:2321-2335. [PMID: 34445874 DOI: 10.1021/acs.jnatprod.1c00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a hematological cancer in which relapse and resistance are highly frequent. Therefore, alternatives to conventional treatments are necessary. Withaferin A, a withanolide isolated from Withania somnifera, has previously shown promising activity against various MM models. In the present study, structure-activity relationships (SARs) were evaluated using 56 withanolides. The antiproliferative activity was assessed in three MM cell lines and in a 3D MM coculture model to understand the in vitro activity of compounds in models of various complexity. While the results obtained in 2D allowed a quick and simple evaluation of cytotoxicity used for a first selection, the use of the 3D MM coculture model allowed filtering compounds that perform better in a more complex setup. This study shows the importance of the last model as a bridge between 2D and in vivo studies to select the most active compounds and ultimately lead to a reduction of animal use for more sustained in vivo studies. NF-κB inhibition was determined to evaluate if this could be one of the targeted pathways. The most active compounds, withanolide D (2) and 38, should be further evaluated in vivo.
Collapse
Affiliation(s)
- Micaela F Freitas Misakyan
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Mark E Issa
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Aymeric Monteillier
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
19
|
Wang L, Ren G, Lin B. Expression of 5-methylcytosine regulators is highly associated with the clinical phenotypes of prostate cancer and DNMTs expression predicts biochemical recurrence. Cancer Med 2021; 10:5681-5695. [PMID: 34227253 PMCID: PMC8366102 DOI: 10.1002/cam4.4108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
In patients with prostate cancer (PCa), there is a high rate of overdiagnosis and frequent overtreatment. Therefore, there is an urgent need for more accurate prediction of biochemical recurrence (BCR). DNA methylation regulation patterns play crucial roles in tumorigenicity, progression, and treatment efficacy in PCa. However, the global relationship between epigenetic alterations, changes in mRNA levels, and pathologic phenotypes of PCa remain largely undefined. Here, we conducted a systematic analysis to identify global coexpression and comethylation modules in PCa. We identified coregulated methylation and expression modules and the relationships between epigenetic modifications, tumor progression, and the corresponding immune microenvironment in PCa. Our results show that DNA methyltransferases (DNMTs) are strongly associated with pathologic phenotypes and immune infiltration patterns in PCa. We built a two-factor predictive model using the expression features of DNMT3B and DNMT1. The model was used to predict the BCR status of patients with PCa and achieved area under the receiver operating characteristic curve values of 0.70 and 0.88 in the training and independent testing datasets, respectively.
Collapse
Affiliation(s)
- Lin Wang
- College of Life ScienceZhejiang UniversityHangzhouChina
- Systems Biology Division, Zhejiang California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Biaoyang Lin
- College of Life ScienceZhejiang UniversityHangzhouChina
- Systems Biology Division, Zhejiang California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of UrologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
20
|
Bruns J, Zustiak SP. Hydrogel-Based Spheroid Models of Glioblastoma for Drug Screening Applications. MISSOURI MEDICINE 2021; 118:346-351. [PMID: 34373670 PMCID: PMC8343644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with median patient survival of 12-15 months even after treatment. To facilitate basic research as well as treatment development, bioengineered GBM models that adequately recapitulate aspects of the in vivo tumor microenvironment are greatly needed. Multicellular spheroids are a well-accepted model in tumor biology as well as drug screening because they recapitulate many of the solid tumor characteristics, such as hypoxic core and cell-cell communication. There are multiple approaches for growing GBM cells into tumor spheroids - non-adherent plastic dishes, hanging drop, bioreactors, and hydrogels, amongst others. Suspension spheroid models offer ease of growth, uniformity, and overall lower cost, but neglect the cell-matrix interactions, while hydrogel-based spheroids capture cell-matrix interactions and allow co-cultures with stromal cells. In this review, we summarize various approaches to fabricate GBM spheroid models as well as GBM spheroid characteristics and chemotherapeutic responsiveness as a function of hydrogel matrix encapsulation and properties, in order to advance therapies.
Collapse
Affiliation(s)
| | - Silviya Petrova Zustiak
- Program of Biomedical Engineering and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
21
|
Song X, Wang L, Wang T, Hu J, Wang J, Tu R, Su H, Jiang J, Qing G, Liu H. Synergistic targeting of CHK1 and mTOR in MYC-driven tumors. Carcinogenesis 2021; 42:448-460. [PMID: 33206174 DOI: 10.1093/carcin/bgaa119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
Deregulation of v-myc avian myelocytomatosis viral oncogene homolog (MYC) occurs in a broad range of human cancers and often predicts poor prognosis and resistance to therapy. However, directly targeting oncogenic MYC remains unsuccessful, and indirectly inhibiting MYC emerges as a promising approach. Checkpoint kinase 1 (CHK1) is a protein kinase that coordinates the G2/M cell cycle checkpoint and protects cancer cells from excessive replicative stress. Using c-MYC-mediated T-cell acute lymphoblastic leukemia (T-acute lymphoblastic leukemia) and N-MYC-driven neuroblastoma as model systems, we reveal that both c-MYC and N-MYC directly bind to the CHK1 locus and activate its transcription. CHIR-124, a selective CHK1 inhibitor, impairs cell viability and induces remarkable synergistic lethality with mTOR inhibitor rapamycin in MYC-overexpressing cells. Mechanistically, rapamycin inactivates carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD), the essential enzyme for the first three steps of de novo pyrimidine synthesis, and deteriorates CHIR-124-induced replicative stress. We further demonstrate that dual treatments impede T-acute lymphoblastic leukemia and neuroblastoma progression in vivo. These results suggest simultaneous targeting of CHK1 and mTOR as a novel and powerful co-treatment modality for MYC-mediated tumors.
Collapse
Affiliation(s)
- Xiaoxue Song
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Liyuan Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Tianci Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Juncheng Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Jingchao Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Rongfu Tu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Hexiu Su
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Jue Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Guoliang Qing
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
22
|
Yan F, Gunay G, Valerio TI, Wang C, Wilson JA, Haddad MS, Watson M, Connell MO, Davidson N, Fung KM, Acar H, Tang Q. Characterization and quantification of necrotic tissues and morphology in multicellular ovarian cancer tumor spheroids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:3352-3371. [PMID: 34221665 PMCID: PMC8221959 DOI: 10.1364/boe.425512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 05/02/2023]
Abstract
The three-dimensional (3D) tumor spheroid model is a critical tool for high-throughput ovarian cancer research and anticancer drug development in vitro. However, the 3D structure prevents high-resolution imaging of the inner side of the spheroids. We aim to visualize and characterize 3D morphological and physiological information of the contact multicellular ovarian tumor spheroids growing over time. We intend to further evaluate the distinctive evolutions of the tumor spheroid and necrotic tissue volumes in different cell numbers and determine the most appropriate mathematical model for fitting the growth of tumor spheroids and necrotic tissues. A label-free and noninvasive swept-source optical coherence tomography (SS-OCT) imaging platform was applied to obtain two-dimensional (2D) and 3D morphologies of ovarian tumor spheroids over 18 days. Ovarian tumor spheroids of two different initial cell numbers (5,000- and 50,000- cells) were cultured and imaged (each day) over the time of growth in 18 days. Four mathematical models (Exponential-Linear, Gompertz, logistic, and Boltzmann) were employed to describe the growth kinetics of the tumor spheroids volume and necrotic tissues. Ovarian tumor spheroids have different growth curves with different initial cell numbers and their growths contain different stages with various growth rates over 18 days. The volumes of 50,000-cells spheroids and the corresponding necrotic tissues are larger than that of the 5,000-cells spheroids. The formation of necrotic tissue in 5,000-cells numbers is slower than that in the 50,000-cells ones. Moreover, the Boltzmann model exhibits the best fitting performance for the growth of tumor spheroids and necrotic tissues. Optical coherence tomography (OCT) can serve as a promising imaging modality to visualize and characterize morphological and physiological features of multicellular ovarian tumor spheroids. The Boltzmann model integrating with 3D OCT data of ovarian tumor spheroids provides great potential for high-throughput cancer research in vitro and aiding in drug development.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Gokhan Gunay
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Trisha I Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Equal contribution
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Jayla A Wilson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Majood S Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Maegan Watson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Michael O Connell
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Noah Davidson
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, OK 73019, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| |
Collapse
|
23
|
Tan Y, Suarez A, Garza M, Khan AA, Elisseeff J, Coon D. Human fibroblast-macrophage tissue spheroids demonstrate ratio-dependent fibrotic activity for in vitro fibrogenesis model development. Biomater Sci 2020; 8:1951-1960. [PMID: 32057054 DOI: 10.1039/c9bm00900k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibrosis is a pathological accumulation of excessive collagen that underlies many of the most common diseases, representing dysfunction of the essential processes of normal tissue healing. Fibrosis research aims to limit this response without ameliorating the essential role of fibrogenesis in organ function. However, the absence of a realistic in vitro model has hindered investigation into mechanisms and potential interventions because the standard 2D monolayer culture of fibroblasts has limited applicability. We sought to develop and optimize fibrosis spheroids: a scaffold-free three-dimensional human fibroblast-macrophage spheroid system representing an improved benchtop model of human fibrosis. We created, characterized and optimized human fibroblast-only spheroids, demonstrating increased collagen deposition compared to monolayer fibroblasts, while spheroids larger than 300 μm suffered from progressively increasing apoptosis. Next, we improved the spheroid system with the addition of human macrophages to more precisely recapitulate the environment during fibrogenesis, creating a hybrid spheroid system with different ratios of fibroblasts and macrophages ranging from 2 : 1 to 64 : 1. We found that in the hybrid spheroids (particularly the 16 : 1 [F16] ratio) more fibroblasts were activated, with greater macrophage polarization towards a pro-inflammatory M1 phenotype. Hybrid spheroids containing higher ratios of macrophages showed greater macrophage heterogeneity and less fibrogenesis, while low macrophage ratios limited macrophage-induced effects and yielded less collagen deposition. The F16 group also had the highest expression levels of fibrosis-related genes (Col-1a1, Col-3a1 and TGF-β) and inflammation-related genes (TNF, IL1β and IL6). IF staining demonstrated that F16 spheroids had the highest levels of αSMA, collagen-1 and collagen-3 deposition among all groups as well as formation of a dense collagen rim surrounding the spheroid. Future studies exploring the greater fibrotic activity of F16 spheroids may provide new mechanistic insights into diseases involving excessive fibrotic activity. Microtissue fibrosis models capable of achieving greater clinical fidelity have the potential to combine the relevance of animal models with the scale, cost and throughput of in vitro testing.
Collapse
Affiliation(s)
- Yu Tan
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Allister Suarez
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Matthew Garza
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Aadil A Khan
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK and Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Devin Coon
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Muciño-Olmos EA, Vázquez-Jiménez A, Avila-Ponce de León U, Matadamas-Guzman M, Maldonado V, López-Santaella T, Hernández-Hernández A, Resendis-Antonio O. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Sci Rep 2020; 10:12728. [PMID: 32728097 PMCID: PMC7391783 DOI: 10.1038/s41598-020-69026-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is an intrinsic characteristic of cancer. Even in isogenic tumors, cell populations exhibit differential cellular programs that overall supply malignancy and decrease treatment efficiency. In this study, we investigated the functional relationship among cell subtypes and how this interdependency can promote tumor development in a cancer cell line. To do so, we performed single-cell RNA-seq of MCF7 Multicellular Tumor Spheroids as a tumor model. Analysis of single-cell transcriptomes at two-time points of the spheroid growth, allowed us to dissect their functional relationship. As a result, three major robust cellular clusters, with a non-redundant complementary composition, were found. Meanwhile, one cluster promotes proliferation, others mainly activate mechanisms to invade other tissues and serve as a reservoir population conserved over time. Our results provide evidence to see cancer as a systemic unit that has cell populations with task stratification with the ultimate goal of preserving the hallmarks in tumors.
Collapse
Affiliation(s)
- Erick Andrés Muciño-Olmos
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Ugo Avila-Ponce de León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico.,PhD Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- PhD Program in Biomedical Sciences, UNAM, Mexico City, Mexico.,Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Vilma Maldonado
- Epigenetic Laboratory, Instituto Nacional de Medicina, Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, 14610, Mexico City, Mexico. .,Coordinación de La Investigación Científica -Red de Apoyo a La Investigación, UNAM, Mexico City, Mexico.
| |
Collapse
|
25
|
Benning L, Peintner A, Finkenzeller G, Peintner L. Automated spheroid generation, drug application and efficacy screening using a deep learning classification: a feasibility study. Sci Rep 2020; 10:11071. [PMID: 32632214 PMCID: PMC7338379 DOI: 10.1038/s41598-020-67960-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
The last two decades saw the establishment of three-dimensional (3D) cell cultures as an acknowledged tool to investigate cell behaviour in a tissue-like environment. Cells growing in spheroids differentiate and develop different characteristics in comparison to their two-dimensionally grown counterparts and are hence seen to exhibit a more in vivo-like phenotype. However, generating, treating and analysing spheroids in high quantities remains labour intensive and therefore limits its applicability in drugs and compound research. Here we present a fully automated pipetting robot that is able to (a) seed hanging drops from single cell suspensions, (b) treat the spheroids formed in these hanging drops with drugs and (c) analyse the viability of the spheroids by an image-based deep learning based convolutional neuronal network (CNN). The model is trained to classify between ‘unaffected’, ‘mildly affected’ and ‘affected’ spheroids after drug exposure. All corresponding spheroids are initially analysed by viability flow cytometry analysis to build a labelled training set for the CNN to subsequently reduce the number of misclassifications. Hence, this approach allows to efficiently examine the efficacy of drug combinatorics or new compounds in 3D cell culture. Additionally, it may provide a valuable instrument to screen for new and individualized systemic therapeutic strategies in second and third line treatment of solid malignancies using patient derived primary cells.
Collapse
Affiliation(s)
- Leo Benning
- Department of Plastic and Hand Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas Peintner
- Department of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Günter Finkenzeller
- Department of Plastic and Hand Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Lukas Peintner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, 79104, Freiburg, Germany.
| |
Collapse
|
26
|
Fiorentzis M, Katopodis P, Kalirai H, Seitz B, Viestenz A, Coupland SE. Image Analysis of 3D Conjunctival Melanoma Cell Cultures Following Electrochemotherapy. Biomedicines 2020; 8:biomedicines8060158. [PMID: 32545782 PMCID: PMC7344416 DOI: 10.3390/biomedicines8060158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) cell cultures represent small avascular tumors in vitro and simulate some of the biological characteristics of solid tumors, enhancing the evaluation of anticancer drug efficacy. Automated image analysis can be used for the assessment of tumor growth and documentation of changes in the size parameters of 3D tumor spheroids following anticancer treatments such as electrochemotherapy. The objective of this article is to assess the effect of various electroporation (EP) conditions (500-750 Volts/cm, 8-20 pulses, 100 µs pulse duration, 5 Hz repetition rate) combined with different bleomycin concentrations (1-2.5 ug/mL) on normal epithelial (HCjE-Gi) and conjunctival melanoma (CRMM1, CRMM2) 3D-cell cultures, through an automated image analysis and a comparison with standard histological assays. A reduction in tumor mass with loss of cell definition was observed after ECT (750 Volts/cm with eight pulses and 500 Volts/cm with 20 pulses) with bleomycin (1 μg/mL and 2.5 μg/mL) in the histological and immunohistochemical analyses of 3D CRMM1 and CRMM2 spheroids, whereas an increase in volume and a decrease in sphericity was documented in the automated image analysis and 3D visualization of both melanoma cell lines. For all other treatment conditions and for the HCjE-Gi cell line, no significant changes to their morphological features were observed. Image analysis with integrated software tools provides an accessible and comprehensive platform for the preliminary selection of homogenous spheroids and for the monitoring of drug efficacy, implementing the traditional screening methods.
Collapse
Affiliation(s)
- Miltiadis Fiorentzis
- Department of Ophthalmology, University Hospital Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-2900
| | - Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University, London UB8 3PH, UK;
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (H.K.); (S.E.C.)
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L69 3GA, UK
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, 66424 Homburg, Germany;
| | - Arne Viestenz
- Department of Ophthalmology, University Hospital Halle, 06112 Halle, Germany;
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (H.K.); (S.E.C.)
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L69 3GA, UK
| |
Collapse
|
27
|
Guzman A, Avard RC, Devanny AJ, Kweon OS, Kaufman LJ. Delineating the role of membrane blebs in a hybrid mode of cancer cell invasion in three-dimensional environments. J Cell Sci 2020; 133:jcs236778. [PMID: 32193332 PMCID: PMC7197870 DOI: 10.1242/jcs.236778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
The study of cancer cell invasion in 3D environments in vitro has revealed a variety of invasive modes, including amoeboid migration, characterized by primarily round cells that invade in a protease- and adhesion-independent manner. Here, we delineate a contractility-dependent migratory mode of primarily round breast cancer cells that is associated with extensive integrin-mediated extracellular matrix (ECM) reorganization that occurs at membrane blebs, with bleb necks sites of integrin clustering and integrin-dependent ECM alignment. We show that the spatiotemporal distribution of blebs and their utilization for ECM reorganization is mediated by functional β1 integrin receptors and other components of focal adhesions. Taken together, the work presented here characterizes a migratory mode of primarily round cancer cells in complex 3D environments and reveals a fundamentally new function for membrane blebs in cancer cell invasion.
Collapse
Affiliation(s)
- Asja Guzman
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Rachel C Avard
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Oh Sang Kweon
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
28
|
Sommariva M, Gagliano N. E-Cadherin in Pancreatic Ductal Adenocarcinoma: A Multifaceted Actor during EMT. Cells 2020; 9:E1040. [PMID: 32331358 PMCID: PMC7226001 DOI: 10.3390/cells9041040] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a step-wise process observed in normal and tumor cells leading to a switch from epithelial to mesenchymal phenotype. In tumors, EMT provides cancer cells with a metastatic phenotype characterized by E-cadherin down-regulation, cytoskeleton reorganization, motile and invasive potential. E-cadherin down-regulation is known as a key event during EMT. However, E-cadherin expression can be influenced by the different experimental settings and environmental stimuli so that the paradigm of EMT based on the loss of E-cadherin determining tumor cell behavior and fate often becomes an open question. In this review, we aimed at focusing on some critical points in order to improve the knowledge of the dynamic role of epithelial cells plasticity in EMT and, specifically, address the role of E-cadherin as a marker for the EMT axis.
Collapse
Affiliation(s)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
29
|
Melnik D, Sahana J, Corydon TJ, Kopp S, Nassef MZ, Wehland M, Infanger M, Grimm D, Krüger M. Dexamethasone Inhibits Spheroid Formation of Thyroid Cancer Cells Exposed to Simulated Microgravity. Cells 2020; 9:cells9020367. [PMID: 32033410 PMCID: PMC7072698 DOI: 10.3390/cells9020367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Detachment and the formation of spheroids under microgravity conditions can be observed with various types of intrinsically adherent human cells. In particular, for cancer cells this process mimics metastasis and may provide insights into cancer biology and progression that can be used to identify new drug/target combinations for future therapies. By using the synthetic glucocorticoid dexamethasone (DEX), we were able to suppress spheroid formation in a culture of follicular thyroid cancer (FTC)-133 cells that were exposed to altered gravity conditions on a random positioning machine. DEX inhibited the growth of three-dimensional cell aggregates in a dose-dependent manner. In the first approach, we analyzed the expression of several factors that are known to be involved in key processes of cancer progression such as autocrine signaling, proliferation, epithelial–mesenchymal transition, and anoikis. Wnt/β-catenin signaling and expression patterns of important genes in cancer cell growth and survival, which were further suggested to play a role in three-dimensional aggregation, such as NFKB2, VEGFA, CTGF, CAV1, BCL2(L1), or SNAI1, were clearly affected by DEX. Our data suggest the presence of a more complex regulation network of tumor spheroid formation involving additional signal pathways or individual key players that are also influenced by DEX.
Collapse
Affiliation(s)
- Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (J.S.); (T.J.C.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Pfälzer Platz, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.M.); (S.K.); (M.Z.N.); (M.W.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6721-267
| |
Collapse
|
30
|
Khumkhrong P, Piboonprai K, Chaichompoo W, Pimtong W, Khongkow M, Namdee K, Jantimaporn A, Japrung D, Asawapirom U, Suksamrarn A, Iempridee T. Crinamine Induces Apoptosis and Inhibits Proliferation, Migration, and Angiogenesis in Cervical Cancer SiHa Cells. Biomolecules 2019; 9:biom9090494. [PMID: 31527550 PMCID: PMC6770758 DOI: 10.3390/biom9090494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Crinum asiaticum is a perennial herb widely distributed in many warmer regions, including Thailand, and is well-known for its medicinal and ornamental values. Crinum alkaloids contain numerous compounds, such as crinamine. Even though its mechanism of action is still unknown, crinamine was previously shown to possess anticancer activity. In this study, we demonstrate that crinamine was more cytotoxic to cervical cancer cells than normal cells. It also inhibited anchorage-independent tumor spheroid growth more effectively than existing chemotherapeutic drugs carboplatin and 5-fluorouracil or the CDK9 inhibitor FIT-039. Additionally, unlike cisplatin, crinamine induced apoptosis without promoting DNA double-strand breaks. It suppressed cervical cancer cell migration by inhibiting the expression of positive regulators of epithelial-mesenchymal transition SNAI1 and VIM. Importantly, crinamine also exerted anti-angiogenic activities by inhibiting secretion of VEGF-A protein in cervical cancer cells and blood vessel development in zebrafish embryos. Gene expression analysis revealed that its mechanism of action might be attributed, in part, to downregulation of cancer-related genes, such as AKT1, BCL2L1, CCND1, CDK4, PLK1, and RHOA. Our findings provide a first insight into crinamine's anticancer activity, highlighting its potential use as an alternative bioactive compound for cervical cancer chemoprevention and therapy.
Collapse
Affiliation(s)
- Phattharachanok Khumkhrong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
| | - Kitiya Piboonprai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand; (W.C.); (A.S.)
| | - Wittaya Pimtong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
| | - Angkana Jantimaporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
| | - Udom Asawapirom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand; (W.C.); (A.S.)
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (P.K.); (K.P.); (W.P.); (M.K.); (K.N.); (A.J.); (D.J.); (U.A.)
- Correspondence: ; Tel.: +66-2117-6710
| |
Collapse
|
31
|
Lee SW, Hong S, Jung B, Jeong SY, Byeon JH, Jeong GS, Choi J, Hwang C. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device. Biotechnol Bioeng 2019; 116:3041-3052. [PMID: 31294818 DOI: 10.1002/bit.27114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/05/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to demonstrate self-organizing in vitro multicellular tumor spheroid (MCTS) formation in a microfluidic system and to observe the behavior of MCTSs under controlled microenvironment. The employed microfluidic system was designed for simple and effective formation of MCTSs by generating nutrient and oxygen gradients. The MCTSs were composed of cancer cells, vascular endothelial cells, and type I collagen matrix to mimic the in vivo tumor microenvironment (TME). Cell culture medium was perfused to the microfluidic device loaded with MCTSs by a passive fluidic pump at a constant flow rate. The dose response to an MMPs inhibitor was investigated to demonstrate the effects of biochemical substances. The result of long-term stability of MCTSs revealed that continuous perfusion of cell culture medium is one of the major factors for the successful MCTS formation. A continuous flow of cell culture medium in the in vitro TME greatly affected both the proliferation of cancer cells in the micro-wells and the sustainability of the endothelial cell-layer integrity in the lumen of microfluidic channels. Addition of MMP inhibitor to the cell culture medium improved the stability of the collagen matrix by preventing the detachment and shrinkage of the collagen matrix surrounding the MCTSs. In summary, the present constant flow assisted microfluidic system is highly advantageous for long-term observation of the MCTS generation, tumorous tissue formation process and drug responses. MCTS formation in a microfluidic system may serve as a potent tool for studying drug screening, tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Boyoung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Soo Yeon Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jae Hee Byeon
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Biomedical engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jaesoon Choi
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Liu R, Zhao T, Swat MH, Reynoso FJ, Higley KA. Development of computational model for cell dose and DNA damage quantification of multicellular system. Int J Radiat Biol 2019; 95:1484-1497. [DOI: 10.1080/09553002.2019.1642537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ruirui Liu
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maciej H. Swat
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
33
|
Roy M, Finley SD. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. PLoS Comput Biol 2019; 15:e1007053. [PMID: 31185009 PMCID: PMC6588258 DOI: 10.1371/journal.pcbi.1007053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/21/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Mathematical modeling provides the predictive ability to understand the metabolic reprogramming and complex pathways that mediate cancer cells’ proliferation. We present a mathematical model using a multiscale, multicellular approach to simulate avascular tumor growth, applied to pancreatic cancer. The model spans three distinct spatial and temporal scales. At the extracellular level, reaction diffusion equations describe nutrient concentrations over a span of seconds. At the cellular level, a lattice-based energy driven stochastic approach describes cellular phenomena including adhesion, proliferation, viability and cell state transitions, occurring on the timescale of hours. At the sub-cellular level, we incorporate a detailed kinetic model of intracellular metabolite dynamics on the timescale of minutes, which enables the cells to uptake and excrete metabolites and use the metabolites to generate energy and building blocks for cell growth. This is a particularly novel aspect of the model. Certain defined criteria for the concentrations of intracellular metabolites lead to cancer cell growth, proliferation or death. Overall, we model the evolution of the tumor in both time and space. Starting with a cluster of tumor cells, the model produces an avascular tumor that quantitatively and qualitatively mimics experimental measurements of multicellular tumor spheroids. Through our model simulations, we can investigate the response of individual intracellular species under a metabolic perturbation and investigate how that response contributes to the response of the tumor as a whole. The predicted response of intracellular metabolites under various targeted strategies are difficult to resolve with experimental techniques. Thus, the model can give novel predictions as to the response of the tumor as a whole, identifies potential therapies to impede tumor growth, and predicts the effects of those therapeutic strategies. In particular, the model provides quantitative insight into the dynamic reprogramming of tumor cells at the intracellular level in response to specific metabolic perturbations. Overall, the model is a useful framework to study targeted metabolic strategies for inhibiting tumor growth. Cancer cells expertly alter their metabolism in order to sustain growth, a hallmark of cancer. Quantitative details about this metabolic reprogramming are difficult to obtain without the use of predictive mathematical models. Here, we present a robust computational model of avascular tumor growth. The novel aspect of this work lies in the incorporation of a detailed model of the dynamics of metabolism within each individual cell, which directly influence growth of the multicellular tumor as a whole. We apply the model to simulate how the tumor grows in space and time and to predict how the tumor responds to targeted inhibition of specific intracellular metabolic reactions. Our results show, first-hand, the dynamic metabolic reprogramming that occurs in cancer cells. Specifically, the model provides insight into how the cells alter their metabolism to compensate for the loss of a nutrient by exploiting alternative pathways for continued tumor growth. Our work provides a quantitative tool for identifying the impact of cellular and sub-cellular features on the evolution of a tumor. This framework is useful for developing potential cancer therapies, complementing experimental studies.
Collapse
Affiliation(s)
- Mahua Roy
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Stacey D. Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Mork Family Department of Chemical Engineering and Materials Science; Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Herrera-Martínez AD, van den Dungen R, Dogan-Oruc F, van Koetsveld PM, Culler MD, de Herder WW, Luque RM, Feelders RA, Hofland LJ. Effects of novel somatostatin-dopamine chimeric drugs in 2D and 3D cell culture models of neuroendocrine tumors. Endocr Relat Cancer 2019; 26:585-599. [PMID: 30939452 DOI: 10.1530/erc-19-0086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Control of symptoms related to hormonal hypersecretion by functioning neuroendocrine tumors (NETs) is challenging. New therapeutic options are required. Since novel in vitro tumor models seem to better mimic the tumor in vivo conditions, we aimed to study the effect of somatostatin and dopamine receptor agonists (octreotide and cabergoline, respectively) and novel somatostatin-dopamine chimeric multi-receptor drugs (BIM-065, BIM-23A760) using 2D (monolayer) and 3D (spheroids) cultures. Dose-response studies in 2D and 3D human pancreatic NET cell cultures (BON-1 and QGP-1) were performed under serum-containing and serum-deprived conditions. Cell proliferation, somatostatin and dopamine receptor expression (SSTs and D2R), apoptosis, lactate dehydrogenase, as well as serotonin and chromogranin A (CgA) release were assessed. The following results were obtained. 3D cultures of BON-1/QGP-1 allowed better cell survival than 2D cultures in serum-deprived conditions. SSTs and D2R mRNA levels were higher in the 3D model vs 2D model. Octreotide/cabergoline/BIM-065/BIM-23A760 treatment did not affect cell growth or spheroid size. In BON-1 2D-cultures, only BIM-23A760 significantly inhibited CgA release -this effect being more pronounced in 3D cultures. In BON-1 2D cultures, cabergoline/BIM-065/BIM-23A760 treatment decreased serotonin release (maximal effect up to 40%), being this effect again more potent in 3D cultures (up to 67% inhibition; with BIM-23A760 having the most potent effects). In QGP-1, cabergoline/BIM-065 treatment decreased serotonin release only in the 3D model. In conclusion, cultures of NET 3D spheroids represent a promising method for evaluating cell proliferation and secretion in NET cell-line models. Compared to 2D models, 3D models grow relatively serum independent. In 3D model, SST-D2R multi-receptor targeting drugs inhibit CgA and serotonin secretion, but not NET cell growth.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rosanna van den Dungen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Fadime Dogan-Oruc
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Wouter W de Herder
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Pulsed Electric Field Treatment Enhances the Cytotoxicity of Plasma-Activated Liquids in a Three-Dimensional Human Colorectal Cancer Cell Model. Sci Rep 2019; 9:7583. [PMID: 31110227 PMCID: PMC6527570 DOI: 10.1038/s41598-019-44087-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/02/2019] [Indexed: 01/04/2023] Open
Abstract
Cold atmospheric plasma and more recently, plasma-activated liquids (culture media, water or buffered solutions previously exposed to plasma), are gathering momentum in cancer cells treatment. Nevertheless, in vitro tests show that this novel approach is sometimes less efficient than expected. We here evaluate the mechanisms of action of the plasma-activated PBS and suggest to use electropermeabilization (EP) in combination with the plasma-activated phosphate-buffered saline (PBS), in order to potentiate the cytotoxic effect of the plasma activated liquid. Human multicellular tumor spheroids (MCTS), a three-dimensional cell model, which resembles small avascular tumors, was used to define the optimal treatment conditions for single and dual-mode treatments. MCTS growth, viability, and global morphological changes were assessed by live cell video-microscopy. In addition, the induction of caspases activation, the appearance of DNA damages, and cell membrane permeabilization, as well as the early modifications in the cellular ultrastructure, were examined by immunofluorescence, propidium iodide staining, confocal fluorescence microscopy and transmission electron microscopy, respectively. Altogether, our results show that a combined treatment resulted in an earlier onset of DNA damage and caspases activation, which completely abolished MCTS growth. This report is a proof of concept study evidencing that electropermeabilization greatly potentiates the cytotoxic effect of plasma-activated PBS in vitro in a three-dimensional cancer cell model.
Collapse
|
36
|
Kennedy R, Kuvshinov D, Sdrolia A, Kuvshinova E, Hilton K, Crank S, Beavis AW, Green V, Greenman J. A patient tumour-on-a-chip system for personalised investigation of radiotherapy based treatment regimens. Sci Rep 2019; 9:6327. [PMID: 31004114 PMCID: PMC6474873 DOI: 10.1038/s41598-019-42745-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Development of personalised cancer models to predict response to radiation would benefit patient care; particularly in malignancies where treatment resistance is prevalent. Herein, a robust, easy to use, tumour-on-a-chip platform which maintains precision cut head and neck cancer for the purpose of ex vivo irradiation is described. The device utilises sintered discs to separate the biopsy and medium, mimicking in vivo microvascular flow and diffusion, maintaining tissue viability for 68 h. Integrity of tissues is demonstrated by the low levels of lactate dehydrogenase release and retained histology, accompanied by assessment of cell viability by trypan blue exclusion and flow cytometry; fluid dynamic modelling validates culture conditions. An irradiation jig is described for reproducible delivery of clinically-relevant doses (5 × 2 Gy) to newly-presenting primary tumours (n = 12); the addition of concurrent cisplatin is also investigated (n = 8) with response analysed by immunohistochemistry. Fractionated irradiation reduced proliferation (BrdU, p = 0.0064), increased DNA damage (ƴH2AX, p = 0.0043) and caspase-dependent apoptosis (caspase-cleaved cytokeratin-18) compared to control; caspase-dependent apoptosis was further increased by concurrent cisplatin compared to control (p = 0.0063). This is a proof of principle study showing the response of cancer tissue to irradiation ex vivo in a bespoke system. The novel platform described has the potential to personalise treatment for patients in a cost-effective manner with applicability to any solid tumour.
Collapse
Affiliation(s)
- R Kennedy
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
| | - D Kuvshinov
- School of Engineering & Computer Science, The University of Hull, Cottingham Road, Hull, UK
| | - A Sdrolia
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
| | - E Kuvshinova
- Department of Chemical & Biological Engineering, The University of Sheffield, Sheffield, UK
| | - K Hilton
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
| | - S Crank
- Department of Maxillofacial Surgery, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK
| | - A W Beavis
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
- Department of Medical Physics, Hull and East Yorkshire Hospitals NHS Trust, Cottingham, UK
- Faculty of Health and Well Being, Sheffield-Hallam University, Sheffield, UK
| | - V Green
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK
| | - J Greenman
- Department of Biomedical Sciences, The University of Hull, Cottingham Road, Hull, UK.
| |
Collapse
|
37
|
Characteristics of multicellular tumor spheroids formed by pancreatic cells expressing different adhesion molecules. Life Sci 2019; 219:343-352. [PMID: 30684543 DOI: 10.1016/j.lfs.2019.01.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
AIMS Multicellular tumor spheroids (MCTS) produced by different methods vary in forms, sizes, and properties. The aim of this work was to characterize MCTS formed by six pancreatic cell lines on a non-adherent surface. MATERIALS AND METHODS Human pancreatic cells were grown in 2D and 3D conditions and compared for the expression of E- and desmosomal cadherins (PCR, confocal microscopy), growth, cell cycling, apoptosis (flow cytometry), and a response to antitumor drugs doxorubicin and gemcitabine (MTT-assay). KEY FINDINGS Three types of MCTS were identified: BxPC-3, T3M4 formed small number of large and dense spheroids representing type I MCTS; COLO-357 and AsPC-1 generated type II multiple and loose MCTS of different sizes while MiaPaCa-2 and PANC-1 represented type III cultures which grew almost as floating monolayer films. Formation of type I MCTS depended on the simultaneous expression of DSG3 and several DSC proteins; II MCTS expressed solely DSG2-DSC2 but not DSG3, while type III cells either did not express E-cadherin or a pair of DSG and DSC proteins. Cells in type I MCTS but not in types II and III ones quickly became quiescent which correlated with a decrease in the proliferation, increased apoptosis, and a higher resistance to antitumor drugs doxorubicin and gemcitabine. SIGNIFICANCE Taken collectively, pancreatic cells significantly vary in the expression of desmosomal cadherins, resulting in the formation of MCTS with different characteristics. The sensitivity of MCTS to various drugs depends on the type of cells and the method of spheroid preparation used.
Collapse
|
38
|
Wu M, Pang JS, Sun Q, Huang Y, Hou JY, Chen G, Zeng JJ, Feng ZB. The clinical significance of CHEK1 in breast cancer: a high-throughput data analysis and immunohistochemical study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1-20. [PMID: 31933717 PMCID: PMC6944032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 06/10/2023]
Abstract
Breast cancer (BC) is a kind of malignant cancer that seriously threatens women's health. Research scientists have found that BC occurs as the result of multiple effects of the external environment and internal genetic changes. Cell cycle checkpoint kinase 1 (CHEK1) is a crucial speed limit point in the cell cycle. Alterations of CHEK1 have been found in various tumors but are rarely reported or verified in BC. By mining database information, a large amount of mRNA and protein data was collected and meta-analyzed. Also, in-house immunohistochemistry was carried out to validate the results of the CHEK1 expression levels. Relative clinical features of BC patients were calculated with the CHEK1 expression levels to determine their diagnostic value. The mRNA levels of CHEK1 were higher in 1,089 cases of BC tissues than in 291 cases of non-BC tissues. We observed that the mRNA levels of CHEK1 are related to the clinical stages of BC patients (P = 0.008) and are also significant for overall survival (HR = 1.6, P = 0.0081). Using the immunohistochemistry method, we calculated and confirmed, using Fisher's exact test (P < 0.001), that a high-level CHEK1 protein is exhibited in BC tissues. Overexpressed CHEK1 mRNA promotes the occurrence of BC. Also, up-regulated CHEK1 could serve as an independent risk biomarker in BC patients' prognoses.
Collapse
Affiliation(s)
- Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jin-Shu Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qi Sun
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yu Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Traditional Chinese MedicineNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jia-Yin Hou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
39
|
Abou Ali E, Bordacahar B, Mestas JL, Batteux F, Lafon C, Camus M, Prat F. Ultrasonic cavitation induces necrosis and impairs growth in three-dimensional models of pancreatic ductal adenocarcinoma. PLoS One 2018; 13:e0209094. [PMID: 30596678 PMCID: PMC6312319 DOI: 10.1371/journal.pone.0209094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a rapidly increasing cause of mortality whose dismal prognosis is mainly due to overwhelming chemoresistance. New therapeutic approaches include physical agents such as ultrasonic cavitation, but clinical applications require further insights in the mechanisms of cytotoxicity. 3-D in vitro culture models such as spheroids exploit realistic spatial, biochemical and cellular heterogeneity that may bridge some of the experimental gap between conventional in vitro and in vivo experiments. PURPOSE To assess the feasibility and efficiency of inertial cavitation associated or not with chemotherapy, in a spheroid model of PDAC. METHODS We used DT66066 cells, derived from a genetically-engineered murine PDAC, isolated from KPC-transgenic mice (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1- Cre). Spheroids were obtained by either a standard centrifugation-based method, or by using a magnetic nano-shuttle method allowing the formation of spheroids within 24 hours and facilitating their handling. The spheroids were exposed to ultrasonic inertial cavitation in a specially designed setup. Eight or nine spheroids were analyzed for each of 4 conditions: control, gemcitabine alone, US cavitation alone, US cavitation + gemcitabine. Five US inertial cavitation indexes, corresponding to increased US intensities, were evaluated. The effectiveness of treatment was assessed after 24 hours with the following criteria: spheroid size (growth), ratio of phase S-entered cells (proliferation), proportion of cells in apoptosis or necrosis (mortality). These parameters were assessed by quantitative immunofluorescence techniques. RESULTS The 3D culture model presented excellent reproducibility. Cavitation induced a significant decrease in the size of spheroids, an effect significantly correlated to an increasing cavitation index (p < 0.0001). The treatment induced cell death whose predominant mechanism was necrosis (p < 0.0001). There was a tendency to a synergistic effect of US cavitation and gemcitabine at 5μM concentration, however significant in only one of the cavitation indexes used (p = 0. 013). CONCLUSION Ultrasonic inertial cavitation induced a significant reduction of tumor growth in a spheroid model of PDAC., with necrosis rather than apoptosis as a Cell dominant mechanism of cell death. More investigations are needed to understand the potential role of inertial cavitation in overcoming chemoresistance.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Culture Techniques
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Models, Biological
- Necrosis
- Oxidative Stress/drug effects
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Sonication
- Spheroids, Cellular/cytology
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Gemcitabine
Collapse
Affiliation(s)
- Einas Abou Ali
- Cochin Hospital, Gastroenterology and Endoscopy Department, Paris, France
- Cochin Institute, Paris, France
| | - Benoit Bordacahar
- Cochin Hospital, Gastroenterology and Endoscopy Department, Paris, France
- Cochin Institute, Paris, France
| | - Jean-Louis Mestas
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France
| | - Frederic Batteux
- Cochin Institute, Paris, France
- Paris Descartes University, Paris, France
| | - Cyril Lafon
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France
| | - Marine Camus
- Cochin Hospital, Gastroenterology and Endoscopy Department, Paris, France
- Cochin Institute, Paris, France
- Paris Descartes University, Paris, France
| | - Frederic Prat
- Cochin Hospital, Gastroenterology and Endoscopy Department, Paris, France
- Cochin Institute, Paris, France
- Paris Descartes University, Paris, France
| |
Collapse
|
40
|
Grimes DR, Currell FJ. Oxygen diffusion in ellipsoidal tumour spheroids. J R Soc Interface 2018; 15:20180256. [PMID: 30111663 PMCID: PMC6127169 DOI: 10.1098/rsif.2018.0256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023] Open
Abstract
Oxygen plays a central role in cellular metabolism, in both healthy and tumour tissue. The presence and concentration of molecular oxygen in tumours has a substantial effect on both radiotherapy response and tumour evolution, and as a result the oxygen micro-environment is an area of intense research interest. Multi-cellular tumour spheroids closely mimic real avascular tumours, and in particular they exhibit physiologically relevant heterogeneous oxygen distribution. This property has made them a vital part of in vitro experimentation. For ideal spheroids, their heterogeneous oxygen distributions can be predicted from theory, allowing determination of cellular oxygen consumption rate (OCR) and anoxic extent. However, experimental tumour spheroids often depart markedly from perfect sphericity. There has been little consideration of this reality. To date, the question of how far an ellipsoid can diverge from perfect sphericity before spherical assumptions break down remains unanswered. In this work, we derive equations governing oxygen distribution (and, more generally, nutrient and drug distribution) in both prolate and oblate tumour ellipsoids, and quantify the theoretical limits of the assumption that the spheroid is a perfect sphere. Results of this analysis yield new methods for quantifying OCR in ellipsoidal spheroids, and how this can be applied to markedly increase experimental throughput and quality.
Collapse
Affiliation(s)
- David Robert Grimes
- Centre for Advanced and Interdisciplinary Radiation Research (CAIRR) School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Frederick J Currell
- The Dalton Cumbrian Facility and School of Chemistry, University of Manchester, Westlakes Science and Technology Park, Moor Row, Whitehaven CA24 3HA, UK
| |
Collapse
|
41
|
Pavithra PS, Mehta A, Verma RS. Synergistic interaction of β-caryophyllene with aromadendrene oxide 2 and phytol induces apoptosis on skin epidermoid cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:121-134. [PMID: 30166097 DOI: 10.1016/j.phymed.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pamburus missionis (Wight) Swingle (Rutaceae) is traditionally used in the treatment of swellings, chronic rheumatism, paralysis and puerperal diseases. In a previous study the authors demonstrated apoptotic activity of Pamburus missionis essential oil (EO) on A431 and HaCaT cells. The major components of EO were β-caryophyllene (25.40%), 4(14),11- eudesmadiene (7.17%), aromadendrene oxide 2 (14.01%) (AO-(2) and phytol (6.88%). PURPOSE OF STUDY To investigate the role as well as the interactions among EO components inducing apoptosis in A431 and HaCaT cells. METHODS Isobolographic analysis and combination index methods were used to detect the type of interactions among the essential oil (EO) components. Cell viability was used to detect cytotoxic activity. Mechanism of cell death was studied using Annexin V-FITC/PI binding assay, cell cycle analysis, measurement of MMP and ROS generation by flow cytometry. Expression of apoptosis associated proteins was investigated by western blot. RESULTS Combination of P. missionis EO components: β-caryophyllene/ aromadendrene oxide 2 (β-C/AO-(2)), β-caryophyllene/phytol (β-C/P) and aromadendrene oxide 2 /phytol (AO-(2)/P) inhibited growth and colony formation ability of skin epidermoid A431 and precancerous HaCaT cells. Synergistic interaction was observed between β-C/AO-(2) and β-C/P combination while AO-(2)/P exhibited an additive effect. Combination of components induced chromatin condensation, phosphatidylserine externalisation, increase in sub-G1 DNA content, cell cycle arrest at G0/G1 phase and intracellular ROS accumulation. Inhibition of intracellular ROS by N-acetyl cysteine treatment blocked apoptosis induced by the combinations. The combinations induced apoptosis in A431 and HaCaT cells mediated by loss of mitochondrial membrane potential (ΔΨm), increase in Bax/Bcl-2 ratio, release of cytosolic cytochrome c and activation of caspases (cleaved form of caspase-3, caspase-8, caspase-9) and by PARP cleavage. CONCLUSION The present study demonstrates interactions among β-C, AO-(2) and P in the induction of apoptosis on A431 and HaCaT cells. These data suggest the combination of β-caryophyllene with aromadendrene oxide 2 and phytol could be potential therapeutics for the treatment of skin epidermoid cancer and precancerous cells.
Collapse
Affiliation(s)
- P S Pavithra
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632 014, India
| | - Alka Mehta
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632 014, India
| | - Rama S Verma
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
42
|
Mima S, Kakinuma C, Higuchi T, Saeki K, Yamada T, Uematsu R, Ishino M, Kito N, Nishikawa H, Kuniyoshi H, Matsumoto T, Fujiwara H, Paradiso LJ, Shimada Y, Iwamura H. FF-10502, an Antimetabolite with Novel Activity on Dormant Cells, Is Superior to Gemcitabine for Targeting Pancreatic Cancer Cells. J Pharmacol Exp Ther 2018; 366:125-135. [PMID: 29653962 DOI: 10.1124/jpet.118.248740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
In this paper, we report that 1-(2-deoxy-2-fluoro-4-thio-β-d-arabinofuranosyl) cytosine (FF-10502), a pyrimidine nucleoside antimetabolite with a chemical structure similar to gemcitabine, shows beneficial anticancer activity via a novel mechanism of action on dormant cells. The growth inhibition of pancreatic cancer cell lines by FF-10502 (IC50, 60-330 nM) was moderately weaker than that by gemcitabine in vitro. In contrast, an in vivo orthotopic implantation model in mice with established human pancreatic cancer cell line, SUIT-2, revealed no mortality with FF-10502 intravenous treatment, which was related to regression of implanted tumor and little metastasis, whereas 75% of the mice treated with gemcitabine died by day 128. Two in vivo patient-derived xenograft models with gemcitabine-resistant pancreatic cancer cells also demonstrated complete tumor growth suppression with FF-10502, but only partial inhibition with gemcitabine. We also investigated the mechanism of action of FF-10502 by using dormant cancer cells, which are reportedly involved in the development of resistance to chemotherapy. In vitro serum starvation-induced dormant SUIT-2 cells developed resistance to gemcitabine even in combination with DNA damage inducers (DDIs; H2O2, cisplatin, and temozolomide). Interestingly, FF-10502 in combination with DDIs significantly induced concentration-dependent cell death in accordance with enhanced DNA damage. FF-10502 was far more potent than gemcitabine in inhibiting DNA polymerase β, which may explain the difference in dormant cell injury, although further investigations for direct evidences are necessary. In conclusion, our study demonstrated the beneficial antitumor effects of FF-10502 in clinically relevant in vivo models, and suggests the importance of preventing DNA repair unlike gemcitabine.
Collapse
Affiliation(s)
- Shinji Mima
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Chihaya Kakinuma
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Tamami Higuchi
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Kazunori Saeki
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Takayuki Yamada
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Rena Uematsu
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Miki Ishino
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Nobuko Kito
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hiroki Nishikawa
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hidenobu Kuniyoshi
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Takuya Matsumoto
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hideyasu Fujiwara
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Linda J Paradiso
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Yasuhiro Shimada
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| | - Hiroyuki Iwamura
- FUJIFILM Corporation, Tokyo, Japan (S.M., C.K., T.H., K.S., T.Y., R.U., M.I., N.K., H.N., H.K., T.M., H.F., Y.S., H.I.) and Strategia Therapeutics, Inc., Houston, Texas (L.J.P.)
| |
Collapse
|
43
|
Totti S, Allenby MC, Dos Santos SB, Mantalaris A, Velliou EG. A 3D bioinspired highly porous polymeric scaffolding system for in vitro simulation of pancreatic ductal adenocarcinoma. RSC Adv 2018; 8:20928-20940. [PMID: 35542351 PMCID: PMC9080900 DOI: 10.1039/c8ra02633e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive disease with an extremely low survival rate. This is due to the (i) poor prognosis and (ii) high resistance of the disease to current treatment options. The latter is partly due to the very complex and dense tissue/tumour microenvironment of pancreatic cancer, which contributes to the disease's progression and the inhibition of apoptotic pathways. Over the last years, advances in tissue engineering and the development of three-dimensional (3D) culture systems have shed more light into cancer research by enabling a more realistic recapitulation of the niches and structure of the tumour microenvironment. Herein, for the first time, 3D porous polyurethane scaffolds were fabricated and coated with fibronectin to mimic features of the structure and extracellular matrix present in the pancreatic cancer tumour microenvironment. The developed 3D scaffold could support the proliferation of the pancreatic tumour cells, which was enhanced with the presence of fibronectin, for a month, which is a significantly prolonged in vitro culturing duration. Furthermore, in situ imaging of cellular and biomarker distribution showed the formation of dense cellular masses, the production of collagen-I by the cells and the formation of environmental stress gradients (e.g. HIF-1α) with similar heterogeneity trends to the ones reported in in vivo studies. The results obtained in this study suggest that this bioinspired porous polyurethane based scaffold has great potential for in vitro high throughput studies of pancreatic cancer including drug and treatment screening.
Collapse
Affiliation(s)
- Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey Guildford GU2 7XH UK 0044-(0)-1483686577
| | - Mark C Allenby
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Susana Brito Dos Santos
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey Guildford GU2 7XH UK 0044-(0)-1483686577
| |
Collapse
|
44
|
Piboonprai K, Khumkhrong P, Khongkow M, Yata T, Ruangrungsi N, Chansriniyom C, Iempridee T. Anticancer activity of arborinine from Glycosmis parva leaf extract in human cervical cancer cells. Biochem Biophys Res Commun 2018; 500:866-872. [DOI: 10.1016/j.bbrc.2018.04.175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
|
45
|
Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model. Bull Math Biol 2018; 80:701-737. [DOI: 10.1007/s11538-018-0396-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/12/2018] [Indexed: 12/31/2022]
|
46
|
Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine. Int J Mol Sci 2018; 19:ijms19020615. [PMID: 29466296 PMCID: PMC5855837 DOI: 10.3390/ijms19020615] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer treatment is rapidly evolving toward personalized medicine, which takes into account the individual molecular and genetic variability of tumors. Sophisticated new in vitro disease models, such as three-dimensional cell cultures, may provide a tool for genetic, epigenetic, biomedical, and pharmacological research, and help determine the most promising individual treatment. Sarcomas, malignant neoplasms originating from mesenchymal cells, may have a multitude of genomic aberrations that give rise to more than 70 different histopathological subtypes. Their low incidence and high level of histopathological heterogeneity have greatly limited progress in their treatment, and trials of clinical sarcoma are less frequent than trials of other carcinomas. The main advantage of 3D cultures from tumor cells or biopsy is that they provide patient-specific models of solid tumors, and they overcome some limitations of traditional 2D monolayer cultures by reflecting cell heterogeneity, native histologic architectures, and cell-extracellular matrix interactions. Recent advances promise that these models can help bridge the gap between preclinical and clinical research by providing a relevant in vitro model of human cancer useful for drug testing and studying metastatic and dormancy mechanisms. However, additional improvements of 3D models are expected in the future, specifically the inclusion of tumor vasculature and the immune system, to enhance their full ability to capture the biological features of native tumors in high-throughput screening. Here, we summarize recent advances and future perspectives of spheroid and organoid in vitro models of rare sarcomas that can be used to investigate individual molecular biology and predict clinical responses. We also highlight how spheroid and organoid culture models could facilitate the personalization of sarcoma treatment, provide specific clinical scenarios, and discuss the relative strengths and limitations of these models.
Collapse
|
47
|
Marimuthu M, Rousset N, St-Georges-Robillard A, Lateef MA, Ferland M, Mes-Masson AM, Gervais T. Multi-size spheroid formation using microfluidic funnels. LAB ON A CHIP 2018; 18:304-314. [PMID: 29211088 DOI: 10.1039/c7lc00970d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We present a microfluidic platform for automatic multi-size spheroid formation within constant volume hanging droplets (HDs) from a single inlet loading of a constant cell concentration. The platform introduces three technological improvements over the existing spheroid formation platforms: 1) cell seeding control is achieved by enrichment of a cell solution rather than dilution; 2) cell seeding in each HD is fully independent and pre-programmable at the design stage; 3) the fabricated chip operates well using a hydrophobic PDMS surface, ensuring long-term storage possibility for device usage. Pre-programmed cell seeding densities at each HD are achieved using a "microfluidic funnel" layer, which has an array of cone-shaped wells with increasing apex angles acting as a metering unit. The integrated platform is designed to form, treat, stain, and image multi-size spheroids on-chip. Spheroids can be analyzed on-chip or easily transferred to conventional well plates for further processing. Empirically, enrichment factors up to 37× have been demonstrated, resulting in viable spheroids of diameters ranging from 230-420 μm and 280-530 μm for OV90 and TOV112D cell lines, respectively. We envision that microfluidic funnels and single inlet multi-size spheroid (SIMSS) chips will find broad application in 3D biological assays where size-dependent responses are expected, including chemoresponse assays, photodynamic therapy assays, and other assays involving drug transport characterization in drug discovery.
Collapse
Affiliation(s)
- M Marimuthu
- Department of Engineering Physics, Polytechnique Montréal, Canada.
| | | | | | | | | | | | | |
Collapse
|
48
|
Mittler F, Obeïd P, Rulina AV, Haguet V, Gidrol X, Balakirev MY. High-Content Monitoring of Drug Effects in a 3D Spheroid Model. Front Oncol 2017; 7:293. [PMID: 29322028 PMCID: PMC5732143 DOI: 10.3389/fonc.2017.00293] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
A recent decline in the discovery of novel medications challenges the widespread use of 2D monolayer cell assays in the drug discovery process. As a result, the need for more appropriate cellular models of human physiology and disease has renewed the interest in spheroid 3D culture as a pertinent model for drug screening. However, despite technological progress that has significantly simplified spheroid production and analysis, the seeming complexity of the 3D approach has delayed its adoption in many laboratories. The present report demonstrates that the use of a spheroid model may be straightforward and can provide information that is not directly available with a standard 2D approach. We describe a cost-efficient method that allows for the production of an array of uniform spheroids, their staining with vital dyes, real-time monitoring of drug effects, and an ATP-endpoint assay, all in the same 96-well U-bottom plate. To demonstrate the method performance, we analyzed the effect of the preclinical anticancer drug MLN4924 on spheroids formed by VCaP and LNCaP prostate cancer cells. The drug has different outcomes in these cell lines, varying from cell cycle arrest and protective dormancy to senescence and apoptosis. We demonstrate that by using high-content analysis of spheroid arrays, the effect of the drug can be described as a series of EC50 values that clearly dissect the cytostatic and cytotoxic drug actions. The method was further evaluated using four standard cancer chemotherapeutics with different mechanisms of action, and the effect of each drug is described as a unique multi-EC50 diagram. Once fully validated in a wider range of conditions, this method could be particularly valuable for phenotype-based drug discovery.
Collapse
Affiliation(s)
| | - Patricia Obeïd
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | - Anastasia V. Rulina
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
- Université Lyon 1, ENS de Lyon, INSERM, CNRS, CIRI, Lyon, France
| | - Vincent Haguet
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | - Xavier Gidrol
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | | |
Collapse
|
49
|
Mandujano-Tinoco EA, Garcia-Venzor A, Muñoz-Galindo L, Lizarraga-Sanchez F, Favela-Orozco A, Chavez-Gutierrez E, Krötzsch E, Salgado RM, Melendez-Zajgla J, Maldonado V. miRNA expression profile in multicellular breast cancer spheroids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1642-1655. [DOI: 10.1016/j.bbamcr.2017.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/06/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
|
50
|
Gagliano N, Sforza C, Sommariva M, Menon A, Conte V, Sartori P, Procacci P. 3D-spheroids: What can they tell us about pancreatic ductal adenocarcinoma cell phenotype? Exp Cell Res 2017; 357:299-309. [PMID: 28571915 DOI: 10.1016/j.yexcr.2017.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 12/15/2022]
Abstract
We aimed at analyzing the effect of the 3D-arrangement on the expression of some genes and proteins which play a key role in pancreatic adenocarcinoma (PDAC) progression in HPAF-II, HPAC and PL45 PDAC cells cultured in either 2D-monolayers or 3D-spheroids. Cytokeratins 7, 8, 18, 19 were differently expressed in 3D-spheroids compared to 2D-monolayers. Syndecan 1 was upregulated in HPAF-II and PL45 3D-spheroids, and downregulated in HPAC. Heparanase mRNA levels were almost unchanged in HPAF-II, and increased in HPAC and PL45 3D-spheroids. Hyaluronan synthase (HAS) 2 and 3 mRNA increased in all 3D-spheroids compared to 2D-monolayers. CD44 and CD44s were expressed to a lower extent in HPAF-II and HPAC 3D-spheroids. By contrast, the CD44s/v3 and the CD44s/v6 ratio increased in HPAC and PL45 3D-spheroids, compared to 2D-monolayers. The expression of MMP-7 was strongly upregulated in 3D-spheroids. STAT3 was similarly expressed 3D-spheroids or 2D-monolayers, while pSTAT3 was almost undetectable in 2D-monolayers and strongly upregulated in 3D-spheroids. These results suggest that 3D-spheroids represent a cell culture model that allows the characterization of PDAC cell phenotype, adding new information that contributes to a better understanding of the biology and behavior of PDAC cells.
Collapse
Affiliation(s)
- Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy.
| | - Chiarella Sforza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| | - Alessandra Menon
- 1st Department, Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122 Milan, Italy
| | - Vincenzo Conte
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| | - Patrizia Procacci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 2033 Milan, Italy
| |
Collapse
|