1
|
Lu X, Xu X, Zhou M, Ge J, Chen L, Yu W, Wang H. IL-17A-induced cancer-associated fibroblasts releases CXCL12 to promote lung adenocarcinoma progression via Wnt/β-Catenin signaling pathway. Cytokine 2024; 180:156676. [PMID: 38857560 DOI: 10.1016/j.cyto.2024.156676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) and their secretion, C-X-C motif chemokine ligand 12 (CXCL12), play an important role in the development of lung adenocarcinoma (LUAD). Interleukin 17A (IL-17A) is also crucial in regulating tumor progression. Herein, we explored the specific relationships between these two factors and their mechanisms in the progression of LUAD. METHODS Immunohistochemistry was utilized to assess the differential expression levels of IL-17A and CXCL12 in tumor versus normal tissues of LUAD patients, followed by gene correlation analysis. Cell counting kit-8 (CCK8), wound-healing and transwell assays were performed to investigate the effect of IL-17A on the function of LUAD cells. qPCR, immunofluorescence, immunohistochemistry and western blot analyses were conducted to elucidate the potential mechanism by which IL-17A facilitates the development of LUAD via CXCL12. Male BALB-C nude mice were used to explore the role of IL-17A in subcutaneous LUAD mouse models. RESULTS Elevated expression levels of IL-17A and CXCL12 were observed in LUAD tissues, exhibiting a positive correlation. Further studies revealed that IL-17A could stimulate CAFs to enhance the release of CXCL12, thereby facilitating the growth, proliferation, and metastasis of LUAD. The binding of CXCL12 to its specific receptor influences the activation of the Wnt/β-Catenin pathway, which in turn affects the progression of LUAD. In vivo experiments have demonstrated that IL-17A enhances the growth of LUAD tumors by facilitating the secretion of CXCL12. Conversely, inhibiting CXCL12 has been demonstrated to impede tumor growth. CONCLUSIONS We discovered that IL-17A promotes the release of CAFs-derived CXCL12, which in turn facilitates the development of LUAD via the Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Xi'nan Lu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinjia Xu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Mengxue Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jianjun Ge
- Department of Thoracic and Cardiovascular Surgery, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Liping Chen
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Huaying Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Monteran L, Ershaid N, Scharff Y, Zoabi Y, Sanalla T, Ding Y, Pavlovsky A, Zait Y, Langer M, Caller T, Eldar-Boock A, Avivi C, Sonnenblick A, Satchi-Fainaro R, Barshack I, Shomron N, Zhang XHF, Erez N. Combining TIGIT Blockade with MDSC Inhibition Hinders Breast Cancer Bone Metastasis by Activating Antitumor Immunity. Cancer Discov 2024; 14:1252-1275. [PMID: 38427556 DOI: 10.1158/2159-8290.cd-23-0762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Bone is the most common site of breast cancer metastasis. Bone metastasis is incurable and is associated with severe morbidity. Utilizing an immunocompetent mouse model of spontaneous breast cancer bone metastasis, we profiled the immune transcriptome of bone metastatic lesions and peripheral bone marrow at distinct metastatic stages, revealing dynamic changes during the metastatic process. We show that cross-talk between granulocytes and T cells is central to shaping an immunosuppressive microenvironment. Specifically, we identified the PD-1 and TIGIT signaling axes and the proinflammatory cytokine IL1β as central players in the interactions between granulocytes and T cells. Targeting these pathways in vivo resulted in attenuated bone metastasis and improved survival, by reactivating antitumor immunity. Analysis of patient samples revealed that TIGIT and IL1β are prominent in human bone metastasis. Our findings suggest that cotargeting immunosuppressive granulocytes and dysfunctional T cells may be a promising novel therapeutic strategy to inhibit bone metastasis. Significance: Temporal transcriptome profiling of the immune microenvironment in breast cancer bone metastasis revealed key communication pathways between dysfunctional T cells and myeloid derived suppressor cells. Cotargeting of TIGIT and IL1β inhibited bone metastasis and improved survival. Validation in patient data implicated these targets as a novel promising approach to treat human bone metastasis.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ye'ela Scharff
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yazeed Zoabi
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamer Sanalla
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Anna Pavlovsky
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marva Langer
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Caller
- Tamman Cardiovascular Research Institute, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Feng FY, Lee WK, Chou MC, Chu PY, Lin HY. Ankylosing spondylitis shares a common therapeutic target with breast cancer. Int J Rheum Dis 2023; 26:1633-1634. [PMID: 36879361 DOI: 10.1111/1756-185x.14658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Fu-Yu Feng
- Department of Medical Imaging, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wei-Kai Lee
- Department of Emergency Medicine, Sinying Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Mei-Chia Chou
- Department of Physical Medicine and Rehabilitation, Pingtung Veterans General Hospital, Pingtung, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hung-Yu Lin
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| |
Collapse
|
4
|
Parida S, Siddharth S, Gatla HR, Wu S, Wang G, Gabrielson K, Sears CL, Ladle BH, Sharma D. Gut colonization with an obesity-associated enteropathogenic microbe modulates the premetastatic niches to promote breast cancer lung and liver metastasis. Front Immunol 2023; 14:1194931. [PMID: 37503343 PMCID: PMC10369066 DOI: 10.3389/fimmu.2023.1194931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Obesity, an independent risk factor for breast cancer growth and metastatic progression, is also closely intertwined with gut dysbiosis; and both obese state and dysbiosis promote each other. Enteric abundance of Bacteroides fragilis is strongly linked with obesity, and we recently discovered the presence of B. fragilis in malignant breast cancer. Given that enterotoxigenic B. fragilis or ETBF, which secretes B. fragilis toxin (BFT), has been identified as a procarcinogenic microbe in breast cancer, it is necessary to examine its impact on distant metastasis and underlying systemic and localized alterations promoting metastatic progression of breast cancer. Methods We used syngeneic mammary intraductal (MIND) model harboring gut colonization with ETBF to query distant metastasis of breast cancer cells. Alterations in the immune network and cytokines/chemokines in the tumor microenvironment and distant metastatic sites were examined using flow cytometry, immunohistochemistry, and multiplex arrays. Results ETBF infection initiates a systemic inflammation aiding in the establishment of the premetastatic niche formation in vital organs via increased proinflammatory and protumorigenic cytokines like IL17A, IL17E, IL27p28, IL17A/F, IL6, and IL10 in addition to creating a prometastatic immunosuppressive environment in the liver and lungs rich in myeloid cells, macrophages, and T regulatory cells. It induces remodeling of the tumor microenvironment via immune cell and stroma infiltration, increased vasculogenesis, and an EMT-like response, thereby encouraging early metastatic dissemination ready to colonize the conducive environment in liver and lungs of the breast tumor-bearing mice. Discussion In this study, we show that enteric ETBF infection concomitantly induces systemic inflammation, reshapes the tumor immune microenvironment, and creates conducive metastatic niches to potentiate early dissemination and seeding of metastases to liver and lung tissues in agreement with the "seed and soil hypothesis." Our results also support the ETBF-induced "parallel model" of metastasis that advocates for an early dissemination of tumor cells that form metastatic lesions independent of the primary tumor load.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Sumit Siddharth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Himavanth R. Gatla
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Shaoguang Wu
- Department of Oncology, Georgetown University, Baltimore, MD, United States
| | - Guannan Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kathleen Gabrielson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
- Johns Hopkins University School of Medicine, Molecular and Comparative Pathobiology, Baltimore, MD, United States
| | - Cynthia L. Sears
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Oncology, Georgetown University, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brian H. Ladle
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Popović M, Dedić Plavetić N, Vrbanec D, Marušić Z, Mijatović D, Kulić A. Interleukin 17 in early invasive breast cancer. Front Oncol 2023; 13:1171254. [PMID: 37427128 PMCID: PMC10328740 DOI: 10.3389/fonc.2023.1171254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Interleukin 17 (IL-17) has a key role in inflammatory responses. Increased serum concentrations of IL-17 have been reported in patients with different types of cancer. Some studies suggest antitumor activity of IL-17 while others speak in favor of its association with poorer prognosis. The lack of data on IL-17 behavior in vivo hinders the efforts to clarify the exact role of IL-17 in breast cancer patients and precludes the usage of IL-17 as potential therapeutic target. Methods The study included 118 patients with early invasive breast cancer. The serum concentration of IL-17A was measured before surgery and during adjuvant treatment and compared with healthy controls. The correlation of serum IL-17A concentration and different clinical and pathological parameters, including IL-17A expression in the corresponding tumor tissue samples, was analyzed. Results Significantly higher serum concentrations of IL-17A were found in women with early breast cancer before surgery, but also during adjuvant treatment in comparison to healthy controls. No significant correlation to tumor tissue IL-17A expression was observed. There was a significant postoperative decrease of serum IL-17A concentrations even in patients with relatively lower preoperative values. A significant negative correlation was found between serum IL-17A concentrations and the tumor estrogen receptor expression. Conclusion The results suggest that the immune response in early breast cancer is mediated by IL-17A, particularly in triple-negative breast cancer. IL-17A-mediated inflammatory response subsides postoperatively, but IL-17A concentrations remain elevated compared to the values in healthy controls, even after the removal of the tumor.
Collapse
Affiliation(s)
- Marina Popović
- Department of Oncology, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Natalija Dedić Plavetić
- Department of Oncology, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Damir Vrbanec
- School of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Zlatko Marušić
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Davor Mijatović
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, Division of Plastic, Reconstructive and Breast Surgery, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Kulić
- Department of Oncology, Division of Experimental Oncology and Pathophysiology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Shibabaw T, Teferi B, Ayelign B. The role of Th-17 cells and IL-17 in the metastatic spread of breast cancer: As a means of prognosis and therapeutic target. Front Immunol 2023; 14:1094823. [PMID: 36993955 PMCID: PMC10040566 DOI: 10.3389/fimmu.2023.1094823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Metastatic breast cancer is one of the most common and well-known causes of death for women worldwide. The inflammatory tumor cell and other cancer hallmarks dictate the metastatic form and dissemination of breast cancer. Taking these into account, from various components of the tumor microenvironment, a pro-inflammatory infiltrative cell known as Th-17 plays an immense role in breast cancer proliferation, invasiveness, and metastasis. It has been demonstrated that IL-17, a pleiotropic pro-inflammatory cytokine generated by Th-17, is upregulated in a metastatic form of breast cancer. Recent research updates stated that chronic inflammation and mediators like cytokines and chemokines are causative hallmarks in many human cancers, including breast cancer. Therefore, IL-17 and its multiple downward signaling molecules are the centers of research attention to develop potent treatment options for cancer. They provide information on the role of IL-17-activated MAPK, which results in tumor cell proliferation and metastasis via NF-kB-mediated expression of MMP signaling. Overall, this review article emphasizes IL-17A and its intermediate signaling molecules, such as ERK1/2, NF-kB, MMPs, and VEGF, as potential molecular targets for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
- *Correspondence: Birhanu Ayelign,
| |
Collapse
|
7
|
Li JJ, Wang S, Guan ZN, Zhang JX, Zhan RX, Zhu JL. Anterior Gradient 2 is a Significant Prognostic Biomarker in Bone Metastasis of Breast Cancer. Pathol Oncol Res 2022; 28:1610538. [PMID: 36405393 PMCID: PMC9668893 DOI: 10.3389/pore.2022.1610538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Background: The study aimed to detect DEGs associated with BRCA bone metastasis, filter prognosis biomarkers, and explore possible pathways. Methods: GSE175692 dataset was used to detect DEGs between BRCA bone metastatic cases and non-bone metastatic cases, followed by the construction of a PPI network among DEGs. The main module among the PPI network was then determined and pathway analysis on genes within the module was performed. Through performing Cox regression, Kaplan-Meier, nomogram, and ROC curve analyses using GSE175692 and GSE124647 datasets at the same time, the most significant prognostic biomarker was gradually filtered. Finally, important pathways associated with prognostic biomarkers were explored by GSEA analysis. Results: The 74 DEGs were detected between bone metastasis and non-bone metastasis groups. A total of 15 nodes were included in the main module among the whole PPI network and they mainly correlated with the IL-17 signaling pathway. We then performed Cox analysis on 15 genes using two datasets and only enrolled the genes with p < 0.05 in Cox analysis into the further analyses. Kaplan-Meier analyses using two datasets showed that the common biomarker AGR2 expression was related to the survival time of BRCA metastatic cases. Further, the nomogram determined the greatest contribution of AGR2 on the survival probability and the ROC curve revealed its optimal prognostic performance. More importantly, high expression of AGR2 prolonged the survival time of BRCA bone metastatic patients. These results all suggested the importance of AGR2 in metastatic BRCA. Finally, we performed the GSEA analysis and found that AGR2 was negatively related to IL-17 and NF-kβ signaling pathways. Conclusion: AGR2 was finally determined as the most important prognostic biomarker in BRCA bone metastasis, and it may play a vital role in cancer progression by regulating IL-17 and NF-kB signaling pathways.
Collapse
Affiliation(s)
- Jin-Jin Li
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Shuai Wang
- Department of Pathology, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Zhong-Ning Guan
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jin-Xi Zhang
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Ri-Xin Zhan
- Department of Medical Record Management, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jian-Long Zhu
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
- *Correspondence: Jian-Long Zhu,
| |
Collapse
|
8
|
Yin X, Teng X, Ma T, Yang T, Zhang J, Huo M, Liu W, Yang Y, Yuan B, Yu H, Huang W, Wang Y. RUNX2 recruits the NuRD(MTA1)/CRL4B complex to promote breast cancer progression and bone metastasis. Cell Death Differ 2022; 29:2203-2217. [PMID: 35534547 PMCID: PMC9613664 DOI: 10.1038/s41418-022-01010-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is an osteogenesis-related transcription factor that has emerged as a prominent transcription repressing factor in carcinogenesis. However, the role of RUNX2 in breast cancer metastasis remains poorly understood. Here, we show that RUNX2 recruits the metastasis-associated 1 (MTA1)/NuRD and the Cullin 4B (CUL4B)-Ring E3 ligase (CRL4B) complex to form a transcriptional-repressive complex, which catalyzes the histone deacetylation and ubiquitylation. Genome-wide analysis of the RUNX2/NuRD(MTA1)/CRL4B complex targets identified a cohort of genes including peroxisome proliferator-activated receptor alpha (PPARα) and superoxide dismutase 2 (SOD2), which are critically involved in cell growth, epithelial-to-mesenchymal transition (EMT) and invasion. We demonstrate that the RUNX2/NuRD(MTA1)/CRL4B complex promotes the proliferation, invasion, tumorigenesis, bone metastasis, cancer stemness of breast cancer in vitro and in vivo. Strikingly, RUNX2 expression is upregulated in multiple human carcinomas, including breast cancer. Our study suggests that RUNX2 is a promising potential target for the future treatment strategies of breast cancer.
Collapse
Affiliation(s)
- Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Miaomiao Huo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Mehraj U, Alshehri B, Khan AA, Bhat AA, Bagga P, Wani NA, Mir MA. Expression Pattern and Prognostic Significance of Chemokines in Breast cancer: An Integrated Bioinformatics Analysis. Clin Breast Cancer 2022; 22:567-578. [DOI: 10.1016/j.clbc.2022.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022]
|
10
|
Wang H, Zhang J. Identification of DTL as Related Biomarker and Immune Infiltration Characteristics of Nasopharyngeal Carcinoma via Comprehensive Strategies. Int J Gen Med 2022; 15:2329-2345. [PMID: 35264872 PMCID: PMC8901051 DOI: 10.2147/ijgm.s352330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Although considerable progress has been made in basic and clinical research on nasopharyngeal carcinoma (NPC), the biomarkers of the progression of NPC have not been fully studied and described. This study was designed to identify potential novel biomarkers for NPC using integrated analyses and explore the immune cell infiltration in this pathological process. Methods Five GEO data sets were downloaded from gene expression omnibus database (GEO) and analysed to identify differentially expressed genes (DEGs), followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The four algorithms were adopted for screening of novel and key biomarkers for NPC, including random forest (RF) machine learning algorithm, least absolute shrinkage and selection operator (LASSO) logistic regression, support vector machine-recursive feature elimination (SVM-RFE), and weighted gene co-expression network analysis (WGCNA). Lastly, CIBERSORT was used to assess the infiltration of immune cells in NPC, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. Results Herein, we identified 46 DEGs, and enrichment analysis results showed that DEGs and several kinds of signaling pathways might be closely associated with the occurrence and progression of NPC. DTL was recognized as NPC-related biomarker. DTL, also known as retinoic acid-regulated nuclear matrix-associated protein (RAMP), or DNA replication factor 2 (CDT2), is reported to be correlated with the cell proliferation, cell cycle arrest and cell invasion in hepatocellular carcinoma, breast cancer and gastric cancer. Immune infiltration analysis demonstrated that macrophages M0, macrophages M1 and T cells CD4 memory activated were linked to pathogenesis of NPC. Conclusion In summary, we adopted a comprehensive strategy to screen DTL as biomarkers related to NPC and explore the critical role of immune cell infiltration in NPC.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Otolaryngology, Head and Neck Surgery, Ningbo First Hospital, Ningbo, Zhejiang, People’s Republic of China
- Correspondence: Hehe Wang, Department of Otolaryngology Head and Neck Surgery, Ningbo First Hospital, Ningbo, Zhejiang, 315010, People’s Republic of China, Email
| | - Junge Zhang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Li L, Luo R, Yang Y, Cheng Y, Ge S, Xu G. Tamibarotene inhibit the accumulation of fibrocyte and alleviate renal fibrosis by IL-17A. Ren Fail 2021; 42:1173-1183. [PMID: 33213229 PMCID: PMC7737677 DOI: 10.1080/0886022x.2020.1847145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common pathological process in the progression of chronic kidney disease. Accumulating evidence suggests that interleukin-17A (IL‐17A) and fibrocytes play crucial roles in the pathogenesis of fibrosis. However, the role of IL-17A in the regulation of renal fibrocytes in renal fibrosis has rarely been reported. Here, we report that the plasma IL-17A level is increased in immunoglobulin A nephropathy (IgAN) patients and is correlated with clinical parameters. Using a mouse model of unilateral ureteral obstruction (UUO), we found that both IL-17A expression and fibrocyte infiltration were increased in the kidneys of UUO mice. Besides, IL-17A enhanced fibrosis and fibrocyte-associated chemokine and activator expression in vitro. Furthermore, inhibition of IL-17A using Am80 (Tamibarotene) decreased fibrocytes and fibrocyte-associated chemokine and activator expression and significantly attenuated renal fibrosis in the UUO mice. Our findings suggest that Am80, which inhibits the accumulation of fibrocytes and alleviates renal fibrosis mediated by IL-17A, maybe a novel therapeutic drug for renal fibrosis.
Collapse
Affiliation(s)
- Lixi Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Luo
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichun Cheng
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Song X, Wei C, Li X. The potential role and status of IL-17 family cytokines in breast cancer. Int Immunopharmacol 2021; 95:107544. [PMID: 33740640 DOI: 10.1016/j.intimp.2021.107544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Breast cancer (BC) is currently the most common malignant tumor of women in the world. At present, the development of BC is accelerating and showing a younger trend, which may be due to the known and/or unknown risk factors (RFs) for BC are increasing. It has been reported that inflammatory factors promote the occurrence and development of BC. No doubt chronic inflammation could trigger a series of molecular events, which will lead to the malignant transformation of differentiated cells, inhibition of anti-tumor immunity, and finally, lead to the occurrence and metastasis of tumors. With the deepening of research, it has been found that pro-inflammatory cytokine-interleukin-17 (IL-17) is closely related to BC. It not only plays an important role in promoting tumor proliferation, invasion and metastasis, but also has a significant correlation with poor prognosis. Recently, it was reported that IL-17 is closely related to programmed death ligand 1 (PD-L1) in BC. Therefore, starting with the role of IL-17 family cytokines in BC, this paper briefly discusses the potential role and status of IL-17 and seeks to contribute to the development of targeted drugs for BC-related treatments and to the identification of prediction factors for the early detection and prognosis prediction of BC for laying a solid theoretical foundation.
Collapse
Affiliation(s)
- Xuelian Song
- Department of The Graduate Student, Shandong First Medical University, Tai'an, Shandong 271000, PR China
| | - Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, PR China.
| |
Collapse
|
13
|
Göbel A, Dell’Endice S, Jaschke N, Pählig S, Shahid A, Hofbauer LC, Rachner TD. The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:5078. [PMID: 34064859 PMCID: PMC8151893 DOI: 10.3390/ijms22105078] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.
Collapse
Affiliation(s)
- Andy Göbel
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefania Dell’Endice
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nikolai Jaschke
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Sophie Pählig
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Amna Shahid
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Lorenz C. Hofbauer
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Tilman D. Rachner
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| |
Collapse
|
14
|
Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis P. The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13092053. [PMID: 33922795 PMCID: PMC8122975 DOI: 10.3390/cancers13092053] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Metastasis, the process by which cancer cells escape primary tumor site and colonize distant organs, is responsible for most cancer-related deaths. The tumor microenvironment (TME), comprises different cell types, including immune cells and cancer-associated fibroblasts, as well as structural elements, such as collagen and hyaluronan that constitute the extracellular matrix (ECM). Intratumoral interactions between the cellular and structural components of the TME regulate the aggressiveness, and dissemination of malignant cells and promote immune evasion. At the secondary site, the TME also facilitates escape from dormancy to enhance metastatic tumor outgrowth. Moreover, the ECM applies mechanical forces on tumors that contribute to hypoxia and cancer cell invasiveness whereas also hinders drug delivery and efficacy in both primary and metastatic sites. In this review, we summarize the latest developments regarding the role of the TME in cancer progression and discuss ongoing efforts to remodel the TME to stop metastasis in its tracks. Abstract The tumor microenvironment (TME) regulates essential tumor survival and promotion functions. Interactions between the cellular and structural components of the TME allow cancer cells to become invasive and disseminate from the primary site to distant locations, through a complex and multistep metastatic cascade. Tumor-associated M2-type macrophages have growth-promoting and immunosuppressive functions; mesenchymal cells mass produce exosomes that increase the migratory ability of cancer cells; cancer associated fibroblasts (CAFs) reorganize the surrounding matrix creating migration-guiding tracks for cancer cells. In addition, the tumor extracellular matrix (ECM) exerts determinant roles in disease progression and cancer cell migration and regulates therapeutic responses. The hypoxic conditions generated at the primary tumor force cancer cells to genetically and/or epigenetically adapt in order to survive and metastasize. In the circulation, cancer cells encounter platelets, immune cells, and cytokines in the blood microenvironment that facilitate their survival and transit. This review discusses the roles of different cellular and structural tumor components in regulating the metastatic process, targeting approaches using small molecule inhibitors, nanoparticles, manipulated exosomes, and miRNAs to inhibit tumor invasion as well as current and future strategies to remodel the TME and enhance treatment efficacy to block the detrimental process of metastasis.
Collapse
Affiliation(s)
- Christiana M. Neophytou
- European University Research Center, Nicosia 2404, Cyprus;
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 1516, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.P.); (T.S.)
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.P.); (T.S.)
| | - Panagiotis Papageorgis
- European University Research Center, Nicosia 2404, Cyprus;
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: ; Tel.: +357-22-713158
| |
Collapse
|
15
|
Haider MT, Ridlmaier N, Smit DJ, Taipaleenmäki H. Interleukins as Mediators of the Tumor Cell-Bone Cell Crosstalk during the Initiation of Breast Cancer Bone Metastasis. Int J Mol Sci 2021; 22:2898. [PMID: 33809315 PMCID: PMC7999500 DOI: 10.3390/ijms22062898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced breast cancer are at high risk of developing bone metastasis. Despite treatment advances for primary breast cancer, metastatic bone disease remains incurable with a low relative survival. Hence, new therapeutic approaches are required to improve survival and treatment outcome for these patients. Bone is among the most frequent sites of metastasis in breast cancer. Once in the bone, disseminated tumor cells can acquire a dormant state and remain quiescent until they resume growth, resulting in overt metastasis. At this stage the disease is characterized by excessive, osteoclast-mediated osteolysis. Cells of the bone microenvironment including osteoclasts, osteoblasts and endothelial cells contribute to the initiation and progression of breast cancer bone metastasis. Direct cell-to-cell contact as well as soluble factors regulate the crosstalk between disseminated breast cancer cells and bone cells. In this complex signaling network interleukins (ILs) have been identified as key regulators since both, cancer cells and bone cells secrete ILs and express corresponding receptors. ILs regulate differentiation and function of bone cells, with several ILs being reported to act pro-osteoclastogenic. Consistently, the expression level of ILs (e.g., in serum) has been associated with poor prognosis in breast cancer. In this review we discuss the role of the most extensively investigated ILs during the establishment of breast cancer bone metastasis and highlight their potential as therapeutic targets in preventing metastatic outgrowth in bone.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| | - Nicole Ridlmaier
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
- Department of Life Sciences, IMC FH Krems University of Applied Sciences, 3500 Krems, Austria
| | - Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.-T.H.); (N.R.)
| |
Collapse
|
16
|
Wang L, Wang W, Zeng S, Zheng H, Lu Q. Construction and validation of a 6-gene nomogram discriminating lung metastasis risk of breast cancer patients. PLoS One 2020; 15:e0244693. [PMID: 33378415 PMCID: PMC7773205 DOI: 10.1371/journal.pone.0244693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignant disease in women. Metastasis is the foremost cause of death. Breast tumor cells have a proclivity to metastasize to specific organs. The lung is one of the most common sites of breast cancer metastasis. Therefore, we aimed to build a useful and convenient prediction tool based on several genes that may affect lung metastasis-free survival (LMFS). We preliminarily identified 319 genes associated with lung metastasis in the training set GSE5327 (n = 58). Enrichment analysis of GO functions and KEGG pathways was conducted based on these genes. The best genes for modeling were selected using a robust likelihood-based survival modeling approach: GOLGB1, TMEM158, CXCL8, MCM5, HIF1AN, and TSPAN31. A prognostic nomogram for predicting lung metastasis in breast cancer was developed based on these six genes. The effectiveness of the nomogram was evaluated in the training set GSE5327 and the validation set GSE2603. Both the internal validation and the external validation manifested the effectiveness of our 6-gene prognostic nomogram in predicting the lung metastasis risk of breast cancer patients. On the other hand, in the validation set GSE2603, we found that neither the six genes in the nomogram nor the risk predicted by the nomogram were associated with bone metastasis of breast cancer, preliminarily suggesting that these genes and nomogram were specifically associated with lung metastasis of breast cancer. What's more, five genes in the nomogram were significantly differentially expressed between breast cancer and normal breast tissues in the TIMER database. In conclusion, we constructed a new and convenient prediction model based on 6 genes that showed practical value in predicting the lung metastasis risk for clinical breast cancer patients. In addition, some of these genes could be treated as potential metastasis biomarkers for antimetastatic therapy in breast cancer. The evolution of this nomogram will provide a good reference for the prediction of tumor metastasis to other specific organs.
Collapse
Affiliation(s)
- Lingchen Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Wenhua Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huilie Zheng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Quqin Lu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
- * E-mail:
| |
Collapse
|
17
|
Nutini A, Sohail A. Deep learning of the role of interleukin IL-17 and its action in promoting cancer. BIO-ALGORITHMS AND MED-SYSTEMS 2020; 16. [DOI: 10.1515/bams-2020-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
In breast cancer patients, metastasis remains a major cause of death. The metastasis formation process is given by an interaction between the cancer cells and the microenvironment that surrounds them. In this article, we develop a mathematical model that analyzes the role of interleukin IL-17 and its action in promoting cancer and in facilitating tissue metastasis in breast cancer, using a dynamic analysis based on a stochastic process that accounts for the local and global action of this molecule. The model uses the Ornstein–Uhlembeck and Markov process in continuous time. It focuses on the oncological expansion and the interaction between the interleukin IL-17 and cell populations This analysis tends to clarify the processes underlying the metastasis expansion mechanism both for a better understanding of the pathological event and for a possible better control of therapeutic strategies.
IL-17 is a proinflammatory interleukin that acts when there is tissue damage or when there is a pathological situation caused by an external pathogen or by a pathological condition such as cancer.
This research is focused on the role of interleukin IL-17 which, especially in the case of breast cancer, turns out to be a dominant “communication pin” since it interconnects with the activity of different cell populations affected by the oncological phenomenon. Stochastic modeling strategies, specially the Ornstein-Uhlenbeck process, with the aid of numerical algorithms are elaborated in this review.
The role of IL-17 is discussed in this manuscript at all the stages of cancer. It is discussed that IL-17 also acts as “metastasis promoter” as a result of its proinflammatory nature. The stochastic nature of IL-17 is discussed based on the evidence provided by recent literature.
The resulting dynamical analysis can help to select the most appropriate therapeutic strategy.
Cancer cells, in the case of breast cancer, have high level of IL-17 receptors (IL-17R); therefore the interleukin itself has direct effects on these cells. Immunotherapy research, focused on this cytokine and interlinked with the stochastic modeling, seems to be a promising avenue.
Collapse
Affiliation(s)
- Alessandro Nutini
- Center for Study in Motor Science , Biomechanics dept , Lucca , Italy
| | - Ayesha Sohail
- Department of Mathematics , Comsats University Islamabad , Lahore 54000 , Pakistan
| |
Collapse
|
18
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
19
|
The Interleukin-17 Family of Cytokines in Breast Cancer. Int J Mol Sci 2018; 19:ijms19123880. [PMID: 30518157 PMCID: PMC6321268 DOI: 10.3390/ijms19123880] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide and remains a major cause of mortality with an expected 137,000 death this year in Europe. Standard management of metastatic BC comprises hormonotherapy, chemotherapy, and targeted therapies. Cyclin dependent kinase (CDK) and mammalian target of rapamycin (mTOR) inhibitors have recently proved their efficiency in hormonal receptor expressing BC. Checkpoint proteins inhibition is being evaluated in phase 3 studies. Since inflammation is constantly present in cancers, research teams have focused their attention on the interleukin-17 (IL-17) family of proinflammatory cytokines. Preclinical experiments have reported both pro and antitumor effects depending on the conditions. In the present article, we review the accumulating evidences about the roles of IL-17 in BC and discuss whether this family of cytokines could be a new target in anticancer treatments.
Collapse
|
20
|
Méndez-García LA, Nava-Castro KE, Ochoa-Mercado TDL, Palacios-Arreola MI, Ruiz-Manzano RA, Segovia-Mendoza M, Solleiro-Villavicencio H, Cázarez-Martínez C, Morales-Montor J. Breast Cancer Metastasis: Are Cytokines Important Players During Its Development and Progression? J Interferon Cytokine Res 2018; 39:39-55. [PMID: 30321090 DOI: 10.1089/jir.2018.0024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In breast cancer, an uncontrolled cell proliferation leads to tumor formation and development of a multifactorial disease. Metastasis is a complex process that involves tumor spread to distant parts of the body from its original site. Metastatic dissemination represents the main physiopathology of cancer. Inter- and intracellular communication in all systems in vertebrates is mediated by cytokines, which are highly inducible, secretory proteins, produced not only by immune system cells, but also by endocrine and nervous system cells. It has become clear in recent years that cytokines, as well as their receptors are produced in the organisms under physiological and pathological conditions; recently, they have been closely related to breast cancer metastasis. The exact initiation process of breast cancer metastasis is unknown, although several hypotheses have emerged. In this study, we thoroughly reviewed the role of several cytokines in breast cancer metastasis. Data reviewed suggest that cytokines and growth factors are key players in the breast cancer metastasis induction. This knowledge must be considered with the aim to development of new therapeutic approaches to counter breast cancer metastasis.
Collapse
Affiliation(s)
| | - Karen Elizabeth Nava-Castro
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Tania de Lourdes Ochoa-Mercado
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Margarita Isabel Palacios-Arreola
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Rocío Alejandra Ruiz-Manzano
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mariana Segovia-Mendoza
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Helena Solleiro-Villavicencio
- 4 Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF, Mexico
| | - Cinthia Cázarez-Martínez
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Jorge Morales-Montor
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
21
|
Andrieu GP, Shafran JS, Deeney JT, Bharadwaj KR, Rangarajan A, Denis GV. BET proteins in abnormal metabolism, inflammation, and the breast cancer microenvironment. J Leukoc Biol 2018; 104:265-274. [PMID: 29493812 PMCID: PMC6134394 DOI: 10.1002/jlb.5ri0917-380rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity and its associated pathology Type 2 diabetes are two chronic metabolic and inflammatory diseases that promote breast cancer progression, metastasis, and poor outcomes. Emerging critical opinion considers unresolved inflammation and abnormal metabolism separately from obesity; settings where they do not co-occur can inform disease mechanism. In breast cancer, the tumor microenvironment is often infiltrated with T effector and T regulatory cells programmed by metabolic signaling. The pathways by which tumor cells evade immune surveillance, immune therapies, and take advantage of antitumor immunity are poorly understood, but likely depend on metabolic inflammation in the microenvironment. Immune functions are abnormal in metabolic disease, and lessons learned from preclinical studies in lean and metabolically normal environments may not translate to patients with obesity and metabolic disease. This problem is made more urgent by the rising incidence of breast cancer among women who are not obese but who have metabolic disease and associated inflammation, a phenotype common in Asia. The somatic BET proteins, comprising BRD2, BRD3, and BRD4, are new critical regulators of metabolism, coactivate transcription of genes that encode proinflammatory cytokines in immune cell subsets infiltrating the microenvironment, and could be important targets in breast cancer immunotherapy. These transcriptional coregulators are well known to regulate tumor cell progression, but only recently identified as critical for metabolism, metastasis, and expression of immune checkpoint molecules. We consider interrelationships among metabolism, inflammation, and breast cancer aggressiveness relevant to the emerging threat of breast cancer among women with metabolic disease, but without obesity.
Collapse
Affiliation(s)
| | - Jordan S. Shafran
- Cancer Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jude T. Deeney
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kishan R. Bharadwaj
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Gerald V. Denis
- Cancer Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
22
|
You R, DeMayo FJ, Liu J, Cho SN, Burt BM, Creighton CJ, Casal RF, Lazarus DR, Lu W, Tung HY, Yuan X, Hill-McAlester A, Kim M, Perusich S, Cornwell L, Rosen D, Song LZ, Paust S, Diehl G, Corry D, Kheradmand F. IL17A Regulates Tumor Latency and Metastasis in Lung Adeno and Squamous SQ.2b and AD.1 Cancer. Cancer Immunol Res 2018; 6:645-657. [PMID: 29653981 PMCID: PMC6342490 DOI: 10.1158/2326-6066.cir-17-0554] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/11/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022]
Abstract
Somatic mutations can promote malignant transformation of airway epithelial cells and induce inflammatory responses directed against resultant tumors. Tumor-infiltrating T lymphocytes (TIL) in early-stage non-small cell lung cancer (NSCLC) secrete distinct proinflammatory cytokines, but the contribution of these TILs to tumor development and metastasis remains unknown. We show here that TILs in early-stage NSCLC are biased toward IL17A expression (Th17) when compared with adjacent tumor-free tissue, whereas Th17 cells are decreased in tumor infiltrating locoregional lymph nodes in advanced NSCLC. Mice in which Pten and Smad4 (Pts4d/d ) are deleted from airway epithelial cells develop spontaneous tumors, that share genetic signatures with squamous- (SQ.2b), and adeno- (AD.1) subtypes of human NSCLC. Pts4d/d mice globally lacking in IL17a (Pts4d/dIl17a-/- ) showed decreased tumor latency and increased metastasis. Th17 cells were required for recruitment of CD103+ dendritic cells, and adoptive transfer of IL17a-sufficient CD4+ T cells reversed early tumor development and metastasis in Pts4d/dIl17a-/- mice. Together, these findings support a key role for Th17 cells in TILs associated with the Pts4d/d model of NSCLC and suggest therapeutic and biomarker strategies for human SQ2b and AD1 lung cancer. Cancer Immunol Res; 6(6); 645-57. ©2018 AACR.
Collapse
Affiliation(s)
- Ran You
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Francesco J DeMayo
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jian Liu
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Sung-Nam Cho
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Bryan M Burt
- Department of Surgery, Baylor College of Medicine, Houston, Texas
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Roberto F Casal
- Division of Pulmonary and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donald R Lazarus
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas
| | - Wen Lu
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Hui-Ying Tung
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Xiaoyi Yuan
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Andrea Hill-McAlester
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Myunghoo Kim
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sarah Perusich
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas
| | - Loraine Cornwell
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas
| | - Daniel Rosen
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas
| | - Li-Zhen Song
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Silke Paust
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
| | - Gretchen Diehl
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
| | - David Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas.
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas.
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, Texas
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
23
|
Gorczynski RM, Erin N, Maqbool T, Gorczynski CP, Gorczynski LY. Characterization of an in vitro model system to explore control of tumor invasion of EMT6 and 4THM breast tumors by CD200:CD200R interactions. Breast Cancer 2018. [DOI: 10.1007/s12282-018-0851-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Hu C, Jiang J, Xun Q, Zhao B, Hu X, Deng P, Li Y. Inhibition of SERPINE2/protease nexin-1 by a monoclonal antibody attenuates airway remodeling in a murine model of asthma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11838-11848. [PMID: 31966548 PMCID: PMC6966070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 06/10/2023]
Abstract
SERPINE2, also known as protease nexin-1 (PN-1), is a serine protease inhibitor produced by many cell types and has pleiotropic biological functions. It has been reported that SERPINE2/PN-1 is involved in tissue remodeling of fibrotic diseases including idiopathic pulmonary fibrosis and cardiac fibrosis. However, the potential role of SERPINE2/PN-1 in asthmatic airway remodeling has remained barely investigated so far. In this study, BALB/c male mice were sensitized and challenged by ovalbumin to generate murine models of airway remodeling. Anti-SERPINE2 monoclonal antibody was intraperitoneally injected into these mice during the ovalbumin challenge while IgG antibody was used as a vehicle control. The results revealed that the expression of SERPINE2/PN-1 was significantly upregulated in the lung extracts of ovalbumin-challenged mice, and this upregulation was inhibited by dexamethasone. Sustained ovalbumin stimulation increased the thickness of airway wall and α-SMA positive areas in lung, which was attenuated by the treatment with SERPINE2 antibody. In addition, SERPINE2 antibody partially blocked the phosphorylation of ERK, and reduced the upregulation of MMP-9 and TIMP-1 expressions in asthmatic mice. These findings suggest that SERPINE2/PN-1 may play a role in the pathologic development of airway remodeling. Monoclonal antibody against SERPINE2 may have the potential as an effective pharmacotherapy for asthmatic airway remodeling.
Collapse
Affiliation(s)
- Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Juan Jiang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Qiufen Xun
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Bingrong Zhao
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Pengbo Deng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| | - Yuanyuan Li
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University Changsha 410008, China
| |
Collapse
|
25
|
Niu Q, Zhou Q, Liu Y, Jiang H. Expression of CXCR4 on T-cell subsets and Plasma IL-17 Concentrations in Patients with Aplastic Anaemia. Sci Rep 2017; 7:9075. [PMID: 28831064 PMCID: PMC5567260 DOI: 10.1038/s41598-017-08699-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/13/2017] [Indexed: 02/05/2023] Open
Abstract
Acquired aplastic anaemia (AA) is caused by T-cells migrating to and attacking bone marrow (BM) in response to chemokines (e.g., CXCR4). We investigated CXCR4 expressions on circulating T-cell subsets, plasma IL-17A concentrations, and their correlations with AA manifestations. We enrolled 71 patients with acquired AA (36 severe AA cases [SAA] and 35 non-severe AA cases [NSAA]) and 42 healthy volunteers. We used flow cytometry and ELISA to measure circulating CD4+ and CD8+ T-cells, their CXCR4 expressions, and plasma IL-17A concentrations. Compared to the healthy controls, SAA patients had fewer peripheral CD4+ T-cells, more CD8+ T-cells, and a significantly decreased CD4+/CD8+ ratio which was positively correlated with AA manifestations. Patients with SAA or NSAA had higher proportions of CD4+CXCR4+ and CD8+CXCR4+ T-cells, which were negatively correlated with haemoglobin concentrations and absolute neutrophil counts. Patients with SAA or NSAA had higher plasma IL-17A concentrations, which were negatively correlated with AA manifestations and the CD4+/CD8+ ratio. IL-17A concentrations showed a very week correlation with CD4+CXCR4+ T-cells frequencies, and no correlation with CD8+CXCR4+ T-cells frequencies. Aberrant CXCR4 expression may allow circulating T-cells, especially CD8+ T-cells, to infiltrate BM during AA progression. Elevated IL-17A concentrations may contribute to AA progression outside of the CXCR4-SDF-1α axis.
Collapse
Affiliation(s)
- Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, The People's Republic of China
| | - Qiang Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, The People's Republic of China
| | - Yumei Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, The People's Republic of China
| | - Hong Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, The People's Republic of China.
| |
Collapse
|
26
|
Gay LJ, Malanchi I. The sleeping ugly: Tumour microenvironment's act to make or break the spell of dormancy. Biochim Biophys Acta Rev Cancer 2017; 1868:231-238. [PMID: 28501561 DOI: 10.1016/j.bbcan.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/02/2017] [Accepted: 05/07/2017] [Indexed: 12/28/2022]
Abstract
Metastasis is the main cause of death for most cancer patients. It appears clear from clinical observations that the majority of cancers, particularly carcinoma do not follow a linear model of metastatic progression, where cancer cells shed from the primary tumour, disseminate to a distant organ and immediately outgrow to form clinical metastasis. Certainly, while cancer spreading is an early event, metastasis occurs much later during tumour progression and frequently arises several years after primary tumour resection. The time spent by disseminated cancer cells (DTCs) in a distant organ before their outgrowth is termed metastatic latency. We will examine here the current knowledge of the mechanisms allowing metastatic latency and discuss the crucial role of the DTCs' tissue microenvironment in this process.
Collapse
Affiliation(s)
- Laurie J Gay
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, NW1 1AT London, UK
| | - Ilaria Malanchi
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, NW1 1AT London, UK.
| |
Collapse
|
27
|
Vidula N, Yau C, Li J, Esserman LJ, Rugo HS. Receptor activator of nuclear factor kappa B (RANK) expression in primary breast cancer correlates with recurrence-free survival and development of bone metastases in I-SPY1 (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat 2017; 165:129-138. [PMID: 28577080 DOI: 10.1007/s10549-017-4318-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 01/24/2023]
Abstract
PURPOSE The receptor activator of nuclear factor kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis may contribute to the development of bone metastases (BM). We studied gene expression in this pathway in primary breast cancer (BC) to determine correlations with clinical characteristics and outcomes in the neoadjuvant I-SPY1 study. METHODS We evaluated RANK/RANKL/OPG expression using expression microarrays in I-SPY1 (n = 149). Associations with clinical features were determined using t test and ANOVA. Associations between biomarker high versus low groups (dichotomized at an optimal cutpoint) and recurrence-free survival (RFS) were evaluated using the log-rank test and in a multivariate Cox proportional hazard model. A pooled external neoadjuvant cohort with gene expression data (GSE25066) (Hatzis et al. in JAMA 305(18):1873-1881, 30) (n = 425) was used for validation. Associations with site-specific relapse were evaluated using the t-test and multivariate logistic regression adjusting for hormone receptor (HR) status. RESULTS RANK was significantly higher in HR negative versus HR positive (p = 0.027), in basal versus non-basal disease (p = 0.004), and in those achieving pathologic complete response (p = 0.038); the associations with HR negative and basal BC were also significant in GSE25066. In both datasets, higher RANK associated with significantly worse RFS (I-SPY1: p = 0.045, GSE25066: p = 0.044). However, this association did not remain significant after adjusting for HR status. In I-SPY1 patients with recurrence, higher RANK correlated with BM versus non-BM (p = 0.045), even after adjusting for HR status (p = 0.035). CONCLUSIONS RANK is increased in HR negative and basal BC, and correlates with worse RFS and risk of BM. The RANK pathway is a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Neelima Vidula
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Christina Yau
- University of California, San Francisco, 1600 Divisadero St., San Francisco, CA, 94115, USA
| | - Jiali Li
- Valley Medical Oncology Consultants, Stanford Health Care, 2505 Hospital Drive, Mountain View, CA, 94040, USA
| | - Laura J Esserman
- University of California, San Francisco, 1600 Divisadero St., San Francisco, CA, 94115, USA
| | - Hope S Rugo
- University of California, San Francisco, 1600 Divisadero St., San Francisco, CA, 94115, USA.
| |
Collapse
|
28
|
Lehtinen L, Vainio P, Wikman H, Huhtala H, Mueller V, Kallioniemi A, Pantel K, Kronqvist P, Kallioniemi O, Carpèn O, Iljin K. PLA2G7 associates with hormone receptor negativity in clinical breast cancer samples and regulates epithelial-mesenchymal transition in cultured breast cancer cells. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:123-138. [PMID: 28451461 PMCID: PMC5402179 DOI: 10.1002/cjp2.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/10/2017] [Indexed: 12/12/2022]
Abstract
Breast cancer is the leading cause of cancer‐related deaths in women due to distinct cancer subtypes associated with early recurrence and aggressive metastatic progression. High lipoprotein‐associated phospholipase A2 (PLA2G7) expression has previously been associated with aggressive disease and metastasis in prostate cancer. Here, we explore the expression pattern and functional role of PLA2G7 in breast cancer. First, a bioinformatic analysis of genome‐wide gene expression data from 970 breast samples was carried out to evaluate the expression pattern of PLA2G7 mRNA in breast cancer. Second, the expression profile of PLA2G7 was studied in 1042 breast cancer samples including 89 matched lymph node metastasis samples using immunohistochemistry. Third, the effect of PLA2G7 silencing on genome‐wide gene expression profile was studied and validated in cultured breast cancer cells expressing PLA2G7 at high level. Last, the expression pattern of PLA2G7 mRNA was investigated in 24 nonmalignant tissue samples and 65 primary and 7 metastatic tumour samples derived from various organs using qRT‐PCR. The results from clinical breast cancer samples indicated that PLA2G7 is overexpressed in a subset of breast cancer samples compared to its expression in benign breast tissue samples and that high PLA2G7 expression associated with hormone receptor negativity as well as with poor prognosis in a subset of breast cancer samples. In vitro functional studies highlighted the putative role of PLA2G7 in the regulation of epithelial‐mesenchymal transition (EMT)‐related signalling pathways, vimentin and E‐cadherin protein expression as well as cell migration in cultured breast cancer cells. Furthermore, supporting the findings in breast and prostate cancer, high PLA2G7 mRNA expression was associated with metastatic cancer in four additional organs of origin. In conclusion, our results indicate that PLA2G7 is highly expressed in a subset of metastatic and aggressive breast cancers and in metastatic samples of various tissues of origin and promotes EMT and migration in cultured breast cancer cells.
Collapse
Affiliation(s)
- Laura Lehtinen
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Paula Vainio
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Harriet Wikman
- Institute of Tumour Biology, Centre of Experimental MedicineUniversity Medical Centre Hamburg-EppendorfGermany
| | - Heini Huhtala
- School of Health SciencesUniversity of TampereTampereFinland
| | - Volkmar Mueller
- Department of GynecologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
| | | | - Klaus Pantel
- Institute of Tumour Biology, Centre of Experimental MedicineUniversity Medical Centre Hamburg-EppendorfGermany
| | - Pauliina Kronqvist
- Department of PathologyTurku University and Turku University HospitalTurkuFinland
| | - Olli Kallioniemi
- FIMM, Institute for Molecular Medicine FinlandUniversity of HelsinkiFinland.,Present address: Department of Oncology-Pathology, Science for Life LaboratoryKarolinska InstitutetSolnaSweden
| | - Olli Carpèn
- Department of PathologyTurku University and Turku University HospitalTurkuFinland.,Present address: Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | | |
Collapse
|
29
|
A comparison of serum miRNAs influencing metastatic growth of EMT6 vs 4THM tumor cells in wild-type and CD200R1KO mice. Breast Cancer Res Treat 2017; 162:255-266. [DOI: 10.1007/s10549-017-4128-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/20/2017] [Indexed: 01/11/2023]
|
30
|
Nicholas DA, Andrieu G, Strissel KJ, Nikolajczyk BS, Denis GV. BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer. Cell Mol Life Sci 2017; 74:231-243. [PMID: 27491296 PMCID: PMC5222701 DOI: 10.1007/s00018-016-2320-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
Chronic inflammation drives pathologies associated with type 2 diabetes (T2D) and breast cancer. Obesity-driven inflammation may explain increased risk and mortality of breast cancer with T2D reported in the epidemiology literature. Therapeutic approaches to target inflammation in both T2D and cancer have so far fallen short of the expected improvements in disease pathogenesis or outcomes. The targeting of epigenetic regulators of cytokine transcription and cytokine signaling offers one promising, untapped approach to treating diseases driven by inflammation. Recent work has deeply implicated the Bromodomain and Extra-Terminal domain (BET) proteins, which are acetylated histone "readers", in epigenetic regulation of inflammation. This review focuses on inflammation associated with T2D and breast cancer, and the possibility of targeting BET proteins as an approach to regulating inflammation in the clinic. Understanding inflammation in the context of BET protein regulation may provide a basis for designing promising therapeutics for T2D and breast cancer.
Collapse
Affiliation(s)
- Dequina A Nicholas
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Guillaume Andrieu
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Katherine J Strissel
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Barbara S Nikolajczyk
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Gerald V Denis
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA.
- Section of Hematology/Oncology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, K520, Boston, MA, 02118, USA.
| |
Collapse
|
31
|
Liu Y, Gao S, Wang Z, Yang Y, Huo H, Tian X. Effect of stromal cell-derived factor-1 on myocardial apoptosis and cardiac function recovery in rats with acute myocardial infarction. Exp Ther Med 2016; 12:3282-3286. [PMID: 27882150 PMCID: PMC5103778 DOI: 10.3892/etm.2016.3770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/25/2016] [Indexed: 11/15/2022] Open
Abstract
The aim of the study was to investigate the effect of stromal cell-derived factor-1 (SDF-1) on myocardial apoptosis and cardiac function recovery in rats with acute myocardial infarction (AMI) and the mechanism of the Toll-like receptor (TLR)-4/nuclear factor-κB (NF-κB) signaling pathway. A total of 64 healthy male F344 rats were randomly divided into the sham operation, model, SDF-1 intervention and SDF-1 antibody groups, with 16 rats in each group. The method of Olivette was used to establish the AMI model by ligation of the left anterior descending artery. Day 1 after establishing the animal model, the rats in the SDF-1 intervention group were injected with 10 µl recombinant SDF-1 (400 ng/ml) in five regions including the myocardial infarction area and the four surrounding areas. The rats in the model group were injected with 10 µl normal saline including the myocardial infarction area and the four surrounding areas, and those in the SDF-1 antibody group were injected with 1 ml SDF-1 antibody (2 µg/ml). Four rats were sacrificed after 1, 3, 7 and 14 days after the intervention, and the analysis was carried out. TUNEL in situ labeled apoptotic cells were used for cell counting, and immunohistochemical staining was performed to measure vascular density. The animal echocardiographic measurement was for the left ventricular end-diastolic diameter (LVEDd), left ventricular end-systolic diameter (LVESd), left ventricular fractional shortening (FS) and ejection fraction (EF) values. The results showed that the number of apoptotic cells in the SDF-1 treatment group was significantly lower than those in the other groups at each time-point. The vessel densities in the 3–14 days were significantly greater than those in other groups. At each time-point, the LVEDd and LVESd values were smaller compared with the model group, but greater than the sham operation group and decreased over time. FS and EF values were higher than those in the model group at each time-point, but less than those of the sham operation group and increased over time. The expression levels of TLR-4 and NF-κB at each time-point were significantly higher than those of the remaining groups (p<0.05). In conclusion, SDF-1 is capable of decreasing the apoptosis of cardiac muscle cells in AMI, promoting angiogenesis and improving cardiac function, which may be associated with the activation of the TLR-4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Songtao Gao
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Zheng Wang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yan Yang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Hong Huo
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Xuefeng Tian
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
32
|
Saddawi-Konefka R, Seelige R, Gross ETE, Levy E, Searles SC, Washington A, Santosa EK, Liu B, O'Sullivan TE, Harismendy O, Bui JD. Nrf2 Induces IL-17D to Mediate Tumor and Virus Surveillance. Cell Rep 2016; 16:2348-58. [PMID: 27545889 DOI: 10.1016/j.celrep.2016.07.075] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/08/2016] [Accepted: 07/27/2016] [Indexed: 01/31/2023] Open
Abstract
Cells undergoing xenobiotic or oxidative stress activate the transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2), which initiates an intrinsic "stress surveillance" pathway. We recently found that the cytokine IL-17D effects a form of extrinsic stress surveillance by inducing antitumor immunity, but how IL-17D is regulated remains unknown. Here, we show that Nrf2 induced IL-17D in cancer cell lines. Moreover, both Nrf2 and IL-17D were induced in primary tumors as well as during viral infection in vivo. Expression of IL-17D in tumors and virally infected cells is essential for optimal protection of the host as il17d(-/-) mice experienced a higher incidence of tumors and exacerbated viral infections compared to wild-type (WT) animals. Moreover, activating Nrf2 to induce IL-17D in established tumors led to natural killer cell-dependent tumor regression. These data demonstrate that Nrf2 can initiate both intrinsic and extrinsic stress surveillance pathways and highlight the use of Nrf2 agonists as immune therapies for cancer and infection.
Collapse
Affiliation(s)
| | - Ruth Seelige
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Emilie T E Gross
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Eric Levy
- Moores Cancer Center Oncogenomics Laboratory, University of California, San Diego, San Diego, CA 92093, USA
| | - Stephen C Searles
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Allen Washington
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Endi K Santosa
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Beichen Liu
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Timothy E O'Sullivan
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Olivier Harismendy
- Moores Cancer Center Oncogenomics Laboratory, University of California, San Diego, San Diego, CA 92093, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
33
|
Macek Jilkova Z, Afzal S, Marche H, Decaens T, Sturm N, Jouvin-Marche E, Huard B, Marche PN. Progression of fibrosis in patients with chronic viral hepatitis is associated with IL-17(+) neutrophils. Liver Int 2016; 36:1116-24. [PMID: 26749555 DOI: 10.1111/liv.13060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The pro-inflammatory cytokine IL-17 plays a crucial role in liver diseases associated with hepatic fibrosis and increased risk of cancer development. Nevertheless, the cellular source of this cytokine has never been characterized in patients with liver fibrosis. METHODS In this study, we investigated liver biopsies from 49 patients with chronic viral hepatitis at different stages of liver fibrosis. We monitored IL-17 production by intracellular flow cytometry, immunofluorescence and immunohistochemical in situ stainings, allowing a precise quantification, characterization and localization of IL-17(+) cells. RESULTS Density of IL-17(+) cells increased with the stage of liver fibrosis specifically in fibrotic septa and portal areas (correlation coefficient r = 0.7373; P < 0.0001). Data clearly show that the frequency of intrahepatic IL-17(+) lymphocytes (including T, NKT and NK cells) was independent on stage of liver fibrosis, and we observed no statistical differences in number of IL-17(+) macrophages during progression of fibrosis. On the other hand, the number of IL-17(+) neutrophils in fibrotic septa and portal areas strongly correlated with the stages of fibrosis (correlation coefficient r = 0.6986; P < 0.0001), contributing significantly to total IL-17 production in liver tissue. CONCLUSIONS Our data indicate that neutrophils represent an important source of IL-17 in the human liver, especially in late fibrosis stages. Inhibition of this specific harmful subset of neutrophils may offer therapeutic opportunities in fibrotic liver.
Collapse
Affiliation(s)
| | - Samia Afzal
- IAB, University Grenoble Alpes, Grenoble, France.,National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hélène Marche
- IAB, University Grenoble Alpes, Grenoble, France.,INSERM U823, Grenoble, France
| | - Thomas Decaens
- IAB, University Grenoble Alpes, Grenoble, France.,INSERM U823, Grenoble, France.,CHU-Grenoble Département d'Hépato-Gastro-Entérologie, La Tronche, France
| | - Nathalie Sturm
- IAB, University Grenoble Alpes, Grenoble, France.,INSERM U823, Grenoble, France.,CHU-Grenoble Département d'Anatomie et de Cytologie Pathologiques, La Tronche, France
| | | | - Bertrand Huard
- IAB, University Grenoble Alpes, Grenoble, France.,INSERM U823, Grenoble, France
| | - Patrice N Marche
- IAB, University Grenoble Alpes, Grenoble, France.,INSERM U823, Grenoble, France
| |
Collapse
|
34
|
Jacquelot N, Enot DP, Flament C, Vimond N, Blattner C, Pitt JM, Yamazaki T, Roberti MP, Daillère R, Vétizou M, Poirier-Colame V, Semeraro M, Caignard A, Slingluff CL, Sallusto F, Rusakiewicz S, Weide B, Marabelle A, Kohrt H, Dalle S, Cavalcanti A, Kroemer G, Di Giacomo AM, Maio M, Wong P, Yuan J, Wolchok J, Umansky V, Eggermont A, Zitvogel L. Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. J Clin Invest 2016; 126:921-37. [PMID: 26854930 DOI: 10.1172/jci80071] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Melanoma prognosis is dictated by tumor-infiltrating lymphocytes, the migratory and functional behavior of which is guided by chemokine or cytokine gradients. Here, we retrospectively analyzed the expression patterns of 9 homing receptors (CCR/CXCR) in naive and memory CD4+ and CD8+ T lymphocytes in 57 patients with metastatic melanoma (MMel) with various sites of metastases to evaluate whether T cell CCR/CXCR expression correlates with intratumoral accumulation, metastatic progression, and/or overall survival (OS). Homing receptor expression on lymphocytes strongly correlated with MMel dissemination. Loss of CCR6 or CXCR3, but not cutaneous lymphocyte antigen (CLA), on circulating T cell subsets was associated with skin or lymph node metastases, loss of CXCR4, CXCR5, and CCR9 corresponded with lung involvement, and a rise in CCR10 or CD103 was associated with widespread dissemination. High frequencies of CD8+CCR9+ naive T cells correlated with prolonged OS, while neutralizing the CCR9/CCL25 axis in mice stimulated tumor progression. The expansion of CLA-expressing effector memory CD8+ T cells in response to a single administration of CTLA4 blockade predicted disease control at 3 months in 47 patients with MMel. Thus, specific CCR/CXCR expression patterns on circulating T lymphocytes may guide potential diagnostic and therapeutic approaches.
Collapse
|
35
|
Gorczynski RM, Erin N, Zhu F. Serum-derived exosomes from mice with highly metastatic breast cancer transfer increased metastatic capacity to a poorly metastatic tumor. Cancer Med 2016; 5:325-36. [PMID: 26725371 PMCID: PMC4735763 DOI: 10.1002/cam4.575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/09/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Altered interaction between CD200 and CD200R represents an example of “checkpoint blockade” disrupting an effective, tumor‐directed, host response in murine breast cancer cells. In CD200R1KO mice, long‐term cure of EMT6 breast cancer, including metastatic spread to lung and liver, was achieved in BALB/c mice. The reverse was observed with 4THM tumors, an aggressive, inflammatory breast cancer, with increased tumor metastasis in CD200R1KO. We explored possible explanations for this difference. We measured the frequency of circulating tumor cells (CTCs) in peripheral blood of tumor bearers, as well as lung/liver and draining lymph nodes. In some cases mice received infusions of exosomes from nontumor controls, or tumor bearers, with/without additional infusions of anticytokine antibodies. The measured frequency of circulating tumor cells (CTCs) in peripheral blood was equivalent in the two models in WT and CD200R1KO mice. Increased metastasis in EMT6 tumor bearers was seen in vivo following adoptive transfer of serum, or serum‐derived exosomes, from 4THM tumor bearers, an effect which was attenuated by anti‐IL‐6, and anti‐IL‐17, but not anti‐TNFα, antibody. Anti‐IL‐6 also attenuated enhanced migration of EMT6 cells in vitro induced by 4THM serum or exosomes, or recombinant IL‐6. Exosome cytokine proteomic profiles responses in 4THM and EMT6 tumor‐bearing mice were regulated by CD200:CD200R interactions, with attenuation of both IL‐6 and IL‐17 in 4THM CD200tg mice, and enhanced levels in 4THM CD200R1KO mice. We suggest these cytokines act on the microenvironment at sites within the host, and/or directly on tumor cells themselves, to increase metastatic potential.
Collapse
Affiliation(s)
- Reginald M Gorczynski
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Immunology, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Fang Zhu
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Interleukin-17 Could Promote Breast Cancer Progression at Several Stages of the Disease. Mediators Inflamm 2015; 2015:804347. [PMID: 26783383 PMCID: PMC4691460 DOI: 10.1155/2015/804347] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/29/2015] [Indexed: 01/05/2023] Open
Abstract
Metastatic disease accounts for more than 90% of deaths from breast cancer. Yet the factors that trigger metastasis, often years after primary tumor removal, are not understood well. Recently the proinflammatory cytokine interleukin- (IL-) 17 family has been associated with poor prognosis in breast cancer. Here we review current literature on the pathogenic mechanisms driven by IL-17 during breast cancer progression and connect these findings to metastasis. These include (1) direct effects of IL-17 on tumor cells promoting tumor cell survival and invasiveness, (2) regulation of tumor angiogenesis, and (3) interaction with myeloid derived suppressor cells (MDSCs) to inhibit antitumor immune response and collaborate at the distant metastatic site. Furthermore, IL-17 might also be a culprit in bone destruction caused by late stage bone metastasis. Interestingly, in addition to these potential prometastasis functions, there is also evidence for an opposite, antitumor role of IL-17 during cancer therapies. We hypothesize that these contradictory roles may be due to chronic, imbalanced versus acute transient nature of the immune reactions, as well as differences in the cells that interact with IL-17+ cells under different circumstances.
Collapse
|
37
|
Gupta N, Duda DG. Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer. J Biomed Res 2015; 30:181-5. [PMID: 27533927 PMCID: PMC4885164 DOI: 10.7555/jbr.30.20150114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/10/2015] [Indexed: 12/13/2022] Open
Abstract
Metastatic prostate cancer is one of the leading causes of cancer-related death in men. The primary site of metastasis from prostate cancers is the bone. During the last decade, multiple studies have pointed to the role of the stromal cell-derived factor 1 alpha (SDF1α)/CXCR4 axis in the metastatic spread of the disease, but the mechanisms that underlie this effect are still incompletely understood. In this review, we summarize the current understanding of the role of the SDF1α/CXCR4 pathway in bone metastatic prostate cancer. We also discuss the therapeutic potential of disrupting the interaction between prostate tumor cells and bone environment with focus on the SDF1α pathway.
Collapse
Affiliation(s)
- Nisha Gupta
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Research Institute, Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Research Institute, Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Ahn SH, Edwards AK, Singh SS, Young SL, Lessey BA, Tayade C. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. THE JOURNAL OF IMMUNOLOGY 2015; 195:2591-600. [PMID: 26259585 DOI: 10.4049/jimmunol.1501138] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/15/2015] [Indexed: 01/20/2023]
Abstract
Endometriosis is a chronic, inflammatory disease characterized by the growth of endometrial tissue in aberrant locations outside the uterus. Neoangiogenesis or establishment of new blood supply is one of the fundamental requirements of endometriotic lesion survival in the peritoneal cavity. IL-17A is emerging as a potent angiogenic and proinflammatory cytokine involved in the pathophysiology of several chronic inflammatory diseases such as rheumatoid arthritis and psoriasis. However, sparse information is available in the context of endometriosis. In this study, we demonstrate the potential importance of IL-17A in the pathogenesis and pathophysiology of endometriosis. The data show a differential expression of IL-17A in human ectopic endometriotic lesions and matched eutopic endometrium from women with endometriosis. Importantly, surgical removal of lesions resulted in significantly reduced plasma IL-17A concentrations. Immunohistochemistry revealed localization of IL-17A primarily in the stroma of matched ectopic and eutopic tissue samples. In vitro stimulation of endometrial epithelial carcinoma cells, Ishikawa cells, and HUVECs with IL-17A revealed significant increase in angiogenic (vascular endothelial growth factor and IL-8), proinflammatory (IL-6 and IL-1β), and chemotactic cytokines (G-CSF, CXCL12, CXCL1, and CX3CL1). Furthermore, IL-17A promoted tubulogenesis of HUVECs plated on Matrigel in a dose-dependent manner. Thus, we provide the first evidence, to our knowledge, that endometriotic lesions produce IL-17A and that the removal of the lesion via laparoscopic surgery leads to the significant reduction in the systemic levels of IL-17A. Taken together, our data show a likely important role of IL-17A in promoting angiogenesis and proinflammatory environment in the peritoneal cavity for the establishment and maintenance of endometriosis lesions.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Andrew K Edwards
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sukhbir S Singh
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario K1H 7W9, Canada
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC 27514; and
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health System, Greenville, SC 29605
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada;
| |
Collapse
|
39
|
Wang L, Ma R, Kang Z, Zhang Y, Ding H, Guo W, Gao Q, Xu M. Effect of IL-17A on the migration and invasion of NPC cells and related mechanisms. PLoS One 2014; 9:e108060. [PMID: 25244643 PMCID: PMC4171532 DOI: 10.1371/journal.pone.0108060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/19/2014] [Indexed: 02/02/2023] Open
Abstract
In carcinogenesis, inflammasomes may play contradictory roles through facilitating anti-tumor immunity or inducing oncogenic factors. Their function in cancer remains poorly characterized. In this study, we explored the effect of interleukin-17A (IL-17A) on the migration and invasion activity of nasopharyngeal carcinoma (NPC) cell lines and account for related mechanisms. Our results revealed that exogenous IL-17A promoted cell migration and invasion significantly in both NPC-039 and CNE-2Z cell lines. In addition, the expression of matrix metalloproteinase-2 (MMP-2)/-9 and Vimentin could be elevated by IL-17A stimulation; meanwhile the expression of E-cadherin was decreased. The results also show that IL-17A could activate the p38 signaling pathway in IL-17A-stimulated NPC-039 and CNE-2Z cell lines. Combining treatment with a p38 inhibitor (SB203580) resulted in decreased invasion capabilities of NPC-039 and CNE-2Z cell lines. SB203580 also inhibited the expression of MMP-2/-9 and increased the expression of E-cadherin in IL-17A-stimulated NPC-039 and CNE-2Z cell lines. IL-17A also could activate NF-κB in NPC-039 and CNE-2Z cell lines. In summary, our data show that IL-17A promote the cell migration and invasion of NPC cells. The effect of IL-17A on cell migration and invasion may be mediated via regulation of the expression of MMP-2/-9 and epithelial-mesenchymal transition (EMT) via p38-NF-κB signaling pathway. Thus, IL-17A or its related signaling pathways may be a promising target for preventing and inhibiting NPC metastasis.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Otolaryngology head and neck surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Otolaryngology head and neck surgery, Affiliated People's Hospital of Hubei Medical University, Shiyan, China
| | - Ruixia Ma
- Department of Otolaryngology head and neck surgery, Hospital Affiliated to Ningxia Medical University, Yin chuan, China
| | - Zhaopeng Kang
- Department of Otolaryngology head and neck surgery, Hospital Affiliated to Ningxia Medical University, Yin chuan, China
| | - Yupeng Zhang
- Department of Otolaryngology head and neck surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongcheng Ding
- Department of Otolaryngology head and neck surgery, Affiliated People's Hospital of Hubei Medical University, Shiyan, China
| | - Weina Guo
- Department of Otolaryngology head and neck surgery, Affiliated People's Hospital of Hubei Medical University, Shiyan, China
| | - Qing Gao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, P. R. China
- * E-mail: (QG); (MX)
| | - Min Xu
- Department of Otolaryngology head and neck surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, China
- * E-mail: (QG); (MX)
| |
Collapse
|
40
|
Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:751392. [PMID: 25110692 PMCID: PMC4119707 DOI: 10.1155/2014/751392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jiamin Zhou
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Xiang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jian Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Surgery, Fudan University Cancer Center, Shanghai 200032, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|